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Abstract The educational significance of eliciting students’ implicit theories of intelli-
gence is well established with the majority of this work focussing on theories regarding
entity and incremental beliefs. However, a second paradigm exists in the prototypical
nature of intelligence for which to view implicit theories. This study purports to instigate
an investigation into students’ beliefs concerning intellectual behaviours through the lens
of prototypical definitions within STEM education. To achieve this, the methodology
designed by Sternberg et al. (J Pers Soc Psychol 41(1):37-55, 1981) was adopted with
surveys being administered to students of technology education requiring participants to
describe characteristics of intelligent behaviour. A factor analytic approach including
exploratory factor analysis, confirmatory factor analysis and structural equation modelling
was taken in analysing the data to determine the underlying constructs which the partic-
ipants viewed as critical in their definition of intelligence. The findings of this study
illustrate that students of technology education perceive intelligence to be multifaceted,
comprising of three factors including social, general and technological competences.
Implications for educational practice are discussed relative to these findings. While ini-
tially this study focuses on the domain of technology education, a mandate for further work
in other disciplines is discussed.

Keywords Implicit theories of intelligence - STEM education - Technology
education - Teacher education

D4 Jeffrey Buckley
jbuckley @kth.se

KTH Royal Institute of Technology, Stockholm, Sweden
University of Limerick, Limerick, Ireland

Athlone Institute of Technology, Westmeath, Ireland

@ Springer


http://orcid.org/0000-0002-8292-5642
http://crossmark.crossref.org/dialog/?doi=10.1007/s10798-017-9438-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10798-017-9438-8&amp;domain=pdf
https://doi.org/10.1007/s10798-017-9438-8

76 J. Buckley et al.

Introduction

Theories of intelligence can be broadly discriminated into two categories; implicit theories
and explicit theories (Spinath et al. 2003). Implicit theories describe peoples’ conceptions
of intelligence with pertinent frameworks emerging from their amalgams. Explicit theories
differ as they are borne from empirical evidence of cognitive processing. Models of
intelligence from both categories have significant value in a variety of fields such as
education, occupational psychology and cognitive science. However, their contributions to
such fields have important variances. Explicit theories, due to their empirical foundations,
offer evidence based schematics illustrating networks of cognitive functions. Examples of
which include the Cattell-Horn-Carroll (CHC) theory of intelligence (Schneider and
McGrew 2012) which has emerged largely as a result of psychometric research on intel-
ligence test scores, the theory of the ‘Adaptive Toolbox’ (Gigerenzer 2001; Gigerenzer and
Todd 1999) which describes a set of heuristics generated from research on human problem
solving and decision making, and the Parieto-Frontal Integration Theory (P-FIT) of
intelligence (Jung and Haier 2007) which synthesises neurological evidence to present a
“parsimonious account for many of the empirical observations, to date, which relate
individual differences in intelligence test scores to variations in brain structure and
function” (p. 135). Implicit theories serve a different purpose than describing cognitive
functioning. Sternberg (2000) presents four such merits which include; (1) implicit theories
govern the way people evaluate their own intelligence and that of others, (2) they give rise
to explicit theories, (3) they are useful in auditing the validity of explicit theories, and (4)
they can help illuminate cross-cultural differences pertinent to intellectual and cognitive
development. A fifth function of implicit theories concerns their pragmatic potential within
educational settings, both in their predictive capacity for academic performance (e.g.
Dweck and Leggett 1988) and their capacity to elicit intellectual traits of importance
within a discipline (e.g. Sternberg et al. 1981). Implicit theories have also be shown to
effect enacted behaviour of teachers (Brevik 2014; Pui-Wah and Stimpson 2004) further
emphasising their educational significance.

Implicit theories of intelligence as predictors of academic achievement

One perspective of implicit theories of intelligence which is regularly adopted within
investigations into academic ability is that of ‘entity’ and ‘incremental’ beliefs (Dweck and
Leggett 1988). This perspective describes an implicit belief system that ability or intelli-
gence is either fixed (entity belief) or malleable (incremental belief). While typically
considered to be a continuum from entity to incremental (Tarbetsky et al. 2016) some
researchers adopt a dichotomous position (Kennett and Keefer 2006). People with entity
beliefs view intelligence and ability as uncontrollable constructs which can only be
demonstrated but not developed (Tarbetsky et al. 2016). People who hold these beliefs
have been associated with a fear of failure (Dweck and Leggett 1988) and are therefore
prone to adopting behaviour which can lead to the abandonment of self-regulatory
strategies in problem solving (Dweck 1999; Stipek and Gralinski 1996). In contrast, people
who hold incremental beliefs react more positively to challenges as they perceive such
experiences as positive influences on learning (Dweck 1999). This framework is often
subscribed to when examining retention within education. Underpinned by the recognition
of academic achievement as a predictor of retention (Stinebrickner and Stinebrickner
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2014), significant efforts have been invested in examining the role of implicit beliefs
relative to such achievement with pertinent findings indicating a positive association
(Blackwell et al. 2007; Dai and Cromley 2014; Dupeyrat and Mariné 2005). Specifically
within Science, Technology, Engineering and Mathematics (STEM) disciplines, Dai and
Cromley (2014) elucidate the importance of students’ developing and maintaining incre-
mental beliefs towards their abilities. Critically, the adaptive nature of these implicit
beliefs has been illuminated (Flanigan et al. 2017; Shively and Ryan 2013) identifying the
capacity for pragmatic attempts to positively affect educational change.

Implicit theories of the prototypical nature of intelligence

Implicit theories viewed through the lens of entity and incremental beliefs have been
investigated more broadly within education than just with regards to achievement and
retention. They have also been shown to be associated with other constructs including
academic motivation (Ommundsen et al. 2005), cognitive engagement (Dupeyrat and
Mariné 2005), learning and achievement goals (Blackwell et al. 2007; Dinger and Dic-
khéuser 2013), epistemic beliefs and goal orientations (Chen and Pajares 2010), self-
efficacy (Chen and Pajares 2010; Davis et al. 2011), and self-regulated learning (Burnette
et al. 2013; Greene et al. 2010). While clearly an important framework, an alternative
position on implicit theories exists with respect to the ‘prototypical’ nature of intelligence.
This perspective emerged from the recognition that intelligence cannot be explicitly
defined (Neisser 1979). Neisser (1979), an early proponent of this view, recounts a sym-
posium conducted by the Journal of Educational Psychology in 1921 concerning experts
definitions of intelligence which saw a number of prominent theorists offer definitions in
an attempt to arrive at a unified understanding. A number of definitions were offered which
include being “able to carry on abstract thinking” (Terman 1921, p. 128), involving
“sensory capacity; capacity for perceptual recognition; quickness, range or flexibility of
association; facility and imagination; span or steadiness of attention; quickness or alertness
in response” (Freeman 1921, p. 133), and to have “learned, or can learn to adjust [oneself]
to [ones] environment” (Colvin 1921, p. 136). These definitions illustrate a range of
emergent themes such as the qualification of intelligence as a combination of multiple
specific capacities (Freeman 1921; Haggerty 1921; Thurstone 1921) and its association
with the environment (Colvin 1921; Pintner 1921). A second symposium was subsequently
held with the aim of revising the aforementioned definitions (Sternberg and Detterman
1986). A moderate overlap (p = .5) was found between frequencies of listed behaviours
across the symposia and the discussion as to whether intelligence is singular or manifold
continued with no consensus (Sternberg 2000). Differences across the symposia did
emerge such as the introduction of the concept of metacognition as an element of intel-
ligence in the latter symposium, as well as seeing a greater emphasis on the interaction
between knowledge and mental process, and on context and culture (Sternberg 2000).
Sternberg (2000) argues that the increased emphasis on the interaction between knowledge
and mental process stemmed from the origination of the computational ontology of
intelligence supporting the view that conceptions of intelligence will continue to evolve in
tandem with the progression of pertinent research agendas.

With a lack of an explicit definition for intelligence, Neisser (1979) promoted the idea
of intelligence as being prototypical in nature. Utilising the work of Rosch as a foundation
(Rosch 1977; Rosch and Mervis 1975; Rosch et al. 1976), Neisser analogises the concept
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of an ‘intelligent person’ to that of a ‘chair’ at a categorical level. Within each ‘Roschian’
category exists a list of descriptive properties. In the example of a chair, these may include
properties such as containing as a horizontal or near horizontal surface to sit on, legs for
support, a vertical or near vertical surface to act as a back support, and being constructed to
sit on. Neisser (1979, p. 182) describes the prototype of a category or concept as being
“that instance (if there is one) which displays all the typical properties”. Stemming from
this, an intelligent person, or by extension intelligence, can be prototyped through the
extrapolation of typical descriptive properties ascribed by people within a specific cultural
context. While Dweck’s work is useful in eliciting conceptions regarding the nature of
intelligence, this framework affords the capacity to determine what is being described
when referring to intelligence.

One of the earliest pieces of empirical evidence to support the adoption of a prototypical
approach towards intelligence is the seminal work of Sternberg (Sternberg 1985; Sternberg
et al. 1981). Initially, Sternberg et al. (1981) aspired to elicit if experts conceived intel-
ligence differently than laypeople. Across multiple experiments and adopting the use of
surveys as a primary method, both cohorts were asked to list behaviours characteristic of
intelligence, academic intelligence, everyday intelligence, and unintelligence, and to rate
themselves on a Likert-type scale for each characteristic. Subsequent to this, different
cohorts of each demographic then rated the previously generated lift of behaviours on their
importance in defining an ideally intelligent, academically intelligent, and everyday
intelligent person, and on how characteristic each behaviour was of these people. While
many interesting findings emerged, of most interest to examining the prototypical nature of
intelligence are the results of a factor analysis on the characteristic ratings. Both demo-
graphics conceived intelligence as a three factor structure. For experts, intelligence was
conceived to include verbal intelligence, problem-solving ability, and practical intelligence
while for laypeople it was conceived as including practical problem-solving ability, verbal
ability, and social competence. Interestingly, Sternberg et al. (1981) noted how the first two
factors for each cohort appear similar to the constructs of fluid and crystallised intelligence
as described in Cattell and Horn’s Gf—Gc Theory (Cattell 1941, 1963; Cattell and Horn
1978; Horn and Cattell 1966). The third factor for each cohort describes a practical
intelligence. For experts, this was literally termed ‘practical intelligence’ and for laypeople
it was termed ‘social competence’. This appears to be a cohort specific factor describing a
set of behaviours important specifically but not exclusively within each demographics
cultural context. In this respect, this approach provides an interesting methodology to
capture the idiosyncrasies of perceived intelligence in multiple cultural contexts with such
knowledge ultimately affording the capacity to fulfil each of the functions of implicit
theories of intelligence that Sternberg (2000) alludes to.

Subsequent to the work of Sternberg et al. (1981), a number of studies have been
conducted which examine implicit theories of intelligence from a prototypical perspective.
These have been conducted across various demographics including lay adults (Fry 1984;
Mugny and Carugati 1989), experts (Mason and Rebok 1984), and children (Leahy and
Hunt 1983; Yussen and Kane 1983). In addition, conceptions of intelligence spanning
across the adult life span have been examined (Berg and Sternberg 1992; Cornelius et al.
1989). Results from this work indicate that the prototypical characteristics of an intelligent
person vary for people of different experiential backgrounds and of different ages.
Sternberg (1985), as an extension of his original investigation, further examined concep-
tions of intelligence in conjunction with those of wisdom and creativity. Interestingly, he
found that each construct showed convergent-discriminant validity with respect to each
other. Participants also utilised their implicit theories in the evaluations of themselves and
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of hypothetical others. These findings illustrate the importance of understanding peoples’
implicit theories to assist in examining personal and interpersonal judgements and inter-
actions. More recently, the methodology utilised by Sternberg et al. (1981) was adopted in
a study where the prototypical characteristics of intelligence were framed through the
theory of multiple intelligences (Gardner 1983). The aim of the study was to investigate
gender differences in intelligence estimation and with results corresponding to those of
other studies confirming the hypothesis that females make lower self-estimates then males
(Pérez et al. 2010). Finally, the prototypical paradigm of investigation has been adopted in
studies which examine constructs other than those of intelligence. Notably, it has been
adopted in studies concerned with defining the concept of emotion (Fehr and Russell 1984;
Russell 1991). This approach was adopted as it is difficult to offer a classical definition for
the construct of emotion however when viewed from a prototypical perspective it becomes
easier to understand.

Intelligence and ability in technology education

Typically, studies on the prototypical nature of intelligence have traditionally been con-
ducted with domain general cohorts. Conducting similar investigations in a domain specific
context evokes a paradigm of expertise which needs to be differentiated from intellectual
ability. This particular study aspires to elicit conceptions of intelligence within STEM
education from the perspective of technology education. Technology education has
evolved from a vocational heritage (Dow 2006; Gibson 2008; Ritz 2009; Stables 2008) and
as a result there are many pertinent skillsets which people can develop expertise in.
Examples of such skillsets include developing expertise in engineering drawing, computer
aided design (CAD), sketching, and model creation (Lin 2016). It is important to note that
while important within the discipline, they do not constitute intellectual traits but rather
activities which are operationalised through the utilisation of intellectual processes. To
examine intelligence within the discipline, it is therefore important to examine the
frameworks which describe activity at a macro level, and in the case of technology edu-
cation such frameworks typically centre around the construct of ‘technological capability’.
This concept has traditionally been difficult to define (Gagel 2004). One definition ascribed
to the term suggests having an “understanding [of] appropriate concepts and processes; the
ability to apply knowledge and skills by thinking and acting confidently, imaginatively,
creatively and with sensitivity; [and] the ability to evaluate technological activities, arte-
facts and systems critically and constructively” (Scottish 1996, p. 7). Gibson’s (2008)
model provides structure to this definition by describing technological capability as the
unison of skills, values and problem solving underpinned by appropriate conceptual
knowledge. Black and Harrison’s (1985) model adds an additional dimension to the term
through their recognition of the dichotomy of designing and making. They define tech-
nological capability as being able “to perform, to originate, to get things done, [and] to
make and stand by decisions” (Black and Harrison 1985, p. 6). Despite slight variances in
each definition, there are important commonalities. One trait which is regularly alluded to
is the capacity to problem solve within the technological context.
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The present study

As previously noted, this study aims to uncover implicit theories of intelligence within
STEM education. As STEM constitutes the amalgam of four unique disciplines, it is
important to extrapolate these individually to ensure that the potential nuanced perspec-
tives of each discipline are uncovered. Results from each discipline could then be syn-
thesised into a holistic theoretical model to be examined more intimately in the context of
practice. As shown through the work of Sternberg et al. (1981), a cohort specific factor may
emerge which is unique to the cohort and therefore the discipline. Understanding the remit
of such a factor has significant potential for guiding the evolution of the discipline and for
pedagogical planning. In addition to this, there has been a resurgence in the investigation of
cognition in STEM education, specifically in relation to spatial ability (Lubinski 2010;
Uttal and Cohen 2012; Wai et al. 2009). While spatial ability is a significant intellectual
trait in its own right, it is paramount that other potential traits which merit investigation
within STEM education and specifically technology education are identified. By under-
standing the behavioural and intellectual traits which are important to technology educa-
tion, pedagogical practices can be designed around these to more effectively enhance
student learning opportunities.

For this study, the methodology used by Sternberg et al. (1981) was adopted with minor
variances. Two experiments were conducted where the aim of the first experiment was to
generate a list of behaviours characteristic of intelligence within STEM education and the
aim of the second was to generate a prototypical model of the participants’ implicit
theories within this context. The study cohort (N = 404; males = 383, females = 21)
consisted of undergraduate Initial Teacher Education (ITE) students specialising in tech-
nology education. Additional subject areas studied by these students other than technology
and education include mathematics, design and communication graphics, material science
and engineering. The students within this cohort can be described as quasi-experts
(Kaufman et al. 2013) as they do not hold the formal qualification to be considered as
discipline experts however they are more informed than laypeople. This is an important
consideration as engagement in the pertinent ITE programme provides exposure to con-
temporary educational theory in technology education while also providing the pragmatic
experience of being a student. This suggests that conceptions of intelligence within this
cohort will be borne from both types of experience providing a holistic prototypical model.
All students from the 4 year groups of the undergraduate degree programme were included
in the cohort however as the surveys were administered on a voluntary basis not all
students participated in each one.

Experiment 1
Participants

As discussed, participation in this study was voluntary and not all students responded to the
survey instrument. In this experiment a total of 205 students responded to the survey
meaning that results from this sample have a margin of error of £ 4.81% at the 95%
confidence interval. A full breakdown of the participants for this experiment is provided in
Table 1.
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Table 1 Overview of participants from Experiment 1

Cohort n (sample) n (male) n (female) Mean (age) SD (age)
1st year 33 30 3 20.333 4.702
2nd year 46 46 - 19.630 928
3rd year 61 57 4 21.459 2.687
4th year 65 57 8 24.138 7.624

Design and implementation

The survey for this experiment was anonymous. The first part consisted of an initial set of
questions to gather the demographic information presented in Table 1. The second part of
the survey contained one question which asked participants to “list all behaviours char-
acteristic of intelligence in the context of STEM (Science, Technology, Engineering and
Mathematics) education”. This question was designed to reflect the intent of Sternberg
et al.’s (1981, p. 40) initial question which asked participants to “list behaviors charac-
teristic of intelligence, academic intelligence, everyday intelligence, or unintelligence”
however it added the contextual element of STEM education. The survey was created
electronically and distributed individually to all students within the cohort.

Treatment of data

As participants were listing behaviours, minor variations in language emerged. For
example, the characteristic of “problem-solving” was frequently cited with variations such
as “the ability to solve problems”, “problem solving ability”, and “problem-solving
skills”. Therefore, prior to further analysis, all listed characteristics were coded to remove
duplicates emerging from minor variations in language.

Experiment 1 results

A total list of 84 unique behaviours was generated as a result of the survey from Exper-
iment 1 (See Table 5 for full list). An overview of the item statistics for each year group
within the sample is presented in Table 2. Interestingly, the amount of answers offered by

participants increased consecutively for each year group. This is perhaps reflective of

Table 2 Item statistics from Experiment 1

Cohort Mean SD n Item reliability Subject reliability
Ist year 2.394 1.638 79 205 716
2nd year 3.500 2.095 161 .183 706
3rd year 4.426 2.546 270 .399 .884
4th year 4.8717 3.044 317 .165 .867

Reliability statistics describe Cronbach’s Alpha (a) coefficients
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greater experience and a more developed conception of intelligence. The low item relia-
bility statistics across year groups (.165-.399) reflects a widely varied selection of beha-
viours offered by participating students. However the high subject reliability statistics
(.706-.867) suggest that despite offering varied sets of behaviours, there was a high level
of consensus within year groups as to what intelligence within the discipline constitutes.
The higher reliability statistics in the 3rd and 4th year groups further suggests a crys-
tallisation of conceptions is attained from educational experience.

Further to analysing the reliability of behaviours offered by the participants, an
examination of the correlations between the frequencies of each between year groups was
conducted. The results are presented in Table 3. The correlations range from strong
(r = .625) to very strong (r = .842) (Evans 1996) and were all significant at the p < .001
level which, in conjunction with the subject reliability statistics, suggest that not only is
there a shared conception of intelligence within year groups but there is consensus between
groups as well.

Experiment 2
Participants

In this experiment a total of 213 students responded to the survey meaning that results from
this sample have a margin of error of £ 4.62% at the 95% confidence interval. While this
experiment contains a different sample than Experiment 1, the participant population
remained the same. A full breakdown of the participants for this experiment is provided in
Table 4.

Design and implementation

The survey for this experiment was anonymous. The first part consisted of an initial set of
questions to gather the demographic information presented in Table 4. The second part of
the survey contained the list of 84 behavioural characteristics generated from Experiment 1
with one question which asked participants to “rate how important each of these charac-
teristics are in defining ‘your’ conception/understanding of an intelligent person within
STEM education”. The order of the items were randomised for each individual participant
to prevent the occurence of an order bias. Each behaviour was rated on a 5-point Likert
scale with the ratings “1—Not important at all”, “2—Unimportant”, “3—Neither
important nor unimportant”, “4—Important”, and “5—Very important” (Cohen et al.

Table 3 Correlation matrix for frequencies of behaviours for each year group from Experiment 1

Cohort Ist year 2nd year 3rd year 4th year
1st year -

2nd year JT1E -

3rd year [708%* .644%* -

4th year T73%* .625% .842% -

* Correlation is significant at the .001 level (2-tailed)
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Table 4 Overview of participants from Experiment 2

Cohort n (sample) n (male) n (female) Mean (age) SD (age)
1st year 50 45 5 19.440 2.409
2nd year 47 45 2 19.851 2.303
3rd year 52 48 4 21.808 3.004
4th year 64 59 5 22.734 2.502

2007). This question was designed to reflect the intent of Sternberg et al.”s (1981) question
regarding how characteristic behaviours were of intelligence, however it again added the
context element of STEM education. The survey was created electronically and distributed
individually to all students within the cohort.

Data screening

As the multivariate analyses of exploratory factor analysis (EFA), confirmatory factor
analysis (CFA), and structural equation modelling (SEM) utilised to analyse the data from
this experiment assume normal distributions and are sensitive to extreme outliers, the data
was screened for both univariate and multivariate outliers prior to the conduction of these
tests (Kline 2016). Univariate outliers were identified as results which exceeded three
standard deviations from the mean. 123 data points (.68% of the dataset) were identified as
univariate outliers under this criterion and were transformed to the value equal to three
standard deviations from the mean (Kline 2016). Data was then screened for multivariate
outliers using both the Mahalanobis D and Cook’s D statistics. The criterion for identifying
outliers with the Mahalanobis D statistic was p < .001 (Kline 2016) and for the Cook’s D
statistic it was any instance greater than 1 (Cook 1977). While no cases were identified as
multivariate outliers under the Cook’s D criterion, seven cases (3.29% of the dataset) were
identified as outliers under the Mahalanobis D statistic. These seven cases were excluded
from the analysis leaving a total dataset of 206 responses. Additionally, skewness and
kurtosis values for all behaviours were within acceptable limits of between + 2 (Gravetter
and Wallnau 2014; Trochim and Donnelly 2006).

Experiment 2 results
Descriptive statistics

Prior to the conduction of any statistical analyses, it was of interest to examine the rank
order of behaviours pertinent to how important they were in defining the participants’
conceptions of intelligence. An observation of the standard deviation values suggests a
relatively high degree of consensus from the participants. The behaviours listed range
considerably in terms of how important they were with a minimum value of 1.831 (Being
awkward) and a maximum of 4.516 (Being interested in the subject area). An examination
of the lower ranked items illustrates social actions which could be described as negative,
inhibitory or nonsocial such as “being awkward” and “being antisocial” are not consid-
ered as being important characteristics in defining intelligence with mean scores rising
considerably where behaviours transition to neutral and positive traits (Table 5).
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Table 5 Descriptive statistics for the characteristic ratings of behaviours from Experiment 2

Intellectual trait N Mean SD Skewness Kurtosis
Being interested in the subject area 206 4.516 .624 — 981 167
Having common sense 206 4474 .620 — 778 — .260
Being able to think critically 206 4432 552 — 254 — 952
The ability to apply knowledge to new situations 206 4.427 .569 — 352 —.798
Being motivated 206 4421 .621 —.710 101
Being a good problem solver 206 4.398 547 — .128 — .954
Being optimistic 206 4.395 .652 — .657 — 420
Having determination 206 4.388 .603 — 512 —.201
Being an effective communicator 206 4.351 .697 — 741 —.120
Having a good work ethic 206 4.351 .614 — 446 —.340
Being open minded 206 4.338 .658 — .591 — 252
To be able to generate multiple ideas 206 4.325 622 — 450 —.209
Being knowledgeable 206 4.312 .620 —.393 — 321
Having a good imagination 206 4311 .568 —.102 — .605
Being composed or calm when facing a problem 206 4.281 .646 — 522 .097
Having a high level of spatial ability 206 4.271 642 — 499 116
Being innovative 206 4.257 .598 — .164 —.523
The ability to think/reason about abstract ideas 206 4.249 .588 — .189 — .147
Being resourceful 206 4.245 .568 — .087 —.122
Being logical 206 4.240 582 — .135 — .206
Having patience 206 4.234 733 —.750 375
The ability to comprehend new information 206 4.231 551 .008 — .045
Being diligent or to pay attention to detail 206 4215 .624 — .268 — 214
Being enthusiastic 206 4.214 .649 — .333 — 287
Having a high level of technological capability 206 4.214 .694 — .582 225
Having a high level of creativity 206 4.200 .631 — 254 — 313
The ability to synthesis information 206 4.186 599 — 157 — .126
Being engaging or interesting 206 4.171 175 — 731 337
Being able to work independently 206 4.166 .655 — .265 - 377
Being organised 206 4.161 .802 - 914 780
Being strategic 206 4.141 .554 .054 .069
Being efficient 206 4.128 .613 —.369 763
Having a high level of awareness 206 4.113 .654 —.292 —.025
The ability to research or analyse data 206 4.108 .626 — 253 169
Someone who takes initiative 206 4.099 .627 —.237 120
The ability to reason effectively 206 4.092 .696 — .565 .602
Being reflective 206 4.072 743 —.733 .809
Being inquisitive 206 4.038 734 — 462 .097
Being helpful 206 4.036 .862 — .5%4 — .046
Being proactive 206 4.033 719 — 493 .339
Being analytical 206 4.029 .608 —.014 — .266
Being confident 206 4.022 823 — .623 275
To be an abstract or divergent thinker 206 4.004 .682 —.393 352
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Table 5 continued

Intellectual trait N Mean SD Skewness Kurtosis
Being collaborative 206 3.999 .634 — .256 363
Being realistic 206 3.994 832 — 671 310
Being attentive 206 3.985 122 —.292 — 211
Being perceptive 206 3.955 .696 — 408 359
Having good craft skills 206 3.927 .802 — 726 724
Being reliable 206 3914 857 — 518 .028
Being disciplined 206 3.906 7129 — .537 542
Being insightful 206 3.875 122 — 402 341
Having a high level of designerly abilities 206 3.850 147 — 245 —.220
Having good coordination 206 3.836 192 — .696 .830
Being quick thinking 206 3.797 .828 — 405 —.078
Being mathematical 206 3.791 752 —.329 — .057
Being all rounded 206 3.744 825 — 420 129
Having experience in the area or discipline 206 3.743 .887 — .613 332
Being punctual 206 3.733 1.074 — .596 — .183
Being aspirational 206 3.714 753 — .166 — 257
Being friendly 206 3.709 999 — .663 327
Being energetic 206 3.675 .898 - .577 .340
Being clever 206 3.632 .823 — .506 446
Being assertive 206 3.631 .844 —.739 1.018
Being modern 206 3.592 877 — 416 .280
Being studious 206 3.568 .846 — .656 795
Being artistic 206 3.529 842 — 413 438
Being social 206 3.524 1.044 —.559 — .106
Being well mannered 206 3.510 1.180 - .572 — 420
Having a high level of literacy 206 3.461 876 — .651 .635
Being empathetic 206 3.417 .873 —.300 .023
Being competitive 206 3.383 .880 - 312 298
Being strong minded or opinionated 206 3.374 .856 - .379 221
Being scientific 206 3.316 .857 — 375 .046
Being entrepreneurial 206 3.306 947 — 438 —.053
Being cautious 206 3.228 901 — .184 — .163
Being sceptical 206 3.155 913 — 313 .169
Being sophisticated 206 3.005 929 — .268 .014
Being quiet or reserved 206 2.437 918 131 — .107
Regularly procrastinating 206 2.107 1.006 .624 — .300
Having a short attention span 206 2.039 1.007 559 —.597
Being aggressive 206 1.949 907 .699 — .099
Easily annoyed or temperamental 206 1.911 980 .866 .057
Being antisocial 206 1.843 923 712 — .554
Being awkward 206 1.831 915 765 — 337
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Correlations and reliability statistics

Subsequent to examining the descriptive statistics and rank order of the behavioural traits,
correlations between year groups, item reliability and subject reliability coefficients were
determined (Table 6). All observed correlations were very strong (r = .919— r = .980)
(Evans 1996) and were all significant at the p < .001 level. In addition, all reliability
statistics were very high with the minimum item reliability statistic being observed within
the 4th year cohort (o = .927) and the minimum subject reliability statistic being observed
within the 3rd year cohort (o« = .974). These results indicate there is a very strong con-
ception of what it means to be intelligent within STEM education within this cohort. The
strength of this conception is further emphasised when considering the results of Sternberg
et al.’s (1981) study, where correlations among experts ranged from r = .67 to .90 and
among laypeople ranged from r = .36 to .81. Interestingly, there appears to be little
variance between year groups however considering the strongest correlations are observed
between the 1st and 2nd year cohorts (r = .972) and between the 3rd and 4th year cohorts
(r = .980) there may be a shift in thinking occurring as the students transition from the
initial 2 years to the latter 2 years of study. Finally, considering the strength of these
results, it is important to appreciate the reliability statistics from Experiment 1 which
highlight the large variance in the participants’ individual understandings of STEM
intelligence.

Exploratory factor analysis

A factor analytic approach was adopted for the final element of the analysis. This included
a combination of exploratory factor analyses (EFA), confirmatory factor analyses (CFA)
and structural equation modelling (SEM). EFA was selected as the intent of this analysis
was to determine underlying relationships between the variables in the dataset (Byrne
2005). Specifically, the maximum likelihood method of extraction was selected as in the
data screening stage assumptions of normality were not violated (Fabrigar et al. 1999). An
oblique promax rotation was selected as it was hypothesised that the factors would cor-
relate (Osborne 2015).

To determine the factorability of the dataset for the EFA a number of approaches were
used. The correlation matrix was examined and revealed that 455 out of 3486 correlations
were above .3. The anti-image correlation matrix was examined which showed anti-images
correlation for all 84 variables as greater than .5. The Kaiser—Meyer—Olkin measure of
sampling adequacy was .821, above the recommended value of .6 (Kaiser 1974), and
Bartlett’s test of sphericity was significant (x> (3486) = 8067.943, p < .000). These cri-
teria suggest a reasonable level of factorability within the data (Tabachnick and Fidell
2007).

To determine the quantity of factors to extract a number of criteria were examined
including eigenvalues > 1 (Kaiser 1960), a scree test (Cattell 1966) and a parallel analysis
(Horn 1965). Horn’s parallel analysis has been identified as one of the most accurate priori
empirical criteria with scree sometimes a useful addition (Velicer et al. 2000). Figure 1
illustrates the scree plot with parallel analysis. An examination of the number of factors
with eigenvalues > 1 suggests a 23 factor solution. The result of the parallel analysis
suggests a five factor solution. Finally, an examination of the scree plot further corrobo-
rates a five factor solution however it suggests merit in examining three and four factor
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Table 6 Correlation matrix and reliability statistics for the characteristic ratings of behaviours from
Experiment 2

Cohort Ist year 2nd year 3rd year 4th year
1st year -

2nd year 972% -

3rd year 919%* 919%* -

4th year 931%* .923* .980%* -

Item reliability 948 941 928 927
Subject reliability 976 979 974 981

Reliability statistics describe Cronbach’s Alpha (o) coefficients
* Correlation is significant at the .001 level (2-tailed)

20
—O— Observed Data
T ------- Parallel Analysis
15
10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Fig. 1 Scree plot and parallel analysis to determine the number of factors to extract for the EFA solution

solutions as well. Therefore, EFA’s were conducted with three, four and five factor
solutions.

The results of the three EFA’s are presented in Table 7 (five factor solution), Table 8
(four factor solution) and Table 9 (three factor solution). In each instance only variables
with a salient loading of > .4 on at least one factor are represented. No variable had a
salient loading of > .4 on more than one factor and therefore a simple structure was
attained (Thurstone 1947) in each circumstance.

The first two factors of the five factor model (Table 7) appear to represent factors
describing ‘social competence’ and ‘general competence’. The social competence factor
was named to reflect the factor found by Sternberg et al. (1981). The general competence
factor was named to reflect Spearman’s (1904) idea of a general intelligence (g) while
preserving the idea that the variables describe a level of competency. The third factor,
through its inclusion of craft skill, imagination, and designerly abilities, suggests a dis-
cipline specific factor relative to the cohort and was therefore named ‘technological
competence’. The fourth factor includes a series of behaviours arguably not conducive to
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Table 8 Exploratory factor analysis: four factor oblique solution
Intellectual trait F1: social F2: general F3: F4: nonsocial n?
competence competence technological behaviour
competence
Being punctual .888 (.735) — .236 (.056) — .116 (.191) — .036 (.053) 778
Being well mannered 826 (.722) —.239 (.072) — .038 (.245) .073 (.159) 711
Being friendly 811 (.732) — .305 (.058) .088 (.327) .000 (.088) 749
Being helpful 744 (.687) — .124 (.167) .003 (.293) —.079 (.004) 127
Being reliable 730 (.655) .053 (.249) — .182 (.188) — .072 (.008) .678
Being empathetic 659 (.611) .028 (.228) — .123 (.206) .006 (.079) .697
Being social .656 (.613) — .149 (.122) .021 (.265) .047 (.119) .635
Being cautious .603 (.521) .006 (.157) — 181 (.111) .022 (.084) .563
Being energetic 596 (.619) —.192 (.136) 181 (.379) .100 (.173) .694
Being confident 593 (.617) — .004 (.252) .041 (.325) .056 (.129) .662
Being disciplined 558 (.568) .034 (.251) —.007 (.277) .002 (.070) 562
Being an effective 535 (.587) .058 (.318) 125 (.394) — 257 (— .183) .670
communicator
Being engaging or 530 (.537) .064 (.258) — .028 (.254) — .045 (.020) .568
interesting
Having patience 526 (.573) 077 (.308) .056 (.340) — .085 (— .015) .592
Being modern 519 (.499) — .005 (.180) — .044 (.203) .026 (.085) 582
Being assertive 494 (.524) — .068 (.180) .102 (.309) .068 (.130) .616
Being organised 467 (.475) .090 (.248) — .051 (.214) — .031 (.026) .631
Being optimistic 453 (.526) 150 (.357) .076 (.355) — .184 (— .119) 564
Being realistic 451 (.449) .166 (.284) — 113 (.177) — .108 (— .053) .549
Someone who takes 427 (.473) 226 (.354) —.079 (.232) — .048 (.010) .566
initiative
Being attentive 423 (.539) 330 (.483) —.027 (.335) — .014 (.051) .666
Being enthusiastic 408 (.459) .077 (.268) .075 (.300) — 128 (- .071) 575
Being reflective .125 (.240) 631 (.540) — 295 (.076) .057 (.085) .650
The ability to apply — .058 (.184) 552 (.563) .080 (.315) — 117 (= .093) .589
knowledge to new
situations
The ability to synthesis — .088 (.165) .549 (.550) .071 (.297) .027 (.047) .600
information
The ability to think/ —.114 (.192) 546 (.591) 181 (.395) .034 (.056) 671
reason about abstract
ideas
Being strategic .050 (.258) 541 (.551) —.022 (.267) .039 (.069) 622
Being analytical — 171 (.013) 521 (.439) — .021 (.145) —.097 (— .095) .506
Being scientific — .135 (.085) 517 (.463) —.023 (.177) 219 (.225) .636
Being logical —.070 (.136) 511 (.498) .043 (.250) —.140 (— .122) .567
To be an abstract or — .065 (.144) 501 (.489) .029 (.241) —.020 (- .002) .602
divergent thinker
Being innovative — 113 (.151) 491 (.523) .164 (.345) —.070 (— .050) .593
The ability to — .076 (.159) 476 (.503) 131 (.319) — .130 (— .109) .594

comprehend new
information
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Table 8 continued

Intellectual trait F1: social F2: general F3: F4: nonsocial n?
competence competence technological behaviour
competence
The ability to reason .038 (.260) 474 (.532) .097 (.340) —.100 (— .067) .567
effectively
Being able to think — .165 (.063) 469 (.450) .099 (.246) —.037 (- .029) .506
critically
The ability to research .129 (.330) 457 (.532) .054 (.336) — .036 (.004) .680
or analyse data
Having a high level of — .075 (.210) —.076 (.214) .655 (.583) .013 (.038) .616
spatial ability
Having good craft .340 (.519) — 268 (.162) 613 (.641) —.069 (— .005) .667
skills
Having a good —.139 (214) 175 (407) .588 (.608) .020 (.045) .620
imagination
Having a high level of — .014 (.321) .182 (.445) 554 (.635) —.010 (.029) .651
designerly abilities
Being a good problem  — .177 (.137) .198 (.374) 512 (.519) — .076 (— .058) .578
solver
Having a high level of .007 (.298) .156 (.396) 492 (.569) —.050 (— .013) .656
creativity
Having good 202 (.438) .003 (.313) 460 (.565) 123 (.174) .670
coordination
Having a high level of .144 (.389) 112 (.376) 429 (.550) — .039 (.009) .600
technological
capability
Easily annoyed or —.199 (- .130) —.009 (— .063) — .015 (— .076) .662 (.637) .656
temperamental
Having a short — .143 (- .129) — .005 (— .088) — .109 (— .147) 568 (.545) 611
attention span
Being antisocial — .026 (.024) — .078 (— .047) .031 (.012) 546 (.541) .624
Being awkward — .012 (.030) —.096 (— .060) .031 (.010) 541 (.537) 515
Being quiet or reserved 204 (.217) 018 (.066) — .115 (.021) 508 (.526) .588
Regularly —.039 (—.035) — .160 (— .144) .016 (— .052) 492 (.481) 551
procrastinating
Being aggressive .030 (.077) — .183 (— .082) .140 (.090) 441 (.444) 428
Being sceptical — .011 (.151) 347 (.338) —.051 (.137) 416 (.428) .560
Eigenvalue 16.424 5.688 3.916 2.635
9%V ariance 19.553 6.771 4.662 3.137
Factor correlations
1 1.000
2 .395 1.000
3 478 487 1.000
4 120 .047 .058 1.000

Factor pattern coefficients (structure coefficients) based on maximum likelihood extraction with promax

rotation (k = 4). Salient

h? = Communality

@ Springer
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Table 9 Exploratory factor analysis: three factor oblique solution
Intellectual trait F1: social F2: general and F3: nonsocial n?
competence technological competence  behaviour
Being punctual .885 (.721) — .335 (.083) — .038 (.057) 778
Being friendly 864 (.733) — 278 (.132) .004 (.099) 749
Being well mannered 843 (.715) — 289 (.114) .073 (.165) 711
Being helpful 764 (.682) — .152 (.206) — .078 (.011) 727
Being reliable .688 (.639) —.083 (.239) —.076 (.007) .678
Being social 683 (.613) — .160 (.166) .044 (.122) .635
Being energetic 1665 (.628) —.106 (.215) 102 (.181) .694
Being empathetic 634 (.600) —.071 (.230) .002 (.078) .697
Being confident 610 (.618) .000 (.293) .058 (.136) .662
Being an effective 574 (.594) .110 (.369) — 252 (- .174) .670
communicator
Being cautious .562 (.505) — 124 (.143) .017 (.081) 563
Being disciplined .560 (.565) .010 (.276) .001 (.073) 562
Having patience 545 (.577) .089 (.344) — .081 (— .008) .592
Being assertive .532 (.530) —.025 (.232) .073 (.139) 616
Being engaging or interesting 528 (.535) .028 (.276) — .046 (.022) 568
Being modern 516 (.495) — .050 (.195) .024 (.087) 582
Having good craft skills 515 (.550) .086 (.328) —.049 (.021) .667
Being optimistic 472 (.531) 175 (.389) — 183 (— .114) .564
Being organised 456 (.470) .040 (.254) —.036 (.024) .631
Being sophisticated 442 (.465) — .024 (.199) 276 (.331) 541
Being all rounded 441 (.469) .043 (.255) .059 (.117) 522
Being enthusiastic 431 (464) .103 (.301) — 127 (- .067) .575
Being realistic 417 (441) .079 (.272) — 111 (— .054) .549
Being attentive 403 (.539) 292 (.482) — .016 (.050) .666
Being interested in the subject 401 (.438) .106 (.291) — .108 (— .052) .596
area
Someone who takes initiative 400 (.469) .159 (.346) — .051 (.007) .566
The ability to think/reason —.103 (.211) .653 (.606) .034 (.055) 671
about abstract ideas
The ability to apply knowledge — .074 (.195) 599 (.558) — 115 (— .094) .589
to new situations
The ability to synthesis — .108 (.176) 593 (.543) .026 (.043) .600
information
Being innovative — .101 (.168) 585 (.533) — .070 (— .053) .593
The ability to comprehend new — .073 (.172) 553 (511) — 130 (— .111) .594
information
Being logical —.091 (.144) 533 (.483) —.140 (— .124) .567
The ability to reason effectively .032 (.270) 528 (.538) — .100 (— .069) .567
Being able to think critically — .168 (.076) 525 (.444) —.039 (— .033) .506
To be an abstract or divergent  — .090 (.153) 517 (474) —.021 (— .006) .602
thinker
Having a good imagination .008 (.257) 517 (.522) .032 (.060) .620
Being strategic .011 (.261) 516 (.524) .036 (.064) 622
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Table 9 continued

Intellectual trait F1: social F2: general and F3: nonsocial W
competence technological competence  behaviour
Being analytical — 212 (.018) 511 (.405) —.101 (- .102) .506
Being diligent or to pay 127 (.365) 502 (.562) .003 (.045) .629
attention to detail
Having a high level of 122 (.359) .500 (.558) .001 (.043) 651
designerly abilities
Being scientific — .175 (.089) 500 (.427) 207 (.211) .636
Being perceptive — .086 (.168) 499 (.466) 143 (.158) .625
Being a good problem solver — .050 (.176) 495 (.468) — .067 (— .048) .578
The ability to research or 117 (337) 476 (.530) — .041 (- .002) .680
analyse data
To be able to generate multiple .093 (.293) 463 (.499) — 152 (— .117) .559
ideas
Being inquisitive —.052 (.159) 455 (.428) —.039 (- .022) .521
Having a high level of 129 (.332) 438 (.497) —.039 (.000) .656
creativity
Being reflective .013 (.225) 436 (.444) .042 (.066) .650
Being mathematical —.023 (.199) 418 (.416) .188 (.206) 573
Easily annoyed or — 216 (— .133) — .004 (— .072) 667 (.640) .656
temperamental
Having a short attention span — 182 (— .138) — .059 (— .116) 570 (.544) 611
Being antisocial —.021 (.023) — .054 (— .035) 551 (.545) .624
Being awkward —.005 (.030) —.073 (— .047) 545 (.541) 515
Being quiet or reserved .169 (.207) — .054 (.052) 504 (.523) .588
Regularly procrastinating —.030 (— .035) — .143 (— .132) 497 (.486) 551
Being aggressive .075 (.085) — .098 (— .040) 443 (.448) 428
Being sceptical —.050 (.150) 313 (.310) 408 (.418) .560
Eigenvalue 16.424 5.688 3.916
9%V ariance 19.553 6.771 4.662
Factor correlations
1 1.000
2 474 1.000
3 127 .051 1.000

Factor pattern coefficients (structure coefficients) based on maximum likelihood extraction with promax
rotation (k = 4). Salient pattern coefficients presented in bold (pattern coefficient > .40).
h? = Communality

positive social interactions such as being antisocial, regularly procrastinating and being
awkward. While being quiet and reserved does not necessarily mean a person is not
socially adept, in this instance the behaviour is posited to be reflective of a person who
does not actively seek to engage in social interactions. Therefore this factor was termed
‘nonsocial behaviour’ to encompass both a lack of social skills and/or a reservation
towards social interaction. The fifth factor, containing only three variables, is difficult to
ascribe a name to. While being mathematical and being scientific appear to suggest a
distinct type of personality, the high level of literacy factor is arguably representative of
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many different personas. Therefore, the tentative title of ‘scientific presence’ was ascribed
to this factor under the position that in this circumstance, the level of literacy variable was
considered to represent a level of technical literacy (Dakers 2006; Ingerman and Collier-
Reed 2011).

In the four factor model (Table 8) the factor structure remained similar to the five factor
solution however the fifth factor from the previous model (scientific presence) no longer
emerged. Considering it only described three variables with two of these no longer having
a salient loading of > .4 on any of the remaining factors in the four factor solution, this
suggests a five factor solution may be representative of overextraction (Wood et al. 1996).
In the three factor solution the previously named technological competence factor no
longer emerged. In the five factor model it correlated moderately with the general com-
petence factor (.414) with a similar correlation being observed between the two factors in
the four factor model (.487). Many of the variables from the technological competence
factor can be observed within the variables of the previously described general competence
factor and therefore in the three factor model it was renamed to ‘general and technological
competence’ to reflect this change. However, considering the evidence for a cohort specific
factor from the work of Sternberg et al. (1981) and the clear distinction between the
variables in the general competence and technological competence factors, it is posited that
the three factor model is representative of underextracting (Wood et al. 1996).

Confirmatory factor analysis

Developing on the results from the EFA, further analysis was conducted through both CFA
and SEM. While the four factor model is the most theoretically sound, both the three and
five factor models were also initially examined through SEM to confirm which model best
fit that data. In addition to examining these models, the existence of the nonsocial beha-
viour factor is questionable in terms of how characteristic it is of intelligence. An exam-
ination of the mean scores achieved by the variables within it suggests that it is not an
important factor (Table 5). Therefore, SEM was conducted on the five and four factor
models with this factor excluded. The three factor solution was not examined without the
nonsocial behaviour factor as the model would require an additional constraint to make it
identifiable. The results of this analysis are presented in Table 10.

A number of fit indices were included to support the interpretation of the model of best
fit. These include the relative Chi square statistic (x?/df) (Wheaton, Muthén, Alwin, and
Summers 1977) which should have values < 2 (Tabachnick and Fidell 2007; Ullman
2001), the goodness-of-fit index (GFI) (Joreskog and Sorbom 1986) which should be > .95

Table 10 Fit indices of SEM models based on EFA solutions

Model  df x* (exact) y*df p(exact) p(closey GFI AGFI TLI CFI RMSEA

A 1320 1994.953 1.511  .000 .504 734 711 796 805  .050
B 1030  1624.357 1.577  .000 152 748 724 .800 810 .053
C 1270 1883.069 1.483  .000 .698 7427720 805 813 .049
D 899  1386.45 1.542  .000 325 764 740 821 830 .051
E 1536 2360.704 1.537  .000 314 714 693 763 772 051

Model A EFA five factor model, Model B EFA five factor model excluding the nonsocial behaviour factor,
Model C EFA four factor model, Model D EFA four factor model excluding the nonsocial behaviour factor,
Model E EFA three factor model
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(Shevlin and Miles 1998), the adjusted goodness-of-fit index (AGFI) (Joreskog and Sor-
bom 1986) which should be > .90 (Hooper et al. 2008), the comparative fit Index (CFI)
(Bentler 1990) which has a cut-off point of > .95 (Hu and Bentler 1999), the root mean
square error of approximation (RMSEA) (Steiger and Lind 1980, cited in Steiger 1990)
with a cut-off point of < .06 (Hu and Bentler 1999; Lei and Wu 2007), and the Tucker-
Lewis index (TLI) (Tucker and Lewis 1973) which is advised to be > .95 (Lei and Wu
2007).

However, models not meeting these cut-off points should not necessarily be rejected as
there are degrees of model fit. For the RMSEA, it is suggested that values lower than .08
are indicative of reasonable fit with values lower than .05 indicating good fit, while for CFI
values greater than .90 are suggested to indicate reasonable fit and values greater than .95
to indicate good fit (Kline 2005). Based on this, many researchers regularly opt for the cut
of .90 as the cut-off point for the GFI, AGFI, TLI and CFI indices and .08 for the RMSEA
(e.g. Engle et al. 1999; Kozhevnikov and Hegarty 2001; Maeda and Yoon 2015; Vander
Heyden et al. 2016). In addition to this, the GFI and AGFI indices are susceptible effects
caused by sample size (Hooper et al. 2008; Sharma et al. 2005) and therefore should not be
used exclusively.

An examination of the fit indices for each model reveals that all models meet the ledf
and RMSEA criteria but no model meets the criteria for GFI, AGFI, CFI or TLI. As model
D (the EFA four factor solution excluding the nonsocial behaviour factor) is the best fitting
for these criteria, modifications were made by removing observed variables with low
loadings on latent factors (Table 11). The approach taken was to remove a small number of
variables at a time which loaded below .5 on their respective latent factor. A final model
(Model D) was examined in which all observed variables had loadings of > .5.

Ultimately no model achieved the criteria for model fit under the GFI and AGFI indices
however due to the previously described argument regarding sample size effects this was
not regarded as critical to the analysis. After the second round of adjustments (Model
D;(sem)), reasonable model fit was achieved under the TLI and CFI indices. These were
improved upon in subsequent refinements (Models D3sgny and Dysgewmy respectively). It
was decided not to remove any more observed variable to improve model Dysgm) as its
current structure provided a clear perspective of each latent variable and further reductions
would render factor interpretation theoretically difficult. The final models are presents in
Figs. 2 and 3 which show the factor loadings on the participants combined implicit theory
of intelligence and the covariances between these factors.

Table 11 Fit indices of refinements to Model D

Model df  * (exact) x*df p(exact) p(close) GFI AGFI TLI CFI RMSEA
Model Dyspmy 776 1191.652 1.536  .000 .369 775 751 .837 846 .051
Model Dyspm 347 515.072  1.484 .000 .595 846 .820 903 911 .049
Model D3spmy 206 315469 1.531  .000 435 877 .848 917 926 .051
Model Dyspvy 134 209.505  1.563 .000 372 896 .868 926 .936 .052
Model Dycpay 132 205391  1.556 .000 .389 899 870 927 937 .052

Models Dy, D,, D3, and D, refer to the continuous removal of observed variables with factor loading below .5

SEM structural equation model (format similar to Fig. 2), CFA confirmatory factor analysis (format similar
to Fig. 3)
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Fig. 2 SEM model of best fit showing factor loadings on the participants’ implicit theory of intelligence

Discussion
Implications for human intelligence research

Sternberg (1984) postulates the potential for a ‘common core’ of intellectual functions
which are culturally shared. This construct is premised on the theory that certain intel-
lectual behaviours are associated more with being human in general than with operating in
any specific discipline. Defining the components of this common core as ‘metacompo-
nents’ of intelligence, Sternberg posits them to include recognising the existence and
nature of a problem, deciding upon the processes needed to solve the problem, deciding
upon a strategy into which to combine those processes, deciding upon a mental repre-
sentation upon which the processes and strategy will act, allocating processing resources in
an efficacious way, monitoring one’s place in problem solving, being sensitive to the
existence and nature of feedback, knowing what to do in response to this feedback, and
actually acting upon this feedback (Sternberg 1980, 1982, 1984). Considering this theory in
conjunction with the results of Sternberg et al.’s (1981) study and the results of this study
suggests that, at least from an implicit perspective, the acknowledement of such a common
core does exist. Explicit evidence for a common core is offered through the wealth of
psychometric research conducted with the aim of eliciting an empirically based objective
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Fig. 3 CFA model of best fit showing covariance’s between latent variables

theory of human intelligence. Of particular relevance is the theory of fluid and crystallised
intelligence (Gf—Gc theory). The Gf-Gc theory was first theorised by Cattell (1941, 1943)
as an advancement of Spearman’s (1904) idea of a singular general intelligence, g, into the
dichotomy of a fluid and a crystallised intelligence. Cattell (1943) conceived his theory of
fluid and crystallised intelligences from observations of intelligence tests designed for
children and their lack of applicability to adult populations. Synthesising the observations
of the adult dissociation of cognitive speed from power and the diminished g saturation in
adult intellectual performances with neurological evidence identifying a localised brain
legions as effecting children generally while a corresponding legion effecting adults more
in terms of speeded tasks, abstract reasoning problems, and unfamiliar performances than
in vocabulary, information and comprehension (e.g. Hebb 1941, 1942), Cattell (1943)
postulated the potential for general intelligence to comprise of two separate entities. Fluid
intelligence is defined as “a facility in reasoning, particularly where adaptation to new
situations is required” while crystallised intelligence is defined as “accessible stores of
knowledge and the ability to acquire further knowledge via familiar learning strategies”
(Wasserman and Tulsky 2005, p. 18). Sternberg et al. (1981) identified factors in both the
expert and laypeople cohorts resemblent of fluid and crystallised intelligence factors and
the general competence factor apparent in this study also aligns with a fluid intelligence
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factor. The general competence factor identified within this study is reflective of Stern-
berg’s idea of a common core with it’s included variables corrseponding to his descriptions
of metacomponents. Interestingly, a factor similar to a crystallised intelligence factor was
not identified within this study however this is posited to be reflective of the nature of
knowledge inherent within technology education.

Significance within STEM education

In order to appreciate the nature of the three factors identified from this study it is para-
mount that the context of technology education is examined. The results of this study do
not suggest a crystallised intelligence factor as being perceived as inherenlty characteristic
of intelligence within technology education. Considering crystallised intelligence as
associated with having and developing a defined knowledge base, it is interesting that such
a factor should not emerge within a specific discipline. While models of technological
capability suggest the importance of an appropriate knowledge base (e.g. Gibson 2008), it
is arguable that an explicit and defined knowledge base does not exist within the discipline.
A reason for this is offered by McCormick (1997) who notes that technological activity is
multidimensional, drawing on subjects such as science, mathematics and engineering, and
that it is found in all spheres of life making defining an explicit knowledge base very
difficult. Instead, McCormick (1997) suggests that explicit technological knowledge will
be relative to specific tasks and circumstances. Kimbell (2011) argues that technological
knowledge is inherently different to scientific knowledge whereby scientific knowledge is
concerned with literal truths and technological knowledge is more aptly associated with
usefulness. As design is a core element of technology education, absolute knowledge is not
always necessary. Instead, Kimbell (2011) suggests that ‘provisional knowledge’ is more
aligned with the discipline and that learners reside in an “indeterminate zone of activity
where hunch, half-knowledge and intuition are essential ingredients” (p. 7) in using their
provisional knowledge to support further inquiry in response to particular tasks. Aligning
with this and recognising that design is embedded within a personal and social context,
Williams (2009, pp. 248-249) argues that “the domain of knowledge as a separate entity is
irrelevant; the relevance of knowledge is determined by its application to the technological
issue at hand. So the skill does not lie in the recall and application of knowledge, but in the
decisions about, and sourcing of, what knowledge is relevant”.

The results of this study indicate that a defined knowledge base is not perceived as being
inherently important within the discipline. Having empirical data corroborating this per-
spective from a cohort who are engaging with the domain both as learners and educators is
particularly advantageous due to their unique position. From a pedagogical perspective,
this presents educators with a particularly interesting challenge in that they need to
negotiate the type of explicit knowledge they should teach as a medium for developing the
broader intellectual and behavioural traits pertinent within the discipline. Furthermore, the
findings from this study serve to facilitate the development of an empirically supported
explicit theory as this evidence suggests that domain-free general capacities (Schneider and
McGrew 2012) may serve as an auspicious core set of cognitive factors pertinent to
technology education. It is important to note that this argument does not aspire to dilute the
importance of developing technical expertise within the discipline as an advanced level of
expertise in particular areas does typically constitute a developed and refined content
knowledge. Instead, it serves to reiterate the position that, at least within technology
education, intelligence and expertise can be seen as separable constructs. Intelligence
within the discipline is multifaceted, perceived to consist of general, technological and
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social competencies. Expertise in specific areas is critical however the particular type of
expertise developed will be in response to a specific need. Therefore, when considering
pedagogy in technology education, as the nature of explicit technological knowledge can
be variable. The results of this study are significant in refining the type of general com-
petencies which the teachers should aim to develop while they themselves use their own
professional judgement in the selection design and selection of specific knowledge and
tasks.

The results of this study do suggest a social competence factor and a general compe-
tence factor similar to fuild intelligence. Building on the idea that a defined knowledge
base may not exist, these factors further describe the applied nature of technology edu-
cation. Considering the magnitude of influence that design has within technology educa-
tion, students regularly encounter novel situations. Fluid intelligence describes the ability
to engage in such situations and a recognition of this substantiates the idea that intellectual
behaviour in technology education is more concerned with a capacity to react to negotiate
within ones environment rather than having acquired highly developed schema. Further
considering the nature of technology education, design is recognised as a social activity
(Hamilton 2003, 2004; Murphy and Hennessy 2001). Conversation is placed at the core of
the educational process (Trebell 2007) where teacher-student and student—student inter-
actions are critical for learning. Specifically within technology education, Murphy and
Hennessy (2001) have shown that students seek opportunities to interact with peers even
when not explicitly advocated for within the pedagogical approach adopted by the teacher.
The social competence factor which emerged within this study reflects this idea and the
importance of such social interactions within technology education are reflected in the
contemporary agenda to support discourse through the provision of a shared language
(O’Connor 2016; O’Connor et al. 2016a, b). Interestingly, a tentatively named nonsocial
behaviour factor did emerge. While ultimately its removal did increase the model fit of the
data, its initial presence is further suggestive of the importance of social skills within the
discipline. It emerged in the results of Experiment 1 as some participants conceived
intelligence as synonymous with an antisocial or nonsocial stereotype however the
importance of such behaviours were ultimaltey considered unimportant in the cohorts
shared conception.

Perhaps of most importance to the discipline is the technological competence factor
which emerged in the final model. Its importance to the cohort is shown in the SEM model
(Fig. 2) as it has the highest loading (.93) on their implict theory of intelligence. The
variables which describe this factor are particularly interesting. While the “having good
coordination” variable is ambiguous, it is posited that this was conceived as having a
similar meaning to achieving a high level of craft skill. This particular theme is extremely
pertinent to the discipline as the philosophical underpinnings of the discipline emphasis the
criticality of craft skill and the ‘make’ aspect of the subject.

As technology education is only one of the four disciplines which describe STEM
education, it would be of significant interest to conduct similar studies in the areas of
science, engineering and mathematics education where the results of each could be syn-
thesised to provide a holistic model of implicit theories within STEM. In particular, it
would be interesting to identify if cohort specific factors similar to the technological
competence factor would emerge as conceptions of intelligence have a significant role
within multiple areas of education. It is posited that a factor similar to the general com-
petence factor in this study would exist within the other disciplines with a factor similar to
crystallised intelligence also being probable due to more explicit knowledge bases. One of
the most significant implications of this work and for its progression is in its usefulness in
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developing an explicit theory of intelligence. There have been calls to make education and
pedagogy more scientific (OECD 2002) and while many relevant explicit theories exist and
are being developed, knowing what is perceived to constitute intellectual behaviour within
specific disciplines can add an additional perspective to guide this research to further
support teaching and learning practices.

Limitations and future research

There are a number of limitations which should be considered for interpreting the gen-
eralisability of the results and in framing pertinent future research agendas. Firstly, little
work has been conducted with this particular methodology to examine prototypical con-
ceptions on intelligence in education since the work of Sternberg (Sternberg 1985;
Sternberg et al. 1981). Therefore, while theoretically a person’s belief about the structure
of intelligence should influence their educational experience and engagement, further work
needs to be conducted to objectively examine such effects. Substantial work in the area of
entity and incremental beliefs as previously discussed shows that beliefs about the nature
of intelligence have a significant effect however the generalisability of implicit theories
cannot be assumed to include the prototypical perspective.

Secondly, this study was conducted with a cohort representative of only one cultural
context. In this case the participant population comprised of a cohort of ITE students in one
institution who have therefore been exposed to an educational philosophy synonymous
with that context. In order to reduce the potential bias associated with an inherent peda-
gogy, ITE students from other technology education courses in other institutions and
countries should be included to support generalisation. In addition, the cohort represents
only one group of stakeholders within technology education. As quasi-experts, the
knowledge base is not sufficient to provide certainty in an absolute model of theoretical
intelligence within STEM education from the perspective of technology education. The
perspectives of other stakeholders such as primary and post-primary pupils, primary and
post-primary teachers, international technology education researchers and experts, and
pertinent governmental representatives should be considered.

Thirdly, the study only considered one discipline from within STEM education and
therefore further evidence is required to support the hypothesis of a cohort specific factor.
It would be of significant interest to determine if ITE students from science, engineering
and mathematics disciplines also conceived a cohort specific factor pertinent to their
implicit theories of intelligence and to examine the similarities and variances between
these. Combining the implicit theories of intelligence from all disciplines may result in a
model containing factors which are appropriate to all disciplines which could be classified
generally as perceived core intellectual traits within STEM education. This would support
the creation of an explicit theoretical model of cognitive factors pertinent to STEM edu-
cation through the adoption of empirical and objective measures, with core general factors
pertinent to all disciplines and peripheral factors associated with individual disciplines.

Fourthly, as the list of behaviours generated in the initial experiment governed the remit
of the second experiment, it may be appropriate for future studies to include an additional
data collection phase in the interim. For example, the individual questionnaire from
Experiment 1 could be succeeded by a series of focus groups in a quasi-Delphi approach
where individual perspectives may act as a stimulus to prompt further thoughts from their
peers. This approach would preserve the unbiased nature of the data from Experiment 1 but
may increase the number of variables for Experiment 2 and would increase their validity.
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Finally, the sample size for the multivariate analyses conducted in Experiment 2 could
be considered small. While the sample (n > 200) is sufficient (Tabachnick and Fidell
2007), it would be advantageous to increase this. While the model fit indices from the CFA
and SEM analyses suggest this was not a necessity, this would further reduce the biases
previously discussed and would add to the statistical strength of the analysis.

Conclusion

The findings of this study provide insight into the way students of technology education
perceive intelligence. While the importance of educators understanding student’s implicit
theories about intelligence concerning entity and incremental beliefs is acknowledged
(Flanigan et al. 2017), it is also of paramount importance for educators to understand what
students perceive to be intelligent behaviour. A misalignment between student and teacher
expectations has the potential to elicit many negative educational implications and
therefore the knowledge of student beliefs can support the development of mutual
understandings.

The findings of this study suggest that students of technology education perceive
intelligence within the discipline to be multifaceted, comprising of three factors including
social, general and technological competences. As these are context specific, it would now
be advantageous to synthesise these results with similar findings from other educational
disciplines. Within technology education, these results afford educators, researchers and
other stakeholders a lens for which to view educational planning and provision. Within the
broader remit of STEM, the results of this study have the potential to frame the unique
position of technology education. It allows this at a minimum by looking at the techno-
logical competence factor. It also facilitates comparisons with additional disciplines by
looking at the other factors as well.
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