CORRECTION

Correction to: Investigating changes in preservice teachers' conceptions of technological literacy

Kean Roberts¹ · Jerrid Kruse¹

Published online: 5 May 2023 © The Author(s), under exclusive licence to Springer Nature B.V. 2023

Correction to: International Journal of Technology and Design Education https://doi.org/10.1007/s10798-021-09726-x

In original publication of the article few references and the citations were published incorrectly. The corrected reference list and citation is given in this correction. The original version has been corrected.

References

- American Association for the Advancement of Science. (1990). Science for all Americans. Oxford. Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of sci-
- ence: A critical review of the literature. *International Journal of Science Education*, 22(7), 665–701.
- Beschorner, B., & Kruse, J. (2016). Pre-service teachers' use of a technology integration planning cycle: A case study. *International Journal of Education in Mathematics Science and Technology*, 4(4), 258–271.
- Buckmiller, T., Peters, R., & Kruse, J. (2017). Questioning points and percentages: Standards-based grading (SBG) in higher education. *College Teaching*, 65(4), 151–157.
- Brauer, K., Kruse, J., & Lauer, D. (2020). Introducing preservice science teachers to computer science concepts and instruction using pseudocode. *Innovations in Science Teacher Education*, 5(2). Retrieved from https://innovations.theaste.org/introducing-preservice-science-teachers-to-computer-science-concepts-and-instruction-using-pseudocode/
- Carr, N. (2009). The Big Switch: Rewiring the world, from Edison to Google. Norton.
- Clough, M. P., & Olson, J. K. (2004). The nature of science: Always part of the science story. *The Science Teacher*, 71(9), 28.
- Clough, M. P., Olson, J. K., & Niederhauser, D. S. (Eds.). (2013). The nature of technology: Implications for learning and teaching. Springer.
- Compton, V., & France, B. (2007). Towards a new technological literacy: Curriculum development with a difference. *Curriculum Matters*, 3, 158–176.
- Dyrenfurth, M. J., & Kozak, M. R. (1991). Technological literacy. Glencoe Division, Macmillan/ McGraw-Hill.

Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher technology change: How knowledge, confidence, beliefs, and culture intersect. *Journal of Research on Technology in Education*, 42(3), 255–284. Feenberg, A. (1991). *Critical theory of technology*. Oxford University Press.

Kean Roberts keanrscience@gmail.com

The original article can be found online at https://doi.org/10.1007/s10798-021-09726-x.

¹ Department of Teaching and Learning, Drake University, Des Moines, IA, USA

- Herman, B. C. (2013). Convergence of Postman and Vygotsky perspectives regarding contemporary media's impact on learning and teaching. In *The nature of technology* (pp. 291–328). Brill Sense.
- Holub, J., Kruse, J., & Menke, L. (2020). Deconstructing solids: Exploring the nature of technology and engineering in second grade. Science and Children, 57(7), 48–53.
- International Technology and Engineering Educators Association (ITEEA). (1996). Technology for All Americans: A rationale and structure for the study of technology (rationale and structure). ITEEA.
- International Technology and Engineering Educators Association (ITEEA). (2004). *Measuring progress:* Assessing students for technological literacy. ITEEA.
- International Technology and Engineering Educators Association (ITEEA). (2007). Standards for technological literacy: Content for the study of technology. ITEEA.
- International Technology and Engineering Educators Association (ITEEA). *Standards for technological and engineering literacy: The role of technology and engineering in STEM education*. https://www.iteea.org/STEL.aspx
- Keen, A. (2008). The cult of the amateur. Doubleday.
- Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technology and Teacher Education, 9(1), 60–70.
- Kruse, J. W. (2013a). Implications of the nature of technology for teaching and teacher education. In *The nature of technology* (pp. 345–369). Brill Sense.
- Kruse, J. W. (2013b). Promoting middle school students' understanding of the nature of technology. In *The nature of technology* (pp. 391–410). Brill Sense.
- Kruse, J. W., & Wilcox, J. L. (2013). Engaging students with the nature of science and the nature of technology by modeling the work of scientists. *The Clearing House: A Journal of Educational Strategies*, *Issues and Ideas*, 86(3), 109–115.
- Kruse, J., & Buckmiller, T. (2015). Making the shift from school manager to instructional leader: Using the nature of technology framework as a tool for analysis. *Technology*, 7(1).
- Kruse, J., Edgerly, H., Easter, J., & Wilcox, J. (2017a). Myths about the nature of technology and engineering. Science Teacher, 84(5), 39–43.
- Kruse, J. W., Easter, J. M., Edgerly, H. S., Seebach, C., & Patel, N. (2017b). The impact of a course on nature of science pedagogical views and rationales. *Science and Education*, 26(6), 613–636.
- Kruse, J., & Wilcox, J. (2017a). Engineering encounters: Building technological literacy with philosophy and nature of technology. *Science and Children*, 54(7), 66–73.
- Kruse, J., & Wilcox, J. (2017b). Using a water purification activity to teach the philosophy and nature of technology. *Technology and Engineering Teacher*, 76(8), 13–19.
- Lind, J., Pelger, S., & Jakobsson, A. (2019). Students' ideas about technological systems interacting with human needs. *International Journal of Technology and Design Education*, 29(2), 263–282.
- Lind, J., Pelger, S., & Jakobsson, A. (2020). Students' knowledge of emerging technology and sustainability through a design activity in technology education. *International Journal of Technology and Design Education*, 1–24.
- Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy. University of Chicago Press.
- National Research Council (NRC). (1996). National science education standards. National Academy Press.
- National Research Council (NRC). (2002). Technically speaking: Why all Americans need to know more about technology. National Academy Press.
- National Research Council (NRC). (2006). Tech tally: Approaches to assessing technological literacy. National Academy Press.
- Olson, J. K., & Clough, M. P. (2001). Technology's tendency to undermine serious study: A cautionary note. *The Clearing House*, 75(1), 8–13.
- Ottenbreit-Leftwich, A. T., Glazewski, K. D., Newby, T. J., & Ertmer, P. A. (2010). Teacher value beliefs associated with using technology: Addressing professional and student needs. *Computers & Education*, 55(3), 1321–1335.
- Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332.
- Pleasants, J., Clough, M. P., Olson, J. K., & Miller, G. (2019). Fundamental issues regarding the nature of technology. *Science and Education*, 28(3–5), 561–597.
- Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. Handbook of Research on Teacher Education, 2, 102–119.
- Saldana, J. (2013). The coding manual for qualitative researchers. Sage.
- Selber, S. A. (2004). Multiliteracies for a digital age. SIU Press.
- Spencer, J. T. (2013). Technology criticism in the classroom. In *The nature of technology* (pp. 427–439). Brill Sense.

- Watson, G. (2006). Technology professional development: Long-term effects on teacher self-efficacy. Journal of Technology and Teacher Education, 14(1), 151–166.
- Waight, N. (2014). Technology knowledge: High school science teachers' conceptions of the nature of technology. *International Journal of Science and Mathematics Education*, 12(5), 1143–1168.
- Waight, N., & Abd-El-Khalick, F. (2007). The impact of technology on the enactment of "inquiry" in a technology enthusiast's sixth grade science classroom. *Journal of Research in Science Teaching*, 44(1), 154–182.
- Waight, N., & Abd-El-Khalick, F. (2012). Nature of technology: Implications for design, development, and enactment of technological tools in school science classrooms. *International Journal of Science Education*, 34(18), 2875–2905.
- Wilcox, J., Klapprodt, M., Holub, J., & Van Buskirk, K. (2019). Balancing Engineering and Science Instruction: Teaching third-graders about balanced and unbalanced forces using an engineering task. *Science* and Children, 56(7), 58–63.
- Wilcox, J., Kruse, J., & Decker, S. (2021). Exploring the STEM landscape. Science and Children, 58(6), 30–37.
- Winthrop, R., McGivney, E., Williams, T. P., & Shankar, P. (2016). Innovation and technology to accelerate progress in education. Report to the international commission on financing global education opportunity. The Center for Universal Education at the Brookings Institution. https://www.brookings.edu/ wp-content/uploads/2017/02/global_20170223_innovation-and-technology.pdf
- Zhao, Y., Pugh, K., Sheldon, S., & Byers, J. L. (2002). Conditions for classroom technology innovations. *Teachers College Record*, 104(3), 482–515.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.