Skip to main content

Advertisement

Log in

Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNi x M1−x O3 (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Four transition metals, namely cobalt, iron, manganese, and nickel, were separately combined with lanthanum metal to synthesize LaMO3 (M = Co, Fe, Mn, and Ni) perovskites using a sol–gel method. Electrodes for zinc–air rechargeable batteries were prepared with these perovskites and evaluated in terms of their morphology, crystal structure, electric conductivity, surface area, and particle size distribution. The electrochemical properties of the perovskites were characterized as catalysts of bifunctional electrodes for Hgen reduction reaction and oxygen evolution reaction in alkaline solution. Additionally, partially substituted LaNi x (M1, M2, or M3)1−x O3 (x = 0.25 or 0.5, and M1, 2, 3 = Co, Fe, Mn) perovskites were synthesized to evaluate the effect of partial substitution of a metal in the Ni site, and improved physical and electrochemical properties were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hilder M, Winther-Jensen B, Clark NB (2012) The effect of binder and electrolyte on the performance of thin zinc–air battery. Electrochim Acta 69:308–314

    Article  CAS  Google Scholar 

  2. Wang X, Sebastian PJ, Smit MA, Yang H, Gamboa SA (2003) Studies on the oxygen reduction catalyst for zinc–air battery electrode. J Power Sources 124:278–284

    Article  CAS  Google Scholar 

  3. Li X, Qu W, Zhang J, Wang H (2010) Electrocatalytic activities of perovskite toward oxygen reduction reaction in concentrated alkaline electrolytes. ESC Trans 28:45–56

    Google Scholar 

  4. Lee SH, Jeong Y, Lim S, Lee EA, Yi CW, Kim K (2010) The stable rechargeability of secondary Zn–air batteries: is it possible to recharge a Zn–air battery? J Korean Electrochem Soc 13:45–49

    Article  CAS  Google Scholar 

  5. Wang T, Kaempgen M, Nopphawan P, Wee G, Mhaisalkar S, Srinivasan M (2010) Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries. J Power Sources 195:4350–4355

    Article  CAS  Google Scholar 

  6. Lee JS, Kim ST, Cao R, Choi NS, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1:34–50

    Article  CAS  Google Scholar 

  7. Shim J, Park YS, Lee HK, Park SG, Lee JS (1996) Oxygen reduction reaction of La1-xCaxCoO3 of gas diffusion electrode in alkaline fuel cell. J Korean Ind Eng Chem 7:992–998

    CAS  Google Scholar 

  8. Jorissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155:23–32

    Article  Google Scholar 

  9. Chen Z, Choi JY, Wang H, Li H, Chen Z (2011) Highly durable and active non-precious air cathode catalyst for zinc air battery. J Power Sources 196:3673–3677

    Article  CAS  Google Scholar 

  10. Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z (2012) Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Lett 12:1946–1952

    Article  CAS  Google Scholar 

  11. Zhou W, Sunarso J (2013) Enhancing Bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of LaNiO3−δ. J Phys Chem Lett 4:2982–2988

    Article  CAS  Google Scholar 

  12. Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ (2013) Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J Phys Chem Lett 4:1254–1259

    Article  CAS  Google Scholar 

  13. Zhang H, Li N, Li K, Xue D (2007) Structural stability and formability of ABO3-type perovskite compounds. Acta Crystallogr Sect B 63:812–818

    Article  CAS  Google Scholar 

  14. Zhuang S, Liu S, Huang C, Tu F, Zhang J, Li Y (2012) Electrocatalytic activity of nanoporous perovskite La1-xCaxCoO3 towards hydrogen peroxide reduction in alkaline medium. Int J Electrochem Sci 7:338–344

    CAS  Google Scholar 

  15. Neburchilov V, Wang H, Martin JJ, Qu W (2010) A review on air cathodes for zinc–air fuel cells. J Power Sources 195:1271–1291

    Article  CAS  Google Scholar 

  16. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 3:546–550

    Article  CAS  Google Scholar 

  17. Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3.330.697

  18. Popa M, Kakihana M (2002) Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route. Solid State Ion 151:251–257

    Article  CAS  Google Scholar 

  19. Kuo JH, Anderson HU, Sparlin DM (1990) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J Solid State Chem 87:55–63

    Article  CAS  Google Scholar 

  20. Worayingyong A, Kangvansura P, Ausadasuk S, Praserthdam P (2008) The effect of preparation: Pechini and Schiff base methods, on adsorbed oxygen of LaCoO3 perovskite oxidation catalysts. Colloids Surf A 315:217–225

    Article  CAS  Google Scholar 

  21. Popa M, Frantti J, Kakihana M (2002) Characterization of LaMeO3 (Me: Mn Co, Fe) perovskite powders obtained by polymerizable complex method. Solid State Ion 154–155:135–141

    Article  Google Scholar 

  22. Fernandes JDG, Melo DMA, Zinner LB, Salustiano CM, Silva ZR, Martinelli AE, Cerqueira M, Alves Júnior C, Longo E, Bernardi MIB (2002) Low-temperature synthesis of single-phase crystalline LaNiO3 perovskite via Pechini method. Mater Lett 53:122–125

    Article  CAS  Google Scholar 

  23. Ahn S, Kim K, Kim H, Nam S, Eom S (2010) Synthesis and electrochemical performance of La0.7Sr0.3Co1−xFexO3 catalysts for zinc air secondary batteries. Phys Scr T139:014014

    Article  Google Scholar 

  24. Matsushima H, Majima W, Fukunaka Y (2013) Three-phase interfacial phenomena in alkaline unitized regenerative fuel cell. Electrochim Acta 114:509–513

    Article  CAS  Google Scholar 

  25. Matsuno Y, Suzawa K, Tsutsumi A, Yoshida K (1996) Characteristics of three-phase fluidized-bed electrodes for an alkaline fuel cell cathode. Int J Hydrog Energy 21:195–199

    Article  CAS  Google Scholar 

  26. Singh NK, Lal B, Singh RN (2002) Electrocatalytic properties of perovskite-type La1−xSrxMnO3 obtained by a novel sol–gel route for O2 evolution in KOH solutions. Int J Hydrogen Energy 27:885–893

    Article  CAS  Google Scholar 

  27. Singh RN, Tiwari SK, Singh SP, Jain AN, Singh NK (1997) Electrocatalytic activity of high specific surface area perovskite-type LaNiO3 via sol–gel route for electrolytic oxygen evolution in alkaline solution. Int J Hydrog Energy 22:557–562

    Article  CAS  Google Scholar 

  28. Lal B, Raghunandan MK, Gupta M, Singh RN (2005) Electrocatalytic properties of perovskite-type La1-xSrxCoO3 (0≤×≤4) obtained by a novel stearic acid sol–gel method for electrocatalysis of O2 evolution in KOH solutions. Int J Hydrog Energy 30:723–729

    Article  CAS  Google Scholar 

  29. Bursell M, Pirjamali M, Kiros Y (2002) La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes. Electrochim Acta 47:1651–1660

    Article  CAS  Google Scholar 

  30. Suresh K, Panchapagesan TS, Patil KC (1999) Synthesis and properties of La1−xSrxFeO3. Solid State Ion 126:299–305

    Article  CAS  Google Scholar 

  31. Sarma DD, Shanthi N, Barman SR (1995) Band Theory for Ground-State Properties and Excitation Spectra of Perovskite LaMO3 (M = Mn, Fe Co, Ni). Phys Rev Lett 75:1126–1129

    Article  CAS  Google Scholar 

  32. Hyodo T, Shimizu Y, Miura N, Yamazoe N (1994) Investigation of materials for gas diffusion-type oxygen cathode aiming at electric power-saving brine electrolysis. Denki Kagaku 62:158–164

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2012-M1A2A2-029538).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez, K., Park, G., Sun, HJ. et al. Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNi x M1−x O3 (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution. J Appl Electrochem 45, 313–323 (2015). https://doi.org/10.1007/s10800-015-0798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0798-z

Keywords

Navigation