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Abstract. A cover of the non-incident point-hyperplane graph of projective dimension 3 for fields of characteristic
2 is constructed. For fields F of even order larger than 2, this leads to an elementary construction of the non-split
extension of SL4(F) by F

6.
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1. Introduction

The non-incident point-hyperplane graph Hn(F) has as vertex set the non-incident pairs of
a point and a hyperplane in the projective geometry of projective dimension n over a field
F. Two distinct vertices are adjacent if the points and hyperplanes are mutually incident.
These graphs have been studied extensively, cf. Gramlich [4]. One of their properties is that
Hn+1(F) is locally Hn(F) for all F and n, and that every connected and locally Hn(F) graph
is isomorphic to Hn+1(F) whenever n > 2.

This property does not necessarily hold if n ≤ 2. Indeed, if n ∈ {0, 1} then it is easily
seen not to hold. In Gramlich [4], a covering graph of H3(F2), constructed by means of
a computer algebra computation, shows that it does not hold in dimension n = 2 over
F = F2. In this paper we give a computer-free construction of a covering graph of H3(F)
for char F = 2, thus providing counterexamples to the local recognizability of H3(F) for a
wider class. This is the content of the main theorem:

Theorem 1.1 Let q be a power of 2. Then there is a q6-cover of H3(Fq ) which is locally
H2(Fq ) and whose automorphism group contains an extension of SL(4, q) by an irreducible
6-dimensional module. This extension is split only if q = 2.

The existence part of the proof (see Theorem 3.6) is based on a construction developed
in Sections 2 and 3. These sections are based on the second author’s Masters’ thesis [8].

In Section 5 we find automorphisms of this covering graph, generating an extension of
SL4(F) by F

6, which is non-split if F �= F2 (see Theorem 5). Since our module is, up to a
field twist, the second exterior wedge of the natural module, by the Klein correspondence
we are dealing with an extension of O+(6, q) by its natural module. Therefore, the non-split
extension is the one found by Griess [5], Sah [9], and Bell [1].
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1.1. Notation and conventions

We let groups act on the right. All graphs are simple and undirected. The adjacency of
vertices u and v is denoted by u ⊥ v. For a graph �, we let V (�) be the set of its vertices
and D(�) be the set of its darts or oriented edges; that is, the set of ordered pairs of vertices
(u, v) for which u ⊥ v.

2. Voltage assignments

In this section, we discuss a general method of constructing covers of a given graph by
means of voltage assignments. For a general introduction to voltage assignments, see
Malnič et al. [7].

For all vertices v of a graph, we call the induced graph on the neighbourhood of v the
local graph at v. Let � and � be two connected graphs. If a map α: � → � preserves
adjacency and if α maps the local graph at every vertex of � isomorphically to the local
graph at its image, we call � a geometric cover of �.

Let N be a group. A map �: D(�) → N such that �(u, v) = �(v, u)−1 is called a voltage
assignment of �. We will often write �u,v for �(u, v), or �i, j if u = vi and v = v j . The lift
of � with respect to � is the graph with vertex set V (�) × N , where (u, m) ⊥ (v, n) if and
only if u ⊥ v and �(u, v) = mn−1. So N acts as an automorphism group on the lift of � as
(v, n)k = (v, nk), where v ∈ V (�) and n, k ∈ N .

Given a walk P = (v0, v1, . . . , vi ), where vi ⊥ vi+1, we call �0,1�1,2 . . . �n−1,n the voltage
of P , denoted by �(P). Using induction it is immediate that for any m ∈ N , there exists
exactly one walk in the lift from (v0, m) to (vn, �(P)−1m) that projects to P .

We start with two observations from Gross and Tucker [6]. Let � be a connected graph
with voltage assignment �: D(�) → N . Let � be the lift of � with respect to �. Then �

is connected if and only if for every n ∈ N and every v0 ∈ V (�), there is an i ∈ N and a
closed walk (v0, v1, . . . , vi = v0) such that �0,1�1,2 . . . �i−1,i = n. The proof is easy, and so
is the proof of the following lemma.

Lemma 2.1 Let � be a connected graph with voltage assignment �: D(�) → N. Let �

be the lift of � with respect to �. For all n ∈ N and v ∈ V (�), the local graph at (v, n) in
� is isomorphic to the local graph at v in �, if and only if for every triangle u, v, w of �,

we have �u,v�v,w�w,u = 1.

These two observations lead to the following straightforward lemma.

Lemma 2.2 Let � be a connected graph with voltage assignment �′: D(�) → N ′. Let T
be the normal closure of the subgroup of N ′ generated by the voltages of all triangles.

Let N be the quotient of N ′ by T and let �u,v = T �′
u,v . Let M be the subgroup of N

generated by the voltages (with respect to �) of all closed walks. Let � be the lift of � with
respect to �.

Then by the map (v, n) �→ v, each connected component of � is an |M |-fold geometric
cover of �.
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Let G be a group of automorphisms of � with an action on N . We will say that � is
G-equivariant if and only if for all g ∈ G and v ⊥ w ∈ �, we have that �vg,wg = (�v,w)g .

Group-equivariant voltage assignments enable the group to lift to a group of automor-
phisms of the lift. This is the content of the next lemma, the proof of which is again
straightforward. It occurs as Proposition 19.3 in Biggs [2]. Recall that multiplication on
G � N is defined by (g, k)(g′, k ′) = (gg′, kg′

k).

Lemma 2.3 Let G be a subgroup of Aut� such that � is G-equivariant. Let � be the lift
of � with respect to �. Then G � N acts faithfully on � by the action (v, n)(g,k) = (vg, ngk).

Now suppose we have the setup of Lemma 2.2. Let M be Abelian and let � be G-
equivariant. Choose a vertex v ∈ V (�). For all g ∈ G, choose a walk Pg from vg to v, and
let λ(g) be the voltage of Pg . Choose P1 such that λ(1) = 0. Then the following lemma
holds.

Lemma 2.4 The stabilizer in G � N of the connected component �0 of � containing (v, 0)
is H = {(g, λ(g) + m) | g ∈ G, m ∈ M}, which is an extension of G by M.

Proof: Since (v, 0)(g,λ(g)+m) = (vg, λ(g)+m) and since the walk in� starting at (vg, λ(g)+
m) and projecting down to Pg ends at (v, m), we have that H stabilizes �0. Conversely, if
an element (g, n) stabilizes �0, it maps (v, 0) to an element (vg, n) such that there is a walk
from (vg, λ(g)) to (vg, n). Then the projection of that walk down to � is a closed walk;
hence λ(g) − n ∈ M . So H is the full stabilizer of �0.

The kernel of the projection onto the first coordinate is {1} × M , so that is a normal
subgroup. The quotient by that subgroup is G. �

3. SL(V)-modules

We recall some multilinear algebra in order to be able to construct the voltage assignment
in the next section.

Consider the projective geometry Pn(F) of (projective) dimension n over the field F. We
denote incidence by ⊂ and the projective dimension by dim. Furthermore, V will be the
vector space F

4 with basis e1, . . . , e4 and dual basis f1, . . . , f4, so P3(F) = P(V ). Let

∧k V = V ⊗k/〈v1 ⊗ v2 ⊗ · · · ⊗ vk | vi = v j for some i �= j〉

be the kth Grassmannian of V . The image of v1 ⊗· · ·⊗ vk in
∧k V is denoted v1 ∧ · · ·∧ vk .

Let G be a group with a linear action on V ; this induces a natural action on
∧k V . Now

G ≤ SL(V ) if and only if G stabilizes every element of
∧4V . We will mostly be using the

case where k = 2. We need the following elementary lemmas.

Lemma 3.1 There is a canonical isomorphism from (
∧2V )

∗
to

∧2 (V ∗) that preserves
the induced action of GL(V ).
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Sketch of Proof: Let B∗:
∧2 (V ∗) × ∧2V → F be defined for ĥ = h1 ∧ h2 ∈ ∧2 (V ∗)

and v̂ = v1 ∧ v2 ∈ ∧2V by

B∗(ĥ, v̂) = h1(v1)h2(v2) − h1(v2)h2(v1),

and extended bilinearly. As B∗ is nondegenerate, ĥ �→ (v̂ �→ B∗(ĥ, v̂)) is an isomorphism
(
∧2V )

∗ → ∧2 (V ∗) respecting the induced action of GL(V ). �

Because of the preceding lemma we can drop the parentheses in the future and write∧2V ∗. Fix an isomorphism χ :
∧4V → F.

Lemma 3.2 Let V be a vector space of dimension 4 over a field F. Then there is a canonical
isomorphism ψ :

∧2V → ∧2V ∗ with inverse φ, which respects the natural induced group
actions of SL4(F) on

∧2V and
∧2V ∗.

Sketch of Proof: We define B:
∧2V × ∧2V → F as follows:

B(v1 ∧ v2, w1 ∧ w2) = (v1 ∧ v2 ∧ w1 ∧ w2)χ ,

and extended by linearity. Then B is nondegenerate. Now let ψ map ŵ ∈ ∧2V to the linear
functional that maps v̂ ∈ ∧2V to B(v̂, ŵ). Then ψ is a vector space isomorphism. �

Whenever we consider it appropriate, we will omit ψ and φ.

Lemma 3.3 Let h1, h2 be linearly independent elements of V ∗ and let v1, v2 be linearly
independent elements of V such that hi (v j ) = 0. Then (v1 ∧ v2)ψ = αh1 ∧ h2 for some
α ∈ F.

Proof: Let K = Kerh1 ∩ Kerh2 = 〈v1, v2〉. Put v̂ = (v1 ∧ v2)ψ and ĥ = h1 ∧ h2.
Let w1, w2 ∈ V and write ŵ = w1 ∧ w2. We will first show that ĥ(ŵ) = 0 precisely if

v̂(ŵ) = 0. We may assume ŵ �= 0. We can move w1 to any projective point on the projective
line 〈w1, w2〉 keeping the same value for ŵ by either switching w1 and w2 or replacing w1

by w1 + rw2 for some field element r . So if 〈w1, w2〉 intersects K , then we may assume
that the point of intersection is w1. Then

v̂(ŵ) = v1 ∧ v2 ∧ w1 ∧ w2 = 0,

ĥ(ŵ) = h1(w1)h2(w2) − h1(w2)h2(w1) = 0.

Otherwise, 〈v1, v2, w1, w2〉 = V so v̂(ŵ) �= 0. So v̂(ŵ) = 0 precisely if 〈w1, w2〉 intersects
K , and in that case we also have ĥ(ŵ) = 0.

Now suppose ĥ(ŵ) = 0. Then h1(w1)h2(w2) = h1(w2)h2(w1). Let w = f1(w2)w1 −
f1(w1)w2. Then

f1(w) = f1(w2) f1(w1) − f1(w1) f1(w2) = 0,

f2(w) = f1(w2) f2(w1) − f1(w1) f2(w2) = 0.

So again ĥ(ŵ) = 0 precisely if 〈w1, w2〉 intersects K .
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Now let x1, x2 ∈ V with x̂ = x1 ∧ x2. We will show that v̂(ŵ)ĥ(x̂) = v̂(x̂)ĥ(ŵ). We
may assume that ĥ and v̂ are nonzero on both ŵ and x̂ . So 〈w1, w2〉 intersects Kerh1 and
Kerh2 in distinct projective points. We may assume that these intersection points are 〈w1〉
and 〈w2〉, respectively, so hi (wi ) = 0. Similarly we may assume hi (xi ) = 0.

Now 〈v1〉, 〈v2〉, 〈wi 〉 and 〈xi 〉 are four projective points in the hyperplane Kerhi , so we
write wi = αi,1v1 + αi,2v2 + αi,3xi . Then

v̂(ŵ)ĥ(x̂) = −α1,3α2,3(v1 ∧ v2 ∧ x1 ∧ x2)(h1(x2)h2(x1))

and

v̂(x̂)ĥ(ŵ) = −α1,3α2,3(v1 ∧ v2 ∧ x1 ∧ x2)(h1(x2)h2(x1)).

It follows that v̂ and ĥ differ by the same factor on all elements of shape w1 ∧ w2, and
therefore on all of

∧2V . �

For an arbitrary vector space Y , we let

S2(Y ) = (Y ⊗ Y )/〈v ⊗ w − w ⊗ v | v, w ∈ Y 〉

be the second order symmetric tensor of Y . Then the natural action of SL(Y ) on Y ⊗ Y
induces a natural action on S2(Y ). We denote the image of v ⊗ w in S2(Y ) by vw. We will
often write w2 for ww.

Now let char F = 2, and let W = ∧2V = ∧2(V ∗) of dimension 6. Then S2(W ) has
dimension 21. The subspace W (2) of S2(W ), defined as

W (2) = 〈ŵ2 | ŵ ∈ W 〉,

has dimension 6 and is invariant under the induced action of GL(V ).

Lemma 3.4 Let w, x, y, z ∈ V be such that w ∧ x ∧ y ∧ z = 1. Then the vector

U = (w ∧ x)(y ∧ z) + (w ∧ y)(z ∧ x) + (w ∧ z)(x ∧ y)

does not depend on the choice of w, x, y, z and is fixed by SL(V ).

Proof: The map

�: (w, x, y, z) �→ (w ∧ x)(y ∧ z) + (w ∧ y)(z ∧ x) + (w ∧ z)(x ∧ y)

is 4-linear and alternating. There is only one such map, up to scalar multiples: the determi-
nant. Hence for tuples of vectors such that det(w, x, y, z) = w ∧ x ∧ y ∧ z = 1, we find
that � must be constant.

Since the image of �(w, x, y, z) under an element of SL(V ) is �(w′, x ′, y′, z′) for some
tuple satisfying w′ ∧ x ′ ∧ y′ ∧ z′ = 1, the element U is fixed by SL(V ). �
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4. The graph and its voltage assignment

Following Gramlich [4], we define the graph H3(F) to have vertex set

{(x, X ) | x, X ∈ P3(F), dim x = 0, dim X = 2, x �⊂ X}

and adjacency defined by

(x, X ) ⊥ (y, Y ) ⇔ x ⊂ Y and y ⊂ X.

We require char F = 2 and we retain V , W , W (2) and U as in the previous section.
The computer algebra computations of Gramlich [4] indicated that it might be possible

to find a 6-dimensional module to extend SL4(F2) with and obtain the automorphism group
of the cover of H3(F2). It seemed natural that this module would be

∧2V . On the other
hand, the vertices of the graph could be modelled as projective points in V ⊗ V ∗ with edges
corresponding to projective points in S2(V ⊗ V ∗). By the composition of natural maps

S2(V ⊗ V ∗) → ∧2V ⊗ ∧2V ∗ = ∧2V ⊗ ∧2V → S2(
∧2V ),

we could map an edge into an SL4(F)-module containing a twisted copy of
∧2V , viz. W (2).

The composition of these maps gives the setting for our voltage assignment.
We will often represent a vertex (x, X ) of H3(F) by a pair (v, h) of a nonzero vector v

in x and a functional h with kernel X . Let (v1, h1) ⊥ (v2, h2) be two adjacent vertices in
H3(F). We let �: D(H3(F)) → S2(W ) assign the voltage

h1(v1)−1h2(v2)−1(v1 ∧ v2)(h1 ∧ h2)φ (1)

to the dart from (v1, h1) to (v2, h2). Note that this is independent of the representatives vi

and hi . We will often choose v and h such that h(v) = 1.
We will sometimes regard S2(W ) as a group only, so the subgroups are the subspaces over

F2—not necessarily over F. We denote the F2-linear span of v0, . . . , vk by 〈v0, . . . , vk〉F2 .
Let �U : D(H3(F)) → S2(W )/〈U 〉F2 be the composition of � with the natural projection of
S2(W ) to S2(W )/〈U 〉F2 . Note that both � and �U are SL4(F)-equivariant.

The following theorem shows the existence of a q6-fold geometric cover of H3(Fq ) if q is
even, and so provides infinitely many counterexamples to the extension of Theorem 1.3.21
of Gramlich [4] for Hn+1(Fq ) to n = 2. This proves the existence part of Theorem 1.1.

Theorem 4.1 Let char F = 2. Let � be the lift of H3(F) with respect to �U . Then every
connected component of � is an |F6|-fold geometric cover of H3(F).

For proving Theorem 4.1. we need some auxiliary lemmas which are of interest in their
own right, since they provide information on the geometric covers of H3(F) in general. We
will use the words triangle, quadrangle and pentagon to mean closed walks of the obvious
lengths consisting of different vertices. A quadrangle will be called special of type A if the
number of distinct (projective) points, or the number of distinct hyperplanes, occurring in
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its vertices, is two; it will be called special of type B if the number of distinct points and
the number of distinct hyperplanes occurring are both three.

Consider the following chain complex over F2. We let C0 and C1 be the free modules
spanned by the vertices and edges of H3(F), respectively. The boundary map ∂1: C1 → C0

maps an edge to the sum of its vertices. We let C2 be the trivial module and therefore ∂2

is the zero map. In this manner we have an explicit description of the homology group
H1 = H1(C∗, F2) = ker ∂1. Let Q be the submodule of H1 spanned by triangles and special
quadrangles of type A. In Proposition 4.4 we will show that each closed walk is an element
of Q; that is, Q = H1.

Lemma 4.2 The sum of edges of a quadrangle is in Q.

Proof: Consider the quadrangle (v0, h0), . . . , (v3, h3). We may assume that these
representatives have been chosen such that hi (vi ) = 1. Suppose that for some i , we have
hi (vi+2) = hi+2(vi ) = 0; say for i = 0. Then the quadrangle consists of two triangles as
depicted in figure 1(a).

Now consider a quadrangle where for all i either hi (vi+2) or hi+2(vi ) is nonzero; we
may assume that h0(v2) = h1(v3) = 1. Then we can split the quadrangle into four special
quadrangles by adding the vertices (v2, h0) and (v3, h1), as depicted in figure 1(b) and
specified in the table below.

Vertices Type
(v0, h0) (v1, h1) (v2, h0) (v3, h1) A

(v1, h1) (v2, h2) (v3, h1) (v2, h0) B

(v2, h2) (v3, h3) (v2, h0) (v3, h1) A

(v3, h3) (v0, h0) (v3, h1) (v2, h0) B

If the added vertices coincide with vertices of the quadrangle, then instead the quadrangle
is split into two special quadrangles or the quadrangle itself is special.

Figure 1. (a) A quadrangle consisting of two triangles. (b) Splitting a quadrangle into four special quadrangles.
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Figure 2. (a) Finding the vertices (u0, h∗) and (u2, h∗). (b) A quadrangle of type B is a quadrangle of type A
plus four triangles.

So let us consider a special quadrangle of type B. It may be assumed to have vertices
(v0, h0), (v1, h1), (v0, h2), (v3, h1). The projective geometric relations between vi and h j

are depicted in figure 2(a). Let h∗ be the hyperplane containing v0, v1 and v3, and pick two
points u0 and u2 such that ui is in the intersection of hi and h1, but not in h∗. Then (ui , h∗)
are vertices of H3(F), and their neighbours are as depicted in figure 2(b). We see that a
quadrangle of type B is the sum of a quadrangle of type A and four triangles. �

Lemma 4.3 The sum of edges of a pentagon is in Q.

Proof: Let us take a pentagon (v0, h0), . . . , (v4, h4). We choose the representatives such
that hi (vi ) = 1 for all i .

Choose an index i and consider the index set {i − 2, i, i + 2} (modulo 5). Now suppose
that the common null space Ni of hi−2, hi and hi+2 is not contained in Vi = 〈vi−2, vi , vi+2〉.
Then take some v ∈ Ni \Vi , and some h ∈ V ∗ such that h is zero on Vi , but not on v. Then
the vertex (v, h) is adjacent to (vi−2, hi−2), (vi , hi ) and (vi+2, hi+2). Hence the pentagon is
the sum of two quadrangles and a triangle, as in figure 3.

Now suppose that for all indices i , we have that Ni ⊆ Vi . Since Ni has a positive vector
space dimension, there is a nonzero vector v in Vi on which hi−2, hi and hi+2 are all zero.
Let

v = λi−2vi−2 + λivi + λi+2vi+2.

If λi = 0, then also

0 = hi±2(λi±2vi±2 + λi∓2vi∓2) = λi±2,
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Figure 3. Splitting a pentagon into a triangle and two quadrangles.

contradicting v �= 0. So we may assume λi = 1. Then

0 = hi (v) = λi−2hi (vi−2) + 1 + λi+2hi (vi+2);
0 = hi−2(v) = λi−2 + hi−2(vi );
0 = hi+2(v) = λi+2 + hi+2(vi ).

So we find λi±2 = hi±2(vi ) and hence

hi−2(vi )hi (vi−2) + hi+2(vi )hi (vi+2) = 1. (2)

If we sum Eq. (2) over all i the right hand side is 1. But every term on the left hand side
occurs twice, so the left hand side is 0. Contradiction. �

Proposition 4.4 Q = H1.

Proof: It is sufficient to show that the sum of edges of any closed walk is in Q. Lemmas 4.2
and 4.3 tell us that the statement holds for all closed walks of length at most 5. Let c =
(v0, v1, . . . , vn = v0) be a shortest closed walk not in Q; so n ≥ 6. By Lemma 1.3.5 of
Gramlich [4], the diameter of H3(F) is two, so there is a path of length at most 2 from v0 to
v3. Let us call this path P . This gives us two new closed walks: the first one is formed by
v0, . . . , v3, followed by the reverse of P—the length of which is at most 5, whence it is in
Q; the second one is formed by P , followed by v4, . . . , vn—the length of which is at most
n − 1, whence it is also in Q. Therefore c is also in Q. Contradiction. �

Note that this proposition can also be shown to hold for homology over Z.
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Lemma 4.5 The voltage of a triangle with respect to � is U.

Proof: Let (v1, h1), (v2, h2), (v3, h3) be a triangle in H3(F). We assume hi (vi ) = 1. Then
{vi } and {hi } are both linearly independent sets. Hence the intersection of the null spaces
of {hi } has dimension 1; choose u nonzero in it. Then {v1, v2, v3, u} form a basis for V . We
may assume that v1 ∧ v2 ∧ v3 ∧ u = 1.

Since h1 and h2 both vanish on v3 and u, we have α(h1 ∧h2)φ = v3 ∧u for some nonzero
α ∈ F by Lemma 3.3. Now 1 = v1 ∧ v2 ∧ v3 ∧ u = α(h1(v1)h2(v2) + h1(v2)h2(v1)) = α.
Hence (h1 ∧h2)φ = v3 ∧u; similarly we obtain (h1 ∧h3)φ = v2 ∧u and (h2 ∧h3)φ = v1 ∧u.
So if {i, j, k} = {1, 2, 3}, then the voltage of the dart from (vi , hi ) to (v j , h j ) is (vi ∧ v j )
(vk ∧ u). The sum of the voltages is then

(v1 ∧ v2)(v3 ∧ u) + (v1 ∧ v3)(v2 ∧ u) + (v2 ∧ v3)(v1 ∧ u) = U.

�

Lemma 4.6 The voltage of a closed walk in H3(F) with respect to � is in W (2) ⊕ 〈U 〉F2 .

Proof: By Proposition 4.4, the voltage of any closed walk can be written as the sum of
voltages of triangles and special quadrangles of type A. By Lemma 4.5, the voltage of a
triangle is U .

Now consider a special quadrangle of type A. We may, by duality, assume its vertices
are (v0, h0), (v1, h1), (v0, h2) and (v1, h3) with hi (vi ) = hi+2(vi ) = 1. By Lemma 3.3, its
voltage is

(v0 ∧ v1)(h0 ∧ h1 + h1 ∧ h2 + h2 ∧ h3 + h3 ∧ h0)φ

= (v0 ∧ v1)((h0 + h2) ∧ (h1 + h3))φ = α(v0 ∧ v1)2 ∈ W (2),

where α is some field element. �

Lemma 4.7 For all w ∈ W (2) there is a closed walk in H3(F) with voltage w with respect
to �.

Proof: It is sufficient to show that a set of generators of W (2) occurs as voltages of closed
walks. Note that an F-basis is not necessarily sufficient—we need an F2-basis.

Consider the special quadrangle of type A with vertices (e3, f3), (e4, f4), (e3, λ f2 + f3)
and (e4, f1 + f4). Its voltage is λe2

1,2. By permuting the base vectors and by choosing
different values for λ, we obtain an F2-basis for W (2). �

Proof of Theorem 4.1: We apply Lemma 2.2. Lemma 4.5 gives us T = 〈U 〉F2 ; then
Lemmas 4.6 and 4.7 imply that M = W (2). Hence every connected component of � is a
|W (2)|-fold geometric cover of �. Since W (2) ∼= F

6, we have finished the proof. �

Notice that � is a cover of H3(F) in the sense of 2-dimensional simplicial complexes
whose 2-simplices are the triangles of the graphs. Since closed walks in � correspond to
closed walks in H3(F) with voltage 0, the cover is simply connected if and only if every
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closed walk of voltage 0 in H3(F) is a sum of triangles. We conjecture that � is not simply
connected in this sense. For F = F2 this is true because a computer computation shows that
the walk with the vertices in the list below and with voltage 0 is not a sum of triangles in
that case:

(e1, f1), (e2, f2 + f4), (e1, f1 + f3), (e2, f2), (e1 + e3, f1), (e2 + e4, f2),

where {ei } and { fi } are bases of V and V ∗, respectively.

5. A group of automorphisms

Let � be the graph of Theorem 4.1, so char F = 2. Set N = S2(W )/〈U 〉F2 and M =
(W (2) + 〈U 〉F2 )/〈U 〉F2 . When writing elements of N and M , we will often omit the added
〈U 〉F2 . The group SL4(F) acts on H3(F) as follows. A group element g maps a vertex (v, h)
to (vg, hg), where hg(w) = h(wg−1

). According to Lemma 2.3, the group SL4(F) � N acts
on �. By Lemma 2.4 and the results of Section 4, an extension E of SL4(F) by M acts on
a connected component of �. The content of Theorem 5.1. below is that this extension is
nonsplit unless |F| = 2. The existence of this nonsplit extension was known by Bell [1],
Griess [5], and Sah [9]. The theorem proves the automorphism group part of Theorem 1.1.

An extension of a group by an Abelian group corresponds to a 2-cocycle in the standard
chain complex of the group that is being extended. The extension is nonsplit exactly if the
cocycle is not a 2-coboundary, see Brown [3]. In this section we find an explicit cocycle
that defines this extension.

We let i and π denote the natural maps in the following diagram:
By Brown [3], a 2-cocycle is determined by a section s: SL4(F) → E of π . It is a map

f : G × G → M such that

s(g)s(h) = s(gh)i( f (g, h)), f (g, 1) = f (1, g) = 0. (3)

This is the right-action version of (3.3.3) of [3]. The group law on the set SL4(F) × M that
makes it into a group isomorphic with E is

[g1, m1][g2, m2] = [
g1g2, mg1

1 + m2 + f (g1, g2)
]
. (4)

So in order to describe the cocycle, we need to define the section s. The elements of
E are most easily described as elements of SL4(F) � N . Therefore we construct a map
λ: SL4(F) → N such that s(g) = (g, λ(g)) ∈ E and λ(1) = 0. Then f is determined by
Eq. (3) as

f (g, h) = −λ(gh) + λ(g)h + λ(h).

We can choose λ as in Lemma 2.4. The construction of λ is then coordinate-dependent.
In order to compute it, choose a basis {ei } for F

4 and a dual basis { fi }. We need to fix a
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vertex of H3(F), say (e1, f1), and then for each g ∈ SL4(F) we need to choose a walk from
(eg

1 , f g
1 ) to (e1, f1). The voltage along this walk is then λ(g).

Theorem 5.1 Let char F = 2 and |F| > 2. Then the stabilizer E in SL4(F) � N of a
connected component is a non-split extension of SL4(F) by F

6.

Proof: Let α ∈ F be an element outside the ground field. Let F denote the additive
subgroup 〈1, α〉F2 of F of order 4. For x ∈ F , let Ax be the element of SL4(F)) fixing e2

and e4, and mapping e1 and e3 to e1 + xe2 and e3 + xe4, respectively. We will show that the
subgroup A = {Ax | x ∈ F} does not lift to a subgroup of E .

We define a basis for W , and write down the images under Ax :

w1 = e1 ∧ e2 = ( f3 ∧ f4)φ �→ w1;
w2 = e1 ∧ e3 = ( f2 ∧ f4)φ �→ w2 + xw3 + xw4 + x2w5;
w3 = e1 ∧ e4 = ( f2 ∧ f3)φ �→ w3 + xw5;
w4 = e2 ∧ e3 = ( f1 ∧ f4)φ �→ w4 + xw5;
w5 = e2 ∧ e4 = ( f1 ∧ f3)φ �→ w5;
w6 = e3 ∧ e4 = ( f1 ∧ f2)φ �→ w6.

Let vx = (e1 + xe2, f1) and let u = (e3, f3). Then vx ⊥ u for all x ∈ F . The voltage along
the dart between u and vx is

((e1 + xe2) ∧ e3)( f1 ∧ f3) = w2w5 + xw4w5.

We choose λ as in Lemma 2.4 and take v = v0, so vAx = vx . For all x ∈ F , we choose a
walk PAx as (vx , u, v). Then λ(Ax ) = xw4w5. Hence

f (Ax , Ay) = λ(Ax+y) + λ(Ax )Ay + λ(Ay) = xyw2
5 ∈ M.

Now suppose that A lifts to a subgroup of E , that is, there is a function c: F → M such
that {[x, c(x)] | x ∈ F} with multiplication as in Eq. (4) is a group isomorphic to A. Then
[1, c(1)], [α, c(α)], and [α + 1, c(α + 1)] need to have order 2.

Now [x, m]2 = [0, x2w2
5 + m Ax + m], so [x, m] has order two if and only if m Ax + m =

x2w2
5. By elementary linear algebra we find that this is true for x �= 0 if and only if

m ∈ w2
3 + S, where S = 〈w2

1, w
2
3 + w2

4, w
2
5, w

2
6〉F. Note that S is A-invariant.

Let s(x) = w2
3 + c(x). Then s(x) ∈ S. Since [1, c(1)][α, c(α)] = [α + 1, c(α + 1)], we

have s(α + 1) = w2
3 + αw2

5 + c(1)Aα + c(α) = w2
3 + (α + α2)w2

5 + s(1) + s(α) �∈ S, a
contradiction.

Since A does not lift to a subgroup of E , neither does SL4(F). In other words, the extension
of SL4(F) by M is non-split. �
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