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Abstract
Three levels of fear of heights were detected in subjects with different severities of acrophobia, based on the electroencephalo-
graphic (EEG) and electrocardiographic (ECG) signals. The study aims to demonstrate the feasibility of a data-fusion-based
method for real-time assessment of the fear of heights intensity to integrate into adaptive Virtual Reality Exposure Therapy
for acrophobia. The generalization performance of classification tasks on fear states is improved by exploiting both trait-based
clustering and Domain Adaptation methods. Participants were gradually exposed to increasing height levels through a Virtual
Reality (VR) scenario representing a canyon. The initial severity of fear of heights, the level of distress at each height, and
the anxiety level before and after the exposure were assessed through the Acrophobia Questionnaire, the Subjective Unit of
Distress, and the State and Trait Anxiety Inventory, respectively. The Simulator Sickness Questionnaire was administered
to exclude possible motion sickness interference in the experiment. The EEG and ECG signals were acquired through a
32-channel headset and 1 Lead ECG derivation during the exposure to the eliciting VR scenario. Four classifiers (i.e. Support
Vector Machines, Deep Neural Networks, Random Forests, and k-Nearest Neighbors) were adopted in the experimental
environment. Preliminary tests were performed in a within-subject experiment, achieving the best classification accuracy of
87.1% ± 7.8% with a Deep Neural Network. As the cross-subject approach is concerned, three strategies, namely Domain
Adaptation (DA), data fusion (combining EEGwith ECG), and participant clustering (based on the acrophobia severity), were
evaluated. DA resulted in the most effective strategies by determining an improvement of more than 20 % in classification
accuracy. Random Forest performed the best classification accuracy for the severe acrophobia cluster with a mean of 63.6%
and a standard deviation of 13.4% over three classes by exploiting Stratified Normalization.
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1 Introduction

Specific phobias are anxiety disorders characterized by a
marked and persistent fear of a specific object or situation,
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which leads to significant distress and avoidance behavior
Association et al. (2015). The fear is usually out of propor-
tion to any actual danger posed by the situation. Specific
phobias can have a significant impact on quality of life, thus
compromising daily functioning (Choy et al., 2007; Magee
et al., 1996; Essau et al., 2000). Frequently, specific phobias
occur before the onset of other mental disorders and can be
considered early indicators of vulnerability to psychopathol-
ogy (Wardenaar et al., 2017).

Both psychological and pharmacologic treatments are
used for specific phobias. The main psychological thera-
pies are cognitive-behavioral therapy (CBT) and exposure
therapy (Wolitzky-Taylor et al., 2008). CBT is a talking ther-
apy aimed to support the patient in changing his negative
thoughts and beliefs about phobic stimuli. During exposure
therapy, individuals are gradually exposed to phobic stimuli
in a safe and controlled environment, with the help of a ther-
apist. This therapy can help individuals to overcome their
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avoidance behaviors and develop a sense of control over the
fear (Thoma et al., 2015). This exposure can take the form
of either imagined scenarios (imaginal modality), or real-life
situations (in-vivo modality) (Hodges et al., 1995). In par-
ticular, systematic desensitization combines exposure with
relaxation techniques (Marks & Gelder, 1965). On the other
hand,graded exposure entails gradually exposing the individ-
ual to the phobic source in a carefully controlled environment
without the utilization of relaxation techniques (Boehnlein
et al., 2020).

In recent years, Virtual Reality (VR) has been increasingly
used to implement exposure therapy (Powers&Emmelkamp,
2008). By means of Virtual Reality Exposure Therapy
(VRET), the therapist can control the intensity and duration
of the exposure, according to the patient’s reaction. VRET
has several advantages over traditional exposure therapy,
including greater control over the exposure, the ability to cre-
ate personalized scenarios, and the opportunity for patients
to practice coping skills in a safe environment. It has been
shown to be effective in a variety of clinical settings and is
increasingly being used as a therapeutic tool (Botella et al.,
2017; Parsons & Rizzo, 2008).

Traditional VRET treatments require operator interven-
tion to modulate phobic stimuli. In recent years, adaptive
solutions have been proposed by combining VR and biosig-
nals monitoring (Arpaia et al., 2022; Apicella et al., 2022;
Choo and A. May, 2014; Kosunen et al., 2016). Heart rate
variability (HRV), skin conductance, eye movements, and
electroencephalographic (EEG) signals are typical biosig-
nals used in this context. In particular, the portability and
wearability advancements of EEG devices have made them
compatible with VR headsets (Arpaia et al., 2022), enabling
their simultaneous use in therapeutic interventions (Ander-
sen et al., 2023). Notably, EEG signals exhibit information
richness and high temporal resolution (Liu et al., 2021; Uchi-
tel et al., 2021; Yoshimura et al., 2017) resulting successfully
employed in real-time brain-computer interface (BCI) appli-
cations (Arpaia et al., 2021a, b). Furthermore, also the ECG
signals offer distinctive advantages such as ease of integration
with VR setups, providing valuable information on auto-
nomic nervous system responses, and offering insights into
emotional states with high temporal resolution (Arpaia et al.,
2023; Bornas et al., 2006).

Five subtypes of specific phobias are defined in the
Diagnostic and Statistical Manual of Mental Disorders,
5th edition (APA, 2013): animal, natural environment,
blood/injection/injury, situational, and other (Lépine et al.,
2005; Straube et al., 2006). Acrophobia is the most prevalent
situational-specific phobia and is characterized by an exces-
sive and irrational fear of heights or elevated places, leading
to avoidance of such situations (Menzies, 1997).

Machine Learning (ML) allows to automatically identify
the severity of fear of heights by analyzing the EEG signals

(Wang et al., 2021). However, real-time adaptivity requires
the assessment of the current mental condition of the user
(by focusing on his/her state (Steyer et al., 1992)) instead
of the diagnosis of acrophobia disease severity (a feature
of his/her trait). At the same time, the information on the
acrophobia trait can be exploited to improve the state clas-
sification by clustering the participants according to their
acrophobia severity and so handling the EEG bias related to
specific traits. Moreover, EEG signals suffer from high non-
stationarity (Shen & Lin, 2019), leading toward a significant
statistical difference between signals acquired from different
subjects or from the same subject at different times. ML lit-
erature is addressing this issue by adopting methods used for
theDataset Shift problem (Apicella et al., 2023). In a nutshell,
starting from the assumption that data acquired in different
conditions belong to different distributions (domains), these
methods project the data in new feature spaces where these
differences are relieved. In particular, Domain Adaptation
(DA) approaches applied to EEG data are reporting inter-
esting results in the literature, also in challenging problems
such as emotion recognition (Lan et al., 2018). However,
less attention is given to the application of DA strategies to
phobias analysis and classification.

In a prior research investigation, a pipeline for EEG anal-
ysis was suggested to categorize fear of heights into three
distinct levels of intensity (namely, low, medium, and high)
(Apicella et al., 2023). In this work, three strategies were
implemented to improve the cross-subject and cross-session
generalization capability of the aforementioned processing
pipeline (i) clustering of the experimental sample accord-
ing to the acrophobia severity level, (ii) data fusion, and
(iii) domain adaptationmethods. In Section 2, related works
are presented and discussed. The experimental sample, the
instrumentation, the protocol, the psychometric and signal
processing tools are described in Section 3. This marks the
initial stride towards the development of a BCI adaptive sys-
tem designed for VR therapy aimed at addressing the fear of
heights.

2 Background

In (Wang et al., 2021), the EEG was employed to distin-
guish different groups of subjects according to their severity
of acrophobia. The Acrophobia Questionnaire (AQ) (Cohen,
1977) was employed for an initial assessment of the experi-
mental sample. The experiment (“Richie’s Plank Experience
on Steam") consisted of the exposure of the participants to
a fear-inducing virtual environment reproducing a wooden
plank hanging at a height of about 160m. After the exposure,
subjects reported their feelings through the Subjective Unit
of Distress (SUD) (Keptner et al., 2021). The AQ and SUD
scores were employed to divide all the subjects into three
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groups, that are not fear of heights, slight fear of heights, and
severe fear of heights. However, the SUD scale, typically
used to assess the current state of the subject, in (Wang et al.,
2021) was utilized in conjunction with the AQ scale to mea-
sure the subject’s trait. EEG data were processed following
the Harvard automated processing pipeline, decomposed in
nine-layer with Wavelet Packet Decomposition (WPD), and
functional connectivity featureswere evaluated between each
pair of channels. The resulting features are then fed toConvo-
lutional Neural Networks (CNNs) achieving an accuracy of
98.46±0.42%.However, the studywas based exclusively on
the acrophobia trait without considering the fear state. More-
over, only the EEG signal was exploited. In (Tychkov et al.,
2023), a spectral analysis was conducted to identify markers
for anxious-phobic disorders, specifically acrophobia. The
analysis was performed under various conditions, including
rest, while wearing a VR headset, and during exposure to
a stressful stimulus (a height in a VR environment through
the "New City" scene). Power spectrum in the following fre-
quency ranges: (0.5-4.0 Hz), (4.0-8.0 Hz), (8.0-12.0 Hz), and
(12.0-35.0 Hz) was explored on 12 male subjects. Results
demonstrate that the exposure to height causes an increase in
the β power spectrum by 2-3 times with respect to the state of
rest and regardless of the intensity of the fear manifestation.

The results were obtained by comparing the power spec-
trum ranges computed under the aforementioned different
conditions. The study demonstrates that it is possible to dis-
criminate between the three conditions (rest, while wearing
a VR headset, and at a certain height in a VR environ-
ment) based on the EEG signal. However, this study does
not consider different levels of fear or the acrophobia traits
of participants. Furthermore, the analysis is limited to EEG
signals and no machine-learning strategies are exploited.

In (Aspiotis et al., 2022), the EEG and ECG signals were
monitored to explore their relationship with height-related
stress. The participant was exposed to a fear-inducing vir-
tual environment, the “Richie’s Plank Experience on Steam".
Subjects reported their perceived stress during the exposure
through the Perceived Stress Scale (PSS). The scale assesses
the stress felt in the last month but it is here employed as
a measure of state. The experimental sample made of 16
subjects was divided in two groups according to Hearth
Rate variation with respect to a baseline. As EEG signal is
concerned, a fourth-order Butterworth band-pass filter was
applied to filter between 0.4 and 48 Hz. Artifact rejection
was performed by using the Artifact Subspace Reconstruc-
tion (ASR) and the Independent Component Analysis (ICA).
The Power Spectral Density (PSD) of each frequency band at
each electrode was calculated using theWelch method. Each
frequency band was averaged across the electrodes for each

cortex of the brain, leading to the calculation of the average
absolute power for each brain region. The PSS score was
found to be correlated with the increase in the frontal, pari-
etal, occipital and, temporal beta powers and the increase in
the parietal, temporal, and occipital gamma powers. Further-
more, statistically relevant differences emerged between the
EEG biomarkers of the two groups identified on the basis of
theHearthRate variation.Also in this case, the study does not
consider different levels of fear neither the acrophobia traits
of participants. Furthermore, no machine learning strategy is
adopted.

Differently from the previous studies, in (Bălan et al.,
2020) different fear levels are considered in a classification
problem based on biosignals. The participants’ severity of
acrophobia was preliminarily assessed by the Visual Height
Intolerance Questionnaire (VHIQ) (Huppert et al., 2017).
Forty-four subjects were involved in VR-based experimental
activities. Subjects were required to rate the fear through the
SUD scale. EEG data were processed through a bandpass
Butterworth filter. The signal was then averaged and log-
normalization was applied. Finally, the alpha, beta and theta
frequency powers were extracted. A range of ML and deep
learning classifiers were used and evaluated in both user-
dependent and user-independent scenarios. The fear levels
were categorized by the authors into two and four classes,
forming two distinct classification problems. In particular,
a 4-class (relax, low, medium, and high) fear level clas-
sification was conducted starting from the Galvanic Skin
Response, Hearth Rate, and EEG signals. The best perfor-
mances of 79.12% and of 52.75% of accuracy were achieved
in the user-dependent setting through an SVMand of 89.50%
andof 42.50% in the user-independent setting through aDeep
Neural Network (DNN) on two and four classes, respec-
tively. Data fusion and machine learning strategies were
employed to evaluate the participants’ level of fear. How-
ever, a notable drawback lies in the absence of employing
leave-n-subject-out strategies. Indeed, the Authors adopted a
10-fold cross-validation strategy, randomly distributing par-
ticipants’ data across these 10 folds during the validation
process. This choice limits the extent to which the claimed
accuracy results can be generalized. Similarly to this last
approach, the current work aims to recognize different lev-
els of fear of heights. Differently, the innovative contribution
with respect to the discussed literature is twofold: (i) incor-
porating the trait of acrophobia into a classification problem
regarding the fear of height state and (ii) the use of Domain
Adaptation to handle the non-stationarity of EEG signals.
The proposed approaches are evaluated by means of leave-
one-out-subject strategies.
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3 Materials andMethods

3.1 Psychometric Tools

Participants were required to fill in some scales and question-
naires for an initial screening of the sample and for pre- and
post-observation of the anxiety level. The psychometric tools
employed are (i) theAcrophobiaQuestionnaire (AQ) (Cohen,
1977) before the experiments; (ii) the State-Trait Anxiety
Inventory (STAI) - Y1 before and after the experiments, (iii)
the Simulator Sickness Questionnaire (SSQ) (Kennedy et al.,
1993) at the end of the activity, and (iv) the Subjective Unit
of Distress (SUD) (McCabe, 2015) after each run. The AQ
and SUD scores were used to evaluate the severity of fear of
heights.

The AQ self-report is made of two sub-scales which eval-
uate respectively the anxiety and avoidance levels associated
with 20 height-relevant situations. Each sub-scale is made of
20 items.

The SUD was used to observe the reaction of the subjects
to the different heights during the ongoing exposure session.
This visual analogue scale is a widely employed tool for
individuals to self-assess and report their levels of anxiety,
restlessness, stress, or other unpleasant emotions experienced
during exposure therapy. The participant can express an opin-
ion about the current level of anxiety on a Likert scale from
0 (no distress) to 100 (extreme distress). In this research, a
Likert scale ranging from zero to ten for assessing levels of
distress was used. During exposure therapy, SUD is primar-
ily utilized to construct fear hierarchies, organizing triggering
stimuli based on their intensity levels. SUD ratings are com-
monly used to assess the initial level of fear experienced by
the participants as well.

The STAI-Y1 was used to evaluate the efficacy of the fear
eliciting stimulus through a comparison of the state anxiety
levels acquired before and after the experiment. The STAI
is a widely used psychological assessment tool designed to
measure two distinct types of anxiety: state anxiety (Y1) and
trait anxiety (Y2). State anxiety refers to the temporary or
situational anxiety that individuals experience in response to
a specific event or situation. Trait anxiety refers to the more
stable and enduring aspect of anxiety that is characteristic
of an individual’s personality. The STAI is composed of 20
items for measuring state anxiety and 20 items for measuring
trait anxiety on a 4-point Likert scale. Finally, the SSQ was
employed to exclude motion sickness induced by the VR
headset. It was designed to measure the intensity of three
main symptom clusters associated with simulator sickness:
(i) nausea, (ii) oculomotor (eye-related) symptoms, and (iii)
disorientation symptoms. The SSQ consists of 16 items, and
users are asked to rate their experience of each symptom on a
scale from 0 (no symptom) to 3 (severe symptom). The total
score is calculated by summing the ratings across all items,

with the score indicating the level of simulator sickness: neg-
ligible (< 5), minimal (5 − 10), significant (10 − 15), and
concerning (15 − 20) symptoms.

3.2 Participants

A sample of 20 healthy subjects (age 26.3 ± 7.9; 8 males
and 12 females) took part in the experimental activity. The
experimental protocol was approved by the ethical commit-
tee of the University of Naples Federico II. Participants were
recruited within the university context. Thirty-five subjects
voluntarily joined a call shared on social networks. Then they
were divided into clusters according to their acrophobia level
based on AQ and SUD scores. Finally, twenty participants
were included in the study to manage the trade-off between
sample size and cluster balance. Subjects had never partici-
pated in experiments involving emotion-related stimulation
in a VR environment. The benefits and risks of the experi-
mental procedure were clearly explained and the participants
were instructed on the purpose of the experiment. Prior writ-
ten informed consent to participate was provided by all the
subjects.

3.3 Hardware

The EEG signals were acquired through the LiveAmp ampli-
fier from Brain Products (Liveamp, 2022) (Fig. 1). The
system is wearable and ultra-light, it is equipped with 32
gel-based active electrodes placed according to the Interna-
tional 10/20 Positioning System. The electrodes are placed
on the scalp by means of caps of different sizes. Specifically,
the actiCAP is provided with impedance conversion circuitry
and visual feedback on the electrode-scalp impedance.

The LiveAmp comes with an ADC that has a resolution
of 24 bits. The EEG signal can be recorded at three different
sampling rates, namely 1000, 500, and 250 Sa/s. According
to the sample rate, data are filtered through the amplifier’s
built-in third-order low-pass filter with a cut-off frequency
of 262, 131, or 65 Hz, respectively. The amplifier is also pro-
vided with a built-in 3-axis acceleration sensor. Data can be
wireless transmitted and/or internally stored on amicromem-
ory card. The BrainVision Recorder software guides through
the entire hardware setup. Specifically, it enables the ability
to alternate between different channel configurations, verify
the electrical resistance between the electrodes and the sur-
face of the scalp, and view the EEG data in real time. The
LiveAmp LSL connector app allows to connect the ampli-
fier to LabStreamingLayer (LSL) thus enabling the unified
and synchronized collection of data streams from different
sources. Besides the EEG signal, it is possible to record other
physiological signals thanks to the 8 AUX inputs provided
by the sensor & trigger extension (Fig. 1b) connected with
the LiveAmp (Fig. 1a), Moreover, the bipolar-to-auxiliary
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Fig. 1 Brain Vision LiveAmp (a) , Sensor & Trigger Extension (b), and
Bipolar-to-auxiliary adapter (c)

(BIP2AUX) adapter (Fig. 1c) was connected to the STE in
order to measure a bipolar recording of the ECG signal. The
BIP2AUX adapter is an analog differential DC amplifier that
optimizes the input signal by improving the quality of the
acquired signal. The potential difference between the right
arm and left arm was measured with the I Lead ECG.

The exposure to the VR environment was achieved by
the Meta Quest 2 (Meta quest 2, 2022), produced by Meta
Platforms (Fig. 2). The Quest 2 runs an Android-based oper-
ative system, it can be used as a standalone device or can be
connected through a wired connection to a PC with the VR
software running on it. The headset is provided with a fast-
switch LCD display with a per-eye resolution of 1832∗1920
and an adjustable refresh rate of 60, 72, or 90 Hz. Loud and
left/right positional audio are available thanks to the built-in
speakers thus offering the users a more immersive experi-
ence. A motion tracker with 6 degrees of freedom (DOF)
guarantees precise trackingof the user’s head andbodymove-
ments. Finally, the Meta Quest 2 can be easily integrated in
EEG applications due to its small dimensions and weight,
(224 ∗ 450 mm, 503 g).

Fig. 2 Meta Quest 2

3.4 VR App

The AKRON application1, developed by IDEGO (Idego -
Digital Psychology, 2022), was employed in this study for
the treatment of fear of heights. The scenario represents a
canyon in a rocky desert: the river, the rocks, and the bar-
ren nature dominate the landscape, Fig. 3. The app allows to
gradually expose the user to different height levels arranged
in ascending order. Some elements such as the wall steep-
ness, the river, and the wooden platform were exploited to
enhance the eliciting power of the scenario (Azimisefat et al.,
2022). The rock steepness contributes to increasing the sense
of "dangerousness". The river provides the user with a spa-
tial reference point and enhances the overall sense of depth.
Finally, the wooden platform was built with spaces between
the planks to provide the user with reference points down-
wards, and also with the aim of increasing the perception of
height and depth. The wooden lift allows people to go up to
4 distinct floors: ground floor, first floor, second floor, and
third floor. On each floor, the platform rises approximately
15 m in height. The lift is equipped with protective barri-
ers present on each side with the aim of letting the user feel
safe while the platform rises. The only exception is when
the platform stops, in that situation the frontal barriers are
no longer present in order to leave the user in greater eye
contact with the sensation of empty space. The application
was created using theUnity game engine (version 2019.4.16)
on the Android platform. The application was created for
Android using the Unity game engine (version 2019.4.16),
programmed in C# and utilized the OpenGLES3 graphics
library, along with an IL2CPP-type backend configuration.
The app has been optimized through a ASTC compression
system to use it on low-end VR viewers such as the Meta
Quest 2. The refresh rate was set at 72 Hz.

3.5 Experimental Protocol

The activities were carried out at the Institute of Neural Engi-
neering (BCI Lab) at the Graz University of Technology.
Each subject concluded one session composed of three tri-
als, on the same day (Fig. 4). A preliminary phase preceded
the experimental activities. First, participants were care-
fully instructed on the purpose of the experiment after the
researchers set up the EEG device and the VR headset. The
use of wet electrodes filled with conductive gel guaranteed
electrode-scalp impedance lower than 25k� and the qual-
ity of the EEG signal was visually inspected. Once the EEG
configurationwas completed, participantswere asked towear
the VR headset which had been previously calibrated by the

1 Video of the application: https://shorturl.at/dgluI.

123

https://shorturl.at/dgluI


Information Systems Frontiers

Fig. 3 Eliciting VR scenario

operator. The EEG signals were again visually inspected to
ensure no perturbations occurred (Fig. 5).

The individual needs to position themselves inside a VR
setting reproducing a canyon where they will be standing in
a wooden elevator. This elevator enables the user to progres-
sively ascend to greater heights with each attempt. Before the
first run, the subject stands at the ground level on the river
bank and is asked to look around in order to become familiar
with the environment. At the ground level, the baseline is
recorded and the subject answers the SUD for the first time.

A 5 s visual countdown informs the subject of the start
of each run. After, the platform starts rising and in a few
seconds the subject reaches the desired level. The participant
is required to stand on the platform at a certain height for
90 s. The run is followed by a 60 s relaxation phase at the

ground level and then the user is asked to answer the SUD
again. The duration of the session is approximately 15 min.
The overall experimental process is presented in Fig. 4.

3.6 EEG Signal Preprocessing and Feature Extraction

The pre-processing stage of the raw EEG data was realized
using Matlab v. R2022a. A digital filtering was applied in
order to filter out the power line noise and extract the fre-
quency bands of interest. Specifically, a 50Hz notch IIR filter
and a 4th order Butterworth band pass IIR filter, with cutoff
frequencies between 0.5 and 48.5 Hz were built and applied
to the row data. A robust artifact removal was then required
to clean the EEG data from the movement artifacts occurred
during the experiments. Artifact Subspace Reconstruction

Fig. 4 Structure of the experimental session , including one-time
pre/post-questionnaires (AQ = Acrophobia Questionnaire, STAI =
State-Trait Anxiety Inventory, SSQ = Simulator Sickness Question-

naire). After the initial assessment and the subsequent exposure stages,
the Subjective Unit of Distress (SUD) is conducted

123



Information Systems Frontiers

Fig. 5 EEG data acquisition

(ASR) and Independent Component Analysis (ICA) (Arpaia
et al., 2022) were employed for removing artifacts from the
EEGsignal using theEEGLABMatlab toolbox, version 2019
(Radüntz et al., 2015). For the ASR, a cutoff parameter of
15 was employed in order to retain the brain component of
the signal while effectively removing artifacts (Chang et al.,
2018). For the ICA, all the components identified as eye,
muscle, hearth, line noise, and channel noise artifacts with a
percentage greater than 95% were removed. Additionally,
subjects’ head movements in the x, y, and z dimensions
recorded through the accelerometer sensors were used to
further clean the EEG data from movement-related artifacts.
Independent components (ICs) previously computed by ICA
were band-pass filtered with a 4th order Butterworth band
pass IIR filter between [1 − 10] Hz. The accelerometer data
were filtered in the same way. The frequency band was cho-

sen in order to retain artifacts related to headmovementwhile
removing low-frequency drifts (Daly et al., 2013). Follow-
ing, the Pearson’s correlation coefficient between ICs and
accelerometer signals is computed to identify ICs that were
most likely related to head movement. IC components that
resulted highly correlated (Pearson’s correlation coefficient
greater than two standard deviations above the mean correla-
tion calculated between the IC and the accelerometer signals)
with at least one of the accelerometer signals, were removed
from the EEG signal (Table 6).

Next, signals were segmented into 10s time windows.
Typical timewindows for EEG signal processing range in the
interval [1-10] s (Apicella et al., 2022). Furthermore, findings
from a functional magnetic resonance imaging (fMRI) study
(Caseras et al., 2010) indicate that brain activation increases
compared to normal values within the timeframe of approx-
imately 1 to 10 s. In (Knopf & Pössel, 2009), it is stated that
in phobic subjects, heart rate (HR) begins to increase after 7 s
from the start of stimulation.Additionally, it has been demon-
strated (Shaffer and J. P. Ginsberg, 2017) that the heart rate
variability (HRV), that we employ as an ECG feature, ismore
reliablewhen consideringmeasurements of 10 s (Ultra Short-
Term, UST). Therefore, a 10 s time window was adopted to
take into account the temporal trend of both EEG and ECG
signals. The Fast Fourier Transform (FFT) was then applied
to the signals and the PSD was computed in the following
frequency bands: delta [0.5, 4] theta [4, 8] Hz, alpha [8, 13]
Hz, low-beta [13, 21]Hz, high-beta [21, 28]Hz, low-gamma
[28, 38] Hz, and high-gamma [38, 48.5] Hz.

3.7 ECG Signal Preprocessing and Feature Extraction

The ECG signal processing was developed in Matlab v.
R2021b. The Pan Tompkins algorithm (Pan & Tompkins,
1985; Sedghamiz, 2014) was applied to the raw ECG signal
for the pre-processing phase. It consists of a series of filter-
ing operations and of a final detection of the QRS complexes

Fig. 6 Pipeline of the classification process involving EEG, ECG, or
a combination of both. After the data has been preprocessed and seg-
mented into epochs, suitable features are extracted, alongwith a channel

selection strategy. Subsequently, a Domain Adaptation algorithm is
applied, followed by a classification step that outputs the level of expe-
rienced phobic intensity
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corresponding to the ventricular depolarization. Specifically,
the algorithm expects the following steps:

• a digital filtering between ([5 − 15] Hz) carried out
through a bandpass Butterworth filter. This first stage
allows to attenuate the 50 Hz, muscle artifact, and base-
line wander.

• a derivative filter that allows to highlight the QRS com-
plexes;

• a signal amplitude squaring to enhance the high frequen-
cies;

• a moving window integration with a window length of
30 samples to obtain information on the slope of the R
wave;

• an adaptive thresholding with a decision rule algorithm
that allows to distinguish ECG signal peak from noise
peak and also allows to discriminate T-waves.

Once detected the NN interval, defined as the Normal-to-
Normal interval obtained from the signal without abnor-
mal beats, several features related to HRV were extracted
(Table 1): linear statistical and geometric features, and non-
linear features (T. F. of The European Society of Cardiology
et al., 1996; Shaffer and J. P. Ginsberg, 2017).

3.8 Domain Adaptation and Classification

Due to the intrinsic non-stationarity of the EEG signal, DA
strategies have been explored in this study. In particular,
we focus on Unsupervised DA strategies, which start from
the hypothesis that unlabeled data of the target domain (i.e.
EEG acquisitions belonging to the target subject/session) are
available during the training. Unsupervised DA resulted par-
ticularly suitable because of the availability of target data
during the training of the model, together with data belong-

ing to the source domain(s). Unsupervised DA strategies
can be categorized into two main families: feature-based
approaches, where a proper feature transformation is induced
and applied to the data before the classification training stage,
and end-to-end approaches, where the most suitable fea-
ture space is learned together with the classification model.
This last family is particularly suitable for ML methods
based on Deep Neural Networks (DNNs), since they allow
to build complex functional architectures able to extract fea-
tures and pursue ML tasks at the same time. In particular,
methods based on adversarial learning (HassanPour Zonoozi
& Seydi, 2022) are gaining success in several applications.
In this work, we explore how Subspace Alignment (SA,
(Fernando et al., 2013)) feature method impacts classical
ML methods (for instance, RF, SVM, and kNN) and how
Domain-AdversarialNeuralNetworks (DANN, (Ganin et al.,
2016)) impacts onDNNs in aFear classification task. In a nut-
shell, SA searches for a linear transformation able to align the
source and target spacesfinding the best linear transformation
of the source points projected in a PCA space. On the other
side, DANN learns a DNN feature space considering the
discrepancy between the source and the target domain with
the aim of generating a common representation space such
that data belonging to different domains are indistinguish-
able for an ad-hoc domain discriminator. To this aim, a DNN
model able to project the data in a feature space able to max-
imize both the class prediction performances and the domain
classification loss is trained. To verify if DA’s methods are
responsible for the resulting improvement, an ablation study
was made to evaluate each classifier’s performance with and
without the DA approach for the proposed Fear classification
task. These methods search for common features where the
source and target distributions result aligned. The classifica-
tion is then carried out in this encoded feature space. SA and
DANN methods provided by the Python package ADAPT

Table 1 Features extracted from the ECG

Linear and Statistical Linear Geometric Non Linear

Root Mean Square of successive differences of NN
intervals (RMSNN)

Triangular Index (TI) SD1 and SD2

Standard Deviation of the NN Interval Triangular Interpolation of the NN Interval Histogram (TINN) SD1/SD2 ratio

Standard Deviation of successive differences of NN
intervals (SDSD)

Tone

Mean value of NN intervals

Median value of NN intervals

Differencebetween themaximumandminimumvalue
of NN intervals

Median Absolute Deviation (MAD) of the intervals
NN

pNN50

pNN20
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Table 2 Classifiers, optimized hyperparameters, and variation ranges

Classifier Hyperparameter Variation Range

Random Forest (RF) Depth (D) [3, 5, 7, 10]

N◦ of Trees (NT) [100, 200, 400, 600, 800, 1000]

Support Vector Machine (SVM) BoxConstraint (BC) {0.1, 1.0, 10.0, 100.0}

KernelFunction (KF) {rbf (Vert et al., 2004)}

KernelScale (KS) log-scaled in the range [1e-3,1e3]

k-Nearest Neighbour (k-NN) N◦ Neighbors (NN) {1,3,5,7,9,11}

Weight {uniform, inverse of distance (Coomans & Massart,
1982)}

Nearest Neighbors Computation {brute, ball tree (Omohundro, 1989), kd tree (Bentley,
1975)}

Deep Neural Network (DNN) Activation Function (AF) {ReLU(Nair & Hinton, 2010), sigmoid (Hecht-
Nielsen, 1992), tanh (Hecht-Nielsen, 1992),
VAF(Apicella et al., 2019)}

N◦ of Hidden Layers [1, 3]

N◦ of Neurons for each Hidden Layer [32, 1024]

DANN (used only for DNN case) Activation Function (AF) {ReLU (Nair & Hinton, 2010), sigmoid (Hecht-
Nielsen, 1992), tanh (Hecht-Nielsen, 1992), VAF
(Apicella et al., 2019)}

N◦ of Hidden Layers for Domain Classifier [1, 3]

N◦ of Neurons for Domain Classifier [32,1024] with step of 16

N◦ of Hidden Layers for Feature Extractor [1, 2]

N◦ of Neurons for Feature Extractor [32, 1024] with step of 16

were employed. Furthermore, experiments with and with-
out Stratified Normalization (SN) were employed to reduce
inter-participant variability (Fdez et al., 2021). Indeed, proper
normalization strategies applied to the data can heavily affect
the classification performance in EEG data classification,
in some cases outperforming classical DA strategies (Api-
cella et al., 2023). k-Nearest Neighbors (k-NN, (Bishop &
Nasrabadi, 2006)), Random Forests (RFs, (Ho, 1995)), Sup-
port VectorMachines (SVMs, (Cortes andV. Vapnik, 1995)),

and DNNs with fully-connected layers (LeCun et al., 2015)
were the employed classifiers. The objective was to cate-
gorize fear of heights into three distinct levels of intensity
(i.e., low, medium, and high). A Leave-One-Subject-Out
(LOSO) Cross-Validation (CV) was employed in a cross-
subject setting. Since we enrolled 20 subjects each of them
providing 123 samples, each cross-validation round adopted
(20−1)×123 points for the training and 123 samples for the
test set. Instead, in the within-subject classification a strati-

Table 3 Cross-subject
classification accuracy (mean
and standard deviation) in % of
fear of heights on a 3-level
intensity scale for the whole
experimental sample

Bio- DA Classifier
signal method RF SVM kNN DNN

ECG None 36.2 ± 10.2 35.0 ± 11.4 31.6 ± 7.0 35.1 ± 4.9

SA 31.8 ± 7.1 33.0 ± 8.6 33.6 ± 7.4 −
DANN − − − 34.8 ± 11.8

SN 43.0 ± 15.7 40.6 ± 11.0 41.1 ± 13.3 43.5 ± 15.8

EEG None 43.0 ± 10.8 40.1 ± 9.5 38.4 ± 8.3 37.1 ± 7.7

SA 40.8 ± 10.3 45.4 ± 18.6 46.3 ± 18 −
DANN − − − 46.0 ± 13.9

SN 56.5 ± 11.1 54.0 ± 19.7 42.7 ± 15.9 55.1 ± 15.1

EEG & ECG None 36.6 ± 5.6 40.1 ± 9.5 38.9 ± 10 37.5 ± 6.9

SA 42.0 ± 7.5 46.2 ± 16.2 43.8 ± 14.7 −
DANN − − − 46.8 ± 13.7

SN 56.4 ± 15.7 54.4 ± 18.4 42.0 ± 13 54.4 ± 14.6
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fied 5-fold CV was employed, resulting in 123 × 4/5 points
composing the training set and the remaining points com-
posing the test set for each subject. Given the limited sample
size, simple ML architectures, such as neural networks with
max 3 layers, was chosen deliberately to prevent overfitting
and to maintain a balance between model complexity and the
available data’s capacity to generalize. Indeed,while employ-
ing a more complex neural network with a larger number of
parameters might offer a higher capacity to capture intricate
relationshipswithin the data, it could also result in overfitting,
where the model memorizes the noise present in the limited
dataset rather than learning meaningful patterns. For all the
classifiers, the hyperparameters used during the CV proce-
dure are reported in Table 2. The classificationwas conducted
considering: (i) the whole experimental sample made of 20
subjects, and (ii) the three clusters of subject with different
severity of fear of heights, separately. A stratified 5-fold CV
was employed in the within-subject classification.

The entire pipeline related to the process of signal acquisi-
tion, preprocessing, feature extraction, Domain Adaptation,
and classification is illustrated in Fig. 6.

4 Results

4.1 Psychometric Analysis

Relying on the AQ and SUD scores, subjects were grouped
in 3 clusters according to the severity of fear of heights
(Wang et al., 2021). Individuals were placed in the slight-
acrophobia cluster when reported bothAQ scores for anxiety
and avoidance below 20 and 6, respectively, along with a
SUD score below 2. Subjects simultaneously reporting AQ
scores in ranges (20, 40), (6, 12) and a SUD score in range
(3, 4) were grouped together in the mild-acrophobia clus-

ter. Subjects simultaneously reporting AQ scores > 40 and
> 12 and a SUD score > 5 were grouped together in the
severe-acrophobia cluster. As a result, 7 participants were
classified with slight acrophobia, 8 with mild acrophobia,
and 5 with severe acrophobia. To evaluate whether there was
a change in reported levels of fear, following the VR expo-
sure, the Wilcoxon signed-rank test was used to analyze the
pre- andpost- scores ofSTAI-Y1. Statistical analysiswas per-
formed usingRSoftware (version 4.1.1) and a p-value< 0.05
indicated statistically significant differences. By comparing
the results from the STAI-Y1 acquired before and after the
experiments, a significant difference emerged (p = 0.037,
V = 44). STAI scores acquired after the VR exposure were
higher than the scores acquired before, thus proving the effec-
tiveness of the fear induction. From the analysis of the SSQ,
an average score of 7.74±3.51 established that subjects suf-
fered from minimal motion sickness symptoms during the
activity.

4.2 Classification

For the cross-subject analysis, the classification performance
were computed by combining the following binary criteria:
i) exploiting (or not) DA methods, and ii) exploiting only
EEG data (or both EEG and ECG). In Table 3, accuracy was
computed on the entire experimental sample. The best result
was achieved with the combination of SN and RF applied
to the EEG signal. The merge of EEG and ECG allows a
compatible mean accuracy with a larger standard deviation.
In Tables 4, 5, and 6, the accuracy values are reported for the
severe,mild, and slight-acrophobia clusters, respectively. For
all the clusters the combination of SN and RF allowed the
best accuracy. Considering the type of signal, the ECG was
significant for clusters of mild and slight acrophobia.

Table 4 Cross-subject
classification accuracy (mean
and standard deviation) in % of
fear of heights on a 3-level
intensity scale considering the
severe acrophobia cluster

Bio- DA Classifier
signal method RF SVM kNN DNN

ECG None 32.0 ± 3.2 38.8 ± 5.5 43.0 ± 4.8 36.3 ± 10.1

SA 32.7 ± 2.2 37.8 ± 3.9 38.8 ± 7.0 −
DANN − − − 34.5 ± 4.1

SN 50.9 ± 4.4 29.6 ± 4.8 33.3 ± 4.3 29.7 ± 9.4

EEG None 49.6 ± 21.8 49.1 ± 11.1 47.2 ± 12.8 56.9 ± 14.6

SA 39.3 ± 6.0 56.3 ± 17 57.5 ± 13.8 −
DANN − − − 47.2 ± 5.2

SN 63.6 ± 13.4 55.7 ± 9.6 53.3 ± 7.5 58.1 ± 7.0

EEG & ECG None 49.1 ± 17.8 52.7 ± 5.2 46.1 ± 5.9 55.8 ± 18.2

SA 44.8 ± 6.4 60.0 ± 13.8 52.7 ± 9.8 −
DANN − − − 55.1 ± 12.6

SN 63.6 ± 15 54.5 ± 12.7 48.5 ± 5.4 55.1 ± 12.4
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Table 5 Cross-subject
classification accuracy (mean
and standard deviation) in % of
fear of heights on a 3-level
intensity scale considering the
mild acrophobia cluster

Bio- DA Classifier
signal method RF SVM kNN DNN

ECG None 40.2 ± 8.9 36.3 ± 10.7 33.7 ± 6.3 40.9 ± 10.2

SA 33.7 ± 6.3 34.8 ± 4.7 35.2 ± 7.8 −
DANN − − − 30.3 ± 11.4

SN 50.3 ± 15.3 37.8 ± 11.4 45.0 ± 15 48.5 ± 14.2

EEG None 41.3 ± 14.6 36.3 ± 4.2 34.8 ± 6.9 35.2 ± 5.0

SA 31.0 ± 5.8 34.8 ± 3.0 38.2 ± 15.8 −
DANN − − − 44.7 ± 13.2

SN 50.7 ± 15.2 42.0 ± 7.3 34.0 ± 6.5 46.6 ± 16.2

EEG & ECG None 39.0 ± 12.3 33.0 ± 0.0 34.1 ± 4.7 37.1 ± 10.2

SA 36.0 ± 7.3 34.8 ± 3.7 36.0 ± 5.6 −
DANN − − − 48.9 ± 16.7

SN 52.6 ± 11.8 44.3 ± 13.7 34.1 ± 8.8 52.2 ± 12.2

Results of the within-subject classification are reported in
Table 7. DNN was the best classifier and the use of the ECG
in addition to the EEG reduced the standard deviation.

5 Discussion

In this study, three distinct strategies, namelyDA, data fusion,
and participant clustering (based on the severity of fear of
heights), were employed to enhance the classification accu-
racy. The effectiveness of fear induction was confirmed by
the statistical significant difference between pre- and post-
STAI state. The use of VR technology did not cause motion
sickness to the participants, as confirmed by the SSQ results.
Thus, the reported SUD and STAI scores were not affected
from external factors and were only related to the felt fear
of heights. The achieved classification accuracy is remark-
able given that the chance level in a three-class problem is

33 %. This result is even more significant because a LOSO
strategy was employed to ensure the generalizability of the
results. However, it hard to compare the results with previ-
ous studies due to different scientific goals and experimental
conditions such as the number of classes, the bio-signals con-
sidered, the hardware for signal acquisition, and the sample
size. Despite the small sample sizes, DA strategies exhib-
ited an increase of more than 20 % in accuracy (Table 3).
In particular, SN resulted in the most effective DA method
in all the experiments. The successful application of SN
was demonstrated in literature with a cross-subject gen-
eralization scenario in an emotion recognition task (Fdez
et al., 2021). In essence, SN operates by normalizing features
to mitigate inter-participant variability, aiming to preserve
only the pertinent emotion-related information within the
data. The significance of normalization in EEG classification
has been highlighted in (Apicella et al., 2023), showcas-
ing that employing a suitable normalization procedure can

Table 6 Cross-subject
classification accuracy (mean
and standard deviation) in % of
fear of heights on a 3-level
intensity scale considering the
slight acrophobia cluster

Bio- DA Classifier
signal method RF SVM kNN DNN

ECG None 32.0 ± 4.8 37.2 ± 8.5 33.7 ± 7.6 29.4 ± 9.5

SA 34.2 ± 8.2 30.7 ± 8.9 26.4 ± 3.1 −
DANN − − − 27.7 ± 7.3

SN 47.6 ± 12.1 40.7 ± 5.0 39.4 ± 10.4 42.0 ± 12.3

EEG None 45.8 ± 11.1 38.5 ± 4.7 37.2 ± 7.5 41.1 ± 10.2

SA 41.9 ± 6.1 45.8 ± 10.7 43.3 ± 10.3 −
DANN − − − 43.7 ± 14.5

SN 57.1 ± 11.2 51.0 ± 11.8 37.2 ± 3.8 51.1 ± 11.3

EEG & ECG None 45.4 ± 11.3 35.0 ± 4.2 41.6 ± 11 41.1 ± 11.0

SA 44.1 ± 5.3 54.1 ± 13.4 45.4 ± 11.3 −
DANN − − − 47.6 ± 9.2

SN 58.0 ± 11.7 52.0 ± 12.6 39.8 ± 6.1 54.1 ± 14.8
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Table 7 Within-subject
classification accuracy (mean
and standard deviation) in % of
fear of heights on a 3-level
intensity scale

Biosignal Classifier
RF SVM kNN DNN

ECG 57.9 ± 13.7 52.9 ± 9.5 51.5 ± 8.9 48.9 ± 7.6

EEG 85.1 ± 14.1 84.5 ± 11 82.1 ± 13.3 87.5±9.3

EEG & ECG 86.4 ± 14 85.3 ± 10.9 84.0 ± 11.4 87.1±7.8

yield results comparable or even superior to more intricate
DA techniques. Consequently, based on experimental evalu-
ations, SNemerged as particularlywell-suited for the specific
task and dataset involved.

As far the data fusion is concerned, in almost all the cases,
the obtained results show that ECG alone leads to worse
results with respect to its use with EEG. However, the com-
bined use of ECG and EEG had a marginal impact on the
classification accuracy.

Clustering allowed an increment of accuracy, especially
for the severe acrophobia cluster (more than 10 %). The
impact of clustering was minor on the slight acrophobia
cluster and negligible on the mild acrophobia cluster. Neu-
rocorrelates of Acrophobia are well documented in the
literature and also localized at the cortical level, therefore
they are also detectable via EEG. In particular, studies based
on the use of magnetic resonance imaging have focused on
the analysis of acrophobic subjects at rest compared with
control groups (Hang et al., 2022; Guo et al., 2023). To
date, in our knowledge, there are no specific studies in the
literature on the interaction between trait and state in acro-
phobic subjects. The results of the present study could be
interpreted as the effect of a more accentuated sensitivity of
the neuro correlates related to the acrophobic trait when per-
sons suffering from severe acrophobia are exposed to phobic
stimuli. Regarding the observed discrepancy in classification
accuracy between severity levels of acrophobia, the sever-
ity of acrophobia appears to impact the intensity of the fear
responses. Indeed, severe acrophobia tends to evoke more
overt and distinguishable reactions, which could translate
into more readily identifiable patterns in the EEG signals.
These distinct patterns can help machine learning algorithms
to more accurately recognize and classify instances of severe
acrophobia compared to moderate cases. The achieved lev-
els of accuracy in the medium and slight acrophobia clusters
may be influenced by additional factors, including the influ-
ence exerted on EEG patterns by the vestibular system. This
system processes spatial information input, impacting EEG
signal modulation (Ibitoye et al., 2023; Ehinger et al., 2014).
However, the fear system can affect vestibular system oper-
ation (Neumann et al., 2023). It can be hypothesized that,
in the case of mild acrophobia severity, the vestibular circuit
expresses newEEGpatterns that aremore difficult to discrim-
inate. Similarly, the fear system also expresses itself at levels
that are not particularly intense and therefore less discrim-

inable. Instead, when the phobic state does not perturb the
vestibular system, EEG activity could be more detectable.
Therefore, under a slight acrophobia condition, EEG pat-
terns due to the vestibular system can enable the classifier to
achieve higher accuracy than under a mild acrophobia con-
dition. In contrast, when the phobic condition reaches high
intensities, EEG patterns attributable to the fear system are
more easily discriminable by the classifier.

Finally, the Random Forest model achieved the best accu-
racy of 63.6 % ± 13.4 in classifying the severe acrophobia
cluster. The observed superior performance of the RF could
stem from several factors, including the dataset used and
its size. This is particularly evident in scenarios where
the amount of available data is relatively small. Therefore,
simpler models can better handle limited amounts of data
without succumbing to overfitting (Bejani & Ghatee, 2021)
or struggling with the vast parameter space typical of DNNs.
Moreover, in cases where the patterns within the data are
simpler to discern, traditional algorithms might benefit from
handcrafted or domain-specific feature engineering tailored
to EEG signal characteristics (such as PSD, adopted in the
current study), leading superior performance as they can effi-
ciently capture and model these patterns without requiring
the depth and complexity inherent in neural networks.

6 Conclusions and FutureWorks

In the present study, three levels of fear of heights (namely,
low, medium, and high) were detected in subjects with dif-
ferent severities of acrophobia starting from the EEG and
ECG signals. The generalization performance of classifi-
cation tasks on fear states is improved by exploiting both
trait-based clustering and Domain Adaptation methods. A
VR scenario representing a canyon was exploited to expose
20 healthy participants to increasing height levels. Subjects
were asked to fill in some psychometric tools to assess their
initial severity of fear of heights, the level of distress at each
height, the anxiety level before and after the exposure, and
motion sickness induced by VR through the AQ, the SUD,
the STAI, and the SSQ, respectively. The EEG and ECG
signals were acquired through a 32-channel headset and I
Lead ECG derivation during the entire experimental activity.
Three distinct strategies, namely Domain Adaptation (DA),
data fusion (combiningEEGwithECG), andparticipant clus-
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tering (based on the severity of acrophobia), were employed
to enhance the accuracy in the cross-subject classification.
DA strategies exhibited the highest impact on the increment
of accuracy, followed by clustering (especially for the severe
acrophobia cluster). Data fusion had amarginal impact on the
classification accuracy. Regarding the observed discrepancy
in classification accuracy between severity levels of acropho-
bia, this result can be interpreted as support for the hypothesis
that the severity of acrophobia (trait) impacts the intensity of
the fear responses (state).

The study demonstrated the feasibility of a data-fusion-
based method for real-time assessment of the fear of heights
intensity to integrate into adaptive Virtual Reality Exposure
Therapy for acrophobia. In future works the impact of spe-
cificEEG-band and further EEG features on the classification
accuracy will be investigated to enhance fear of heights clas-
sification, aiming to improve both classification accuracy and
cross-subject generalization.

Acknowledgements The authors thank the Institute of Neural Engi-
neering (BCILab) at theGrazUniversity ofTechnology for their support
in the research activities. This work was partially supported by the
European Union - FSE-REACT-EU, PON Research and Innovation
2014–2020 DM1062/2021 contract number 18-I-15350-2. Moreover,
this work was supported by "A Multiscale integrated approach to
the study of the Nervous System in health and disease" (DN. 1553
11.10.2022) - MNESYS (PE0000006) project founded by NEXTGEN-
ERATIONEU (NGEU) and by the Ministry of University and Research
(MUR), National Recovery and Resilience Plan (NRRP).

Author Contributions Andrea Apicella, Pasquale Arpaia, Giovanni
D’Errico, Giovanna Mastrati, Nicola Moccaldi, Ersilia Vallefuoco, and
Selina Christin Wriessenegger collaborated equally in developing the
research framework, designing experiments, and interpreting results.
They collectively contributed to the drafting and critical review of the
manuscript. Simone Barbato developed the VR application.

Funding Open access funding provided by Universitá degli Studi di
Napoli Federico II within the CRUI-CARE Agreement. This research
was supported and partly funded by the PhD Grant "AR4ClinicSur-
Augmented Reality for Clinical Surgery" (INPS - National Social
Security Institution - Italy) and the European Union - FSE-REACT-
EU, PON Research and Innovation 2014-2020 DM1062/2021 contract
number 18-I-15350-2. This work was carried out as part of the "ICT
for Health" project, which was financially supported by the Italian
Ministry of Education, University and Research (MIUR), under the ini-
tiative ‘Departments of Excellence’ (Italian Budget Law no. 232/2016),
through an excellence grant awarded to the Department of Information
Technology and Electrical Engineering of the University of Naples Fed-
erico II, Naples, Italy.

Availability of data and material The data that support the findings of
this study are available from the corresponding author upon request.

Declarations

Competing interests The authors declare that they have no conflict of
interest. The authors have no affiliation with or involvement in any
organization or entity with a direct or indirect financial interest or non-
financial interest in the subject matter discussed in the manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Andersen, N. J., Schwartzman, D., Martinez, C., Cormier, G., & Dra-
peau, M. (2023) Virtual reality interventions for the treatment of
anxiety disorders: A scoping review Journal of Behavior Therapy
and Experimental Psychiatry, 101851.

APA, A. P. A. (2013). Diagnostic and statistical manual of mental dis-
orders. textitThe American Psychiatric Association.

Apicella, A., Arpaia, P., Giugliano, S., Mastrati, G., & Moccaldi,
N. (2022). High-wearable eeg-based transducer for engagement
detection in pediatric rehabilitation. Brain-Computer Interfaces,
9(3), 129–139.

Apicella, A., Barbato, S., Chacón, L. A. B., D’Errico, G., De Paolis,
L. T., Maffei, L., Massaro, P., Mastrati, G., Moccaldi, N., Pollas-
tro, A., et al. (2023). Electroencephalography correlates of fear of
heights in a virtual reality environment. Acta IMEKO, 12(2), 1–7.

Apicella, A., Isgrò, F., Pollastro, A., & Prevete, R. (2023). On the effects
of data normalization for domain adaptation on eeg data.Engineer-
ing Applications of Artificial Intelligence, 123, 106205.

Apicella, A., Isgrò, F., & Prevete, R. (2019). A simple and efficient
architecture for trainable activation functions. Neurocomputing,
370, 1–15.

Arpaia, P.,Barbato, S.,D’Errico,G.,Mastrati,G.,Moccaldi,N.,Robbio,
R., & Wriessenegger, S. C. (2023). Hrv-based detection of fear
of heights in a vr environment. In: International Conference on
Extended Reality. Springer, pp. 500–513.

Arpaia, P., Callegaro, L., Cultrera, A., Esposito, A., & Ortolano,
M. (2021). Metrological characterization of a low-cost elec-
troencephalograph for wearable neural interfaces in industry 4.0
applications. In: 2021 IEEE InternationalWorkshop onMetrology
for Industry 4.0 & IoT (MetroInd4. 0&IoT). IEEE, pp. 1–5.

Arpaia, P., Coyle, D., D’Errico, G., De Benedetto, E., De Paolis, L. T.,
duBois, N., Grassini, S.,Mastrati, G.,Moccaldi, N., Vallefuoco, E.
(2022). Virtual reality enhances eeg-based neurofeedback for emo-
tional self-regulation. In: International Conference on Extended
Reality. Springer, pp. 420–431.

Arpaia, P., De Bendetto, E., Esposito, A., Natalizio, A., Parvis, M.,
& Pesola, M. (2022). Comparing artifact removal techniques for
daily-life electroencephalography with few channels. In: 2022
IEEE International Symposium on Medical Measurements and
Applications (MeMeA). IEEE, pp. 1–6.

Arpaia, P., Callegaro, L., Cultrera, A., Esposito, A., & Ortolano, M.
(2021). Metrological characterization of consumer-grade equip-
ment for wearable brain-computer interfaces and extended reality.
IEEE Transactions on Instrumentation andMeasurement, 71, 1–9.

Aspiotis, V., Miltiadous, A., Kalafatakis, K., Tzimourta, K. D., Gian-
nakeas, N., Tsipouras, M. G., Peschos, D., Glavas, E., & Tzallas,
A. T. (2022). Assessing electroencephalography as a stress indi-
cator: A vr high-altitude scenario monitored through eeg and ecg.
Sensors, 22(15), 5792.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Information Systems Frontiers

Association, A. P., et al.,(2015). Diagnostic and statistical manual of
mental disorders fifth edition, vol. 656. https://doi.org/10.1176/
appi.books.9780890425596.19.

Azimisefat, P., de Jongh, A., Rajabi, S., Kanske, P., & Jamshidi, F.
(2022). Efficacy of virtual reality exposure therapy and eye move-
ment desensitization and reprocessing therapy on symptoms of
acrophobia and anxiety sensitivity in adolescent girls: A random-
ized controlled trial. Frontiers in Psychology, 13, 919148.
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