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Abstract
In this work, IN738 superalloy used previously in gas turbines was recycled and used as a working electrode for the elec-
trooxidation of different fuels, namely ethylene glycol, ethanol, and urea. The electrocatalytic efficiency of the electrode 
was studied by cyclic voltammetry, chronoamperometry, and electrochemical impedance. Several kinetics parameters like 
diffusion coefficient, Tafel slope, rate constant, and activation energy were calculated. The modified electrode was char-
acterized as received using XRD, SEM, and EDAX to elucidate the crystal structure and surface morphology before and 
after electrochemical oxidation. The anodic current densities of electrochemical oxidation of ethanol, ethylene glycol, and 
urea were 29, 17, and 12 mA.cm−2, respectively, in an alkaline solution at a potential of 0.6 V (vs. Ag/AgCl). The kinetic 
parameters like diffusion coefficients for ethanol, ethylene glycol, and urea were found to be 1.5 × 10–6, 1.038 × 10–6, and 
0.64 × 10–6 cm2 s−1, respectively. The charge transfer resistances were estimated for electrooxidation of different fuels by 
electrochemical impedance spectroscopy (EIS).
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1  Introduction

Fuel cells are a promising device that is widely used for 
energy generation that is clean and sustainable [1–4]. More-
over, the fuel cell is recognized as a device that generates 
green and sustainable electrical energy via the electrooxida-
tion of a hydrogen-rich molecule (i.e., methanol, ethanol, 
formic acid, ammonia, glycerol, and urea) [5–10]. However, 
fuel cells have several profits over conventional combustion-
based technologies used in many power plants and vehicles 
[11].

Fuels can be mainly classified depending on their physical 
state (solid, liquid, or gas), origin, and chemical structure. 
Several materials can be used as fuels, like ethylene glycol, 
ethanol, and urea [12–15]. Ethylene glycol (EG), a cheap and 
non-volatile material, has been interested in its lower toxic-
ity and higher ignition point than other alcohol. Besides, 
the energy capacity of EG ca. 4.8 A.h.mL−1 is higher than 
methanol (4 A.h.mL−1) [16]. Based on the structure of EG, 
the complete conversion of EG to CO2 evaluates ten e− per 
one molecule of alcohol, while the reaction can be expressed 
as follows (Eq. (1)) [17]:

Ethanol is a non-toxic liquid produced from gasoline 
and biomass. Ethanol is alcohol with a C–C bond that has a 
higher energy density compared with methanol, since it can 
deliver 12 electrons per molecule if fully oxidized to CO2, 
as illustrated in the following Eq. (2) [18]:

Urea is an impressive fuel because of its ability to be 
produced in large scans by the petrochemical process. In 
addition, urea-rich water is available in the sludge of indus-
trial processes and human urine in the wastewater. Direct 
urea fuel cells (DUFCs) are one of the most rapidly growing 
fuel cells. Nowadays, many researchers focus their efforts 
on DUFC owing to a high energy density of up to 17 MJL−1 
compared with liquid hydrogen equal to 10 MJL−1 [19].

The urea electrochemical oxidation is considered as six 
electron process which can be represented by the following 
Eq. (3) [20]:

Several precious metals like palladium and platinum are 
widely used as anodic materials for electrochemical oxidations 
due to their high stability, low CO tolerance, and high catalytic 
conversion [21–25]. Recently, the nickel-based catalyst has 
been considered a significant element for electrochemical oxi-
dation, compared with other precious metals, like palladium 

(1)
(

CH2OH
)

2
+ 2H2O ⇄ 2CO2 + 10H + 10e−.

(2)CH3CH2OH + 12OH−
→ 2CO2 + 9H2O + 12e−.

(3)CO
(

NH2

)

2
+ 6OH−

→ N2 + 5H2O + CO2 + 6e−.

and platinum. The growing interest in Ni-based catalysts is 
owing to their availability, low toxicity, and cheap cost.

Consequently, modified surfaces of nickel based were 
reported to enhance to activity of the electrocatalyst, such 
as nanowire [26–28], nanofoam [29], or nanoflowers [30]. 
Additionally, the activity of the electrodes was reported in 
the literature by promoting the electronic properties using 
binary metals, like NiCo2O4, Ni-WO2, Ni–Fe double hydrox-
ides, and LaNiO3, [31–34].

Turbine blades are considered the most sophisticated 
single-crystal superalloys globally due to the continuous 
material with zero grains. At the same time, the superalloy 
can afford extraordinary mechanical properties under ele-
vated temperatures and high-stress conditions [35]. Ni-based 
superalloys are widely used for high-temperature applica-
tions, such as disks and blades of either aerospace engines 
or land-based gas turbines [36–39]. The gas turbine blades 
used for power generation are mostly nickel-based superal-
loys, such as IN738LC alloy. Ni-based superalloy includes 
several elements in crystal systems, such as tungsten, tanta-
lum, niobium, and molybdenum [40].

The high percentage of nickel element facilitates the 
nickel-based superalloy suitable for electrocatalysis in an 
alkaline medium. On the other hand, the presence of another 
transition element like Cr, Mo, and Nb was proved to rein-
force the catalysis potential by enhancing the electrical prop-
erties and the poisoning resistance [41–45]. Therefore, the 
activity of IN738 alloy is expected to be high toward the 
oxidation of small molecules regarding the structure and 
chemical composition.

In this work, IN738 electrode derived from a waste gas tur-
bine blade was used as anode material for the electrochemical 
oxidation of different organic molecules, like ethylene glycol, 
ethanol, and urea. A comparative electrochemical study was 
performed, and different kinetics parameters were calculated 
for the different fuel oxidation upon the working electrode.

2 � Experimental part

2.1 � Materials, chemicals, and solvents

IN738 waste alloy was received as an old turbine blade scrap 
from a gas turbine power plant. The chemicals used in the 
electrochemical experiment were analytical grade. All solu-
tions were prepared with double distilled water.

2.2 � Catalyst synthesis

2.2.1 � Preparation of IN738 superalloy

The sample was first soaked in 0.5-M nitric acid to clean the 
surface of any organic or carbon materials. Then, the surface 
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was polished with conventional sand polish paper. Finally, 
the electrochemical treatment was performed on IN738 sam-
ple by soaking the electrode in 1.0 M of KOH to generate 
the corresponding hydroxide species by cyclic voltammetry. 
Table 1 shows the chemical composition of the as received.

2.3 � Structural and surface analysis equipment

The XRD was performed as a prepared IN738 superalloy 
using the Panlytical X’Pert instrument with Cu-Kα radiation 
(λ = 1.540Ǻ). The Quanta 250 FEG instrument was used for 
scanning electron microscopy (SEM) and EDAX measure-
ments of IN738 sample. To enhance the samples’ conduc-
tivity and resolution measurement, the samples were coated 
with gold using EMITECH k550x sputter coater.

2.4 � Electrode preparation

The electrochemical oxidation of fuel was performed on 
the surface of a well-polished (mirror-like) IN738 elec-
trode (cuboid shape alloy with dimension length, width, 
and height ca. 5, 5, 1 mm) sealed in an epoxy resin jacket, 
leaving an exposed geometric surface area of 0.25 cm2. For 
impurities removal, the IN738 electrode was immersed in 
10% HNO3, rinsed with distilled water, and then polished 
using 2500 grit emery paper to obtain a smooth mirror-finish 
surface. The electrochemical studies were performed using 
cyclic voltammograms, chronoamperometry, and the elec-
trochemical impedance to investigate the activity of IN738 
electrode toward the electrooxidation of different fuels, like 
ethanol, ethylene glycol (EG), and urea. The three-electrode 
system was used to perform the required studies in a solution 
containing a 1.0-M potassium hydroxide aqueous electro-
lyte, a platinum wire as the counter electrode, and an Ag/
AgCl electrode (saturated KCl) as a reference electrode. 
Autolab workstation (PGSTAT128N) was employed to find 
the different electrochemical experiments, like cyclic vol-
tammetry, chronoamperometry, and electrochemical imped-
ance. Nova software (ver. 2.1) was used as a graphical user 
interface. The EIS experiment was measured by applying 
an AC Potential of 0.1 Hz up to 1 × 104 Hz. Because of 
the nature of the sample (metal waste), all electrochemistry 
results were measured three times to ensure the reproduc-
ibility of the data.

3 � Results and discussion

3.1 � Characterizations

3.1.1 � XRD

The crystal system of the as-casted alloy was studied using 
an x-ray diffraction pattern. Figure 1 shows the XRD pat-
terns of the nickel-based 738 after heat treatments. As 
shown in Fig. 1, the as-cast sample consists of three main 
phases, namely γ-Ni, γ`-Ni3[Al, Ti], and γ``-Ni3Nb, at 
2ϴ = 40.3, 43.9, 50.2, 74.2, 90.3, and 96.2. For phases 
γ-Ni and γ`-Ni3[Al, Ti], the pattern is indexed to the (111), 
(002), (022), and (113). At the same time, the peaks for 
the γ``-Ni3Nb phase are indexed to the (112), (020), (220), 
and (132) [46]. However, aluminum and titanium are con-
sidered essential solutes in nickel-based superalloys. Two-
phase microstructure like gamma (γ) and gamma-prime (γ’) 
is mainly responsible for the high-temperature strength and 
high creep deformation resistance [47].

3.1.2 � Surface characterization

The morphology and elemental analysis of IN738 surface 
were performed by scanning electron microscope (SEM) and 
energy-dispersive X-rays (EDX). Figure 2a represents the 
SEM image of the surface of IN738 before oxidation. Due 
to acid polishing and surface treatment, the tunnel appeared 
on the alloy surface. The surface was studied after the oxida-
tion of urea. As shown in Fig. 2b, the metal hydroxide layer 

Table 1   Elemental distribution 
of IN738 elements

Element C K O K AlK NbL MoL TiK CrK CoK NiK TaL

Weight % 11.08 4.85 3.08 0.1 0.37 3.16 13.59 6.32 51.85 3.21

Fig. 1   XRD chart of IN738
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covers the surface. On the other hand, surface deterioration 
was observed at the edges of the tunnels. Figure 3 repre-
sents the EDAX of IN738 surface. The elemental analysis 
of IN738 surfaces was estimated by EDAX analysis, as 
reported in Table 1.

According to a previous study of IN738 superalloy micro-
structure [48, 49], the composite of the alloy consists of a 
Ni-based austenitic γ matrix, γ’ precipitates, and MC carbide 
in addition to γ/γ’ eutectic.

The grain size was expected to be 100 μm. According to 
the microstructure analysis, two types of carbides were rep-
resented in the superalloy located inside the grain bounda-
ries of the γ matrix. The presence of (Ta, Ti) C in addition 

to a minor percentage of (Nb, W) C was proved by EDAX 
results.

3.2 � Fuel electrooxidation

The electrochemical activity was studied for IN738 electrode 
toward oxidation of the different small molecules, like ethyl-
ene glycol, ethanol, and urea. IN738 is considered a supper 
alloy with high Ni-contained 50%. Otherwise, the presence 
of various transition metals in the alloy crystal enhances the 
catalytic efficacy of the alloy. The activity of the electrode 
was investigated by cyclic voltammetry (CV) in an alkaline 
medium of 1.0-M KOH at a scan rate of 20 mV s−1.

Fig. 2   SEM image of IN738 electrode a before and b after oxidation

Fig. 3   EDAX of IN738 surface
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However, the electrooxidation of a small organic molecule 
on Ni-based catalyst depends on the formation of NiOOH 
active species followed by electrooxidation of adsorbed fuel 
molecule as represented in the following Eq. (4) [50]:

The electrode was first activated in KOH to regenerate 
active species and form metal hydroxides. As shown in 
Fig. 4a, the electrode was exposed to 50 repeated cycles in a 
solution of 1.0-M KOH at a scan rate of 100 mV s−1.

Figure 4b shows the CVs of electrochemical oxidation 
of ethanol, ethylene glycol, and urea upon IN738 sur-
face in a solution of 1.0-M KOH and 1.0 M of fuels at a 
scan rate of 20 mV s−1. IN738 was the effective surface 
of the oxidation of these fuels. Consequently, the recog-
nizable oxidation peaks were observed corresponding to 

(4)6Ni(OH)2(s) + 6OH−
⇄ 6NiOOH

(s) + 6H2O(l)
+ 6e−.

the oxidation of each fuel. The higher electrode activity 
toward ethanol over ethylene glycol is attributed to its 
simple structure and highest diffusion rate. Additionally, 
the presence of two hydroxyl groups in ethylene glycol 
increases the interaction with the solvent and suppresses 
the molecule’s diffusion toward the electrode surface. 
The adsorption of urea on the metal surface is due to the 
carbonyl group of urea molecules [51]. Despite the small 
structure of the urea molecule, it was observed to have the 
lowest current density owing to the small output electron 
of complete oxidation compared with ethylene glycol and 
ethanol counterparts. Furthermore, the direct oxidation of 
urea leads to the more defined redox peak, as represented 
in Fig.  4b. The electrochemical oxidation of ethylene 
glycol is expected to be more complex compared to the 
urea and ethanol counterparts. The difficulty of complete 

Fig. 4   a Repeated 50 CVs at a scan rate of 50 mV s−1 for activation 
of IN738 surface in 1.0 KOH. b CVs of IN738-modified electrode at 
the solution of 1.0 M of (ethylene glycol, ethanol, and urea) in 1.0-M 

KOH at a scan rate of 20 mV s−1. c Tafel plots of (ethylene glycol, 
ethanol, and urea)
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oxidation of ethylene glycol is observed by the undefined 
oxidation peak and the decrease of the Ni2+/Ni3+ peak due 
to the accumulation of uncomplete oxidative carbon spe-
cies on the nickel surface.

The activity of different nickel-based surfaces was com-
pared with the result of IN738 for various fuels in an alkaline 
medium (see Table 2).

Tafel slope is one of the electrochemical parameters 
obtained from linear sweep voltammetry. The value of Tafel 
slope reflects how the electrochemical process can take place 
effectively. Thus, the lower value of Tafel slope indicates the 
smaller value of potential required to initiate the reaction. As 
shown in Fig. 4c, Tafel plot of IN738 electrode for ethylene 
glycol, ethanol, and urea was calculated as 105, 80.2, and 
51.2 mV dec−1, respectively. The charge transfer coefficients 
were also established from Butler–Volmer Eq. (5) [60]:

where ɳ is the over-potential, R is the universal gas constant, 
T is the operating temperature, n is the number of electrons 
involved in oxidation (nethylene glycol = 10, nethanol = 12, nurea = 6), 
F: is the Faraday constant, and i is the oxidation current.

The charge transfer coefficient (α) was calculated as 0.92, 
0.902, and 0.904 for ethylene glycol, ethanol, and urea, 
respectively. The comparison between electrode activities 
for different fuels is reported in Table 3.

The concentration of the analyte is considered a vital point 
for the catalysis process, whereas determining the lower and 
upper concentration limits can be used to select suitable 

(5)� = (2.303RT/(1 − �) log (i),

applications and understand the kinetics of the electrode. 
Therefore, concentration was studied for different fuels on 
IN738 electrode. As represented in Fig. 5a–c, the CVs of elec-
trochemical oxidation of ethylene glycol, ethanol, and urea are 
shown and inset of Fig. 5 shows the linear relation between 
anodic peak current (at potential of 0.6 V (vs. Ag/AgCl) and 
fuel concentration (1.0 M). The effect of concentration was 
studied over concentration ranges (0.025 to 1.0 M). As the 
result of zero boundary surfaces, the observed anodic current 
shows two linear regions owing to the electrode’s lower sen-
sitivity toward low concentration. Otherwise, the electrode’s 
activity was linear until the concentration reached 1.0 M, indi-
cating a wide range of active species and lower poisoning due 
to the co-metals inserted in the alloy crystal.

Furthermore, the durability of electrodes was studied using 
chronoamperometry at oxidation potential (0.55 V vs. Ag/
AgCl) for each fuel. The experiment was carried out in a 
solution of 1.0 M of (ethylene glycol, ethanol, and urea) and 
1.0-M KOH for 5 h of continuous oxidation. As shown in 
Fig. 6a, the chronoamperogram reflects the high stability of 
IN738 electrode. Consequently, the activity was decreased by 
a percentage of 9, 7, and 11% for ethylene glycol, ethanol, and 
urea, respectively. The electrode’s durability was expected due 
to the alloy’s CO tolerance as a result of presence of multi-
transition metals incorporated in the crystal. Thus, the robust 
stability of the alloy structure prevents catalyst mass loss.

For constant potential experiments, the current is decreased 
because of several aspects, like surface poisoning, damage to 
the electrode surface, and the accumulation of uncompleted 

Table 2   The comparison 
between activities of different 
catalyst surfaces for ethanol, 
ethylene glycol, and urea

Surface Fuel (OH) 
Conc 
(M)

Fuel Conc (M) Scan rate 
(mV s−1)

Anodic 
Current (mA 
cm−2)

Ref

Nickel–Copper Multilayer 
Metal Hydroxide

Ethanol 1.0 0.5 10 26 [52]

nickel nanoparticles Ethanol 0.5 0.5 5 34 [53]
Ni–Mn double hydroxides Ethylene glycol 1.0 1.0 20 35 [54]
PdNiP Ethylene glycol 1.0 1.0 20 31.3 [55]
Sulfonate-MWCNT- PdNi Ethylene glycol 0.5 1.0 50 35.3 [56]
NiO-Fe3O4@Chitosan Urea 1.0 0.3 10 31 [57]
Cu-doped NiO Urea 0.5 0.3 20 32 [58]
NiO-MnOx/Polyaniline Urea 1.0 0.3 50 20 [59]

Table 3   Represent the value of 
the diffusion coefficient (D), 
Tafel slope, transfer coefficient 
(α), onset potentials, and anodic 
current density (A cm−2) for 
different fuels electrooxidation 
upon IN738 anode

Fuel Tafel slope 
(mV dec−1)

Charge transfer 
coefficient(α)

Diffusion coefficient 
(cm2 s−1) ( × 10–6)

Onset potential
(V)

Anodic peak 
current (mA 
cm−2)

Ethanol 51.2 0.904 1.5 0.375 29
Ethylene glycol 80.2 0.902 1.038 0.368 17
Urea 105 0.920 0.64 0.391 12
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oxidized species [61–63]. Accordingly, the expected CO tol-
erance of IN738 alloy regards the effect of the co-catalyst, 
where the Ni-based co-catalyst exhibits high resistance toward 
CO adsorption [64]. Furthermore, using as-received alloy 
without casting the catalyst on the electrode surface promotes 
the surface’s stability for long-term oxidation.

3.3 � Kinetics study

The electrooxidation in the basic medium is mainly depend-
ent on Ni(OH)2 and NiOOH conversion. Therefore, the esti-
mated surface coverage is calculated by cyclic voltammetry 
(seen Fig. 7a) in the solution containing 1.0-M KOH for 
various scan rate ranges as follows (Eq. 6) [65]:

(6)J =

(

n
2
F
2
∕4RT

)

�AΓ
∗

Fig. 5   CVs of IN738 electrode in 1.0-M KOH solution containing different concentrations of a ethylene glycol, b ethanol, and c urea at scan rate 
20 mV s−1. Inset Fig. 5: The effect of changing the concentration versus anodic peak current for different fuels

Fig. 6   Representation of long-term electrode stability using chrono-
amperometry technique for five hours of continuous oxidation
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where J is the oxidation current, n is the electron number, Γ* 
is the surface coverage, and T is the temperature. Figure 7b 
displays the linear relation of scan rate vs. oxidation current. 

That the studied surface coverage equal to 4.199 × 10–7 mol.
cm−2, recognization of the electrochemical process and 
kinetics coefficient must be established. For different fuels, 

Fig. 7   a CVs of IN738 electrode at different scan rates 
(5–200 mV s−1) in 1.0-M KOH. b Anodic and cathodic peak current 
values of Ni(OH)2/NiOOH redox couple at studied electrocatalysts as 

a function of the square root of scan rate in the absence of urea. c-e 
Linear sweep voltammetry for different fuels at the 1.0-M KOH and 
1.0-M fuel solutions. f The relation between Ip of oxidation vs. ν1/2
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Fig. 7c–e shows that cyclic voltammetry was employed to 
find out the diffusion coefficient at a wide sweep rates (5 to 
1000 mV s−1). As fuel electrochemical oxidation is consid-
ered an irreversible reaction, Randles–Sevcik’s relation was 
used to determine the diffusion coefficient for different fuels 
toward the IN738 electrode surface. Thus, the diffusion coef-
ficients are provided by the following Eq. (7) [66]:

where I is the current in (A), n is the electron number, no 
is the rate-determining step electron, ν is the scan rate, A 
is electrode area, C is the fuel concentration, and D is the 
diffusion coefficient.

Figure 7f shows the relation between the oxidation cur-
rent (at 0.7 V vs. Ag/AgCl) versus the square root of scan 
rate along with a wide range of sweep rate, where the diffu-
sion coefficient is provided for ethylene glycol, ethanol, and 
urea as 1.038 × 10–6, 1.5 × 10–6, and 0.64 × 10–6 cm2 s−1, 
respectively.

3.4 � EIS

For further information about oxidation on IN738 sur-
face, the electrochemical impedance was measured at a 
constant potential of 0.5 V (vs. Ag/AgCl) in an alkaline 
solution holding different fuels (i.e., ethylene glycol, etha-
nol, and urea). Figure 8 displays Nyquist graph for the 
mentioned fuels. Whereas, the semi-circuit was observed 
for the charge transfer electrochemical oxidation process. 

(7)Ip = 2.99 × 105n(1 − �) noACD
0.5
�
0.5,

The resultant EIS data were fitted by NOVA software, as 
illustrated in Fig. 9. The solution resistance was connected 
in series with two cells in the fitting circuit. In each cell, 
double-layer resistance is connected to a constant phase 
element in a parallel connection. Accordingly, the pres-
ence of the constant phase element was reported in the 
literature as a surface roughness factor [67]. Otherwise, 
the constant phase elements are considered for different 
behaviors, such as distribution of reaction rates, surface 
thickness, homogeneity, and roughness [67–70].

The estimated EIS parameters are provided in Table 4. 
It was observed that the impedance of the working elec-
trode in the presence of ethanol is the lowest value among 
the other fuels. The electrochemical oxidation of ethanol 
was expected to be easier upon IN738 electrode because of 
the molecule’s lower activation energy and simple struc-
ture. The fuel with a higher oxidation current density was 
found to have lower charge transfer resistance than the 
other electrodes. Therefore, the faster electron transfer led 
to higher oxidation activity [71].

4 � Conclusion

IN738 superalloy showed efficient electrooxidation of 
different fuels, like ethylene glycol, ethanol, and urea. 
The presence of a high percentage of nickel IN738 alloy 
enhanced the electrochemical activity of IN738 in the 
alkaline medium. The activity of IN738 toward ethanol is 
higher than EG fuel due to ethanol’s uncomplicated struc-
ture and its higher diffusion rate. IN738 has high catalytic 
efficiency toward urea electrooxidation because of active 
elements like Co, Cr, Nb, and Mo that boost the perfor-
mance of the superalloy surface toward urea electrooxi-
dation. The high structural stability of IN738 enhanced 
the long-term stability of the electrooxidation process and 
the decrease in current after 4 h of continuous oxidation 
approached 10% for most cases.Fig. 8   Nyquist plots of IN738 electrode for electrooxidation of differ-

ent fuels (ethylene glycol, ethanol, and urea) at the solution of 1.0-M 
KOH at AC potential 0.55 V

Fig. 9   Fitting circuit of EIS data
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