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Abstract
One of the interesting types of spatio-temporal patterns is the Mixed-Drove Co-occurrence Pattern (MDCOP), which 
represents types of objects frequently located together in both space and time. To discover such patterns, methods based 
on the well-known Apriori strategy are widely used. They involve determining multi-element MDCOPs by building them 
up iteratively starting with the two-element patterns and then successively adding another element in each iteration. This 
approach can be very costly, particularly when the data is dense enough to form patterns of significant size. In this paper, 
we introduce a definition of a new pattern type called a Maximal Mixed-Drove Co-occurrence Pattern. We also propose a 
new algorithm MAXMDCOP-Miner, which resigns from popular Apriori strategy of generating candidates and, therefore, 
can discover long pattern without processing all their subsets. Experiments performed on synthetic and real datasets show 
that MAXMDCOP-Miner has high performance, in particular for dense datasets or tasks with low user-defined thresholds 
of spatial or time prevalence.

Keywords Spatial data mining · Co-location patterns · Spatio-temporal data · MDCOPs

1 Introduction

In recent years, we have witnessed massive collection 
of spatio-temporal information. Thanks to cheap and 
ubiquitous sensors, huge amounts of data about the positions 
of various objects are recorded in databases every day. It 
is impossible to analyze such datasets by hand. Therefore, 
novel computational techniques must be developed and 
applied to cope with this task. These methods have their 
roots in the processing, generally referred to as Spatial Data 
Mining, in which the aspect of time was ignored.

One of the most interesting types of pattern investigated 
in Spatial Data Mining is a co-location pattern that has been 
defined as a subset of spatial features that are frequently 
located together in a spatial neighborhood (Shekhar & 
Huang, 2001). The spatial feature can be regarded as a type 
of spatial object (i.e. an object located in space). We say that 

a particular spatial object is an instance of a spatial feature. 
For example, a gas station can be treated as a spatial feature, 
while the gas station on Leyton Street is an instance of that 
spatial feature. Co-location Pattern Mining (CPM) consists 
in searching for sets of spatial features, which instances are 
frequently located close to each other. A familiar, although 
very simplified, example of such a pattern is known as 
mutualism in which two organisms of different species 
exist in a mutually beneficial relationship. In general, we are 
interested in relationships among multiple spatial features.

Incorporating a time component into co-location patterns 
resulted in new types of patterns called spatio-temporal 
co-locations or co-occurrence patterns. Depending on object 
types (e.g. points, polygons) and concepts of interest measures, 
many different types of patterns have been proposed, e.g. 
Huang et al., 2008; Pillai et al., 2012; Qian et al., 2009. In 
this paper, we focus on Mixed-Drove Co-Occurrence Patterns 
(MDCOPs) that represent a set of spatial feature types whose 
instances are located close to each other in geographic space 
for a significant fraction of time (Celik et al., 2008). For 
example, MDCOP can represent a predator-prey relationship 
resulting from predator behavior, i.e. tracking his prey (not 
necessarily for the whole time and without interruptions). As 
time component exists in almost every dataset, co-occurrence 
patterns can provide useful knowledge in many domains, e.g. 
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military - battlefield analysis, ecology/health - monitoring 
pollution and diseases etc.

Existing methods of MDCOP discovery are based on 
the iterative expansion of basic patterns using the well-
known Apriori strategy originally applied to frequent item-
set mining problem (Agrawal & Srikant, 1994). In such an 
approach, the search space is traversed in breadth-first man-
ner. Therefore, in order to find a specific size k pattern, it is 
necessary to search all its 2k subsets in advance. This can 
be considered an important bottleneck in search for larger 
patterns or patterns in huge datasets.

This problem has been already considered in the context 
of CPM. In order to eliminate the expensive Apriori-like 
generation and testing approach, the concept of maximum 
spatial co-location was introduced by Wang et al. (2009). 
In short, a co-location pattern is maximal only if it has no 
superset co-location. We postulate that the same idea can be 
applied to the mining of MDCOPs.

In this paper, we introduce and define the novel concept 
of Maximal Mixed-Drove Co-Occurrence Pattern (MaxM-
DCOP). In order to reduce the number of processed can-
didates, we propose to remove the iterative pattern build-
ing strategy and use solution based on the discovery of the 
maximum cliques to generate candidates for MaxMDCOPs.

To avoid costly computation of some co-location pattern 
measures, required to calculate the potential interestingness 
of the pattern, we introduced several processing improve-
ments. In addition, to find maximal patterns, the following 
enhancements were applied: (1) computations of upper and 
lower bounds for candidate’s time prevalence, (2) caching of 
some results for quick determination whether a co-location 
is spatially prevalent or not without the participation index 
computations, (3) the participation index computations of 
all prefixes of co-location pattern in order to avoid repeating 
similar work multiple times and (4) compression and reuse 
of co-location pattern instances while computing partici-
pation index. We have implemented our new method and 
performed experiments on synthetic and real world datasets. 
The results show that we can achieve significant speedups in 
comparison to the Apriori-like approach.

The structure of the paper is as follows. In Section 2, we 
discuss related work on MDCOP discovery. Section 3 pro-
vides definitions of concepts used throughout this paper. In 
Section 4, we explain the new algorithm. The results of the 
conducted experiments are presented in Section 5, followed 
by a short summary in Section 6.

2  Related Work

MDCOP mining was inspired by the Co-location Pattern 
Mining idea introduced two decades ago (Shekhar & Huang, 
2001). Since the introduction of co-location patterns, many 

efficient methods for discovering them have been proposed, 
e.g. Wang et al., 2009; Yoo & Shekhar, 2006; Andrzejewski 
& Boinski, 2018. Today, CPM can be considered a well-
studied area with many popular co-location mining methods 
utilizing the Apriori generate and test strategy (Agrawal & 
Srikant, 1994). With the increase of the number of datasets 
that are collected both automatically and continuously, the 
time component started to play an important role in various 
analysis. At the beginning, incorporating temporal aspects 
led to new models and patterns such as moving averages, 
first and second order auto-regression or seasonality (Wei, 
2006). The common approach was to integrate time as a new, 
independent dimension. Of course, this reduces the number 
of possible analysis as some crucial relationships between 
time and space can be lost.

In response to this problem, new types of patterns, called 
spatio-temporal co-occurrence patterns, were introduced 
with two initial directions of research: detecting uniform 
groups of moving objects and detecting mixed groups of 
moving objects. Uniform groups, i.e. groups of animals of 
the same species, can be treated as flock patterns or moving 
clusters in general (Li, 2014). In flocks and moving clusters 
discovery, objects must occur in consecutive time frames. 
MDCOPs are very different from mentioned patterns. Firstly, 
they describe a set of mixed object types, and secondly these 
objects can occur in non–consecutive time frames. The first 
property, i.e. mixed object types, makes MDCOPs similar 
to co-location patterns. A trivial approach to cope with time 
in CPM, involving searching for different sets of patterns 
for subsequent states of the data (Andrzejewski & Boin-
ski, 2019), might omit potentially useful and interesting 
patterns hidden in data changes between time moments. 
Another attempt to incorporate time in CPM focused more 
on associations among spatially extended objects than on the 
temporal aspects (Yang et al. 2005).

The first type of pattern that treated time as a special 
separate component in CPM was presented by Cao et al. 
(2006). The authors defined a so-called co-location episode 
as a sequence of co-location patterns over consecutive time 
slots sharing the same feature (called a common feature).

MDCOPs, which are the main topic of this paper, do not 
impose such constraints. For MDCOPs, incorporating time 
results in searching for patterns in which spatial features are 
spatially prevalent (i.e. instances are located close to each 
other) for the required, not necessarily consecutive, number 
of time moments (time prevalence). In contrast to co-loca-
tion episodes, there is no need to define a common feature. It 
should be noted that other types of spatio-temporal patterns 
are inspired by co-location concepts, such as SPCOZs (Qian 
et al., 2009) or STCOPs (Hamdi et al., 2016) etc.

MDCOPs can be discovered using a naive approach, 
i.e. by applying one of the algorithms of CPM to each 
time moment and then by making calculations to 
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determine which co-locations are time prevalent. It is 
easy to notice that, for some patterns, it is not necessary 
to perform calculations for all time moments. This obser-
vation was utilized by Celik et al. (2008). The authors 
proposed non-naive algorithms MDCOP-Miner and Fast-
MDCOP-Miner. Both algorithms are Apriori-based. In 
each iteration they discover all size k spatially prevalent 
patterns and then apply a time prevalence based filter-
ing to detect MDCOPs. These patterns are used to gener-
ate size k + 1 candidates for MDCOPs. In comparison to 
MDCOP-Miner, FastMDCOP-Miner uses more advanced 
filters to reduce the number candidates that cannot meet 
MDCOP requirements. Wang et  al. (2019) have tried 
to improve the efficiency of MDCOP mining by apply-
ing a graph based data structure. Unfortunately, some 
parts of this solution have not been explained, making 
it impossible to implement them in the way the authors 
had planned. Since the algorithm is also based on Apriori 
and the results presented show only slight improvements 
compared to FastMDCOP-Miner, we will refer to Fast-
MDCOP-Miner as that method is well defined and is the 
most popular approach to MDCOP mining.

Nevertheless, all Apriori-based methods can suffer from 
large number of candidates when seeking long patterns 
(dense datasets, low thresholds for spatial and time preva-
lence). Similar problems have been addressed in CPM (Tran 
et al., 2021; Wang et al., 2009; Yao et al., 2016; Yoo & 
Bow, 2011), where researchers have applied the concept of 
maximal co-locations to reduce the number of calculations.

In the context of the presented article, particularly note-
worthy is the method proposed by Yao et al. (2016). The 
authors adopted a maximal clique mining method to gener-
ate candidates for maximal co-locations and applied a hier-
archical verification to construct a condensed instance tree 
for storing instances of candidates.

This paper adopts the concept of maximal co-location 
patterns and defines a maximal MDCOP. We introduce a 
non-Apriori-based algorithm for efficiently calculating such 
patterns in spatio-temporal datasets. Our proposed solution 
is inspired by the maximal clique mining method (Yao et al., 
2016) dedicated for CPM, however for efficient finding of 
maximal MDCOPs we apply completely different structures 
and supporting algorithms.

3  Definitions

Basic Definitions In our work we concentrate on dimen-
sionless objects. Each object is therefore characterized 
by its coordinate (which might change over time) and a 
type, called a spatial feature or feature for brevity. We 
denote the set of features as F and assume that a total 
order ≤F is defined on this set. Given any feature f ∈ F , 

its instance (i.e. spatial object) is denoted as if  , while the 
set of all the feature’s instances is denoted as If  . Finally, 
the set of all feature instances is denoted as I =

⋃
f∈F I

f .

As mentioned earlier, each spatial object has a coordinate. 
We denote the set of all coordinates as K. The properties 
of this set are irrelevant w.r.t. to this paper as the presented 
algorithms will only be based on the neighborhood relation 
given apriori. We introduce this notation solely for the pur-
pose of defining all the necessary formalisms.

We model a spatial (not a spatio-temporal) dataset 
as a tuple Sp = (S, p) where S is a subset of I ( S ⊆ I ) and 
p ∶ S → K is a function that associates a coordinate in K 
with all the objects in S.

Any non-negative and symmetric function of two 
coordinates, which computes a distance between 
them is called a distance function and is denoted as 
dist ∶ K × K → ℝ

+ ∪ {0} . Two objects are neighbors if the 
distance between them is less than or equal to a neighbor-
hood threshold maxdist. Based on this we define a neighbor-
hood relation R(Sp,maxdist) as a set of all pairs of neighbor-
ing objects in the spatial dataset Sp . Formally,

For brevity, in the subsequent text, the relation R(Sp,maxdist) 
is shortened to R if the arguments stem from the context.

Co‑location Pattern Mining Most of the presented work has 
its roots in the paper (Shekhar & Huang, 2001) on co-loca-
tion pattern mining. Since some of the concepts introduced 
there are relevant to this paper as well, we introduce the 
basic definitions related to co-location pattern mining.

Any non-empty subset C of a set of features F ( C ⊆ F ) is 
called a spatial co-location pattern. Spatial co-location pat-
terns represent set of features whose instances are frequently 
located in their neighborhoods. Given a spatial co-location 
pattern C, an instance IC of such pattern (spatial co-location 
instance) is a set of objects which are neighbors (pairwise) 
and have features in C. Formally,

In order to mine only interesting co-location patterns, some 
measure of interestingness is needed. Shekhar & Huang 
(2001) suggest to mine spatially prevalent co-locations and 
propose a spatial prevalence measure called a participation 
index (denoted Pi). In order to compute a participation index 
of a co-location C, participation ratios (denoted Pr) of every 
feature in C must be computed first. Given a spatial dataset 
Sp , let �C

Sp
 be the set of all instances of C in Sp . A participation 

ratio Pr of feature f ∈ C is defined as

(1)
R(Sp,maxdist) =

{(
i1, i2

)
∈ S × S ∶ dist(p(i1), p(i2)) ≤ maxdist

}

(2)∀if1 ,if2∈IC
(
if1 , if2

)
∈ R ∧

{
f ∶ if ∈ IC

}
= C ∧ |IC| = |C|
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Participation index is the smallest participation ratio over 
all features f ∈ C , i.e.

Participation index has the antimonotonicity property.
In order to specify which patterns are interesting, a mini-

mal prevalence threshold minprev is needed. We say that a 
co-location C is spatially prevalent if its participation index 
is equal to, or greater than the minprev threshold, i.e.

The problem of spatial co-location pattern mining, is a prob-
lem of efficiently finding all spatially prevalent co-location 
patterns in a dataset Sp given minimal prevalence threshold 
minprev. We denote a set of all spatially prevalent co-loca-
tion patterns of size s as ℂs(S

p,R).

Mixed‑Drove Co‑Occurrence Pattern Mining In this paper we 
concentrate on one of the spatio-temporal extensions to co-
location pattern mining called Mixed-Drove Co-Occurrence 
Pattern mining (Celik et al., 2008). Below we give defini-
tions which introduce this problem.

We shall start with extending the definitions from the pre-
vious paragraph to incorporate the time domain. Let T be a 
finite set of time moments (i.e. timestamps). We assume that 
the state of the world is known only at these time moments. 
Hence, we define a spatiotemporal ST dataset as a set of pairs 
S
p

t = (t, Sp) where t ∈ T  and t is a unique identifier of the Spt  
pair in the set, while Sp is some spatial dataset. Exemplary 
spatiotemporal dataset is shown in Fig. 1.

In this particular spatio-temporal data mining problem, 
we mine co-location patterns such that they are spatially 
prevalent most of the time. In order to find such patterns, 
a spatial co-location time prevalence measure is defined. 

(3)Pr(f ,C, Sp) =

|||
{
if1 ∶ f1 = f ∧ if1 ∈ IC ∈ �

C
Sp

}|||
|||
{
if1 ∶ f1 = f ∧ if1 ∈ Sp

}|||

(4)Pr(C, Sp) = min{Pi(f ,C, Sp) ∶ f ∈ C}

(5)Pi(C, Sp) ≥ minprev

Given a pattern C, the spatial co-location time prevalence of 
this pattern is a ratio of the number of spatial datasets in ST 
in which C is prevalent to the number of all spatial dataset 
in ST. Formally,

The time prevalence is antimonotonic similarly to the par-
ticipation index. A co-location pattern with time prevalence 
greater than, or equal to, a minimal time prevalence thresh-
old mintprev is called a Mixed Drove Co-occurence Pattern 
or MDCOP in short.

Mixed-Drove Co-Occurrence Pattern mining problem 
is therefore a problem of efficiently finding all MDCOPs 
in a spatiotemporal dataset ST given a minimal prevalence 
threshold minprev and a minimal time prevalence threshold 
mintprev. We denote a set of all size s MDCOPs as ℂT

s
(ST).

Since the number of MDCOPs can be very large, and 
many of them are just subsets of the larger ones, mining of 
all of the MDCOPs is not needed. In many cases mining only 
the maximal MDCOPs is sufficient. A maximal MDCOP is 
such an MDCOP that no proper superset of it is an MDCOP.

Our paper is devoted to the maximal MDCOP mining 
problem, which is a problem of efficiently finding all maxi-
mal MDCOPs in a spatiotemporal dataset ST given a mini-
mal prevalence threshold minprev and a minimal time preva-
lence threshold mintprev. A set of all maximal MDCOPs is 
denoted as ℂT (ST).

4  MAXMDCOP‑Miner

This section contains the main contribution of the paper. 
We propose a novel algorithm called MAXMDCOP-Miner 
which is able to efficiently mine maximal MDCOPs. We 
adopt two parts of the solution presented by Yao et al. (2016) 
which is devoted to mining maximal spatially prevalent co-
locations (not MDCOPS). In particular, we incorporate the 
idea in which a maximal clique finding algorithm is used 

(6)tprev(C) =
|{t ∶ (t, Sp) ∈ ST ∧ Pi(C, Sp) ≥ minprev}|

|ST|

Fig. 1  Exemplary dataset
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for generating candidates. We also adapt the co-location 
instance compression techniques introduced there. However, 
we substantially extend the ideas from (Yao et al., 2016) to 
not only increase the compression ratio, but also to be able 
to reuse some of the computation results multiple times.

On the other hand, we use different data structures. 
For example, spatial co-location instance identification is 
done via an iCPI-tree structure (Wang et al., 2009) since 
it is better suited to support computations of participation 
index values than InsTable structure presented by Yao et al. 
(2016). Please refer to (Wang et al., 2009) for methods of 
construction of such trees. In the following text, we assume 
that an iCPI-tree is available for every spatial dataset Spt  in 
ST. Hence, given a feature instance if1 , the task of finding all 
of its neighbors if2 such that f1 < f2 can be performed effi-
ciently. The set of such neighbors is denoted N(if1 , f2, Sp,R) 
and formally defined as:

Moreover, we assume that the number of instances 
count(f , S

p

t ) of every feature f in every Spt ∈ ST  is known. 
Formally,

Such numbers can be easily found via a single database scan.
In this paragraph, we present a basic idea for MAXM-

DCOP-Miner algorithm. The detailed description is given 
in the following sections. The algorithm consists in several 
steps. Each step produces data required by the next one. 
Step 1 finds prevalent size 2 co-location patterns in every 
spatial dataset in ST. In Step 2, a time prevalence of every 
co-location pattern found in Step 1 is computed and non 
time prevalent patterns are filtered out. As a result, Step 2 
produces all size 2 MDCOPs. In Step 3, using the approach 
from (Yao et al., 2016), we generate “local” candidates for 
maximal MDCOPs for every Spt ∈ ST  . The resulting candi-
dates are sets of features such that every size 2 subset is a) 
a spatially prevalent size 2 co-location pattern in Spt  (Step 1) 
and b) an MDCOP (Step 2). In Step 4, we construct a coher-
ent, global set of candidates for maximal MDCOPs. This is 

(7)N
(
if1 , f2, S

p,R
)
=
{
if2 ∈ S ∶

(
if1 , if2

)
∈ R ∧ f1 < f2

}

(8)count
(
f , S

p

t

)
=
|||
{
f ∶ if ∈ S

p

t

}|||

done by processing the results obtained in Step 3. In particu-
lar, all duplicates and candidates that cannot be time preva-
lent are removed. In addition, situations in which candidates 
are subsets of other candidates are resolved. This processing 
is non-trivial and cannot be described in few words. Please 
refer to the appropriate section in the following text for 
details. In Step 5, the actual mining takes place. Every can-
didate is verified whether it is time prevalent or not. If not, 
its subsets are tested. This verification requires computation 
of the participation index of each candidate. Hence, Step 5 
consists of two algorithms: the actual mining algorithm and 
the participation index computation algorithm.

In the following sections, we give detailed descrip-
tion of each step along with the corresponding algorithm 
pseudocodes.

4.1  Step 1. Find spatially prevalent size 2 
co‑location patterns ℂ2(S

p

t
, R)

The aim of the first step is to find prevalent size 2 co-location 
patterns (denoted ℂ2(S

p

t ,R) ) for every spatial dataset Spt  in 
ST. These patterns are the basis for computations in subse-
quent steps.

Step 1 is presented in Algorithm 1. The main loop iter-
ates over each Spt ∈ ST  (lines 1–14). To find the prevalent 
size 2 patterns we scan the iCPI-trees associated with every 
spatial dataset in ST to retrieve neighbor pairs (if1 , if2 ) where 
f1 < f2 (line 3). The results can be easily grouped by (f1, f2) 
by sorting them (line 4). Each such group corresponds to a 
spatial co-location {f1, f2} . For each such a co-location (lines 
5–13), based on the retrieved pairs, we compute the corre-
sponding participation index (lines 6–9) and compare it with 
the minimal prevalence threshold minprev (line 10). If the 
result is greater or equal, the co-location {f1, f2} is added to 
the result set (line 11).

Example 1 Assuming that the spatiotemporal dataset 
from Fig. 1 is mined and minprev threshold is equal to 
0.5, the size 2 spatial co-location patterns for each spa-
tial dataset Spt  are presented in Table 1 along with their 
participation indices.

Table 1  Spatial co-location 
patterns of size 2 ℂ2(S

p

t ,R)
S
p

1
S
p

2
S
p

3

pattern Pi pattern Pi pattern Pi pattern Pi pattern Pi

{A,B} 1 {C,D} 1 {A,B} 1 {C,D} 0.5 {A,B} 1
{A,C} 1 {E,F} 1 {A,C} 0.5 {C,E} 0.5 {A,D} 1
{A,D} 1 {B,C} 0.5 {C,F} 0.5 {B,C} 1
{B,C} 1 {B,D} 1 {D,F} 0.5 {B,D} 1
{B,D} 1 {B,F} 0.5 {C,D} 1
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4.2  Step 2. Find size 2 MDCOPs ℂT
2
(ST)

In the second step, we aggregate the results obtained 
in the previous step in order to find a set of all size 2 
MDCOPs (denoted ℂT

2
(ST) ). Note that the patterns 

obtained in Step 1 are candidates for size 2 MDCOPs. 
In order to determine which of them are time prevalent, 
it is sufficient to count, for each unique co-location pat-
tern from Step 1, the number of ℂ2(S

p

t ,R) sets in which 
it appears.

The second step is presented in Algorithm 2. In a loop 
(lines 3–7), for every spatial dataset we iterate over every 
pattern in the corresponding set of patterns obtained in Step 1 
(lines 4–6) and count the number of times each of them 
appears in spatial datasets. In the second loop (lines 8-13), for 
every unique pattern we compute its time prevalence based 
on the obtained counter value (line 9). In case the pattern is 
time prevalent, we add it to the result set (line 11).

Example 2 In this example we continue the mining pro-
cess from Example 1. We assume that mintprev threshold 
is equal to 2

3
 . All distinct prevalent spatial co-location 

patterns found in Step 1 are presented in Table 2. Given 
the value of mintprev threshold, each such candidate 
should appear in at least two out of three ℂ2(S

p

t ,R) sets 
obtained in Step 1. The co-location patterns in Table 2 
are divided into two columns: non time prevalent and 
time prevalent. By definition, time prevalent ones are 
spatio-temporal co-location patterns of size 2.

4.3  Step 3. Build local candidates for maximal 
MDCOPs K(Sp

t
) for Sp

t
∈ ST

In this step, we find initial candidates for maximal MDCOPs. 
In order to do so, we incorporate a slightly modified 
approach from (Yao et al., 2016). The cited paper presents a 
method for mining maximal spatial co-location patterns. In 
that approach, the candidates for such patterns are maximal 
cliques (obtained via Bron-Kerbosch algorithm with later 
modifications) in a specially constructed graph G(V, E). In 
this graph, vertices correspond to features ( V ⊆ F ), while 
edges correspond to size 2 spatially prevalent co-location 
patterns ( E = C2(S

p

t ) ). A maximal clique in such a graph is 
a set of features, where each pair is a spatially prevalent co-
location pattern and no more features can be added without 

Algorithm 1   Find spatially 
prevalent size 2 co-location 
patterns

Table 2  Spatiotemporal co-location patterns of size 2 ℂT
2
(ST)

All distinct co-locations from step 1

Non time prevalent time prevalent ℂT
2
(ST)

pattern tprev Pattern tprev

{B,F} 1/3 {A,B} 1
{C,E} 1/3 {A,C} 2/3
{C,F} 1/3 {A,D} 2/3
{D,F} 1/3 {B,C} 1
{E,F} 1/3 {B,D} 1

{C,D} 1
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Algorithm 2   Finding size 2 
MDCOPs

Table 3  Local candidates 
for maximal spatiotemporal 
co-locations K(Spt ) for Spt ∈ ST

Dataset C2(S
p

t ) ∩ C2(ST) Graph Maximal cliques
(candidates)

S
p

1
{A,B} , {A,C} , {A,D} , {B,C} , {B,D} , {C,D} {A,B,C,D}

S
p

2
{A,B} , {A,C} , {B,C} , {B,D} , {C,D} {A,B,C} , {B,C,D}

S
p

3
{A,B} , {A,D} , {B,C} , {B,D} , {C,D} {A,B,D} , {B,C,D}

Algorithm 3   Building local 
candidates for maximal 
MDCOPs
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breaking this property. Due to the antimonocity of the used 
prevalence measure, all size 2 subsets of any spatially prev-
alent co-location pattern must also be spatially prevalent. 
Hence, a maximal clique in graph G(V, E) is a candidate for 
a maximal spatially prevalent co-location pattern.

We modify the above approach by limiting the edge set 
to such co-location patterns that appear in C2(S

p

t ) and are 
MDCOPs as well ( E = C2(S

p

t ) ∩ C2(ST) ). Thus, the candi-
dates contain only spatially and time prevalent pairs of fea-
tures. Due to the antimonotonicity of the time prevalence, 
the candidates found in this step are the biggest co-location 
patterns that: a) might be MDCOPs and b) can be spatially 
prevalent in the corresponding spatial dataset.

The pseudocode for Step 3 is presented in Algorithm 3. 
We iterate over every dataset in ST (lines 1–5). For each 
such dataset, we create the graph described earlier (lines 2 
and 3). Finally, we search for maximal cliques by using the 
Bron-Kerbosch algorithm (line 4).

Example 3 We continue the Example 2. For each spatial 
dataset Spt  we find a set of locally spatially prevalent spa-
tiotemporal co-location patterns C2(S

p

t ) ∩ C2(ST) . Those 
sets are presented in second column of Table 3. We treat 
those sets as edges in a graph. Each corresponding graph is 
presented in the third column of the table. We analyze the 
graphs to find maximal cliques using Bron-Kerbosch algo-
rithm. Maximal cliques are presented in the fourth column 
of the table.

4.4  Step 4. Build global candidates for maximal 
MDCOPs K(ST)

The candidates obtained in Step 3 must be further refined 
in order to get a coherent, global set of candidates. This is 
needed because candidates found in one of the datasets in 
ST might be subsets of, or be equal to, candidates found in 
other spatial datasets. This problem can be easily solved by 
removing duplicates and subsets. However, the candidates 
found in the previous step might be also not time prevalent. 
While time prevalence is accurately verified during the sub-
sequent step, we can perform some initial filtering based 
on the information obtained up to now. Notice, that we can 
compute an upper bound on the candidate’s time preva-
lence by finding the number of times it appears in K(Spt ) sets 
(either equal to or as a subset of another candidate). If the 
upper bound is less than the mintprev threshold, the candi-
date cannot be time prevalent.

At this moment, we can choose to use either a top-down 
approach or a bottom-up approach to find global candi-
dates. A top-down approach is very similar to the one used 
in Step 5 for the actual mining, while bottom-up approach 
is based on the well-known Apriori algorithm (Agrawal & 
Srikant, 1994). Below we describe the bottom-up method, 

which has shown to behave better in our internal experi-
ments. For a top-down approach we refer the reader to a 
conference version of this paper (Andrzejewski & Boinski, 
2021).

The Apriori algorithm can be used to find (sub)sets such 
that the value of their interestingness measure (e.g. support, 
participation index) is greater than the specified threshold. 
The measure itself needs to be antimonotonic. The Apriori 
algorithm is a generate-and-test approach in which smallest 
possible candidates for result sets are generated first and 
then the value of the interestingness measure is computed 
for each of them. Only candidates with the interestingness 
greater than the specified threshold are retained. Based on 
the retained sets, new, larger candidates are generated and 
the process is repeated. The algorithm ends when no more 
candidates can be generated. Since the Apriori method 
generates its own candidates, there might be some ambigu-
ity with the term “candidate”. Notice that it may mean a 
candidate in MAXMDCOP-miner and a candidate in the 
Apriori method. For the clarity, we call the Apriori candi-
dates “r-candidates”.

In this step, we want to use the Apriori to find co-loca-
tions that a) have an upper bound on the time prevalence 
greater than the mintprev threshold and b) are maximal. We 
adapt the algorithm as follows. The initial set of r-candidates 
is built from the set ℂT

2
(ST) of all size 2 MDCOPs found in 

Step 2. R-candidates one size larger are created by joining 
two smaller co-locations by their prefix in the same way as 
in the traditional Apriori (Agrawal & Srikant, 1994) or in the 
traditional co-location pattern mining (Shekhar & Huang, 
2001). As a measure of interestingness we use the upper 
bound on time prevalence computed based on K(Spt ) sets as 
described above. This upper bound is antimonotonic since 
given two co-locations C and C′ such that C ⊂ C′ , C can only 
be subset of more sets in K(Spt ) for Spt ∈ ST  than C′ . Finally, 
during the mining process, all non maximal co-locations 
are removed if no longer needed. The resulting maximal co-
locations are candidates for Step 5 of MAXMDCOP-miner.

The Apriori-based bottom-up algorithm for building 
global candidates is shown in Algorithm 4. The algorithm 
stores computed co-locations in sets denoted as K′

i
 , where 

i is the size of the co-locations. We start by initializing the 
set K′

2
 (line 1). Based on this set, a new set of size 3 r-candi-

dates is created (line 2). We also keep rcsize variable which 
stores a current size of r-candidates. Before the Apriori loop 
starts, a new set K′

rcsize
 (in this case K′

3
 ) is initialized (line 4). 

While the set of r-candidates is not empty, we repeat the 
main loop (lines 5–16). For each candidate, (line 6) we com-
pute an upper bound of its time prevalence (lines 7–9). If 
the computed upper bound is greater than the minimal time 
prevalence threshold, the r-candidate is stored in K′

rcsize
 set 

(line 10). Once all the r-candidates have been verified, we 
remove all co-location patterns that became non maximal 
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(line 12). Next, new candidates are created, rcsize varia-
ble is updated and a new set K′

rcsize
 set is initialized (lines 

13–15). Once the main loop ends, the K′
i
 sets store maximal 

co-locations such that their upper bound on time prevalence 
is greater than the mintprev threshold. The final K(ST) set is 
computed as a sum of all K′

i
 (line 17).

Example 4 In the Example 3 we have found local candidates 
for maximal spatio-temporal co-locations (see Table 3). We 
can use them in order to compute an upper bound on can-
didate’s time prevalence. In order to generate all maximal 
candidates, we use an Apriori-based bottom-up approach 

presented in Algorithm 4. The initial set of size 3 r-candi-
dates is generated from the candidates in K�

2
= ℂ

T
2
(ST) . Four 

r-candidates are generated:

• {A,B,C} : join {A,B} and {A,C} , {B,C} is in ℂT
2
(ST),

• {A,B,D} : join {A,B} and {A,D} , {B,D} is in ℂT
2
(ST),

• {A,C,D} : join {A,C} and {A,D} , {C,D} is in ℂT
2
(ST),

• {B,C,D} : join {B,C} and {B,D} , {C,D} is in ℂT
2
(ST).

For each of the r-candidates we check whether they are a 
subset of at least one candidate for every Sp

i
 . Based on the 

number of such datasets we estimate the upper bound on 
the time prevalence. The results are presented in Table 4. 
Since r-candidate {A,C,D} cannot be time prevalent, 
K�
3
= {{A,B,C}, {A,B,D}, {B,C,D}} . Before the next 

Apriori iteration we remove all the subsets of sets in K′
3
 

from K′
2
 leaving it empty. Based on the sets in K′

3
 we attempt 

to create new r-candidates. Only r-candidates {A,B,C} 
and {A,B,D} can be joined into {A,B,C,D} , but since 
{A,C,D} is not time prevalent, then {A,B,C,D} cannot be 
time prevalent as well. Hence, the set of global candidates 
K(ST) = K�

2
∪ K�

3
= {{A,B,C}, {A,B,D}, {B,C,D}}.

4.5  Step 5. Mine maximal MDCOPs ℂT(ST)

In the last step, we use all the results obtained previously to 
mine maximal MDCOPs. In order to achieve this result, we 

Table 4  Mining global candidates

r-candidate appears in upper bound status

{A,B,C} S
p

1
 ( {A,B,C,D}) 2

3
possibly time prevalent

S
p

2
 ( {A,B,C})

{A,B,D} S
p

1
 ( {A,B,C,D}) 2

3
possibly time prevalent

S
p

3
 ( {A,B,D})

{A,C,D} S
p

1
 ( {A,B,C,D}) 1

3
not time prevalent

{B,C,D} S
p

1
 ( {A,B,C,D}) 1 possibly time prevalent

S
p

2
 ( {B,C,D})

S
p

3
 ( {B,C,D})

Algorithm 4   Find global candi-
dates for maximal MDCOPs
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use the top-down approach. We verify whether the candi-
dates obtained in the previous step are really time prevalent 
or not. If a candidate turns out to not be time prevalent, all 
of its subsets (one item smaller) are analysed. We augment 
this basic top-down schema with multiple optimizations in 
order to reduce the execution time and memory footprint.

To compute the time prevalence, we need to know in 
which spatial datasets in ST the candidate is spatially preva-
lent. Unfortunately, the participation index computations are 
expensive. We approach this problem in two ways. First, 
we incorporate several optimizations which reduce the 
required number of spatial prevalence computations. Sec-
ond, we provide a novel participation index computation 
algorithm, which uses special data structures to cache and 
reuse intermediate results of computations to reduce the cost 
as much as possible. Since this algorithm is rather complex, 
we describe it separately in the next section (Section 4.6).

The pseudocode of Step 5 is presented in Algorithm 5. 
The first operation is the initialization of three results caches 
(line 2). Each cache is a family of data structures, one for 
each spatial dataset in ST. The lpct structures are sets of co-
locations that are spatially prevalent at corresponding Spt  , but 
are not time prevalent. Since any subset of such a co-location 
is also spatially prevalent, storing this information allows to 
skip the participation index computations in some situations. 
Similarly, the npct structures are sets of smallest co-locations 
in corresponding Spt  that are known to not be spatially preva-
lent. If a candidate contains such a co-location, it cannot be 
spatially prevalent as well. Finally, pct structures are asso-
ciative arrays that map co-location patterns to correspond-
ing participation indices in the corresponding Spt  (if known). 
Please note that npc and pc caches are modified only by the 
participation index computation algorithm described in the 
next section.

After the caches have been created, the set Y is initial-
ized with maximal MDCOP candidates obtained in Step 4 
(line 3). Since we use a top-down approach, candidates are 
processed from the largest to the smallest. In each iteration 
of the main algorithm loop (lines 3–37), the largest candi-
dates are moved from the set Y into the set M (line 10). Since 
new candidates can be generated during mining, a structure 
for storing them is needed. Thus, a set N is created (line 11).

The candidates from the set M (the largest, still unverified 
candidates) are processed in the outer for loop (lines 12–34). 
A candidate co-location pattern currently processed in the 
outer loop is denoted as P. For each such candidate we keep 
4 sets: TPe , TPc , TNe and TNc (initialized in line 13). The 
TP sets store time moments t of Spt  datasets at which the 
candidate P is known to be spatially prevalent. The TN sets 
store time moments at which the candidate P is known to 
not be spatially prevalent. The difference between c and e 
variants of these sets is that for c sets the candidate’s spatial 
prevalence is determined based on the participation index 

computations, while for e, the candidate’s spatial prevalence 
stems from results obtained in previous iterations.

Sizes of the TP and TN sets allow to find upper and lower 
bounds on a candidate’s time prevalence. A lower bound 
lb(P) can be computed by assuming that the candidate is spa-
tially prevalent only in datasets Spt  for t ∈ TPc ∪ TPe . Hence,

Similarly, upper bound ub(P) can be computed by assuming 
that the candidate is spatially prevalent in all datasets Spt  in 
ST except for the ones with time moments in TNc ∪ TNe . 
Thus,

For each of candidates P, we attempt to determine whether 
they are time prevalent based on the information obtained up 
to now. This is done in the first inner for loop (lines 14–19). 
In each iteration, we check results related to the one spatial 
dataset Spt  from ST. We check whether the candidate is a sub-
set of any local candidates in K(Spt ) . The K(Spt ) set contains 
all maximal feature sets (co-location patterns) such that they 
a) might be an MDCOP and b) can be spatially prevalent 
in the corresponding spatial dataset. If the candidate P is 
not a subset of one of them, it either cannot be an MDCOP 
or cannot be spatially prevalent in the corresponding spa-
tial dataset. In either of cases, we know that the current 
spatial dataset Spt  cannot contribute to the candidate’s time 
prevalence. Thus, the time moment t is added to the TNe set 
(line 15). Second check uses the non prevalent co-locations 
cache npct . As mentioned before, the cache contains the 
smallest known patterns that are not spatially prevalent. If 
this set contains any pattern that is a subset of the candidate 
P, the candidate cannot be spatially prevalent and thus, the 
time moment t should be added to the TNe set (line 16). Third 
and last check makes use of the lpct cache introduced earlier. 
If the candidate P is a subset of a co-location pattern that 
is spatially prevalent in Spt  , it must be spatially prevalent as 
well (due to the antimonotonicity of the participation index 
measure). In such a case, the time moment t is inserted into 
the TPe set (line 17).

Each iteration of the first inner for loop might update 
either the TPe or the TNe set. Hence, with each itera-
tion tighter bounds on candidate P time prevalence can 
be computed. If lb(P) ≥ mintprev (P is time prevalent) or 
ub(P) < mintprev (P is not time prevalent), no further com-
putations are necessary (line 18). However, if neither of 
these conditions is fulfilled by the end of the first inner loop, 
accurate computations are required (line 20).

Accurate computations are performed in the second inner 
for loop (lines 21–26). This loop iterates over all Spt  datasets 

(9)lb(P) =
|TPe| + |TPc|

|ST|
.

(10)ub(P) = 1 −
|TNe| + |TNc|

|ST|
.
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for which the spatial prevalence status of candidate P is not 
yet known. In each iteration, we compute the candidate’s 
participation index (line 22) using Algorithm 7 described 
later in Section 4.6. During computations, the npc and pc 
caches are updated as well. Depending on the result, the time 
moment of the current spatial dataset is added either to TPc 
or TNc set (lines 23 and 24).

Based on the updated TPc and TNc sets, lower lb(P) and 
upper ub(P) bounds on the candidate’s time prevalence are 
computed. If lb(P) ≥ mintprev or up(P) < mintprev , further 
computations can be aborted (line 25).

After the second inner for loop, we check whether the 
candidate is time prevalent. If it is, the set ℂT (ST) is updated 
accordingly (lines 28 and 29). If it is not, we add all of the 
candidate’s subsets (one item smaller) to the set N (line 31). 
Moreover, the lpct sets are updated accordingly (line 32).

After the outer for loop ends, all the candidates in M are 
processed. However, before the next iteration of the main 
loop can be started, it is necessary to filter out all non max-
imal candidates in the set N. For this purpose we search 
ℂ

T (ST) for supersets of candidates in N. Only candidates 
without supersets are added to the set Y (line 35) to be pro-
cessed in the subsequent iteration of the main loop.

The main loop is terminated either when the set Y is 
empty (line 4) or only size 2 candidates are left (line 6). 
Note that size 2 MDCOPs were already mined in Steps 1 and 
2. Thus, no costly computations are necessary. In order to 
find maximal size 2 MDCOPs, it is sufficient to compute the 
intersection Y ∩ ℂ

T
2
(ST) (lines 6-8). This also explains the 

condition in line 32. Since the smallest analysed candidates 
are size 3, then the lpct cache should store only candidates 
with more than 3 items.

Once the while loop ends, the set ℂT (ST) stores all the 
maximal MDCOPs.

Example 5 In this example, we refer to three tables: Table 5, 
6 and 7. The figures in the row “Data structures” of these 
tables however are not explained. They will be covered in the 
example for the participation index computation algorithm 
in the Section 4.6.

In the Example 4 three global candidates were found: 
{A,B,C} , {A,B,D} and {B,C,D} . Since all of the candidates 
are of the same size, all of them are processed in the same 
iteration of the main loop of the Step 5. Moreover, let us 
assume that they are processed in the order given above.

First, the candidate {A,B,C} is processed. All the com-
putations regarding this candidate are presented in Table 5. 
Before the actual participation index computations take 
place, the pattern is checked against the sets of local can-
didates and the npct and lpct caches (see row “Estimating 
results”). Analysis of Sp

1
 and Sp

2
 spatial datasets, does not 

yield any results. Hence, the TNe and TPe sets are empty and 

consequently lower and upper bounds on the time prevalence 
are 0 and 1 respectively. However, in spatial dataset Sp

3
 , the 

candidate {A,B,C} is not a subset of any local candidate and 
thus it cannot be spatially prevalent at the corresponding 
time moment. Consequently, TNe = {3} and upper bound on 
the time prevalence is lowered to 2/3.

Table 5  Processing of the candidate pattern {A,B,C}

Pattern {A,B,C}

Spatial dataset S
p

1
S
p

2
S
p

3

Estimating TNe = { } TNe = { } TNe = {3}

results TPe = { } TPe = { } TPe = { }

lb = 0 lb = 0 lb = 0

ub = 1 ub = 1 ub = 2∕3

Accurate Pi = 1 Pi = 0 −
computations TNc = { } TNc = {2} −

TPc = {1} TPc = {1} −
lb = 1∕3 lb = 1∕3 −
ub = 2∕3 ub = 1∕3 −
pc1[{A,B}] = 1 pc2[{A,B}] = 1 −
pc1[{A,B,C}] = 1 npc2 = {{A,B,C}} −

Data structures −

Table 6  Processing of the candidate pattern {A,B,D}

Pattern {A,B,D}

Spatial dataset S
p

1
S
p

2
S
p

3

Estimating TNe = { } TNe = {2} TNe = {2}

results TPe = { } TPe = { } TPe = { }

lb = 0 lb = 0 lb = 0

ub = 1 ub = 2∕3 ub = 2∕3

Accurate Pi = 1 − Pi = 1

computations TNc = { } − TNc = {}

TPc = {1} − TPc = {1, 3}

lb = 1∕3 − lb = 2∕3

ub = 2∕3 − ub = 2∕3

pc1[{A,B,D}] = 1 − pc3[{A,B}] = 1

− pc3[{A,B,D}] = 1

Data structures −
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Next, the accurate computations take place. The par-
ticipation index computed for Sp

1
 is 1. Hence, TPc set is 

updated to store time moment 1 and the lower bound on 
the time prevalence is updated to 1/3. As a side effect 
of the participation index computation algorithm (see 
Section 4.6), pc1 cache is updated to store participation 
indices for patterns {A,B} and {A,B,C} (both equal to 1). 
Next, accurate computations for Sp

2
 are performed. This 

time, the participation index is equal to 0, which means 
that at the time moment 2, the candidate {A,B,C} is not 
spatially prevalent. The TNc set is updated accordingly as 
well as lower and upper bounds. Since the upper bound 
is now equal to 1/3 (which is less than mintprev = 2∕3 ), 
we know that the candidate is not time prevalent. As a 
side effect of the participation index computation algo-
rithm, pc2 cache is updated with the participation index 
of {A,B} . Moreover, the pattern {A,B,C} is stored in the 
npc2 cache.

Since {A,B,C} candidate is not time prevalent, the N 
set is updated with all of the candidate’s subsets (one item 
smaller). Thus, N = {{A,B}, {A,C}, {B,C}}.

The candidate {A,B,D} is processed next. All the com-
putations regarding this candidate are presented in Table 6. 
Based on the contents of the caches and the sets of local 
candidates we are able to determine that the candidate can-
not be spatially prevalent at Sp

2
 . Consequently, TNe = {2} 

and upper bound on time prevalence is ub = 2∕3 . Accurate 
computations are therefore needed only for Sp

1
 and Sp

3
 . In both 

cases, the computed participation index is equal to 1. Hence, 
the lower bound on time prevalence is first updated to 1/3 

and next to 2/3. Since lower bound is greater or equal to 
mintprev = 2∕3 , we know that this candidate is time preva-
lent. As a side effect of the participation index computation 
algorithm pc1 cache is updated with the participation index 
of {A,B,D} . Note that the participation index of the prefix 
{A,B} was computed in previous iterations. Moreover, pc3 
cache is updated with participation indices of {A,B} and 
{A,B,D} at Sp

3
.

Finally, the candidate {B,C,D} is processed. All the com-
putations regarding this candidate are presented in Table 7. 
Analysis of caches and local candidates does not yield any 
usable information. Hence, no results could be estimated 
and the lower and upper bound at this step are respectively 
0 and 1. Accurate computations for Sp

1
 yield the participa-

tion index equal to 1, which raises the lower bound to 1/3. 
Moreover, pc1 cache is updated with participation indices of 
{B,C} and {B,C,D} . Accurate computations for Sp

2
 yield par-

ticipation index equal to 0.5, which is still greater or equal 
to minprev = 0.5 . Thus, the candidate is spatially prevalent 
at Sp

2
 and consequently, the lower bound on the time preva-

lence can be raised to 2/3. Since lower bound is greater or 
equal to mintprev = 2∕3 , we know that this candidate is time 
prevalent and no subsequent computations are necessary. 
Moreover, the pc2 cache is updated with participation indi-
ces of {B,C} and {B,C,D}.

Since all size 3 candidates are now processed, we need to 
determine the set of the next candidates. We remove from 
the set N all subsets of {A,B,D} and {B,C,D} . Only the 
set {A,C} remains, which in the absence of other candi-
dates of this size in the K(ST), is the only size 2 candidate. 

Table 7  Processing of the 
candidate pattern {B,C,D}

Pattern {B,C,D}

Spatial dataset S
p

1
S
p

2
S
p

3

Estimating TNe = { } TNe = { } TNe = { }

results TPe = { } TPe = { } TPe = { }

lb = 0 lb = 0 lb = 0

ub = 1 ub = 1 ub = 1

Accurate Pi = 1 Pi = 0.5 −
computations TNc = {} TNc = {} −

TPc = {1} TPc = {1, 2} −
lb = 1∕3 lb = 2∕3 −
ub = 1 ub = 1 −
pc1[{B,C}] = 1 pc2[{B,C}] = 0.5 −
pc1[{B,C,D}] = 1 pc2[{B,C,D}] = 0.5 −

Data structures −
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Candidates of this size can be easily verified, since their time 
prevalences were computed in Step 2. In Table 2 we can see 
that the candidate {A,C} is time prevalent and thus it should 
be included in the result set.

Finally, we obtain three time prevalent maximal 
MDCOPs: {A,B,D} , {B,C,D} and {A,C}.

Algorithm 5   Mining maximal 
MDCOPs

4.6  Step 5a. Computing spatial prevalence

As we have mentioned before, the participation index com-
putations are the most time consuming part of the algorithm. 
In this section, we provide an efficient algorithm which is 
used in Step 5 described in the previous section. The new 
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algorithm is inspired by the solutions presented by Yao et al. 
(2016). In the approach presented in that paper, authors com-
press co-location instances of a single co-location pattern by 
inserting them into a trie structure (Fredkin, 1960). In our 
approach, we extend this solution by introducing a novel 
method for storing such tries. The new method not only fur-
ther improves the compression ratio of co-location instances, 
but also allows to improve the performance of co-locations 
participation index computations and reuse partial results 
when finding instances of another co-location with a com-
mon prefix. Hence, this section can be logically divided into 
two parts: description of the data structures and description 
of the participation index computation algorithm. These 
parts are presented below as two subsections.

4.6.1  Data structures

A trie is a well known data structure, initially introduced for 
indexing and compressing of strings (Fredkin, 1960). Never-
theless, any sequence can be stored in it. The trie is a tree in 
which a sequence is represented as a path from the root to a 
leaf. If multiple sequences are inserted, common sequence 
prefixes are compressed, since they share the same paths.

In order to insert either a co-location pattern or a 
co-location pattern instance into a trie, we must represent it 
as a sequence. To convert a set to a sequence, all the items in 
it must be sorted. Hence, a total order on the set of features 
F is needed. Since there are no other requirements, such 
order is easy to define. Thus, both co-location patterns and 
co-location pattern instances can be stored in a trie. Because 
construction of tries is beyond the scope of this paper, we will 
not cover this subject. We refer the reader to (Fredkin, 1960; 
Yao et al., 2016) for details.

In the following paragraphs we gradually introduce the 
data structures used in our algorithm.

In Fig.  2, we present an exemplary trie for a set of 
instances of a co-location pattern {A,B,C,D} . In our 
approach we store levels of a trie as arrays. Each entry in 
such an array is a triple (if , pos, visited) , where if  is a feature 
instance, pos is an index of a parent entry in a higher level 

array and visited is a flag which allows to optimize preva-
lence computations. Such arrays are called the level arrays.

Notice, that aside from instances of a single co-location, 
the same trie can be used to store instances of the co-loca-
tion’s prefixes. For example, a trie that stores instances of 
co-location {A,B,C,D} , can also store instances of {A,B,C} 
and {A,B} . This is due to the fact that prefixes of co-location 
instances are instances of the corresponding co-location 
prefix. Thus, in order to retrieve all instances of some co-
location prefix, one can follow paths from the nodes at level 
corresponding to the prefix’s size towards the root of the 
trie. Based on these observations, we store instances of a 
co-location and all of its prefixes in a single trie. Figure 3 
shows an exemplary trie which compresses instances of co-
location {A,B,C,D} and all of its prefixes. We call such tries 
the instance tries.

The presented compression method can be improved even 
further. Consider two co-locations with a common prefix, 
e.g. {A,B,C,D} and {A,B,E} . A very important observation 
is that the instance tries for these two co-locations will have 
the same first n levels, where n is the size of the common 
prefix. For the two exemplary co-locations, two first levels 
of the instance tries (without the root) will be the same. 
Thus, when finding instances of a co-location, we can reuse 
several first levels of a trie corresponding to another co-loca-
tion with a common prefix. For example, when building an 
instance trie for co-location {A,B,E} , we can reuse two first 
levels of a trie for co-location {A,B,C,D} assuming it has 
been built earlier. Moreover, since these levels are the same, 
we do not need to store them multiple times in memory.

In order to take advantage of the last observation, we 
need to create a more complex data structure. We propose 
a two part structure. This first part is a collection of level 
arrays. It can be anything that allows for random access, 
e.g. another array. By storing the level arrays in a single 
collection, we lose information about which level arrays 
correspond to which tries. This information is stored in 
the second part of the data structure. The second part of 
the structure is also a trie, however it stores co-location 
patterns instead of co-location pattern instances. Such a 
trie is called a co-location trie. In this trie, a single node 

Fig. 2  A trie with co-location instances

 

Fig. 3  A trie with instances of a co-location and its prefixes
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corresponds to a single co-location pattern, which is 
composed of features on a path from the node to the root. 
Each node stores a reference to a level array in the collec-
tion. Thus, to reconstruct an instance trie corresponding 
to some co-location, one needs to retrieve all references 
to level arrays on the path from the co-location trie’s 
node to the root. Due to the specificity of co-location 
patterns, the above idea needs a slight tweak to make it 
work correctly. Note that the first level of the instance 
trie corresponds to single feature instances. Hence, every 
level array corresponding to the first level of the trie 
would need to contain all feature instances of a single 
feature. To avoid this, we propose to create first and sec-
ond level of the instance trie together and store only such 
instance pairs that are neighbors. In other words, we do 

not store size 1 co-location pattern instances. As will be 
apparent later, such instances are not needed anyway. As 
a consequence to this change, the nodes at the first level 
of the co-location trie should not store any references. 
On the other hand, nodes at the second level should store 
references for the first and the second level of the cor-
responding instance trie. Figure 4 shows two instance 
tries for a set of co-location instances, as well as their 
representation in the form of a co-location trie and a cor-
responding collection of level arrays.

4.6.2  Participation index computations

Having described the data structures, we now continue to the 
participation index computation algorithm. The algorithm 

Algorithm 6   Building a co-
location trie

Fig. 4  A co-location tree with 
the corresponding collection of 
level arrays

 



2020 Information Systems Frontiers (2023) 25:2005–2028

1 3

itself can be divided into two parts. The first part is used to 
construct an instance trie of a candidate and store it in the 
level array collection as well as the co-location trie. If pos-
sible, previously computed level arrays should be reused. 
The first part is presented in Algorithm 6. The second part is 
executed once the complete instance trie is known. This part 
computes the actual participation index value. It is presented 
in Algorithm 7.

Let us start with the first part (Algorithm 6). The first 
task performed in this algorithm is sorting the candidate 
P, so that it becomes a sequence. Next, we determine 
how many levels of a candidate’s instance trie were built 
previously (line 2). If all levels are available, subsequent 
computations are aborted (line 3). If not all levels have 

been built, there are two other possibilities. There are 
either no available results to reuse or there exists a 
partially built instance trie (there are at least two first 
levels available, i.e. at least two first features of P are in 
the co-location trie).

In the first case, we need to build two first levels of the 
trie (lines 5–13) and then proceed to the second case. In the 
second case, we build all the remaining levels (lines 15–23).

The first two levels can be easily constructed based on 
the data stored in the iCPI-tree structure. First, new level 
arrays are allocated (line 5). Next, we scan two first levels 
of the iCPI-tree corresponding to the current spatial dataset 
to retrieve instances of a feature V[0] (the first feature in an 
ordered candidate P) with neighbors (lines 6–11). For each 

Algorithm 7   Computing the 
spatial prevalence (the partici-
pation index).
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such instance, we determine whether it has neighbors with 
a feature V[1] (line 7). If such neighbors exist, then appro-
priate entries are added to the new level arrays: L0 and L1 
(lines 8–10). Finally, the co-location trie is updated with 
nodes representing size 2 prefix of the candidate. The node 
corresponding to the feature V[1] is associated with refer-
ences to the level arrays L0 and L1.

Construction of the remaining levels starts with the 
retrieval of the references to the levels that have already been 
built (line 15). Subsequent levels are constructed one by one 
in a loop (lines 16–23). A new level array is constructed as 
follows. We start by scanning the entries in the level array 
of the previous (i.e. parent) level (lines 18–21). Each of 
these entries corresponds to an instance of the candidate’s 
prefix with the appropriate length. In order to build a next 
level, we must find common neighbors with the feature 
V[j] of all feature instances in the prefix instance (i.e. all 
the feature instances on the path to the root), where j is the 
number of the new level. Neighbors with feature V[j] can be 
easily retrieved from iCPI-tree. Thus, to find such common 
neighbors, we just need to intersect neighbor sets retrieved 
from the iCPI-tree for each of the feature instances on the 
path to the root (line 19). Each such common neighbor is 
used to create a new entry in the new level array (line 20). 
After the new level array is finished, a new node is appended 
to the co-location trie along with the reference to the newly 
created level array (line 22). The algorithm ends once all the 
level arrays are inserted into the co-location trie. Please note 
that the above method is an adaptation of the co-location 
instance identification algorithm presented by Wang et al. 
(2009).

We shall now describe Algorithm 7, which is used 
for computing participation indices of candidates. As 
will be shown later, the algorithm not only computes the 
participation index of a candidate, but also of all of its 
prefixes.

In order to compute participation index of a candidate 
co-location P, it is necessary to find unique feature instances 
appearing in the candidate’s instances. Therefore, the first 
step of this algorithm is the execution of Algorithm 6 to 
ensure that all candidate’s instances have been identified 
(line 2). Next, the corresponding instance-trie is retrieved 
from the co-location trie in the form of an array L of refer-
ences to consecutive level arrays (line 3). The visited flags in 
the retrieved level arrays are reset to false since they might 
have been modified by some previous computations (line 4). 
To obtain unique feature instances mentioned earlier, we 
need a data structure for storing them and removing the 
duplicates. For this purpose we allocate an array of sets U, 
one set for every feature of P (line 5).

For the sake of clarity, we will now skip some parts of 
the code to explain the main idea behind the algorithm. Let 
us assume that the outer for loop (lines 7 and 23) does not 

exist, and the lev variable is constant and equal to |P| − 1 . 
Note, that in such a case P� = P and we compute only the 
participation index of the candidate P.

We retrieve feature instances from the instance trie by 
traversing it in a specific way. We start at each leaf (entry 
at the lowest level of the instance trie - level number lev) 
(lines 10–20) and we travel towards the root (lines 13–19). 
We store all feature instances on the path in the correspond-
ing sets in the U array (lines 11 and 16). Note that since this 
is a tree, it might happen that the same node can be reached 
from multiple lower level entries. To cope with this problem, 
we use the aforementioned flag visited, to mark visited nodes 
(line 17). Note that if a node has already been visited, then 
all of its parents must have been visited as well. Thus, when 
a visited node is reached, the travel towards the root can be 
aborted (line 15). After all paths have been retrieved, and 
the corresponding feature instances stored in the U sets, the 
participation index is computed (line 21). The value of the 
participation index is stored in the pct cache (described in 
the previous section) and returned as a result at the end of 
the algorithm (line 28).

Let us notice that most of the work needed to compute 
a one item smaller prefix P′ of the candidate P has already 
been done. The U sets contain most of the feature instances 
of the P′ co-location instances. What is left, is to traverse 
unvisited paths that start at level lev − 1 , update the U sets 
and recompute the participation index. Now let us return 
to the outer for loop (line 7). In each iteration, the lev 
variable is decreased by one. Moreover, in the middle for 
loop, we iterate over unvisited nodes in level array number 
lev. Therefore, the next iteration of the outer for loop 
will perform computations that are necessary to compute 
the participation index of the prefix P′ . The same line of 
reasoning can be applied to any size of the candidate’s 
prefix. Thus, the outer for loop iterates over consecutive lev 
values up to one (which corresponds to size 2 prefixes) and 
computes participation indices for all prefixes.

Let us now consider line 9. In this line, we check whether 
the participation index of the current prefix P′ has already 
been computed or not. If it has, then all of subsequent pre-
fixes are associated with their participation indices as well 
and we can safely abort subsequent computations.

The final part of this algorithm is the construction of the 
npct cache. Before the actual participation index computa-
tions take place, we initialize a variable nonprev_P (line 6). 
This variable will store the smallest, spatially non prevalent 
candidate prefix found during the computations. We com-
pare the computed participation index with the minprev 
threshold and if the prefix is not spatially prevalent, it is 
assigned to the nonprev_P variable (line 22). In the end of 
the algorithm, we verify whether a spatially non prevalent 
prefix was found (line 24) and if it was, the npct cache is 
updated. First, all supersets of nonprev_P co-location are 
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removed (line 5). Second, the nonprev_P co-location is 
added to the npct cache (line 26).

Example 6 In the previous example three maximal MDCOPs 
were found. All the results computed during execution of the 
mining algorithm are presented in Tables 5, 6 and 7.

Let us now consider the spatial dataset Sp
1
 . When the 

participation index is computed for candidate {A,B,C} no 
structures are constructed yet. Hence, the whole co-location 
trie as well as instance trie are built. These structures are 
shown in Table 5. Due to space limitations we only present 
graphical representation of instance tries (not the level array 
representation). Nevertheless remember that every level of 
an instance trie is represented as a separate array. When the 
participation index of the candidate {A,B,D} is computed, 
most of the instance trie is already built (Table 6). We can 
reuse level arrays for the feature A and B and only add level 
array for the feature D. New data is drawn as black, while 
old data is drawn as gray. Finally, when the participation 
index of the {B,C,D} candidate is computed, no data can 
be reused. Hence completely new paths are added to the 
co-location trie and instance trie (Table 7) and consequently 
three new level arrays for B, C and D features are created.

Let us now consider the spatial dataset Sp
2
 . The partici-

pation index is computed for the candidates {A,B,C} and 
{B,C,D} . In the case of the first of the two patterns we can 
notice that the level array for the feature C is empty. Hence, 
participation index of the candidate in Sp

2
 is zero. However, 

level arrays for {A,B} prefix were built as well and its par-
ticipation index was also computed and stored in the cache 
pc2 . The computation of the participation index of {B,C,D} , 
similarly to Sp

1
 , requires completely new paths (see Table 7).

The participation index in the spatial dataset Sp
3
 was com-

puted only once, for {A,B,D} candidate. All the found struc-
tures are shown in Table 6. For the sake of the example, let 
us analyse how the participation index computations would 
work. First, the level array representing the level correspond-
ing to the D feature is scanned. First entry is D1. Hence, this 
object is added to the appropriate set. It’s parent entry – B1, 
and parent entry of B1 – A1, are also added to the appropri-
ate sets. All the nodes on the path to the root are marked as 
visited. Similar operations are performed for the next entry 
in the level array corresponding to the D feature. Finally, 
the last entry in this array (the second D2) is analysed. D2 
is added once again to the appropriate set as well as its par-
ent B2. Note however, that we do not continue to travel to 
the node A2 since it was already visited. Therefore, the sets 
should now contain unique items for every feature and the 
participation index of {A,B,D} can now be computed. We 
can now reuse the computations to find participation index 
of the prefix {A,B} . We now scan the level array for the fea-
ture B in order to find all the unmarked entries. In this case 
there are none. We can therefore use the sets for features A 

and B to compute the participation index of {A,B} . In case 
there were such unmarked entries, we would just have to 
insert the corresponding objects and all the yet unvisited par-
ents into the appropriate sets. The sizes of the updated sets 
can be used to compute the new participation index value.

5  Experiments

Algorithms and Testing Environment Since, up to now, no 
solutions for mining maximal MDCOPs were proposed in the 
literature, we compare our algorithm with two “competitors”:

• FastMDCOP-Miner - a state-of-the-art MDCOP min-
ing algorithm. Unfortunately, this algorithm mines all 
MDCOPs, not just the maximal ones.

• A vanilla variant of MAXMDCOP-Miner stripped of 
many optimizations. We treat this variant as an initial 
viable solution. We codename this variant MAXM-
DCOP-Miner STD, while the full version is called 
MAXMDCOP-Miner ENH.

The following features were stripped from the MAXMD-
COP-Miner STD:

• No upper and lower bounds on time prevalence are 
computed in Step 5. Instead, all datasets in ST are 
always analyzed.

• The algorithm uses only the accurate participation 
index computations. Hence, the sets TNe , TPe , TNc and 
TPc are not computed and consequently caches npc 
and lpc are not used (and are not created). Instead we 
only count the number of times a candidate is spatially 
prevalent if order to compute the time the prevalence.

• The participation index computation algorithm com-
putes only the participation index of a single candidate 
(without prefixes). The instance tree is always created 
from scratch and removed after the participation index 
is computed. Hence, the cache pc is not used (and is 
not created).

All implementations are in Python3 language. Experi-
ments have been conducted on a machine with Intel Xeon 
Gold 6138 2.00GHz CPU and 24GB RAM.
Datasets The procedure to generate synthetic data was based 
on the method used by Celik et al. (2006). The overall idea 
was to prepare persistent and transient patterns, generate 
their instances and instances of noise. Persistent patterns 
occur in at least specified number of time moments, while 
transient patterns occur in a less than specified number of time 
moments. At the beginning, a set of PATct initial patterns was 
created. The initial patterns represent subsets of feature types 
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that could be involved in MDCOPs. For each initial pattern, 
its size was randomly chosen using the Poisson distribution 
with mean PATavs . Next, initial features from a user defined set 
of Fct were assigned randomly to the initial patterns. Having 
the set of initial patterns, persistent and transient pattern sets 
were created by dividing the initial patterns in the proportion 
described by RATp parameter - a ratio of persistent patterns 
over transient patterns. Instances of patterns were placed 
in a spatial framework defined as a square of side dim. For 
simplicity, the spatial framework was divided into square cells 
of size equal to the neighborhood distance dist. Each pattern 
instance was placed in a square randomly chosen from the 
spatial framework. For each pattern, its instances were placed 
in a randomly chosen number of time moments from the set of 
TFct frames w.r.t. mintprev parameter, i.e. persistent patterns 
had to occur in at least mintprev fraction of time moments. 
Notice that mintprev also defines the maximal number of time 
moments in which a transient pattern instance can occur. The 
number of instances of the particular pattern in a given time 
moment was randomly chosen from the Poisson distribution 
with mean INSavc . Finally, a noise was generated by placing 
NOISEct objects in the spatial framework. Each noise object 
was assigned a spatial feature randomly chosen from a set 
of noise features. This set consisted of RATn percent of Fct 
initial features. Notice that some of those features could also 
participate in generated patterns.

Using the aforementioned procedure, we have prepared 
two datasets, namely SD1 and SD2 with 136K objects and 
29K objects respectively. To generate those datasets we have 
used the parameter values presented in Table 8. In both cases 
the spatial framework size and neighboring distance were the 
same ( dim = 10000 and dist = 10 ). Dataset SD1 contains 
many small MDCOP patterns, whereas SD2 has fewer pat-
terns, although their size can be significantly larger. The total 
number of spatial features used to generate SD1 is twice as 
small as in the second dataset. Considering the greater ratio 
for noise features and the number of instances of such fea-
tures, SD1 contains much shorter patterns than SD2.

The real world dataset RD contains the positions of 
pigeons from the animal study (Zannoni et al., 2020). Our 
analysis was limited to the data from a single day and we 
used linear interpolation to calculate pigeons’ positions for 
each of 1440 time moments (one per minute). There were 
29192 objects and 29 spatial features in the RD dataset.

Results In the experiments, the processing time of the 
algorithms and their memory usage were studied. By 
memory usage, we mean the largest memory requirement 
during the execution of the algorithm. Measurements were 
made for varying the values of three parameters: the minimal 
spatial prevalence threshold (minprev), the minimal time 
prevalence threshold (mintprev) and the maximal distance 
threshold (maxdist). In a given experiment, only one of the 
parameters was changed, while the other two were set to 
particular values. We will begin the discussion of the results 
by analyzing the processing times of the algorithms.

In the first experiment, we observed the impact of chang-
ing the minimal prevalence threshold on the processing time 
of the synthetic datasets SD1 and SD2. In this experiment, the 
minimal time prevalence threshold was set at 0.3 and the maxi-
mal distance threshold was set at 10. The results are shown in 
Fig. 5a and b for SD1 and SD2 respectively. In general, the lower 
the minprev, the greater the probability of finding a pattern in 
a given frame. Thus, processing times should decrease with 
decreasing values of minprev. This is exactly the behavior that 
can be observed for the FastMDCOP-Miner algorithm. In both 
versions of the proposed algorithm, a lower minprev will have 
a higher likelihood of producing long and prevalent patterns, 
eliminating the need to check their subsets. For small values of 
minprev, MAXMDCOP-Miner in both versions is nearly 4 times 
faster than FastMDCOP-Miner. For larger values of minprev, the 
performance difference between the two versions of MAXM-
DCOP-Miner becomes clear. The STD version, due to lack 
of optimizations, generates significantly more computations, 
resulting in processing times that exceed the processing times 
achieved by ENH version as well as FastMDCOP-Miner. The 
ENH version, for both datasets, is more efficient than FastMD-
COP-Miner over the entire range of examined minprev values.

In the second experiment, we used the same SD1 and SD2 
data sets to explore the effects of changing mintprev on pro-
cessing time. The minimal prevalence threshold was set at 0.3 
and the maximum distance threshold was set once again at 10. 
Figure 5c and d presents the achieved results. For the Fast-
MDCOP-Miner algorithm, increasing mintprev has almost a 
linear effect on reducing the processing time. This is, to some 
extent, a result of the way the synthetic data is generated. For 
slightly more diverse data, the relationship does not need to be 
linear. MAXMDCOP-Miner ENH was once again the fastest 
method and achieved the best results for low and high values 
of mintprev. For low mintprev, there is a higher chance that 

Table 8  Synthetic data 
generator parameters

Dataset PATct PATavs Fct RATp TFct mintprev INSavc NOISEct RATn

SD1 15 5 100 0.4 100 0.6 25 20000 0.4
SD2 5 10 200 0.3 50 0.6 15 10000 0.2
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lower or upper bound time prevalence filtering will take place, 
resulting in a reduced number of computations. The same can-
not be said for the STD version, where mechanisms for more 
advanced filtering are not present. Hence, the performance 

of such a basic version of the algorithm is almost always not 
better than that of FastMDCOP-Miner. For high values of 
mintprev, the number of patterns decreases as well as the per-
formance gap among all algorithms.
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Fig. 5  Results of the experiments - processing times
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Fig. 6  Results of the experiments - memory usage

In the third experiment, we tested how the maximal 
distance maxdist affects the performance on synthetic 
datasets. In this experiment, both the minimal prevalence 
threshold and the minimal time prevalence threshold were 

set at 0.3. The results for datasets SD1 and SD2 are presented 
in Fig. 5e and f. In classical co-location pattern discovery, 
increasing maxdist significantly affects the number of 
candidates, instances, and thus the total processing time. 
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Similar relationships can be observed for the FastMDCOP-
Miner algorithm. In particular, there is a clearly observable 
increase in processing times when maxdist reaches a 
value of 10. This is related to the parameters used for the 
synthetic data generator, namely dist set at 10. For high 
maxdist values, the number of instances (and candidates) 
can increase very rapidly and the Apriori-based approach 
is inefficient in comparison to the new method (both STD 
and ENH versions). For lower values of maxdist, the STD 
version generates many unnecessary candidates, resulting 
in the worst processing times. The ENH version is similar 
in execution times to FastMDCOP-Miner and is slightly 
faster or slightly slower depending on the dataset. It is worth 
noticing that for higher values of maxdist, the new method 
can be an order of magnitude faster than FastMDCOP-Miner.

The next experiment involved a study of the 
processing times of a real dataset. As with the synthetic 
data, we examined the impact mintprev and maxdist on 
processing time. Due to the limited number of observed 
pigeons, we skip the minprev threshold assuming that 
all candidates are spatially prevalent. Figure 5g presents 
the effect of varying mintprev, while maxdist was set at 
0.4. Figure 5h shows the impact of changing maxdist, 
while mintprev was set at 0.3. These values were 
arbitrarily chosen to present the most interesting results. 
The collected data confirms the results achieved for the 
synthetic dataset. With respect to the synthetic data, 
one can observe that for real data the relationships are 
definitely nonlinear. Nevertheless, in all cases the new 
method (in both versions) was more efficient than the 
FastMDCOP-Miner.

In addition to examining the processing times of the 
algorithms, the level of demand for memory resources 
was also studied. The results showing the maximum 
memory usage are shown in Fig. 6a-h, which correspond 
to the time performance experiments shown in Fig. 5a-
h. In all performed experiments, the STD version of the 
MAXMDCOP-Miner algorithm showed the least memory 
requirements. This is due to the fact that MAXMDCOP-
Miner always utilizes data compression structures. At 
the same time, the STD version lacks elements related to 
data caching, which sometimes require quite significant 
memory resources. The ENH version, which uses (among 
others) various types of caches, for synthetic data in 
certain ranges of examined parameters variability, 
shows slightly higher demand for operating memory than 
FastMDCOP-Miner. However, for the most demanding 
parameter ranges (i.e. low minprev or mintprev or high 
maxdist), the memory requirements are significantly 
lower than for FastMDCOP-Miner. For the examined real 
world dataset, again the MAXMDCOP-Miner algorithm 
in the STD version was the least memory intensive; the 
MAXMDCOP-Miner in the ENH version performed only 

slightly worse. By far the largest memory requirements 
were for FastMDCOP-Miner.

6  Summary and Future Work

This is the first algorithm that tackles the problem of 
mining Maximal Mixed-Drove Co-occurrence Patterns. 
To achieve the best performance, we have resigned from 
the traditional Apriori generate-and-test approach and 
adapted the method based on maximal cliques mining 
that was successfully applied in mining of classical co-
location patterns. We have developed novel data struc-
tures that provide efficient compression of instances of 
MDCOPs. We have also proposed a new participation 
index computation algorithm, which uses the aforemen-
tioned data structures to cache and reuse intermediate 
results of computations.

We have tested the proposed solution using both 
synthetic and real world datasets. Gathered results show 
that new approach is more efficient than the current state-
of-the-art method when comparing processing times as well 
as memory requirements. The more demanding parameter 
values (i.e. low spatial or time prevalence thresholds or high 
maximum distance threshold), the greater the performance 
gain. Therefore, our method can be particularly useful 
in analyzing dense datasets that can contain patterns of 
significant length.

The important limitation of the proposed method is the 
requirement to fit all structures in memory, which for some, 
very large MDCOP mining problems can be impossible. 
Therefore, one of the main directions of further develop-
ment is to design structures that can be efficiently stored and 
processed on disk drives.

There are also some more technical elements that 
can be improved in the MAXMDCOP-Miner, namely 
the maintenance of visited flags and data structures for 
sets operations. Visited flags are used to prevent visiting 
the same nodes in a tree when traversing from lower 
level entries. Although these flags prevent unnecessary 
operations, they must be periodically set to false in 
retrieved level arrays, which imposes an additional cost. 
The second mentioned improvement concerns the use of 
more specialized structures for performing operations on 
sets, which are widely used in the algorithm.

In the future work, we also intend to parallelize the 
MDCOP mining process, which can result in order of 
magnitude speedups. Currently, we are working on detailed 
calculations of the MAXMDCOP-Miner complexity.
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