Skip to main content

Advertisement

Log in

Carbon nanotube cloth as a promising electrode material for flexible aqueous supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical cyclic recharging of a binder-free flexible carbon material in respect to supercapacitor applications is reported. To provide high enough and stable pseudocapacitance, the surface of carbon nanotube cloth (CNTC) was exposed to dry oxidative functionalization by annealing in air at 460 °C. We report the effect of annealing time (0.5–3 h) on capacitance, electrical resistivity and specific surface area. CNTC annealed for 1 h demonstrated the best results: the capacitance of ca. 42 F g−1 in 0.5 M H2SO4 (slightly decreasing with a scan rate up to 1000 mV s−1) and specific resistivity of 20 µΩ m. For CNTC demonstrating these characteristics, the specific surface area was 342 m2 g−1, comprising almost from mesopores. Capacitance retention of 99.1% during 30,000 recharging cycles was observed. Finally, a flexible symmetric supercapacitor operating at 1 V was assembled from the freestanding (unsupported) CNTC electrodes to test their performance in a device prototype. Coulombic efficiency was close to 100% at high enough current densities. Our observations allow to consider air-oxidized CNTC as a promising electrode material for flexible supercapacitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Becker HI (1957) Low voltage electrolytic capacitor. Pat. US2800616.

  2. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4:453–489. https://doi.org/10.1093/nsr/nwx009

    Article  CAS  Google Scholar 

  3. Raghavendra KVG, Vinoth R, Zeb K, et al (2020) An intuitive review of supercapacitors with recent progress and novel device applications. J Energy Storage 31:101652. https://doi.org/10.1016/j.est.2020.101652

    Article  Google Scholar 

  4. Sharma P, Kumar V (2020) Current technology of supercapacitors: a review. J Electron Mater 49:3520–3532. https://doi.org/10.1007/s11664-020-07992-4

    Article  CAS  Google Scholar 

  5. Zhao J, Burke AF (2021) Electrochemical capacitors: materials, technologies and performance. Energy Storage Mater 36:31–55. https://doi.org/10.1016/j.ensm.2020.12.013

    Article  Google Scholar 

  6. Volfkovich YM (2021) Electrochemical supercapacitors (a review). Russ J Electrochem 57:311–347. https://doi.org/10.1134/S1023193521040108

    Article  CAS  Google Scholar 

  7. Andreas HA, Conway BE (2006) Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim Acta 51:6510–6520. https://doi.org/10.1016/j.electacta.2006.04.045

    Article  CAS  Google Scholar 

  8. Centeno TA, Stoeckli F (2006) The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons. Electrochim Acta 52:560–566. https://doi.org/10.1016/j.electacta.2006.05.035

    Article  CAS  Google Scholar 

  9. Centeno TA, Stoeckli F (2006) On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties. J Power Sources 154:314–320. https://doi.org/10.1016/j.jpowsour.2005.04.007

    Article  CAS  Google Scholar 

  10. Zhu S, Ni J, Li Y (2020) Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res 13:1825–1841. https://doi.org/10.1007/s12274-020-2729-5

    Article  CAS  Google Scholar 

  11. Hillier N, Yong S, Beeby S (2020) The good, the bad and the porous: a review of carbonaceous materials for flexible supercapacitor applications. Energy Rep 6:148–156. https://doi.org/10.1016/j.egyr.2020.03.019

    Article  Google Scholar 

  12. Zhang Y, Mei H, Cao Y, et al (2021) Recent advances and challenges of electrode materials for flexible supercapacitors. Coord Chem Rev 438:213910. https://doi.org/10.1016/j.ccr.2021.213910

    Article  CAS  Google Scholar 

  13. Xie P, Yuan W, Liu X, et al (2021) Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater 36:56–76. https://doi.org/10.1016/j.ensm.2020.12.011

    Article  Google Scholar 

  14. Cheng C, He S, Zhang C, et al (2018) High-performance supercapacitor fabricated from 3D free-standing hierarchical carbon foam-supported two dimensional porous thin carbon nanosheets. Electrochim Acta 290:98–108. https://doi.org/10.1016/j.electacta.2018.08.081

    Article  CAS  Google Scholar 

  15. Zaccagnini P, di Giovanni D, Gomez MG, et al (2020) Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis. Electrochim Acta 357:136838. https://doi.org/10.1016/j.electacta.2020.136838

    Article  CAS  Google Scholar 

  16. Dai P, Zhang S, Liu H, et al (2020) Cotton fabrics-derived flexible nitrogen-doped activated carbon cloth for high-performance supercapacitors in organic electrolyte. Electrochim Acta 354:136717. https://doi.org/10.1016/j.electacta.2020.136717

    Article  CAS  Google Scholar 

  17. Phattharasupakun N, Wutthiprom J, Suktha P, et al (2017) High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: effects of oxygen-containing group contents, electrolytes and operating temperature. Electrochim Acta 238:64–73. https://doi.org/10.1016/j.electacta.2017.03.208

    Article  CAS  Google Scholar 

  18. Filimonenkov IS, Urvanov SA, Zhukova EA, et al (2018) Carbon nanotube cloth for electrochemical charge storage in aqueous media. J Electroanal Chem 827:58–63. https://doi.org/10.1016/j.jelechem.2018.09.004

    Article  CAS  Google Scholar 

  19. Mordkovich VZ, Kazennov N V, Ermolaev VS, et al (2018) Scaled-up process for producing longer carbon nanotubes and carbon cotton by macro-spools. Diam Relat Mater 83:15–20. https://doi.org/10.1016/j.diamond.2018.01.017

    Article  CAS  Google Scholar 

  20. Karaeva A, Urvanov S, Kazennov N, et al (2020) Synthesis, structure and electrical resistivity of carbon nanotubes synthesized over group VIII metallocenes. Nanomaterials 10:2279. https://doi.org/10.3390/nano10112279

    Article  CAS  PubMed Central  Google Scholar 

  21. Karaeva AR, Zhukova EA, Urvanov SA, et al (2016) Modification of surface of double wall carbon nano tubes by fullerene C60. Izv Vyss Uchebn Zaved Khim Khim Tekhnol 59:12–20. https://doi.org/10.6060/tcct.20165908.27y

    Article  CAS  Google Scholar 

  22. Kinoshita K, Bett JAS (1973) Potentiodynamic analysis of surface oxides on carbon blacks. Carbon 11:403–411. https://doi.org/10.1016/0008-6223(73)90080-8

    Article  CAS  Google Scholar 

  23. Thorogood CA, Wildgoose GG, Crossley A, et al (2007) Differentiating between ortho- and para-quinone surface groups on graphite, glassy carbon, and carbon nanotubes using organic and inorganic voltammetric and X-ray photoelectron spectroscopy labels. Chem Mater 19:4964–4974. https://doi.org/10.1021/cm071412a

    Article  CAS  Google Scholar 

  24. Gusmão R, Cunha E, Paiva C, et al (2016) Role of carbonaceous fragments on the functionalization and electrochemistry of carbon materials. ChemElectroChem 3:2138–2145. https://doi.org/10.1002/celc.201600399

    Article  CAS  Google Scholar 

  25. Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York, p. 310–312

    Google Scholar 

  26. Seo M-K, Park S-J (2010) Influence of air-oxidation on electric double layer capacitances of multi-walled carbon nanotube electrodes. Curr Appl Phys 10:241–244. https://doi.org/10.1016/j.cap.2009.05.031

    Article  Google Scholar 

  27. LI L, LI F (2011) The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Mater 26:224–228. https://doi.org/10.1016/S1872-5805(11)60078-4

    Article  Google Scholar 

  28. Chen J, Li C, Lian Y, et al (2021) Understanding the oxygen-containing functional groups on multiwall carbon nanotubes toward supercapacitors. Mater Today Chem 19:100414. https://doi.org/10.1016/j.mtchem.2020.100414

    Article  CAS  Google Scholar 

  29. He Y, Zhang Y, Li X, et al (2018) Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim Acta 282:618–625. https://doi.org/10.1016/j.electacta.2018.06.103

    Article  CAS  Google Scholar 

  30. Ryabova AS, Bonnefont A, Simonov PA, et al (2017) Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media. Electrochim Acta 246:643–653. https://doi.org/10.1016/j.electacta.2017.06.017

    Article  CAS  Google Scholar 

  31. Rabbow TJ, Whitehead AH (2017) Deconvolution of electrochemical double layer capacitance between fractions of active and total surface area of graphite felts. Carbon 111:782–788. https://doi.org/10.1016/j.carbon.2016.10.064

    Article  CAS  Google Scholar 

  32. He Y, Chen W, Gao C, et al (2013) An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5:8799–8820. https://doi.org/10.1039/C3NR02157B

    Article  CAS  PubMed  Google Scholar 

  33. Lee J, An G (2021) Surface-engineered flexible fibrous supercapacitor electrode for improved electrochemical performance. Appl Surf Sci 539:148290. https://doi.org/10.1016/j.apsusc.2020.148290

    Article  CAS  Google Scholar 

  34. Hérou S, Crespo Ribadeneyra M, Schlee P, et al (2021) The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors. J Energy Chem 53:36–48. https://doi.org/10.1016/j.jechem.2020.04.068

    Article  Google Scholar 

  35. Tanahashi I, Yoshida A, Nishino A (1990) Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double‐layer capacitors. J Electrochem Soc 137:3052–3057. https://doi.org/10.1149/1.2086158

    Article  CAS  Google Scholar 

  36. He D, Marsden AJ, Li Z, et al (2019) A single step strategy to fabricate graphene fibres via electrochemical exfoliation for micro-supercapacitor applications. Electrochim Acta 299:645–653. https://doi.org/10.1016/j.electacta.2019.01.034

    Article  CAS  Google Scholar 

  37. Wang M, Ma Y (2017) Nitrogen-doped graphene forests as electrodes for high-performance wearable supercapacitors. Electrochim Acta 250:320–326. https://doi.org/10.1016/j.electacta.2017.08.073

    Article  CAS  Google Scholar 

  38. Chen D-Z, Yu J, Lu W, et al (2017) Temperature effects on electrochemical performance of carbon nanotube film based flexible all-solid-state supercapacitors. Electrochim Acta 233:181–189. https://doi.org/10.1016/j.electacta.2017.03.009

    Article  CAS  Google Scholar 

  39. Che J, Chen P, Chan-Park MB (2013) High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. J Mater Chem A 1:4057–4066. https://doi.org/10.1039/C3TA01421E

    Article  CAS  Google Scholar 

  40. Di J, Hu D, Chen H, et al (2012) Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 6:5457–5464. https://doi.org/10.1021/nn301321j

    Article  CAS  PubMed  Google Scholar 

  41. Jang IY, Muramatsu H, Park KC, et al (2009) Capacitance response of double-walled carbon nanotubes depending on surface modification. Electrochem Commun 11:719–723. https://doi.org/10.1016/j.elecom.2009.01.021

    Article  CAS  Google Scholar 

  42. Zheng C, Qian W, Cui C, et al (2012) Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors. Carbon 50:5167–5175. https://doi.org/10.1016/j.carbon.2012.06.058

    Article  CAS  Google Scholar 

  43. Gui X, Wei J, Wang K, et al (2010) Carbon nanotube sponges. Adv Mater 22:617–621. https://doi.org/10.1002/adma.200902986

    Article  CAS  PubMed  Google Scholar 

  44. Li Q, Kuzmenko V, Haque M, et al (2020) Explanation of anomalous rate capability enhancement by manganese oxide incorporation in carbon nanofiber electrodes for electrochemical capacitors. Electrochim Acta 340:135921. https://doi.org/10.1016/j.electacta.2020.135921

    Article  CAS  Google Scholar 

  45. Volfkovich YM, Mazin VM, Urisson NA (1998) Operation of double-layer capacitors based on carbon materials. Russ J Electrochem 34:825–832

    Google Scholar 

  46. Subrenat A, Baléo JN, Le Cloirec P, Blanc PE (2001) Electrical behaviour of activated carbon cloth heated by the Joule effect: desorption application. Carbon 39:707–716. https://doi.org/10.1016/S0008-6223(00)00177-9

    Article  CAS  Google Scholar 

  47. Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24:1089–1094. https://doi.org/10.1002/adma.201104691

    Article  CAS  PubMed  Google Scholar 

  48. Yun YS, Park Y-U, Chang S-J, et al (2016) Crumpled graphene paper for high power sodium battery anode. Carbon 99:658–664. https://doi.org/10.1016/j.carbon.2015.12.047

    Article  CAS  Google Scholar 

  49. Choi BG, Hong J, Hong WH et al (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5:7205–7213. https://doi.org/10.1021/nn202020w

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank The Ministry of Science and Education of Russian Federation for supporting TISNCM in terms of a state assignment. Alexey V. Panferov and Ivan A. Evdokimov are gratefully acknowledged for the BET characterization of CNTC-[x]h (x = 0, 0.5, 1, 2, 3) samples and ultimate tensile strength measurements of the CNTC-1h sample, respectively. The authors also thank Kirill O. Gryaznov and Aida R. Karaeva for fruitful discussions and help with a number of experiments. The work was performed using the Shared Research Facilities ‘Research of Nanostructured, Carbon and Superhard Materials’ FSBI TISNCM. GTs completed this work in frames of the state target No АААА-А21-121011590088-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan S. Filimonenkov.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1537.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonenkov, I.S., Urvanov, S.A., Kazennov, N.V. et al. Carbon nanotube cloth as a promising electrode material for flexible aqueous supercapacitors. J Appl Electrochem 52, 487–498 (2022). https://doi.org/10.1007/s10800-021-01652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01652-z

Keywords

Navigation