Skip to main content
Log in

Effect of etching parameters on the electrochemical response of silicon nanowires

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Silicon nanowires combine a high electrical conductivity with low thermal conductivity due to the small cross section offering a good template for sensing. Silicon p-type (100) substrate was used in this work to present a comparative study from a morphological point of view as well as for the electrical properties of silicon nanowires (SiNWs) etched by Ag-assisted chemical method in one-step and two-step process. The comparison between both techniques for SiNWs samples’ elaborated with Metal-Assisted Chemical Technique (MACE) was investigated by Scanning Electron Microscopy images that clearly show the presence of nanowires and the existence of porous silicon structure especially by Transmission Electron Microscopy technique. Several particles on the SiNWs surface such as oxygen and hydrogen elements were identified by Fourier-Transformed Infrared Spectroscopy measurements. The results indicate that the MACE’s steps influence the nucleation and motility of Ag particles, which leads to a different length and density structure within the nanowires. These parameters influence the electrochemical properties of the surface that was studied using electrochemical measurements. Impedance analysis revealed that the charge transfer resistance decreases with the length of the SiNWs dissimilar to the capacitance based on the cyclic voltammetry analysis. In this paper, we studied the electrochemical parameters which indicate that two-step MACE procedure presents a resistance nearly the half of the value of SiNWs produced using one-step MACE technique; as for the capacitance, it increases by 28.5%. We can notice that SiNWs produced using two-step MACE show better results for biosensing application. For that reason, we decide to functionalize the two-step MACE SiNWs to prove the ease of the surface modification. Deposition of nickel nanoparticles was analysed manifesting a good amelioration of the resistance with a factor of 2.5.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rahmani M et al (2021) Effect of etching duration on the morphological and opto-electrical properties of silicon nanowires obtained by Ag-assisted chemical etching. Silicon 13(1):179–187. https://doi.org/10.1007/s12633-020-00416-2

    Article  CAS  Google Scholar 

  2. Naama S, Hadjersi T, Larabi A, Nezzal G (2021) Effect of silicon wafer resistivity on morphology and wettability of silicon nanowires arrays. Silicon 13:893–899. https://doi.org/10.1007/s12633-020-00511-4

    Article  CAS  Google Scholar 

  3. Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D Appl Phys 39(21):R387. https://doi.org/10.1088/0022-3727/39/21/R01

    Article  CAS  Google Scholar 

  4. Huang S, Zhang B, Shao Z, He L, Zhang Q, Jie J, Zhang X (2020) Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins. Nano Lett 20(4):2478–2485. https://doi.org/10.1021/acs.nanolett.9b05217

    Article  CAS  PubMed  Google Scholar 

  5. Nuzaihan M, Hashim U, Arshad MM, Ruslinda AR, Rahman SFA, Fathil MFM, Ismail MH (2016) Top-down nanofabrication and characterization of 20 nm silicon nanowires for biosensing applications. PloS ONE 11(3):e0152318. https://doi.org/10.1371/journal.pone.0152318

    Article  CAS  Google Scholar 

  6. Jeribi M, Nafie N, Boujmil MF, Bouaicha M (2021) Response modulation of silicon nanowires-based sensor to carbon number in petroleum vapor detection. Fuel 304:121260. https://doi.org/10.1016/j.fuel.2021.121260

    Article  CAS  Google Scholar 

  7. Gautam V, Kumar A, Kumar R, Jain VK, Nagpal S (2021) Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde. Mater Sci Semicond Process 123:105571. https://doi.org/10.1016/j.mssp.2020.105571

    Article  CAS  Google Scholar 

  8. Wang Y, Wang T, Da P, Xu M, Wu H, Zheng G (2013) Silicon nanowires for biosensing, energy storage, and conversion. Adv Mater 25(37):5177–5195. https://doi.org/10.1002/adma.201301943

    Article  CAS  PubMed  Google Scholar 

  9. Peng KQ, Lee ST (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23(2):198–215. https://doi.org/10.1002/adma.201002410

    Article  CAS  PubMed  Google Scholar 

  10. Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, GoddardIii WA, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168171. https://doi.org/10.1038/nature06458

    Article  CAS  Google Scholar 

  11. Elyamny S, Dimaggio E, Magagna S, Narducci D, Pennelli G (2020) High power thermoelectric generator based on vertical silicon nanowires. Nano Lett 20(7):4748–4753. https://doi.org/10.1021/acs.nanolett.0c00227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol 3(1):31. https://doi.org/10.1038/nnano.2007.411

    Article  CAS  Google Scholar 

  13. Tao B, He J, Miao F (2020) A hybrid sandwich structure of TiO2/N-graphene/Ag supported by ordered silicon nanowires and its application as lithium-ion battery electrodes. Mater Lett 262:127046. https://doi.org/10.1016/j.matlet.2019.127046

    Article  CAS  Google Scholar 

  14. Fu YQ, Colli A, Fasoli A, Luo JK, Flewitt AJ, Ferrari AC, Milne WI (2009) Deep reactive ion etching as a tool for nanostructure fabrication. J Vac Sci Technol B 27(3):1520–1526. https://doi.org/10.1116/1.3065991

    Article  CAS  Google Scholar 

  15. Juhasz R, Elfström N, Linnros J (2005) Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett 5(2):275280. https://doi.org/10.1021/nl0481573

    Article  CAS  Google Scholar 

  16. Sunkara MK, Sharma S, Miranda R, Lian G, Dickey EC (2001) Bulksynthesis of silicon nanowires using a low-temperature vapour-liquid-solid method. Appl Phys Lett 79(10):1546–1548. https://doi.org/10.1063/1.1401089

    Article  CAS  Google Scholar 

  17. Zaïbi F, Slama I, Okolie C, Deshmukh J, Hawco L, Mastouri M, Bennett C, Mkandawire M, Chtourou R (2020) Electro-performance of functionalized silicon nanowires by conductive polymer-coated with gold nanoparticles. Colloids Surf A 589:124450. https://doi.org/10.1016/j.colsurfa.2020.124450

    Article  CAS  Google Scholar 

  18. Singh N, Sahoo MK, Kale PG (2018) Effect of MACE parameters on length of porous silicon nanowires (PSiNWs). J Cryst Growth 496:10–14. https://doi.org/10.1016/j.jcrysgro.2018.05.019

    Article  CAS  Google Scholar 

  19. Leonardi AA, Faro MJL, Irrera A (2021) Silicon nanowires synthesis by metal-assisted chemical etching: a review. Nanomaterials 11(2):383. https://doi.org/10.3390/nano11020383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lam NTN, Giang NT, Kien PT, Dung ND, Ha NN (2019) N-type silicon nanowires prepared by silver metal-assisted chemical etching: fabrication and optical properties. Mater Sci Semiconduct Process 90:198–204. https://doi.org/10.1016/J.MSSP.2018.10.026

    Article  Google Scholar 

  21. Nassiopoulou AG, Gianneta V, Katsogridakis C (2011) Si nanowires by a single step metal-assisted chemical etching process on lithographically defined areas: formation kinetics. Nanoscale Res Lett 6(1):597. https://doi.org/10.1186/1556-276X-6-597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Osminkina LA, Gonchar KA, Marshov VS, Bunkov KV, Petrov DV, Golovan LA, Talkenberg F, Sivakov VA, Timoshenko VY (2012) Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale Res Lett 7(1):524. https://doi.org/10.1186/1556-276X-7-524

    Article  PubMed  PubMed Central  Google Scholar 

  23. Akan R, Parfeniukas K, Vogt C, Toprak MS, Vogt U (2018) Reaction control of metal-assisted chemical etching for silicon-based zone plate nanostructures. RSC Adv 8(23):12628–12634. https://doi.org/10.1039/C8RA01627E

    Article  CAS  Google Scholar 

  24. Gaidi M et al (2021) Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: effect of etching parameters. J Environ Sci 101:123–134. https://doi.org/10.1016/j.jes.2020.08.010

    Article  Google Scholar 

  25. Rahmani M, Amdouni S, Zaïbi MA, Meftah A (2020) Effect of etching duration on the morphological and opto-electrical properties of silicon nanowires obtained by Ag-assisted chemical etching. Silicon. https://doi.org/10.1007/s12633-020-00416-2

    Article  Google Scholar 

  26. Wendisch FJ, Abazari M, Mahdavi H, Rey M, Vogel N, Musso M, Diwald O, Bourret GR (2020) Morphology-graded silicon nanowire arrays via chemical etching: engineering optical properties at the nanoscale and macroscale. ACS Appl Mater Interfaces 12(11):13140–13147. https://doi.org/10.1021/acsami.9b21466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naffeti M, Postigo PA, Chtourou R, Zaïbi MA (2020) Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires. Nanomaterials 10(3):404. https://doi.org/10.3390/nano10030404

    Article  CAS  PubMed Central  Google Scholar 

  28. Ahmed N, Ramasamy P, Bhargav PB, Rayerfrancis A, Chandra B (2020) Development of silicon nanowires with optimized characteristics and fabrication of radial junction solar cells with < 100 nm amorphous silicon absorber layer. Mater Sci Semiconduct Process 106:104778. https://doi.org/10.1016/j.mssp.2019.104778

    Article  CAS  Google Scholar 

  29. Ahoulou S, Perret E, Nedelec JM (2021) Functionalization and characterization of silicon nanowires for sensing applications: a review. Nanomaterials 11(4):999. https://doi.org/10.3390/nano11040999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anwar AW, Majeed A, Iqbal N, Ullah W, Shuaib A, Ilyas U, Bibi F, Rafique HM (2015) Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: a review. J Mater Sci Technol 31(7):699–707. https://doi.org/10.1016/j.jmst.2014.12.012

    Article  CAS  Google Scholar 

  31. Tao B, Zhang J, Miao F, Hui S, Wan L (2010) Preparation and electrochemistry of NiO/SiNW nanocomposite electrodes for electrochemical capacitors. Electrochim Acta 55(18):5258–5262. https://doi.org/10.1016/j.electacta.2010.04.057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Nova Scotia Health Research(NSHRF) Establishment Grant for “Magnetic Nanoparticle Platform for Development of Would Healing Sensor” Project, the NSERC Discovery Grant for “Tunable Nanocomposites for Smart Materials and Technology Platform”, MITACS Career Connect, Clean Foundation, and CFI. Author FZ appreciate the technical assistance of Ms. Judy MacInnis of Chemistry Department of Cape Breton University, especially with TEM analysis. The authors appreciate also the participation of Dr.Muhammad Saqib of Fraunhofer-InstitutfürKeramischeTechnologien und Systeme IKTS for MEB analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Zaïbi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaïbi, F., Slama, I., Beshchasna, N. et al. Effect of etching parameters on the electrochemical response of silicon nanowires. J Appl Electrochem 52, 273–284 (2022). https://doi.org/10.1007/s10800-021-01638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01638-x

Keywords

Navigation