Skip to main content
Log in

Investigation of sodium and germanium bi-substituted trimeric strontium silicate (Sr3-3xNa3xSi3-3yGe3yO9-δ; 0 < x < 0.20, y = 0.1) as solid electrolyte

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Strontium silicates doped with an alkali metal are extensively investigated after their high conductivity reported in the moderate range of temperature (773 K < T < 1073 K). This work aims to study the structural, microstructural, morphological, thermal, and electrical investigation of Sr3-3xNa3xSi3-3yGe3yO9-δ (0 < x < 0.20, y = 0.1; SNSG) system. A solid-state reaction method was adopted for synthesis of the compositions. Composition's phase formation was examined using X-rays Rietveld refinement techniques. X-Ray Diffraction (XRD) patterns were mapped by the monoclinic symmetry having space-group C12/c1. Moreover, along with monoclinic phase a few minor peaks of Sr2SiO4 were also detected along with prominent peaks of parent SrSiO3. To comprehend the surface morphology of the compositions, scanning electron microscopy has been employed. Studies using Fourier transform infrared spectroscopy and Raman spectroscopy have been carried out to investigate the characteristic bands and vibrations modes of the system. Characteristic valence states of constituent elements and stability of the sintered samples in air were confirmed by the X-ray Photoelectron Spectroscopy (XPS) analysis. The electrical behavior of this system was studied by electrochemical impedance spectroscopy (EIS) techniques. Electrical conductivity of the platinum-coated sintered pellet samples was also calculated to check its feasibility as a cost-effective electrolyte for intermediate temperature range. It has also been observed that in Na-doped compositions, a few amorphous phases of Sodium silicate (Na2Si2O5) formed as impurity that may contribute to the total conductivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Fergus JW (2006) J Power Sources 162:30

    Article  CAS  Google Scholar 

  2. Liu B, Zhang Y (2008) J Univ Sci Technol Beijing Miner Metall Mater (Eng Ed) 15:84

    Google Scholar 

  3. Singh P, Goodenough JB (2012) Energy Environ Sci 5:9626

    Article  CAS  Google Scholar 

  4. Singh P, Goodenough JB (2013) J Am Chem Soc 135:10149

    Article  CAS  PubMed  Google Scholar 

  5. Martinez-Coronado R, Singh P, Alonso-Alonso J, Goodenough JB (2014) J Mater Chem A 2:4355

    Article  CAS  Google Scholar 

  6. Wei T, Singh P, Gong Y, Goodenough JB, Huang Y, Huang K (2014) Energy Environ Sci 7:1680

    Article  CAS  Google Scholar 

  7. Bayliss RD, Cook SN, Fearn S, Kilner JA, Greaves C, Skinner SJ (2014) Energy Environ Sci 7:2999

    Article  CAS  Google Scholar 

  8. Tealdi C, Malavasi L, Uda I, Ferrara C, Berbenni V, Mustarelli P (2014) Chem Commun 50:14732

    Article  CAS  Google Scholar 

  9. Inglis KK, Corley JP, Florian P, Cabana J, Bayliss RD, Blanc F (2016) Chem Mater 28:3850

    Article  CAS  Google Scholar 

  10. Chien PH, Jee Y, Huang C, Dervişoǧlu R, Hung I, Gan Z, Huang K, Hu YY (2016) Chem Sci 7:3667

  11. Pandey R, Viviani M, Singh P, Botter R, Carpanese MP, Barbucci A, Presto S (2018) Solid State Ionics 314:172

  12. Evans IR, Evans JSO, Davies HG, Haworth AR, Tate ML (2014) Chem Mater 26:5187

  13. Joh DW, Shin HR, Kim J, Lee KT (2019) J Ind Eng Chem 71:387

    Article  CAS  Google Scholar 

  14. Jee Y, Zhao X, Lei X, Huang K (2016) J Am Ceram Soc 99:324

    Article  CAS  Google Scholar 

  15. Nishi F (1997) Acta Crystallogr Sect C Cryst Struct Commun 53:534

    Article  ADS  Google Scholar 

  16. Sood K, Basu S (2016) RSC Adv 6:20211

    Article  CAS  ADS  Google Scholar 

  17. Kostogloudis GC, Ftikos C (2007) J Eur Ceram Soc 27:273

    Article  CAS  Google Scholar 

  18. Sahu IP, Bisen DP, Tamrakar RK, Murthy KVR, Mohapatra M (2017) J Sci Adv Mater Devices 2:59

    Article  Google Scholar 

  19. Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solidi 15:627

    Article  CAS  Google Scholar 

  20. Zhang M, Zhai W, Lin K, Pan H, Lu W, Chang J (2010) J Biomed Mater Res - Part B Appl Biomater 93:252

    Article  Google Scholar 

  21. Ueno A, Hayashi S, Okada K, Ōtsuka N (1991) J Mater Sci Lett 10:9

    Article  CAS  Google Scholar 

  22. Kahlenberg V, Konzett J, Kaindl R (2007) J Solid State Chem 180:1934

    Article  CAS  ADS  Google Scholar 

  23. Aroyo MI, Kirov A, Capillas C, Perez-Mato JM, Wondratschek H (2006) Acta Crystallogr Sect A Found Crystallogr 62:115

    Article  ADS  Google Scholar 

  24. Aroyo MI, Perez-Mato JM, Capillas C, Kroumova E, Ivantchev S, Madariaga G, Kirov A, Wondratschek H (2006) Zeitschrift Fur Krist 221:15

    CAS  ADS  Google Scholar 

  25. Kahlenberg V, Kaindl R, Sartory B (2007) Solid State Sci 9:65

    Article  CAS  ADS  Google Scholar 

  26. Sitarz M, Mozgawa W, Handke M (1997) J Mol Struct 404:193

    Article  CAS  ADS  Google Scholar 

  27. McMillan P, Piriou B, Couty R (1984) J Chem Phys 81:4234

    Article  CAS  ADS  Google Scholar 

  28. Mysen BO, Virgo D, Seifert FA (1984) Am Mineral 69:834

    CAS  Google Scholar 

  29. Cui Z, Ye R, Deng D, Hua Y, Zhao S, Jia G, Li C, Xu S (2011) J Alloys Compd 509:3553

    Article  CAS  Google Scholar 

  30. You JL, Jiang GC, Hou HY, Chen H, Wu YQ, Xu KD (2005) J Raman Spectrosc 36:237

    Article  CAS  ADS  Google Scholar 

  31. N. X. P. S. Database, 20899 (2000).

  32. K. Sood, J. Kaswan, S. P. Singh, T. Norby, and S. Basu, 4 (2018).

  33. Zhang X, Liu Y (2020) J Hazard Mater 398:122907

    Article  CAS  PubMed  Google Scholar 

  34. Nesbitt HW, Bancroft GM, Henderson GS, Ho R, Dalby KN, Huang Y, Yan Z (2011) J Non Cryst Solids 357:170

    Article  CAS  ADS  Google Scholar 

  35. Jee Y, Zhao X, Huang K (2015) Chem Commun 51:9640

    Article  CAS  Google Scholar 

  36. Delhaye G, El Kazzi M, Gaillard S, Gendry M, Hollinger G (2006) J Phys IV JP 132:285

    CAS  Google Scholar 

  37. El Kazzi M, Delhaye G, Merckling C, Bergignat E, Robach Y, Grenet G, Hollinger G (2007) J Vac Sci Technol 25:1505

    Article  Google Scholar 

  38. Medrano-Pesqueira CL, Rodríguez-Carvajal DA (2017) J Non Cryst Solids 475:15

    Article  CAS  ADS  Google Scholar 

  39. Irvine BJTS, Sinclair DC, West AR (1990) Arch Fr Pediatre 2:132

    CAS  Google Scholar 

  40. Fernández-Palacios S, Dos Santos-Gómez L, Compana JM, Porras-Vázquez JM, Cabeza A, Marrero-López D, Losilla ER (2015) Ceram Int 41:6542

    Article  Google Scholar 

  41. Tarique H, Shahid R, Singh P, Pandey R, Singh P (2022) J Mater Sci Mater Electron 33:14961

    Article  CAS  Google Scholar 

  42. Chandrappa AK, Potnuru LR, Ramamurthy PC (2018) J Alloys Compd 745:555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, HT thanks University Grants Commission (UGC) for providing fellowship. This work has been supported by the Science and Engineering Research Board—Early Career Research Award (SERB-ECRA) project. One of the authors, R. Pandey, gratefully acknowledges the financial support from Science and Engineering Research Board (Grant No.: ECR/2016/001152), Department of Science and Technology, Government of India. Authors acknowledge the Central Instrumentation Facility, IIT BHU Varanasi, USIC DU and CIF JMI for extending their characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

HT: Writing–original draft, methodology, investigation, data curation, and Formal Analysis. RS: Supervision, Writing–review and editing. PS: Measurement, Writing–Review & editing, and data requisition. AKS: Writing–Review and editing. RP: Conceptualization, Resource, Supervision, funding acquisition, Writing–review and editing. PS: Resource, Writing–review and editing. All authors have read and agreed to submit this version of the manuscript.

Corresponding authors

Correspondence to Raza Shahid or Raghvendra Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

There are no experiments on ethical issues in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarique, H., Shahid, R., Singh, P. et al. Investigation of sodium and germanium bi-substituted trimeric strontium silicate (Sr3-3xNa3xSi3-3yGe3yO9-δ; 0 < x < 0.20, y = 0.1) as solid electrolyte. J Appl Electrochem 54, 487–502 (2024). https://doi.org/10.1007/s10800-023-01994-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-01994-w

Keywords

Navigation