Skip to main content
Log in

Lithium-ion batteries using metal foil-free electrodes toward sustainable battery circulation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Limiting the metal species present in the battery, such as the metal foils used for current collection, is an effective strategy to reduce the cost of recycling lithium-ion batteries (LIBs). This study elucidates the performances of LIBs without metal foils by investigating LIBs using self-standing electrodes with an edge or full contact at the current terminals. Although the Cu foil on the negative electrode had little effect on battery performance, the Al foil on the positive electrode was critical in determining the characteristics of the battery, especially its rate properties. The low electronic conductivity of the positive electrode resulted in the localization of the reaction area at the electrode edge, as predicted by simulations. The rate characteristics were significantly improved by inserting a non-metallic graphite sheet into the back of the positive electrode. Thus, LIBs without metal foils can be obtained by ensuring the electrical resistance of the positive electrode.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Okada T, Tamaki T, Managi S (2019) Effect of environmental awareness on purchase intention and satisfaction pertaining to electric vehicles in Japan. Transp Res D 67:503–513. https://doi.org/10.1016/j.trd.2019.01.012

    Article  Google Scholar 

  2. Watabe A, Leaver J, Ishida H, Shafiei E (2019) Impact of low emissions vehicles on reducing greenhouse gas emissions in Japan. Energy Policy 130:227–242. https://doi.org/10.1016/j.enpol.2019.03.057

    Article  CAS  Google Scholar 

  3. Winslow KM, Laux SJ, Townsend TG (2018) A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour Conserv Recy 129:263–277. https://doi.org/10.1016/j.resconrec.2017.11.001

    Article  Google Scholar 

  4. Müller T, Friedrich B (2006) Development of a recycling process for nickel-metal hydride batteries. J Power Sources 158:1498–1509. https://doi.org/10.1016/j.jpowsour.2005.10.046

    Article  CAS  Google Scholar 

  5. Ellis TW, Mirza AH (2010) The refining of secondary lead for use in advanced lead-acid batteries. J Power Sources 195:4525–4529. https://doi.org/10.1016/j.jpowsour.2009.12.118

    Article  CAS  Google Scholar 

  6. Li L, Zhang X, Li M, Chen R, Wu F, Amine K, Lu J (2018) The recycling of spent lithium-ion batteries: a review of current processes and technologies. Electrochem Energ Rev 1:461–482. https://doi.org/10.1007/s41918-018-0012-1

    Article  CAS  Google Scholar 

  7. Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F (2020) Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev 120:7020–7063. https://doi.org/10.1021/acs.chemrev.9b00535

    Article  CAS  PubMed  Google Scholar 

  8. Sun X, Luo X, Zhang Z, Meng F, Yang J (2020) Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. J Clean Prod 273:123006. https://doi.org/10.1016/j.jclepro.2020.123006

    Article  CAS  Google Scholar 

  9. Or T, Gourley SWD, Kaliyappan K, Yu A, Chen Z (2020) Recycling of mixed cathode lithium-ion batteries for electric vehicles: current status and future outlook. Carbon Energy 2:6–43. https://doi.org/10.1002/cey2.29

    Article  CAS  Google Scholar 

  10. Leon EM, Miller SA (2020) An applied analysis of the recyclability of electric vehicle battery packs. Resour Conserv Recy 157:104593. https://doi.org/10.1016/j.resconrec.2019.104593

    Article  Google Scholar 

  11. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575:75–86. https://doi.org/10.1038/s41586-019-1682-5

    Article  CAS  PubMed  Google Scholar 

  12. Zheng X, Zhu Z, Lin X, Zhang Y, He Y, Cao H, Sun Z (2018) A mini-review on metal recycling from spent lithium ion batteries. Engineering 4:361–370. https://doi.org/10.1016/j.eng.2018.05.018

    Article  CAS  Google Scholar 

  13. Peng C, Lahtinen K, Medina E, Kauranen P, Karppinen M, Kallio T, Wilson BP, Lundström M (2020) Role of impurity copper in Li-ion battery recycling to LiCoO2 cathode materials. J Power Sources 450:227630. https://doi.org/10.1016/j.jpowsour.2019.227630

    Article  CAS  Google Scholar 

  14. Thompson DL, Hartley JM, Lambert SM, Shiref M, Harper GDJ, Kendrick E, Anderson P, Ryder KS, Gaines L, Abbott AP (2020) The importance of design in lithium ion battery recycling—a critical review. Green Chem 22:7585–7603. https://doi.org/10.1039/d0gc02745f

    Article  CAS  Google Scholar 

  15. Chen M, Ma X, Chen B, Arsenault R, Karlson P, Simon N, Wang Y (2019) Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3:2622–2646. https://doi.org/10.1016/j.joule.2019.09.014

    Article  CAS  Google Scholar 

  16. Chen X, Xu B, Zhou T, Liu D, Hu H, Fan S (2015) Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Sep Purif Technol 144:197–205. https://doi.org/10.1016/j.seppur.2015.02.006

    Article  CAS  Google Scholar 

  17. Sommerville R, Shaw-Stewart J, Goodship V, Rowson N, Kendrick E (2020) A review of physical processes used in the safe recycling of lithium ion batteries. Sustain Mater Technol 25:e00197. https://doi.org/10.1016/j.susmat.2020.e00197

    Article  CAS  Google Scholar 

  18. Sommerfeld M, Vonderstein C, Dertmann C, Klimko J, Oráč D, Miškufová A, Havlík T, Friedrich B (2020) A combined pyro- and hydrometallurgical approach to recycle pyrolyzed lithium-ion battery black mass part 1: production of lithium concentrates in an electric arc furnace. Metals 10:1069. https://doi.org/10.3390/met10081069

    Article  CAS  Google Scholar 

  19. Makuza B, Tian Q, Guo X, Chattopadhyay K, Yu D (2021) Pyrometallurgical options for recycling spent lithium-ion batteries: a comprehensive review. J Power Sources 491:229622. https://doi.org/10.1016/j.jpowsour.2021.229622

    Article  CAS  Google Scholar 

  20. Neumann J, Petranikova M, Meeus M, Gamarra JD, Younesi R, Winter M, Nowak S (2022) Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling. Adv Energy Mater 12:2102917. https://doi.org/10.1002/aenm.202102917

    Article  CAS  Google Scholar 

  21. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643. https://doi.org/10.1246/cl.2001.642

    Article  Google Scholar 

  22. Hu L, Wu H, La Mantia F, Yang Y, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848. https://doi.org/10.1021/nn1018158

    Article  CAS  PubMed  Google Scholar 

  23. Luais E, Mery A, Abou-Rjeily J, Sakai J, Tran-Van F, Ghamouss F (2019) A self-standing and binder-free electrodes fabricated from carbon nanotubes and an electrodeposited current collector applied in lithium-ion batteries. J Electrochem Sci Technol 10:373–380. https://doi.org/10.33961/jecst.2019.03132

    Article  CAS  Google Scholar 

  24. Yazici M, Krassowski D, Prakash J (2005) Flexible graphite as battery anode and current collector. J Power Sources 141:171–176. https://doi.org/10.1016/j.jpowsour.2004.09.009

    Article  CAS  Google Scholar 

  25. Wu Q, Yang J, Zhao Y, Song R, Wang Z, Huang Z, Shi M, Ye Y, He D, Mu S (2020) Lifting the energy density of lithium ion batteries using graphite film current collectors. J Power Sources 455:227991. https://doi.org/10.1016/j.jpowsour.2020.227991

    Article  CAS  Google Scholar 

  26. Wang L, He X, Li J, Gao J, Fang M, Tian G, Wang J, Fan S (2013) Graphene-coated plastic film as current collector for lithium/sulfur batteries. J Power Sources 239:623–627. https://doi.org/10.1016/j.jpowsour.2013.02.008

    Article  CAS  Google Scholar 

  27. Xu H, Jin H, Qi Z, Guo Y, Wang J, Zhu Y, Ji H (2020) Graphene foil as a current collector for NCM material-based cathodes. Nanotechnology 31:205710. https://doi.org/10.1088/1361-6528/ab72ba

    Article  CAS  PubMed  Google Scholar 

  28. Kretschmer K, Sun B, Xie X, Chen S, Wang G (2016) A free-standing LiFePO4–carbon paper hybrid cathode for flexible lithium-ion batteries. Green Chem 18:2691–2698. https://doi.org/10.1039/c5gc02602d

    Article  CAS  Google Scholar 

  29. Liu YH, Lin HH, Tai YJ (2018) Binder-free carbon fiber-based lithium-nickel-manganese-oxide composite cathode with improved electrochemical stability against high voltage: effects of composition on electrode performance. J Alloys Compd 735:580–587. https://doi.org/10.1016/j.jallcom.2017.11.056

    Article  CAS  Google Scholar 

  30. Chen CH, Chiu JM, Shown I, Wang CH (2022) Simple way of making free-standing cathode electrodes for flexible lithium-ion batteries. RSC Adv 12:9249–9255. https://doi.org/10.1039/d1ra08993e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohsaki T, Kanda M, Aoki Y, Shiroki H, Suzuki S (1997) High-capacity lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes. J Power Sources 68:102–105. https://doi.org/10.1016/s0378-7753(97)02634-7

    Article  CAS  Google Scholar 

  32. COMSOL Multiphysics v. 5.5., www.comsol.com, COMSOL AB, Stockholm, Sweden

  33. Dresselhaus MS, Dresselhaus G (1981) Intercalation compounds of graphite. Adv Phys 30:139–326. https://doi.org/10.1080/00018738100101367

    Article  CAS  Google Scholar 

  34. Dahn JR (1991) Phase diagram of LixC6. Phys Rev B: Condens Matter 44:9170–9177. https://doi.org/10.1103/physrevb.44.9170

    Article  CAS  PubMed  Google Scholar 

  35. Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 140:2490–2498. https://doi.org/10.1149/1.2220849

    Article  CAS  Google Scholar 

  36. Rodrigues S, Munichandraiah N, Shukla AK (1999) AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J Solid State Electrochem 3:397–405. https://doi.org/10.1007/s100080050173

    Article  CAS  Google Scholar 

  37. Ogihara N, Itou Y, Sasaki T, Takeuchi Y (2015) Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J Phys Chem C 119:4612–4619. https://doi.org/10.1021/jp512564f

    Article  CAS  Google Scholar 

  38. Wang C, Appleby AJ, Little FE (2001) Electrochemical impedance study of initial lithium ion intercalation into graphite powders. Electrochim Acta 46:1793–1813. https://doi.org/10.1016/s0013-4686(00)00782-9

    Article  CAS  Google Scholar 

  39. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76. https://doi.org/10.1016/j.carbon.2016.04.008

    Article  CAS  Google Scholar 

  40. Dai QS, Ahmed S, Gaines L, Kelly JC, Wang M (2019) Everbatt: a closed-loop battery recycling impacts model 19/16:153050. https://doi.org/10.2172/1530874

  41. Braithwaite JW, Gonzales A, Nagasubramanian G, Lucero SJ, Peebles DE, Ohlhausen JA, Cieslak WR (1999) Corrosion of lithium-ion battery current collectors. J Electrochem Soc 146:448–456. https://doi.org/10.1149/1.1391627

    Article  CAS  Google Scholar 

  42. Zhang XY, Winget B, Doeff M, Evans JW, Devine TM (2005) Corrosion of aluminum current collectors in lithium-ion batteries with electrolytes containing LiPF6. J Electrochem Soc 152:B448–B454. https://doi.org/10.1149/1.2041867

    Article  Google Scholar 

  43. Chen Y, Fu K, Zhu S, Luo W, Wang Y, Li Y, Hitz E, Yao Y, Dai J, Wan J, Danner VA, Li T, Hu L (2016) Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett 16:3616–3623. https://doi.org/10.1021/acs.nanolett.6b00743

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Oka.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1194.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oka, H., Kondo, H., Hasegawa, M. et al. Lithium-ion batteries using metal foil-free electrodes toward sustainable battery circulation. J Appl Electrochem 53, 487–499 (2023). https://doi.org/10.1007/s10800-022-01791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01791-x

Keywords

Navigation