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Abstract
South Africa exhibits extreme levels of income inequality and is ranked as one of
the most unequal countries in the world. In order to measure these severe levels of
inequality, it matters how we account for the different parts of the income distribution.
Although the approach has gained international attention, there has not been any
attempt at combining tax administration data with household survey data in order to
account for incomes at all parts of the distribution, and especially from the top of
the income distribution in South Africa. This paper uses a novel technique to identify
the optimal method of combining tax administration with household survey data.
Our results show the dramatic effects of accounting for reporting bias in household
surveys by using tax administration data. When combining the two data sets, we
find a significant decrease in overall inequality of taxable income in South Africa
between 2011 and 2014, the 2 years under observation.Nonetheless, income inequality
in South Africa remains high. For our analysis, we use two waves of the National
Income Dynamics Study, a national representative household survey and compare the
information to a sample of almost 1.2 million records on personal income tax for the
2011 tax year and about 1 million records the 2014 tax year.
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1 Introduction

Acute levels of income inequality have led to South Africa being ranked as one of the
most unequal countries in theworld. Investigating the causes and consequences of such
high levels of inequality has always been a key concern for scholars and policymakers.
Pertaining to the analysis of income inequality, the effect of top incomes on overall
inequality is gaining attention in the recent literature. How we account for this part of
the income distribution matters since it has widely been acknowledged that household
surveys tend to understate top incomes due to a higher non-response rate among high-
income households or underreporting of incomes earned (seeAtkinson et al. 2011; Van
Der Weide et al. 2016). In this case, using tax income data has become a commonly
used remedy to estimate incomes at the top end. Arguably, tax administration data are
more precise on the top of the income distribution, however, they offer less detail on
the bottom end of the distribution, particularly for individuals earning below the tax
filing threshold (Morelli et al. 2014). Therefore, empirical evidence (Atkinson 2007;
Burkhauser et al. 2012; Alvaredo and Londoño 2013; Diaz-Bazan 2015) has shown
that tax data estimates on the top tail can be combined with estimates on the bottom
segment of the population obtained from household survey data in order to estimate
the entire income distribution. However, we will show that the existing literature that
uses both, tax records and household survey data, to estimate the income distribution
from top to bottom has not identified the optimal point at which the two types of data
sets should be combined.

In the literature on income distributions, the analysis of the development of top
incomes using tax data has gained substantial traction across countries. Garbinti et al.
(2016), for example, study the evolution of top incomes using tax data from France,
Atkinson (2007) uses tax data for the UK, Dell (2005) for Germany and Switzerland,
Diaz-Bazan (2015) studies tax income combined with household survey data in Costa
Rica and Alvaredo and Atkinson (2010) analyze top incomes in South Africa using
tax data.

If external data such as tax administration data are combined with household sur-
vey data for the analysis of incomes, there are different techniques available to the
researcher. As such, the analysis may combine household survey data for the bottom
of the distribution with (more reliable) tax administration data on the top tail. This
method was used by Garbinti et al. (2016) and Burkhauser et al. (2012), for example.
Alternatively, inequality measures rather than data can be combined to assess the over-
all income distribution. This was done in the papers by Atkinson (2007) and Alvaredo
and Londoño (2013) as well as Diaz-Bazan (2015), Lakner and Milanovic (2016) and
Jenkins (2017). The methodologies of the latter will be discussed in more detail later
on. Additionally, Lustig (forthcoming) offers a detailed review of alternative methods
that correct for high earners in the absence of external data sources. These methods
include the replacing of household survey data at the top end through semi-parametric
estimates or imputations as well as the re-weighting (post-stratification) of incomes
at the top as well as on the bottom of the income distribution. Lustig (forthcoming)
highlights the fact that if the true distribution and the sample have the same support,
any results obtained by replacing top earners can be replicated using the re-weighting
method.
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1020 J. Hundenborn et al.

In the existing literature on South Africa, both, tax administration data and house-
hold survey data, have been used to assess the distribution of income. However, so far,
these two sources of information have been studied separately in the South African
context but not together. This paper will extend existing analysis by using a novel
method to combine information from a unique data set on personal income tax with
data from a South African household survey in order to study inequality across the
entire distribution. We will show that the methods chosen are the best way to assess
overall income inequality as close to the actual level of inequality as possible in the
context of the large share of low-income earners and steep levels of inequality observed
in South Africa.

The first set of data for the analysis of this paper stems from the National Income
Dynamics Study (NIDS), a nationally representative household survey. Our analysis
uses two waves of this study, Wave 2 from 2010/2011 and Wave 4 from 2014/2015.
The attrition rates reported for the different income deciles in the NIDS panel show
that the study is no exception to the common pattern of households at the top end
showing increased non-response (see Finn et al. 2012 for a discussion on Wave 2,
Table 7 in the Appendix for Wave 4). For this reason, we use personal income tax
(PIT) data provided by the South African Revenue Service (SARS) to better esti-
mate inequality for high-income earners. Individuals who earn above a certain income
threshold are required to file taxes. Therefore, the information on incomes above this
threshold is likely to be more accurate in the tax income data than the data from the
household survey. The data sets provided on personal income tax comprise a 20%
sample for the 2011 and the 2014 tax year each. However, having access to two data
sets on individual income does not guarantee that the data sets are comparable. Hence,
this paper reviews the information provided by the two data sources in great detail
before applying the methodology introduced by Diaz-Bazan (2015) that combines
the information from the two data sources to measure inequality across the entire
distribution.

Our measurements of inequality show a decline in income inequality between 2011
and 2014. This decrease can be found across data sources and different methods of
combining the two types of data. The fact that this decrease is even stronger when tax
administration data and household survey data are combined using the method pro-
posed byDiaz-Bazan (2015) highlights the need to account for distortions in household
survey data by using tax administration data. Additionally, our discussion shows that
for the broader part of the income distribution, household survey data reports rela-
tively accurately on individual taxable income compared to tax administration data.
However, we identify some weaknesses at the extreme ends of the distribution which
makes the use of a combined analysis including tax administration data the preferred
choice.

The remainder of this paper is structured as follows. Section 2 provides somemacro-
economic context as well as an overview of the SouthAfrican tax system before Sect. 3
introduces the two types of data used in our analysis. The distribution of taxable income
in the different data sets is discussed in great detail in Sect. 4. The core of this paper
builds the discussion of inequality in Sect. 5. Finally, Sect. 6 summarizes our findings
and concludes.
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2 Background

This section serves to give context andbackground informationon themacro-economic
and fiscal situation South Africa finds itself in 20 years after the end of apartheid. This
is relevant to understanding the complexities that lead to continuously high levels of
inequality despite broad efforts by the government towards redistribution and socio-
economic inclusion.

2.1 Macro-economic context

The issue of inequality is particularly ripe in the South African context, yet the results
of the government’s commitment towards greater economic equality and redistribu-
tion in the post-apartheid era are coming up short for the majority of the population.
When analyzing the effectiveness of fiscal policy in redistributing income, Inchauste
et al. (2015) show that in South Africa the levels of poverty and inequality remain
among the highest in middle-income countries. This is despite highly progressive
social spending programs and the (slightly) progressive design of the overall tax sys-
tem and the personal income tax in particular. What is most troubling is the fact that
even though fiscal policy significantly reduces the Gini coefficient of income, it is still
higher after this reduction than the Gini coefficient of other middle-income countries
before policy intervention (Inchauste et al. 2015). Overall, South Africa does not fare
well in comparison with other middle-income countries when it comes to inequality.
Income per capita increased in South Africa between 1992 and 2012 as it did in other
middle-income countries such as Brazil,Mexico or Thailand (Levy et al. 2015). Brazil,
Mexico and Thailand are chosen due to the fact that they share similar characteristics
with South Africa. As such, the average income, population size and therefore the
development challenges faced by these countries can be assumed to be comparable
(Levy et al. 2015). However, several studies find that the level of inequality in South
Africa continues to exceed those of other middle-income countries. Leibbrandt and
Finn (2012) find a Gini coefficient of household income per capita of 0.7 in South
Africa in 2008, whereas Brazil reported a Gini coefficient of 0.55 in the same year.
The stark levels of inequality translate into higher levels of poverty in South Africa
compared to its peers. Although progressive fiscal policy achieves a significant reduc-
tion in poverty, the headcount ratio in South Africa measured at the US$ 2.50 per day
poverty line remains high at 36% compared to Brazil, for example, at 11% (Inchauste
et al. 2015).

Since the end of apartheid, the South African government has efficiently expanded
fiscal programs and broadened the tax base in order to reduce poverty and inequality.
However, these extensive efforts have not translated into the equivalent results. Levy
et al. (2015) point out that “relative to other middle-income countries, South Africa
has an unusually small fraction of the population that gains directly from sustained
economic growth”. Additionally, Table 1 shows that even though the annual growth
rate increased up to 5.6% since the end of apartheid, growth slowed down significantly
since the global financial crisis in 2007/2008. The decline of the growth rate limits
the degree for possible expansion of progressive social spending. Coupled with the
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Table 1 Real annual growth
rates in South Africa since 1990.
Source: Statistics South Africa
(1993–2017)

Year Growth rate (%) Year Growth rate (%)

1990–1993 −0.5 2008–2010 1.8

1994–1999 2.8 2011–2015 2.1

2000–2004 3.8 2016 0.6

2005–2007 5.6 2017 1.3

previously high levels of fiscal debt and a large fiscal deficit, these macro-indicators
allow little room for further fiscal policies to bring about greater redistribution. This
problem may be aggravated since the downgrading of South Africa’s debt to “junk
status” by international rating agencies.1 In order to significantly reduce poverty,
unemployment and inequality, the National Development Plan2 foresees an average
annual growth rate of 5.4% until 2030. Table 1 highlighted the degree to which the
growth rates fall short on this ambitious plan. It is for that reason that we will sharpen
our focus on measuring income inequality after an overview of the South African tax
system in the following section. The remainder of this paper will focus on the current
levels of income inequality prevalent in South Africa and novel methods on how to
optimize the assessment of inequality across available data.

2.2 The tax system in South Africa

South Africa’s tax base is broad-based and generates a relatively high level of fiscal
resources by middle-income country standards (Inchauste et al. 2015). Tax collec-
tions in 2016/2017 amounted to 26.2% of GDP, with a 60:40% split between direct
and indirect taxes. Of the direct taxes, roughly two-thirds come from personal income
tax. Personal income tax (PIT) is a tax levied on the taxable income (gross income
less exemptions and allowable deductions) of a person. Capital gains also form part of
taxable income. Individuals generally receive most of their income as salary/wages,
pension/annuity payments and investment income (interest and dividends). Some indi-
viduals, such as sole proprietors and partners, may also have business income which
is taxable as personal income.

The South African system of personal income tax is extremely simple. Filing is
done individually, and the system does not distinguish betweenmarried and unmarried
persons or provide deductions for children. There is, however, a small additional tax
rebate for persons over the age of 65.All formal sector employeesmust be registered by
their employer for PIT, and the employer is responsible for calculating andwithholding
the PIT payable by the employee. A certain level of interest income is tax-exempt in
an effort to promote saving. Limited deductions are permitted for travel expenses and
contributions to pension funds and medical aid (health insurance) schemes.

Over the past two decades, there has been considerable effort on the part of the
tax authorities to broaden the tax base and to adapt the tax system to conform to

1 Standard and Poor’s rating agency rated South Africa’s debt as speculative grade or “junk” in April 2017,
other international rating agencies are currently reviewing the South African status.
2 National Planning Commission (2011): “National Development Plan 2030, Our Future-make it work”.
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international tax laws. Fundamental changes included changing from a source-based
to residence-based system in 2001 and the introduction of capital gains taxation to
extend the tax base and enhance the equity of the tax system. There is a general
consensus that the reforms to PIT made the system simpler and more equitable. The
modernization of the tax administration systemand reporting requirements imposed on
financial institutions has resulted in extremely high levels of compliance. This makes
the PIT data a particularly robust source of information about individual income.

3 Data sources

The analysis of income inequality in this paper is based on two main data sources.
The first set of data stems from two waves of the National Income Dynamics Study.
Secondly, the South African Revenue Service (SARS) provided a 20% sample of
anonymized records on personal income tax records for the 2011 and 2014 tax years.

The analysis in this paper uses Wave 2 of the National Income Dynamics Study
(NIDS) from 2010/2011 as well as Wave 4 from 2014/2015. NIDS is the first national
representative panel survey in South Africa. The cross-sectional data sets used in
this paper contain 34,000 individuals for 2010/2011 and about 42,000 individuals for
2014/2015. The large scope of this study is one of the main advantages of using the
NIDS survey data. Furthermore, NIDS contains detailed information on incomes from
primary and secondary employment, self-employment and a list of bonuses that is used
to asses labour income. Information on rent and interest earned is used to estimate
investment incomes comparable to the information in the tax data. It is important
to note that there is an exemption for local interest earned of up to R23,8003 for
individuals below 65 years and up to R34,5004 for individuals 65 years and older.
Due to the nature of the questionnaire, it is not possible to distinguish between local
and international interest earned in NIDS. This may inflate taxable income in NIDS
slightly; however, as only a small fraction of individuals report investment income,
the effect should be negligible. Capital incomes in NIDS can be estimated using the
available information on retrenchment payments, loans, sales of household assets and
other income of a capital nature. With these components, it is possible to construct
an income variable in NIDS that is comparable to the information available in the
tax data. A detailed comparison of the data provided by SARS and the information
available in the NIDS data are included in Table 9 in the Appendix. In order to further
ensure that income variables in the two data sources are corresponding, all values of
the 2014/2015 NIDS survey as well as the 2014 PIT data have been deflated to prices
that reflect the 2011 tax year.

The South African tax year spans from March of the previous year to February of
the current year. PIT data on the 2011 tax year therefore span from March 2010 to
February 2011. The data on personal income tax (PIT) provided by SARS contain
almost 1.2 million records for the 2011 tax year and about 1 million records for
the 2014 tax year. The PIT data contain detailed information on investment incomes

3 In PPP$, R23,800 in 2014 is equivalent to $4985 in 2011 prices (OECD 2017).
4 In PPP$, R34,500 in 2011 is equivalent to $6689 (OECD 2017).
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including capital gains, business profits and losses. Furthermore, it provides data on
labour income including income taxed as “pay as you earn” (PAYE) and fringe benefits
as well as lump-sum incomes linked to earnings. Additionally, the PIT data include
any possible exemptions and deductions as well as some demographic information
such as age, gender and office of registration. The information on incomes is summed
up in a variable on taxable income which forms the base for the tax payer assessment
by SARS. The data provided by SARS are a 20% sample of all individuals who filed
their tax returns. It is important to note that this includes individuals who filed tax
reports despite earning incomes below the mandatory tax filing threshold. Tax filing
is mandatory for individuals who earn above a certain threshold, for the 2011 tax year,
that threshold was R120,0005 annual income. In 2014, however, the threshold had
increased to R250,0006 annual income. When we correct this threshold for inflation,
R250,000 is equivalent to R199,397 in 2011 prices.7

The following section will provide a more detailed analysis of the distribution of
the taxable income variable in the household survey data and in the tax administration
data.

4 Distributional analysis

4.1 Overview of the household survey data

The previous section discussed the components of the variable of taxable income
created in the household survey. In this section, we are going to review the distribution
of taxable income in more detail.

Table 2 offers a brief overview of the distribution of taxable income in NIDS for
adults 18 years and older. Distributional statistics such as the first, 25th, 50th, 75th,
90th, 95th and 99th percentile are reported for both years. Additionally, the table
shows the first nonzero percentiles for both years. In 2011, more than half the pop-
ulation reports zero taxable income. Only at the 53.8th percentile, can we observe
positive taxable income. In 2014, less than half the population earns zero taxable
income as the first positive incomes are observed at the 46.3rd percentile. Furthermore,
Table 2 highlights the percentiles that are closest to the different filing thresholds of
the two years. In 2011, the tax filing threshold was at R120,0008 which is equivalent
to the 93.6th percentile in the 2011 household survey data. The filing threshold in
2014 was at R250,0009, accounting for inflation, that is equivalent to R199,397 which
lies between the 97.4th and the 97.5th percentile of the 2014 NIDS distribution. If the
2014 threshold were to be applied to the 2011NIDS distribution, the inflation-adjusted
threshold would lie between the 97.6th and the 97.7th percentile. In the existing liter-

5 In PPP$, R120,000 is equivalent to $25,136 (OECD 2017).
6 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
7 For simplification, we will continue to refer to it as the R250,000 threshold although all prices have been
deflated to 2011 levels for the remainder of this paper.
8 In PPP$, R120,000 is equivalent to $25,136 (OECD 2017).
9 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
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Table 2 Taxable
income—percentiles in the
NIDS data. Source: Authors’
calculations using NIDS
(weighted)

Percentile 2011 2014

1% 0 0

25% 0 0

46.3% 453

50% 0 7654

53.8% 300

75% 23, 700 29, 457

90% 82, 548 84, 449

93.6% 120, 000

95% 148, 200 140, 030

97.4% 196, 464

97.5% 200, 383

97.6% 197, 200

97.7% 202, 500

99% 324, 000 413, 154

Mean 30, 220 36, 377

ature on combining tax data with household survey data, different percentiles are used
as connection points and we will argue later in this paper which one we believe is best
in the context of the South African income distribution.

The distribution of taxable income shown in Table 2 highlights one of the major
problems when it comes to inequality in South Africa. In 2011, more than 50% of indi-
viduals have zero taxable income. There is an apparent upward shift in the distribution
in 2014 which can be seen as only about 46% report zero taxable income. However,
it is very important to note that the individuals who report no taxable income may
receive income from other sources. Taxable income is comprised of labour income,
business profits, capital income and other sources liable for taxation. The large share
of individuals that earn no taxable income highlights the strong dependence on other
income sources for individuals at the bottom of the income distribution. Non-taxable
income sources include government grants which specifically target poor individuals;
Schiel et al. (2016) discuss the strong dependency on government grants inmore detail.
Other non-taxable income sources include intra-household transfers where household
members profit from another household member’s income. This type of resource shar-
ing cannot be accounted for when analyzing taxable income which is only available at
the level of the individual. Finally, inter-household transfers in the form of remittances
may be another source of income that cannot be taxed and therefore will be overlooked
in our analysis.

The aforementioned upward shift in the 2014 income distribution can also be seen
by the development of mean incomes reported in the bottom row of Table 2. Mean
incomes increased fromR30,22010 in 2011 to R36,37711 in 2014 even though all other

10 In PPP$, R30,220 is equivalent to $6330 (OECD 2017).
11 In PPP$, R36,377 is equivalent to $7620 (OECD 2017).
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percentiles in 2014 are less than their 2011 equivalents, except for the 99th percentile.
This is another indicator of the high levels of income inequality prevalent in South
Africa. In 2011, the mean taxable income for individuals was at R30 220, whereas
the median (50th percentile) was at zero. This is a strong indicator that the top of
the income distribution is moving away from the median, implying widening levels
of inequality. At a median income level of R765412 and a mean of R36,377 in 2014,
these stark levels of inequality do not seem to have subsided. The analysis of mean and
median points of a distribution is a reliable indicator of inequality,13 but the substantial
differences between the top of the income distribution and the bottom warrant further
investigation of these income groups. The following section will review higher income
earners in the tax data more closely.

4.2 Overview of data on taxpayers

The PIT data contain its own taxable income variable, which in the following sections
is shown in raw (non-manipulated) form.Weuse this data provided to create a proxy for
mean taxable income by income bracket. This proxy is created based on the continuous
distribution of taxable income in the PIT data. Table 3 below lists 24 income brackets
including zero incomes in the PIT data and the percentage of total taxpayers in each
bracket.14 Even though the data on personal income tax provided are continuous,
these results are reported in brackets in order to relate this discussion to the annual
publication of the Tax Statistics by SARS (2015).15

When looking at the two years for which SARS provided data on taxpayers, there
is a clear shift towards the upper end of the distribution between 2011 and 2014.
In the PIT data, there are relatively more taxpayers in each income bracket above a
yearly income of R130,000 in 2011 prices. At the same time, the number of tax filers
reporting zero income reduced to half of its 2011 level, from 4.53 to 2.34% in 2014.
It is important to view any statistics below the filing threshold with a certain level of
caution as only a few individuals with lower incomes will have filed for taxes. Many
income earners will not be captured due to voluntary self-reporting of incomes at this
level. Of those who have filed taxes, many will have done so in order to gain refunds.
As mentioned above, filing for taxes is compulsory only once an individual earns
above the filing threshold in the specific tax year. To recall, the filing thresholds were
at R120,00016 for 2011 and at R250 00017 in 2014. The inflation-adjusted threshold
in 2014 is at R199,397. We will show later on in the paper that only above these filing
thresholds are the PIT data more reliable.

12 In PPP$, R7654 is equivalent to $1603 (OECD 2017).
13 See Wittenberg (2016) for a discussion on mean and median in the context of wage inequality in South
Africa.
14 Table 10 in the Appendix reports the same income brackets in PPP$.
15 The 2015 Tax Statistics are cited here as it is the last year that reports for both the 2011 and 2014 tax
year.
16 In PPP$, R120,000 is equivalent to $25,136 (OECD 2017).
17 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
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Table 3 Income brackets in the PIT data. Source: Authors’ calculations based on PIT Data (2011 and 2014)

2011 2014

Income group Mean taxable
income

Percentage of
taxpayers (%)

Mean taxable
income

Percentage of
taxpayers (%)

0 0 4.53 0 2.34

1–20,000 9630 4.97 10, 083 3.77

20,000–30,000 25, 130 2.58 25, 088 2.03

30,000–40,000 35, 146 2.94 35, 136 2.27

40,000–50,000 45, 211 3.34 45, 273 2.81

50,000–60,000 55, 419 4.59 55, 024 3.81

60,000–70,000 65, 109 4.82 65, 048 4.02

70,000–80,000 74, 925 5.30 75, 083 4.36

80,000–90,000 85, 000 4.63 84, 971 4.39

90,000–100,000 94, 967 4.04 94, 982 4.24

100,000–110,000 104, 889 3.84 104, 946 4.00

110,000–120,000 115, 132 3.67 114, 987 3.93

120,000–130,000 124, 965 3.66 124, 929 3.59

130,000–140,000 134, 934 3.32 135, 108 3.61

140,000–150,000 145, 012 3.09 144, 824 3.68

150,000–200,000 173, 340 13.73 174, 203 14.63

200,000–300,000 241, 192 13.12 241, 559 16.22

300,000–400,000 344, 656 5.63 344, 453 6.70

400,000–500,000 444, 726 2.91 444, 974 3.47

500,000–750,000 600, 010 3.11 598, 698 3.64

750,000–1,000,000 855, 902 1.01 853, 815 1.16

1,000,000–2,000,000 1, 322, 742 0.90 1, 325, 424 1.02

2,000,000–5,000,000 2, 860, 366 0.24 2, 873, 280 0.27

Above 5,000,000 7, 704, 813 0.03 7, 571, 683 0.03

N_weighted 5, 783, 360 100 5, 085, 060 100

There is a significant jump in mean taxable incomes that can be observed for the
highest income bracket including individuals that earn R5 million a year and more.18

SARS provided additional statistics on high earners with annual taxable incomes of
R10 million or more.19 These individuals are included in this bracket and drive up the
mean.

4.2.1 High earners in the PIT data

The South African tax authority has provided additional statistics for top income
earners who report taxable incomes above R10 million a year for each 2011 and 2014.
In order to protect their identity, SARShas only provided summary statistics for earners

18 In PPP$, R5,000,000 is equivalent to $1,047,340 in 2011 prices (OECD 2017).
19 In PPP$, R10,000,000 is equivalent to $2,094,680 in 2011 prices (OECD 2017).
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Table 4 High earners’ income
distribution. Source: Authors’
calculations based on PIT Data
(2011 and 2014)

Quartiles 2011
Income

2014
Income

Min 10,005,439 7,978,814

Q1 11,551,323 9,302,885

Q2 14,078,782 11,774,718

Mean 16,987,843 15,783,480

Q3 17,844,600 16,861,538

Max 109,909,354 151,159,382

Number of Obs 482 1048

above this threshold, including the number of earners, maximum andminimum aswell
as mean and different quartiles of the distribution of top income earners. In 2011, there
were a total of 482 individualswho reported a taxable incomeaboveR10 million, and in
2014, this number had increased to 1048 individuals. SARS took these sampleswithout
accounting for inflation. In order to make the data of the two years comparable, prices
have been adjusted for inflation in our analysis. Therefore, the 2014 levels appear
much lower in comparison with the different statistics provided by SARS between
2011 and 2014 in Table 4. In 2011, the smallest income reported in this segment of the
population was at R10,005,439 and the first quartile can be observed at R11.5 million.
The smallest value observed in the 2014 data on high earners was at R7,978,814
in 2011 prices. In real terms, the upward shift in the distribution mentioned in the
discussion of Table 3 cannot be observed here except for the highest value reported.
It is important to note that the median or second quartile is lower than the mean or
average. The median in 2011 was at R14 million and in 2014 at R11.7 million. The
fact that the mean is significantly higher in both years with a value of close to R17
million in 2011 and R15.8 million in 2014 indicates that the maximum values above
R100 million in both years are outliers that drive up the average, whereas half of these
high-income earners actually report R14 million or less annual income.

The information on taxable income of these high-income earners discussed in this
section will be included in the PIT data for the forthcoming analysis of inequality
across different data sources.

4.3 Comparison of household survey data with tax administration data

As discussed in Sect. 3 above, we derive a taxable income variable in NIDS for
individuals 18 years and older. In order to reconcile our analysis with the annual Tax
Statistics published by SARS (2015), Sect. 4.2 then discussed the PIT datawith regards
to 24 income brackets with taxable income limits greater than zero. Figure 1 assesses
the amount by which the taxable income variable in NIDS is greater or smaller than
the PIT taxable income. For this purpose, the mean of each of the 24 taxable income
brackets has been calculated in NIDS and in PIT. The results show that, with the
exception of the extreme ends of the distribution, the difference of these mean taxable
incomes across the different income brackets is negligible between NIDS and PIT.20

20 Figure 6 in the Appendix shows Fig. 1 but with income brackets in PPP$.
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Fig. 1 Difference in estimated mean taxable income between NIDS and PIT by income bracket

At the bottom end of the distribution, NIDS estimates low-income earners at much
higher percentages when compared to the PIT data. In 2011, the difference is as large
as 25% for positive incomes below R20,000. However, the difference of mean taxable
income between NIDS and PIT decreased to 12% for the lowest income bracket above
zero in 2014. This difference at the bottom of the distribution is hardly surprising as
not many individuals will have filed taxes when earning such small incomes and are
therefore missing in the tax administration data but will have been covered by the
household survey.

In 2011, any individual earning R120,00021 or more had to file tax returns. Around
this threshold, the taxable income proxy created in NIDS reports very close estimates
to the mean taxable incomes reported in the PIT data for both 2011 and 2014. The
estimated discrepancies between the two data sources start increasing for incomes of
R200,000 and higher. In Table 2, we have shown that R200,000 is at the very top of
the income distribution in the household survey in 2011 and in 2014. At this point
of the distribution, NIDS understates mean taxable income by about 3% in 2011 but
only by about 1% in 2014. In 2011, the differences between the two data sets remain
small until the income brackets above R750,000. For incomes between R750,000 and
R1,000,000, NIDS actually overestimates mean taxable income by about 6%. For
the remaining higher income brackets, NIDS severely underestimates mean taxable
income in 2011 with a difference of up to 25% compared to PIT for incomes above
R5,000,000.

The mandatory filing threshold increased to R250,00022 in 2014. For incomes
betweenR200,000 andR300,000, NIDS underestimatesmean taxable income slightly.
For the income brackets between R300,000 and R500,000, however, NIDS actually
overestimates mean taxable income by between 3% and 5%. These are surprising

21 In PPP$, R120,000 is equivalent to $25,136 (OECD 2017).
22 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
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findings as the previous literature would indicate that households at the top end of
the income distribution tend to under-report their incomes and not over-report as this
would suggest. A possible explanation to this conundrum lies in the high attrition
rates of top income households which will have affected the fourth wave of NIDS
in 2014 to a larger degree than the second wave in 2011.23 Due to increasingly high
non-response rates of high-income households, those few that remain in the study
will be attributed larger weights to ensure continued national representation of the
study. It is possible that this has led to a bias through over-weighting this top end
of the income distribution. We will further investigate this issue in the following
sections.

Furthermore, NIDS underestimates the incomes in the very top income brack-
ets in 2014, however, to a much smaller degree than in 2011. For incomes between
R2,000,000 and R5,000,000, NIDS estimates 4% less mean taxable income than PIT.
For incomes above R5,000,000, the difference is just above 12%, about half of the
difference in 2011. For all other income brackets, the differences between the proxy
taxable income variable in NIDS and taxable income provided in the PIT data see-
saw around zero. Therefore, the under- and over-estimation of mean taxable incomes
appear to behave somewhat like random fluctuation around the true mean in both
years. In other words, NIDS appears to perform reasonably in capturing mean taxable
incomes from respondents.

However, while taxable income levels and overall magnitudes in NIDS correspond
reasonably well to the same levels contained in the PIT data, inequality is determined
not by the overall magnitude of the cumulative total but its distribution. PIT and
NIDS demonstrate substantial differences in the distribution of total taxable income,
especially at the extreme ends of the distributions. As these ends have a significant
impact on the overall measurement of inequality, the next sections will pursue these
differences further in order to uncover what impact the data source has on the overall
level of inequality in both gross and net incomes.

5 Measuring inequality

Traditionally, inequality in South Africa has been studied using household survey data
(see for example Leibbrandt et al. 2012) and labour force survey data (see for example
Wittenberg 2016). Alvaredo and Atkinson (2010) provide an exceptional analysis of
top income shares over a one hundred-year period using South African tax data but
are unable to utilize it to assess inequality. To the authors’ knowledge, no study has
attempted to use a combination of household survey data and tax administration data
to assess income inequality across the entire income distribution in South Africa. As a
consequence, we are able to contribute to the existing literature on income inequality
through access to a unique set of tax administration data and high-quality household
survey data on South Africa.

23 See Finn et al. (2012) for a discussion of attrition rates in Wave 2 and Table 7 in the Appendix for Wave
4.
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The previous sections have discussed the two data sources used for this analysis
in great detail. The discussion of the distribution in the household survey data has
highlighted a large number of individuals earning zero taxable income. However, the
number of these zero earners has decreased from 2011 to 2014 and mean incomes
have increased. The vast discrepancy between the mean and median observed in the
NIDS data indicated relatively high levels of inequality without using statistically
more advanced methods. As in the household survey data, tax administration data
indicated an upward shift in the overall distribution of taxable income. The discussion
of extremely high earners in the PIT data showed a discrepancy between mean and
median incomes, highlighting extreme outliers that drive up the average. This section
is using more advanced methods to look at inequality in the two data sets separately
and how best to combine these two data sets to improve on existing analysis of income
inequality.

At this point, it is important to recall that we measure inequality of taxable income
of individuals rather than households. These measurements are going to be higher
than inequality measures at the household level for two reasons. Firstly, our analysis
measures taxable income which means other income sources relevant particularly to
individuals at the bottom of the income distribution such as remittances and govern-
ment grants will be left out. Several studies have shown the immense impact that
government grants had on lowering income inequality over the past years (Inchauste
et al. 2015; Hundenborn et al. 2016) so the large fraction of zero earners will have
a significant effect on our measures of inequality. Secondly, in a household, there is
sharing of resources such that even if one household member earns no income, the
household as a whole may still report some form of revenue through another person’s
income. Taxable income of the individual by definition cannot account for such shar-
ing of resources. The measurements of inequality of individual taxable income will
be discussed in more detail in the following section.

5.1 Inequality within the NIDS and PIT Data

A commonly used measurement for inequality is the Gini coefficient. Table 5 presents
the Gini coefficient for the household survey data for the different years. We have
argued previously that the tax administration data are less reliable below the tax filing
threshold as fewer individuals will have filed taxes below that limit. Therefore, the
analysis of the Gini coefficient is broken up into segments above and below the tax
filing threshold.

In 2011, the mandatory tax filing threshold was at R120,000.24 Looking at taxable
income in the NIDS data, the overall Gini coefficient in 2011 was relatively high at
0.823. Below the R120,000 filing threshold, inequality is measured at 0.762. As the
top end of the distribution is truncated, the level of inequality decreases. Among the
top income earners, we observe much lower levels of inequality at 0.359. In 2014,
a noticeable decrease in inequality can be examined. Table 2 indicated a significant
reduction in the zero earners paired with an overall upward shift of incomes earned
whichmight explain the decrease to aGini coefficient of 0.813 in 2014. Themandatory

24 In PPP$, R120,000 is equivalent to $25,136 (OECD 2017).
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Table 5 Gini coefficients at different thresholds. Source: Authors’ calculations using NIDS and PIT
(weighted)

Threshold 2011 2011 at 2014 2014

Data source NIDS PIT NIDS PIT NIDS PIT

Overall 0.823 – 0.823 – 0.813 –

Below filing threshold 0.762 – 0.783 – 0.735 –

Above filing threshold 0.359 0.367 0.369 0.326 0.472 0.349

tax filing threshold in 2014 was at R250,000.25 Despite this considerable increase in
the filing threshold, the level of inequality below this threshold is significantly lower
at 0.735 compared to the 2011 values. At the same time, the level of inequality above
the filing threshold has increased substantially from 0.359 in 2011 to 0.472 in 2014.

The spike in inequality above the filing threshold as measured by NIDS in Table 5
is somewhat concerning. Therefore, Table 5 also compares the Gini coefficients above
the respective tax filing threshold for 2011 and 2014 to the PIT data sets. The esti-
mation of the Gini below the filing threshold would be biased in the PIT data and is
therefore not reported. The large increase in inequality above the filing threshold in
the household survey data cannot be observed in the tax administration data for 2014.
In fact, according to the PIT data, inequality above the filing threshold decreased from
a Gini coefficient of 0.367 in 2011 to a Gini coefficient of 0.349 in 2014.

Due to the significant shift in filing thresholds, one cannot simply compare the
levels of inequality in 2011 with inequality in 2014. For this reason, Table 5 assesses
the level of inequality below the 2014 filing threshold in the 2011 data. As the filing
threshold increases, the level of inequality below the threshold increased from 0.762
to 0.783 in the NIDS data. At the same time, the 2011 NIDS data also report a higher
Gini coefficient above the 2014 threshold. At this level, the Gini coefficient increased
from 0.359 to 0.369. However, the PIT data report a decrease in the Gini coefficient
from 0.367 to 0.326 when the filing threshold is shifted from R120,000 in 201126 to
R250,000 in 2014.27 Comparing the level of inequality prevalent in 2011 with 2014
once the same filing threshold is applied, we observe a decrease in inequality below
the filing threshold in the NIDS data, while inequality above the filing thresholds
increased in both data sets.

As mentioned in our discussion of Fig. 1, it can be assumed that the PIT data
are much more precise in reporting higher incomes than the household survey data.
Therefore, the discrepancies observed in Table 5 indicate a potential weighting issue
in the NIDS data set in 2014. Such weighting issues can be caused by higher refusal
rates in the upper income deciles compared to lower income deciles (see Table 7 in
the Appendix) or outliers in the household survey data. It is for these reasons that tax
administration data are the preferred source of information to assess income inequality
at the top of the income distribution.

25 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
26 In PPP$, R120,000 is equivalent to $25,136 (OECD 2017).
27 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
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5.2 Inequality across the NIDS and PIT data

The comparison of the Gini coefficients in Sect. 5.1 provides some insight into the
overall level of inequality as well as the difference in inequality measured in the NIDS
data and the PIT data. Both of these types of data sets suffer from certain shortcomings.
Previous studies have argued that household survey data suffer from distortions at the
top end of the distribution (for example Van Der Weide et al. 2016 or Atkinson et al.
2011). Tax administration data, on the other hand, are much less reliable below the
filing threshold as we do not know who the tax filers are that report their incomes
at this point of the distribution. Therefore, the tax records below the filing threshold
will not be representative. In order to understand the distributions of the household
survey data and tax administration data better, Figs. 2, 3, 4 and 5 plot the kernel density
functions of the NIDS vis-á-vis the PIT data. The results draw a very clear picture of
the shortcomings presented above.

Fig. 2 2011 Taxable income in NIDS versus PIT

Fig. 3 2011 Taxable income in NIDS versus PIT above the filing threshold
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Fig. 4 2014 Taxable income in NIDS versus PIT

Fig. 5 2014 Taxable income in NIDS versus PIT above the filing threshold

Figure 2 reports the densities of taxable income in logs in the household survey data
and the tax administration data. In this graph, the household survey seems to report
manymore incomes below the filing threshold of R120,000 but is outperformed by the
tax data in capturing incomes above the filing threshold which is marked as 120k.28

NIDS thereby shows a spike in incomes below the filing threshold that PIT lacks
completely, implying that there are a lot of incomes that were not reported in the
PIT data but were successfully captured in the household survey. Due to the nature
of the logarithmic transformation, Fig. 2 does not picture the numerous zero earners
discussed previously, another relevant part of the distribution missed by PIT. On the
other hand, the tax administration data start picking up incomes from just below the
mandatory filing threshold that cannot be found in NIDS as evident by a spike in

28 The logarithmic of R120,000 is about 11.7.
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incomes around the 120k mark that PIT captures but NIDS does not. Figure 3 takes a
closer look at the distribution above this threshold.

The high spike around a log of 12, an actual income of about R162,754,29 may be
the reason NIDS performs reasonably well when comparing mean incomes by income
bracket at these levels of the income distribution. However, the household survey data
trail off at the very high income levels and the PIT data report incomes much higher
than those reported in the NIDS data. The significance of the income levels above the
filing threshold will be discussed in more detail in the following section.

Figure 4 shows a similar overall pattern for 2014. NIDS captures a lot more incomes
below the filing threshold of R250,000 which is marked as 250k.30 Even though zero
earners are again not pictured, NIDS captures a number of incomes very close to
zero. The overall distribution in 2014 is rather similar to the 2011 distribution, and so
Fig. 4 reports a large spike in incomes below the filing threshold as well. Again, the
tax administration data fail to report any significant incomes at this segment of the
distribution. However, as the graph moves closer to the mandatory filing threshold,
PIT starts capturing incomes that NIDS does not report. Above the filing threshold,
NIDS fails to capture a significant number of incomes reported in the PIT data. This
is emphasized by the distribution pictured in Fig. 5.

In the graphs reported in Fig. 5, the tax administration data show a spike very close
to the mandatory filing threshold that is missing in the NIDS data. Further up the
income distribution, the NIDS graph moves to the right of the PIT distribution. This is
a surprising observation as the existing literature focuses on the issue of underreporting
of top incomes in household surveys. However, it would seem that the issue of missing
observations in the top tail due to higher non-response of high-income households is
more prevalent in the South African household survey data. The few high-earning
individuals who are observed will receive larger weights in order to represent every-
one in the top tail of the income distribution. It appears that after four waves of the
household survey, the higher attrition rates among high earners have introduced a bias
at this part of the income distribution which leads to this surprising over-reporting
of taxable income in NIDS. Nonetheless, after a significant hump at a log of about
16, a real income of about R8.9 million,31 the NIDS data fail to capture any further
incomes. This outlier and the generally higher levels of income reported by NIDS up
to that point may explain why inequality in the NIDS data was so much higher than
in the PIT data as reported in Table 5; the distribution shown in Fig. 5 is a lot more
equal in the PIT data than in the household survey despite the fact that PIT captures
high earners (with a log income above 16) that are absent from the NIDS data.

The figures discussed in this section show that in both years, household survey
data capture incomes at the bottom of the income distribution that are not captured by
the PIT data. At the same time, the tax administration data start picking up incomes
that are not reported in the NIDS data from income levels just below the respective
filing thresholds. Additionally, Fig. 5 detected a potential weighting issue in the NIDS
data above the filing threshold. Because of these characteristics, the following section

29 In PPP$, R162,754 is equivalent to $34,092 (OECD 2017).
30 Corrected for inflation, the logarithmic of the R250,000 threshold is at 12.2.
31 In PPP$, R8,900,000 is equivalent to $1,864,265 in 2011 prices (OECD 2017).
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will discuss a method of how to combine the two types of data in order to capture all
segments of the income distribution and estimate the true level of income inequality
more accurately.

5.3 Combining household survey data and tax administration data

The discussion of the two types of data sets in this paper has shown that the NIDS
household survey captures the broad spectrum of incomes relatively well when com-
pared to the tax administration data provided by SARS. However, the above figures
highlight certain shortcomings in the capturing of the top incomes in the NIDS data.
Since the top end of the income distribution is crucial to the analysis of overall inequal-
ity, it follows that tax administration data should be utilized to improve on the overall
analysis of inequality. Previous studies on the topic support this idea.

Atkinson (2007) highlighted that changes in the incomes of the top income earners
can significantly affect overall inequality. This holds true even when the group of top
income earners may be rather small: “If we treat the very top group as infinitesimal
in numbers, but with a finite share S* of total income, then the Gini coefficient can be
approximated by S*+ (1−S*) G, where G is the Gini coefficient for the rest of the
population” (Pg. 19). In a numeric example, an increase of 8% in S*would then lead to
an increase in the Gini coefficient by 4.8% if the Gini for the rest of the population (i.e.
1−S*) was at 0.4 prior to the increase. Alvaredo (2011) further extends Atkinson’s
argument and asserts that depending on the degree of underreporting in household
surveys, one can use tax data from the top 1% up to top 5% or 10%. However, neither
Atkinson (2007) nor Alvaredo (2011) provide a guideline as to which threshold would
be preferable in order to analyze the entire income distribution.

Because of this arbitrary choice of thresholds, there exist many studies that attempt
to solve the problem of including high-income earners in the assessment of inequality
in different ways. Jenkins (2017), for example, uses a more principled approach and
determines the appropriate threshold through statistical testing. Using both Pareto
Type-I and Type-II distributions to estimate the top end of the income distribution, he
concludes that the Pareto Type-II estimates are more robust and that the threshold at
which household survey data and tax administration data should be combined varies
across years. Jenkins’ (2017) detailed that a statistical approach is possible because of
the availability of household survey data and tax administration data for theUK.Lakner
and Milanovic (2016) use a different semi-parametric approach to combine inequality
indices in order to account for high-income earners. Because of a lack of reliable tax
administration data particularly in developing countries, the authors allocate the excess
of national accounts private consumption over the mean of the household survey data
to the top 10% for each country, thereby “elongating” the distribution using Pareto
imputations. While this innovative approach is useful in the absence of reliable tax
administration data, not only is the 10% threshold chosen rather arbitrarily but as Jorda
and Niño-Zarazúa (2016) point out, the choice of Pareto imputations might not be the
optimal distribution to use.

Alternatively to the semi-parametric approaches of Jenkins (2017) and Lakner and
Milanovic (2016), Jorda and Niño-Zarazúa (2016) use a fully parametric approach to
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estimate the threshold at which household survey data are truncated. For this, they
argue that a general class of distributions, the so-called generalized Beta function of
the second kind (GB2), is the most useful model specification as it has been shown to
be an adequate fit to income data. The optimal truncation point is chosen to be that
threshold at which the squared differences between the estimated top incomes using
theGB2 distribution and the top incomes available from the tax administration data are
minimized. This allows the optimal threshold to vary across countries. However, this is
only possible for countries with tax administration data available. To account for high-
income earners when measuring inequality in countries around the world, Jorda and
Niño-Zarazúa (2016) have to resort to varying the threshold more intuitively and use
GPD per capita as a proxy when tax administration data are not available. Therefore,
while Jorda and Niño-Zarazúa (2016) use the optimal threshold where possible, the
overall choice at which to combine household survey data with data that accounts for
high earners remains arbitrary.

In an effort to actively account for distortions due to reporting bias and higher non-
response rates of high earners in household survey data, Diaz-Bazan (2015) argues that
rather than choosing an arbitrary percentile at which to combine the information from
the two sources of data, the data sets should be combined at an optimal threshold b. This
optimal threshold should fulfill the following conditions: (a) individuals with incomes
below threshold b are well represented in the household survey data; (b) the segment of
the population reporting incomes above b is captured accurately in the tax records; and
(c) the threshold is chosen such that distortions attributed to underreporting at the top
of the income distribution in household survey data are minimized. The optimal b that
fulfills these conditions minimizes dependence on household survey data and ensures
reliable information in the tax administration data. Therefore, the optimal threshold b
is the lowest level of income that requires individuals to file taxes. As previously dis-
cussed, themandatory tax filing in South Africa started at annual incomes of R120,000
in 201132 and R250 000 for 2014.33 Following Diaz-Bazan’s argument, these are the
optimal thresholds for combining the two data sources. Table 2 above has shown that in
South Africa, the mandatory filing thresholds are well below the 1% thresholds tradi-
tionally used in the existing literature of combining tax administration datawith house-
hold survey data. To recall, the filing threshold in 2011 was at the 93.6th percentile and
in 2014, the filing threshold was close to the 97.5th percentile. The following sections
will discuss the methodology of the approach introduced by Diaz-Bazan (2015) as
well as the results of its application to the NIDS and PIT data in 2011 and 2014.

5.3.1 Methodology following Diaz-Bazan (2015)

If the optimal threshold b that satisfies the conditions outlined above is at the filing
threshold, the Gini coefficient for the entire (unconditional) income distribution can
be estimated by combining the (conditional) Gini coefficient below b, where F1 is
estimated using the household survey data, with the (conditional) Gini coefficient
above b where F2 is estimated from the tax administration data such that

32 In PPP$, R120,000 is equivalent to $25,136 (OECD 2017).
33 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
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F1 = Pr{Y ≤ y|Y ≤ b}
F2 = Pr{Y ≤ y|Y > b}.

Given the definition of the conditional distribution, the distribution for y ≤ b is
represented by

F1(y) ≡ Pr{Y ≤ y|Y ≤ b} = Pr{Y ≤ y}
Pr{Y ≤ b} = F(y)

F(b)

so that F(y) = F1(y)F(b).
Similarly, the distribution for y > b can be written as

F2(y) ≡ Pr{Y ≤ y|Y > b} = Pr{Y ≤ y and Y > b}
1 − Pr{Y ≤ b} = F(y) − F(b)

1 − F(b)

so that F(y) = F(b) + (1 − F(b))F2(y).
This implies that it is possible to reconstruct the underlying income distribution

F(y) if the two conditional distributions above and below the threshold b can be
observed and the fraction of the population with income above and below threshold b
are known.

In order to obtain ameasurement of inequality for the entire population, it is possible
to estimate the Gini coefficient using a linear combination of the Gini coefficients
computed on the conditional distributions above and below threshold b. In this case,
the Gini coefficient of a conditional distribution, G[Fj ], j ∈ 1; 2 can be written as

G
[
Fj

] = 1

µ j

∫ ∞

0
Fj (y)(1 − Fj (y))dy,

where µ1 ≡ E[Y |Y ≤ b] and µ2 ≡ E[Y |Y > b]. This G is equivalent to the standard
Gini coefficient calculated on the two distributions.

This can then be combined into a full population, unconditional Gini coefficient
defined as

G [F] = (1 − F(b))F(b)[µ2 − µ1

µ
] +

(
F(b)2

µ1

µ

)
G[F1] +

(
F(b)2

µ2

µ

)
G[F2],

where µ = F(b)µ1 + (1− F(b))µ2 and G[Fi ] i ∈ {1, 2} are the Gini coefficients of
F1 and F2.

Therefore, the (unconditional) Gini coefficient can be written as a linear combi-
nation of the two Gini coefficients of the conditional distributions F1 and F2 plus an
adjustment term that corrects for the fact that the two conditional distributions are
obtained from different parts underlying the unconditional income distribution.

5.3.2 Application to the South African case

In order to obtain this derived Gini coefficient, Diaz-Bazan (2015) highlights the fact
that consistent estimates of the distributions above and below threshold b are required.
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Table 6 Gini coefficients at different thresholds. Source: Authors’ calculations using NIDS and PIT
(weighted)

Year 2011 2011 at 2014 2014

Combining data sets at different filing thresholds

Threshold R120,000 R250,000 R250,000

Overall 0.832 0.826 0.790

Below filing threshold (NIDS) 0.762 0.783 0.735

Above filing threshold (PIT) 0.367 0.326 0.349

Combining data sets at the 99th percentile

Overall 0.826 – 0.791

NIDS 0.782 – 0.742

PIT 0.328 – 0.343

The availability of a high-quality household survey as well as a robust data set on tax
records facilitates the application of this novelmethod to household survey data and tax
administration data on South Africa. Table 6 reports the levels of inequality observed
when the Diaz method is used to combine household survey data with tax adminis-
tration data at the mandatory tax filing threshold for 2011 and 2014, respectively. The
Gini coefficients are calculated using individual taxable income of adults 18 years and
older. The decrease observed in overall inequality is much larger between 2011 and
2014 than what we observed when using household survey data alone in Sect. 5.1.
From a total level of 0.83 in 2011, the Gini coefficient for taxable income decreased
to 0.79. This extreme drop in inequality observed is driven by the fact that both con-
ditional distributions report lower levels of inequality in 2014. Table 5 reported a
slight decrease in inequality between the 2 years when using NIDS alone. However,
in the household survey data, the decrease in the (conditional) Gini coefficient below
the filing threshold was offset by a large increase in estimated inequality above the
filing threshold. When using tax administration data above this threshold in order to
explicitly account for the distortions caused by reporting bias and non-responses in
the household survey data, we arrive at a much lower Gini for 2014. The decrease in
overall inequality can also be observed when the 2011 data are assessed at the 2014
filing threshold albeit to a lesser degree. Applying the 2014 threshold to the 2011 data
set increases dependence on household survey data at the top of the income distribu-
tion; however, it ensures comparability across the two years despite the shift in filing
thresholds. In this case, inequality decreased from 0.826 to 0.79 when the two types
of data sets are combined at the same filing threshold.

Additionally, Table 6 reports the Gini coefficients derived when household sur-
vey data and tax administration data are combined at the 99th percentile. In 2011,
this reduces the Gini coefficient slightly from 0.832 according to the Diaz method
to 0.826 when combined at the 99th percentile. In 2014, however, the difference is
barely noticeable as the Gini increases from 0.790 according to the Diaz method
to 0.791 when combined at the (arbitrarily) chosen 99th percentile. This increase is
most likely driven by the large Gini coefficient above the filing threshold mentioned
earlier that drives up the Gini coefficient measured in the household survey data. The
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fact that the change in the Gini coefficient resulting from the change in thresholds is
less significant in 2014 is most likely owed to the filing threshold of R250,00034 being
much closer to the 99th percentile in 2014 than it was in 2011. In the 2014 distribu-
tion, the filing threshold was at the 97.5th percentile. In 2011, the filing threshold was
relatively lower at the 93.6th percentile. The 2014 filing threshold was at the 97.7th
percentile of the 2011 distribution.When the 2011 data set is assessed at this threshold,
the level of overall inequality observed is virtually the same as at the 99th percentile.
Nonetheless, choosing an optimal threshold to combine the two data sets to explicitly
account for reporting bias and non-response in the household survey data is necessary
for consistent estimation of inequality. Therefore, the filing threshold is the preferred
level at which the two types of data sets should be combined.

6 Conclusion

This paper takes advantage of the availability of high-quality household survey data
and access to a unique set of tax administration data and uses a novel method in
order to optimally assess levels of inequality prevalent across the entire population in
South Africa. Our analysis of taxable income in the household survey data highlights
a large fraction of zero income earners. This income group may earn income from
other sources such as remittances or government grants but reports no taxable income.

The examination of the income distribution in the two underlying data sets has
shown that there was a significant upward shift in taxable income in both years and
across data sets. Using the Gini coefficient as a measure of inequality, we have shown
that inequality decreased when using household survey data to assess the overall
population. The NIDS data report a Gini coefficient of 0.823 for taxable income in
2011 and a Gini coefficient of 0.813 in 2014. Similarly, inequality measured above
the filing threshold in the tax administration data has decreased over this period of
time. Naturally, the measured inequality above the filing threshold is much lower than
overall inequality and decreased from 0.367 in 2011 to 0.349 in 2014 according to
the PIT data. Tax administration data below the filing threshold are unreliable and
therefore cannot be used to assess the income distribution as a whole.

In our discussion of inequality across the different types of data sets, we have shown
that there is an optimal threshold atwhich household survey data and tax administration
data can be combined. This thresholdminimizes dependence on household survey data
while ensuring reliable information from tax administration data. The paper argues
that this threshold should not be chosen arbitrarily and should rather be defined as
the mandatory filing threshold. Detailed analysis of the different data sets has shown
that household survey data in South Africa are unreliable above the filing threshold,
especially in 2014. Therefore, household survey data from theNIDS survey are used to
estimate the conditional distribution below the tax filing threshold and administration
data on personal income tax are used for the estimation above the filing threshold.
The results show that the decrease in inequality between 2011 and 2014 is even more
significant in the estimation of the Gini coefficient of the thus combined income data.

34 In PPP$, R250,000 is equivalent to $41,767 in 2011 prices (OECD 2017).
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Applying themethodology introduced byDiaz-Bazan (2015),we estimate that theGini
coefficient of taxable income decreases from 0.83 in 2011 to 0.79 in 2014. A decrease
in overall inequality is also observed when we combine NIDS data and PIT data at
the 2014 filing threshold. Assessing the 2011 data sets at the 2014 filing threshold
increases dependence on household survey data at the top of the income distribution
for that year; however, it ensures comparability across the two years despite the shift in
filing thresholds. Overall, choosing the tax filing threshold as the point of combining
the two data sources is the best way to account for non-random reporting bias in the
household survey data.

Despite the significant decrease in inequality between 2011 and 2014, our results are
quite alarming for several reasons. Firstly, the extremely large fraction of zero earners
indicate a strong dependency on non-taxable income sources. This holds pitfalls not
only for the state and its capacity to generate revenue but also for the individuals at the
bottom of the income distribution. Any form of non-taxable income they may receive
will be small and less reliable than more structured forms of income that can be taxed.

There is a strong need for the state to address the severe deficits of individuals at the
bottom of the income distribution. Seeing the macro-economic state of South Africa,
however, it becomes clear that a continued heavy reliance on government grants may
no longer be feasible. Instead, more structured ways of generating income need to
be facilitated. Such solutions will require the government to introduce policies that
induce growth and develop labour market policies to promote (self-)employment as
well as skill development.

The novelty of themethod byDiaz-Bazan (2015) used in this paper is only exceeded
by the fact that we pioneer a type of analysis that combines household survey data with
tax administration data in the South African context. However, more research can be
done to identify the causes of the decrease in inequality observed in this paper and to
determine their long-term feasibility in order to ensure continued efforts to transform
South Africa into a more equal society.
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Appendix: Additional tables and figures

See Tables 7, 8, 9 and 10 and Fig. 6.

Table 7 NIDS attrition rate by
deciles. Source: Authors’
calculations using NIDS

Deciles by wave 1
HH income (2008)

Per cent refused in wave 4
(2014/2015) (%)

1 5.45

2 5.92

3 5.63

4 7.50

5 5.33

6 7.33

7 9.44

8 9.20

9 15.30

10 28.90

Total 100

Table 8 Statutory tax rates in South Africa. Source: SARS (2015)

2011 2014 Marginal PIT rates (%)

0–140,000 0–165,600 18

140,001–221,000 165,601–258,750 25

221,001–305,000 258,751–358,110 30

305,001–431,000 358,111–500,940 35

431,001–552,000 500,941–638,600 38

552,001 and over 638,601 and over 40
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Table 10 Income brackets in the PIT data in PPP$. Source: Authors’ calculations based on PIT Data (2011
and 2014)

2011 2014

Income group Mean taxable
income

Percentage of
taxpayers (%)

Mean taxable
income

Percentage of
taxpayers (%)

0 0 4.53 0 2.34

Above 0–4189 2017 4.97 2112 3.77

4189–6284 5264 2.58 5255 2.03

6284–8379 7362 2.94 7360 2.27

8379–10,473 9470 3.34 9483 2.81

10,473–12,568 11, 609 4.59 11, 526 3.81

12,568–14,663 13, 638 4.82 13, 625 4.02

14,663–16,757 15, 694 5.30 15, 727 4.36

16,757–18,852 17, 805 4.63 17, 799 4.39

18,852–20,947 19, 893 4.04 19, 896 4.24

20,947–23,041 21, 971 3.84 21, 983 4.00

23,041–25,136 24, 116 3.67 24, 086 3.93

25,136–27,231 26, 176 3.66 26, 169 3.59

27,231–29,326 28, 264 3.32 28, 301 3.61

29,326–31,420 30, 375 3.09 30, 336 3.68

31,420–41,894 36, 309 13.73 36, 490 14.63

41,894–62,840 50, 522 13.12 50, 599 16.22

62,840–83,787 72, 194 5.63 72, 152 6.70

83,787–104,734 93, 156 2.91 93, 208 3.47

104,734–157,101 125, 683 3.11 125, 408 3.64

157,101–209,468 179, 284 1.01 178, 847 1.16

209,468–418,936 277, 072 0.90 277, 634 1.02

418,936–1,047,340 599, 155 0.24 601, 860 0.27

Above 107,340 1, 613, 911 0.03 1, 586, 025 0.03

N_weighted 5, 783, 360 100 5, 085, 060 100
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Fig. 6 Difference in estimated mean taxable income between NIDS and PIT by income bracket in PPP$

References

Alvaredo, F. (2011). A note on the relationship between top income shares and the Gini coefficient. Eco-
nomics Letters, 110(3), 274–277.

Alvaredo, F., & Atkinson, A. (2010). Colonial rule, apartheid and natural resources: Top incomes in South
Africa, 1903–2007. CEPR Discussion Paper No. 8155.

Alvaredo, F.,&Londoño, J. (2013).High incomes and personal taxation in a developing economy:Colombia
1993–2010. Tech. rep., CEQ Working Paper.

Atkinson, A. B. (2007).Measuring top incomes: Methodological issues (pp. 18–42). Oxford: Oxford Uni-
versity Press. (ch. 2).

Atkinson, A. B., Piketty, T., & Saez, E. (2011). Top incomes in the long run of history. Journal of Economic
Literature, 49(1), 3–71.

Burkhauser, R. V., Feng, S., Jenkins, S. P., & Larrimore, J. (2012). Recent trends in top income shares in the
United States: Reconciling estimates from March CPS and IRS tax return data. Review of Economics
and Statistics, 94(2), 371–388.

Dell, F. (2005). Top incomes inGermany andSwitzerlandover the twentieth century. Journal of theEuropean
Economic Association, 3(2–3), 412–421.

Diaz-Bazan, T. V. (2015). Measuring inequality from top to bottom. World Bank Policy Research Working
Paper, 7237.

Finn, A., Leibbrandt, M., & Levinsohn, J. (2012). Income mobility in South Africa: Evidence from the first
two waves of the National Income Dynamics Study. NIDS Discussion Paper, 05.

Garbinti, B., Goupille-Lebret, J., & Piketty, T. (2016). Income inequality in France, 1900–2014: Evidence
from Distributional National Accounts (DINA). Tech. rep., WID. world Workong Paper Series.

Hundenborn, J., Woolard, I., & Leibbrandt, M. (2016). Drivers of inequality in South Africa. Tech. Rep.
194, Southern Africa Labour and Development Research Unit.

Inchauste, G., Lustig, N., Maboshe, M., Purfield, C., & Woolard, I. (2015). The distributional impact of
fiscal policy in South Africa. SALDRU Working Paper.

Jenkins, S. P. (2017). Pareto models, top incomes and recent trends in UK income inequality. Economica,
84(334), 261–289.

Jorda, V., & Niño-Zarazúa, M. (2016). Global inequality: How large is the effect of top incomes? Tech.
rep., WIDER Working Paper.

Lakner, C., &Milanovic, B. (2016). Global income distribution: From the fall of the BerlinWall to the Great
Recession. World Bank Economic Review, 30(2), 203–232. https://doi.org/10.1093/wber/lhv039.

123

https://doi.org/10.1093/wber/lhv039


The effect of top incomes on inequality in South Africa 1047

Leibbrandt, M., & Finn, A. (2012). Inequality in South Africa and Brazil—Can we trust the numbers? CDE
Insight, Centre for Development an Enterprise. https://www.africaportal.org/publications/inequality-
in-south-africa-and-brazil-can-we-trust-the-numbers/

Leibbrandt,M., Finn,A.,&Woolard, I. (2012).Describing and decomposing post-apartheid income inequal-
ity in South Africa. Development Southern Africa, 29(1), 19–34. https://doi.org/10.1080/0376835X.
2012.645639.

Levy, B., Hirsch, A., & Woolard, I. (2015). Governance and inequality: Benchmarking and interpreting
South Africa’s evolving political settlement. ESID Working Paper No. 51.

Lustig, N. (forthcoming) The missing rich in household surveys: Causes and correction approaches. CEQ
Working Paper.

Morelli, S., Smeeding, T. M., & Thompson, J. P. (2014). Post-1970 trends in within-country inequality and
poverty: Rich and middle income countries. Center for Studies in Economics and Finance Working
Papers, 356.

National Planning Commission. (2011). National Development Plan 2030. Our future—Make it
work. https://www.gov.za/sites/default/files/gcis_document/201409/ndp-2030-our-future-make-it-
workr.pdf

National Treasury and South African Revenue Service (SARS). (2015). Tax Statistics. 2015. https://www.
sars.gov.za/AllDocs/Documents/Tax%20Stats/Tax%20stats%202015/Tax%20Statistics%202015.
pdf

OECD. https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm. (Website) PPPs and
exchange rates. Accessed Nov 23, 2017.

SALDRU. (2015a). National Income Dynamics Study (NIDS) 2010–2011, Wave 2 [dataset]. Southern
Africa Labour and Development Research Unit, Version 3.1.

SALDRU. (2015b). National Income Dynamics Study (NIDS) 2014–2015, Wave 4 [dataset]. Southern
Africa Labour and Development Research Unit, Version 1.1.

SARS. (2016a). Personal Income Tax (PIT) Data 2010–2011 [dataset]. South African Revenue Service.
SARS. (2016b). Personal Income Tax (PIT) Data 2013–2014 [dataset]. South African Revenue Service.
Schiel, R., Leibbrandt, M., & Lam, D. (2016). Assessing the impact of social grants on inequality: A

South African case study (pp. 112–135). Contemporary Issues in Development Economics New York:
Palgrave MacMillan. (ch. 8).

Statistics South Africa. (1993–2017). Quarterly publication on Gross Domestic Product (GDP). Statistics
South Africa P0441.

VanDerWeide, R., Lakner, C., & Ianchovichina, E. (2016). Is inequality underestimated in Egypt? Evidence
from house prices. World Bank Policy Research Working Paper.

Wittenberg, M. (2016). Wages and wage inequality in South Africa 1994–2011: Part 1-Wage measurement
and trends. South African Journal of Economics, 85(2), 279–297.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.africaportal.org/publications/inequality-in-south-africa-and-brazil-can-we-trust-the-numbers/
https://www.africaportal.org/publications/inequality-in-south-africa-and-brazil-can-we-trust-the-numbers/
https://doi.org/10.1080/0376835X.2012.645639
https://doi.org/10.1080/0376835X.2012.645639
https://www.gov.za/sites/default/files/gcis_document/201409/ndp-2030-our-future-make-it-workr.pdf
https://www.gov.za/sites/default/files/gcis_document/201409/ndp-2030-our-future-make-it-workr.pdf
https://www.sars.gov.za/AllDocs/Documents/Tax%20Stats/Tax%20stats%202015/Tax%20Statistics%202015.pdf
https://www.sars.gov.za/AllDocs/Documents/Tax%20Stats/Tax%20stats%202015/Tax%20Statistics%202015.pdf
https://www.sars.gov.za/AllDocs/Documents/Tax%20Stats/Tax%20stats%202015/Tax%20Statistics%202015.pdf
https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm

	The effect of top incomes on inequality in South Africa
	Abstract
	1 Introduction
	2 Background
	2.1 Macro-economic context
	2.2 The tax system in South Africa

	3 Data sources
	4 Distributional analysis
	4.1 Overview of the household survey data
	4.2 Overview of data on taxpayers
	4.2.1 High earners in the PIT data

	4.3 Comparison of household survey data with tax administration data

	5 Measuring inequality
	5.1 Inequality within the NIDS and PIT Data
	5.2 Inequality across the NIDS and PIT data
	5.3 Combining household survey data and tax administration data
	5.3.1 Methodology following Diaz2015
	5.3.2 Application to the South African case


	6 Conclusion
	Acknowledgements
	Appendix: Additional tables and figures
	References




