
Vol.:(0123456789)1 3

Information Systems Frontiers (2023) 25:2005–2028
https://doi.org/10.1007/s10796-022-10344-8

Maximal Mixed‑Drove Co‑occurrence Patterns

Witold Andrzejewski1 · Pawel Boinski1

Accepted: 20 September 2022 / Published online: 20 October 2022
© The Author(s) 2022

Abstract
One of the interesting types of spatio-temporal patterns is the Mixed-Drove Co-occurrence Pattern (MDCOP), which
represents types of objects frequently located together in both space and time. To discover such patterns, methods based
on the well-known Apriori strategy are widely used. They involve determining multi-element MDCOPs by building them
up iteratively starting with the two-element patterns and then successively adding another element in each iteration. This
approach can be very costly, particularly when the data is dense enough to form patterns of significant size. In this paper,
we introduce a definition of a new pattern type called a Maximal Mixed-Drove Co-occurrence Pattern. We also propose a
new algorithm MAXMDCOP-Miner, which resigns from popular Apriori strategy of generating candidates and, therefore,
can discover long pattern without processing all their subsets. Experiments performed on synthetic and real datasets show
that MAXMDCOP-Miner has high performance, in particular for dense datasets or tasks with low user-defined thresholds
of spatial or time prevalence.

Keywords Spatial data mining · Co-location patterns · Spatio-temporal data · MDCOPs

1 Introduction

In recent years, we have witnessed massive collection
of spatio-temporal information. Thanks to cheap and
ubiquitous sensors, huge amounts of data about the positions
of various objects are recorded in databases every day. It
is impossible to analyze such datasets by hand. Therefore,
novel computational techniques must be developed and
applied to cope with this task. These methods have their
roots in the processing, generally referred to as Spatial Data
Mining, in which the aspect of time was ignored.

One of the most interesting types of pattern investigated
in Spatial Data Mining is a co-location pattern that has been
defined as a subset of spatial features that are frequently
located together in a spatial neighborhood (Shekhar &
Huang, 2001). The spatial feature can be regarded as a type
of spatial object (i.e. an object located in space). We say that

a particular spatial object is an instance of a spatial feature.
For example, a gas station can be treated as a spatial feature,
while the gas station on Leyton Street is an instance of that
spatial feature. Co-location Pattern Mining (CPM) consists
in searching for sets of spatial features, which instances are
frequently located close to each other. A familiar, although
very simplified, example of such a pattern is known as
mutualism in which two organisms of different species
exist in a mutually beneficial relationship. In general, we are
interested in relationships among multiple spatial features.

Incorporating a time component into co-location patterns
resulted in new types of patterns called spatio-temporal
co-locations or co-occurrence patterns. Depending on object
types (e.g. points, polygons) and concepts of interest measures,
many different types of patterns have been proposed, e.g.
Huang et al., 2008; Pillai et al., 2012; Qian et al., 2009. In
this paper, we focus on Mixed-Drove Co-Occurrence Patterns
(MDCOPs) that represent a set of spatial feature types whose
instances are located close to each other in geographic space
for a significant fraction of time (Celik et al., 2008). For
example, MDCOP can represent a predator-prey relationship
resulting from predator behavior, i.e. tracking his prey (not
necessarily for the whole time and without interruptions). As
time component exists in almost every dataset, co-occurrence
patterns can provide useful knowledge in many domains, e.g.

 * Witold Andrzejewski
 witold.andrzejewski@cs.put.poznan.pl

 Pawel Boinski
 pawel.boinski@cs.put.poznan.pl

1 Faculty of Computing and Telecommunications, Poznan
University of Technology, Piotrowo 2, Poznan 60-965,
Wielkopolska, Poland

http://orcid.org/0000-0001-9486-929X
http://orcid.org/0000-0003-4914-9394
http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-022-10344-8&domain=pdf

2006 Information Systems Frontiers (2023) 25:2005–2028

1 3

military - battlefield analysis, ecology/health - monitoring
pollution and diseases etc.

Existing methods of MDCOP discovery are based on
the iterative expansion of basic patterns using the well-
known Apriori strategy originally applied to frequent item-
set mining problem (Agrawal & Srikant, 1994). In such an
approach, the search space is traversed in breadth-first man-
ner. Therefore, in order to find a specific size k pattern, it is
necessary to search all its 2k subsets in advance. This can
be considered an important bottleneck in search for larger
patterns or patterns in huge datasets.

This problem has been already considered in the context
of CPM. In order to eliminate the expensive Apriori-like
generation and testing approach, the concept of maximum
spatial co-location was introduced by Wang et al. (2009).
In short, a co-location pattern is maximal only if it has no
superset co-location. We postulate that the same idea can be
applied to the mining of MDCOPs.

In this paper, we introduce and define the novel concept
of Maximal Mixed-Drove Co-Occurrence Pattern (MaxM-
DCOP). In order to reduce the number of processed can-
didates, we propose to remove the iterative pattern build-
ing strategy and use solution based on the discovery of the
maximum cliques to generate candidates for MaxMDCOPs.

To avoid costly computation of some co-location pattern
measures, required to calculate the potential interestingness
of the pattern, we introduced several processing improve-
ments. In addition, to find maximal patterns, the following
enhancements were applied: (1) computations of upper and
lower bounds for candidate’s time prevalence, (2) caching of
some results for quick determination whether a co-location
is spatially prevalent or not without the participation index
computations, (3) the participation index computations of
all prefixes of co-location pattern in order to avoid repeating
similar work multiple times and (4) compression and reuse
of co-location pattern instances while computing partici-
pation index. We have implemented our new method and
performed experiments on synthetic and real world datasets.
The results show that we can achieve significant speedups in
comparison to the Apriori-like approach.

The structure of the paper is as follows. In Section 2, we
discuss related work on MDCOP discovery. Section 3 pro-
vides definitions of concepts used throughout this paper. In
Section 4, we explain the new algorithm. The results of the
conducted experiments are presented in Section 5, followed
by a short summary in Section 6.

2 Related Work

MDCOP mining was inspired by the Co-location Pattern
Mining idea introduced two decades ago (Shekhar & Huang,
2001). Since the introduction of co-location patterns, many

efficient methods for discovering them have been proposed,
e.g. Wang et al., 2009; Yoo & Shekhar, 2006; Andrzejewski
& Boinski, 2018. Today, CPM can be considered a well-
studied area with many popular co-location mining methods
utilizing the Apriori generate and test strategy (Agrawal &
Srikant, 1994). With the increase of the number of datasets
that are collected both automatically and continuously, the
time component started to play an important role in various
analysis. At the beginning, incorporating temporal aspects
led to new models and patterns such as moving averages,
first and second order auto-regression or seasonality (Wei,
2006). The common approach was to integrate time as a new,
independent dimension. Of course, this reduces the number
of possible analysis as some crucial relationships between
time and space can be lost.

In response to this problem, new types of patterns, called
spatio-temporal co-occurrence patterns, were introduced
with two initial directions of research: detecting uniform
groups of moving objects and detecting mixed groups of
moving objects. Uniform groups, i.e. groups of animals of
the same species, can be treated as flock patterns or moving
clusters in general (Li, 2014). In flocks and moving clusters
discovery, objects must occur in consecutive time frames.
MDCOPs are very different from mentioned patterns. Firstly,
they describe a set of mixed object types, and secondly these
objects can occur in non–consecutive time frames. The first
property, i.e. mixed object types, makes MDCOPs similar
to co-location patterns. A trivial approach to cope with time
in CPM, involving searching for different sets of patterns
for subsequent states of the data (Andrzejewski & Boin-
ski, 2019), might omit potentially useful and interesting
patterns hidden in data changes between time moments.
Another attempt to incorporate time in CPM focused more
on associations among spatially extended objects than on the
temporal aspects (Yang et al. 2005).

The first type of pattern that treated time as a special
separate component in CPM was presented by Cao et al.
(2006). The authors defined a so-called co-location episode
as a sequence of co-location patterns over consecutive time
slots sharing the same feature (called a common feature).

MDCOPs, which are the main topic of this paper, do not
impose such constraints. For MDCOPs, incorporating time
results in searching for patterns in which spatial features are
spatially prevalent (i.e. instances are located close to each
other) for the required, not necessarily consecutive, number
of time moments (time prevalence). In contrast to co-loca-
tion episodes, there is no need to define a common feature. It
should be noted that other types of spatio-temporal patterns
are inspired by co-location concepts, such as SPCOZs (Qian
et al., 2009) or STCOPs (Hamdi et al., 2016) etc.

MDCOPs can be discovered using a naive approach,
i.e. by applying one of the algorithms of CPM to each
time moment and then by making calculations to

2007Information Systems Frontiers (2023) 25:2005–2028

1 3

determine which co-locations are time prevalent. It is
easy to notice that, for some patterns, it is not necessary
to perform calculations for all time moments. This obser-
vation was utilized by Celik et al. (2008). The authors
proposed non-naive algorithms MDCOP-Miner and Fast-
MDCOP-Miner. Both algorithms are Apriori-based. In
each iteration they discover all size k spatially prevalent
patterns and then apply a time prevalence based filter-
ing to detect MDCOPs. These patterns are used to gener-
ate size k + 1 candidates for MDCOPs. In comparison to
MDCOP-Miner, FastMDCOP-Miner uses more advanced
filters to reduce the number candidates that cannot meet
MDCOP requirements. Wang et al. (2019) have tried
to improve the efficiency of MDCOP mining by apply-
ing a graph based data structure. Unfortunately, some
parts of this solution have not been explained, making
it impossible to implement them in the way the authors
had planned. Since the algorithm is also based on Apriori
and the results presented show only slight improvements
compared to FastMDCOP-Miner, we will refer to Fast-
MDCOP-Miner as that method is well defined and is the
most popular approach to MDCOP mining.

Nevertheless, all Apriori-based methods can suffer from
large number of candidates when seeking long patterns
(dense datasets, low thresholds for spatial and time preva-
lence). Similar problems have been addressed in CPM (Tran
et al., 2021; Wang et al., 2009; Yao et al., 2016; Yoo &
Bow, 2011), where researchers have applied the concept of
maximal co-locations to reduce the number of calculations.

In the context of the presented article, particularly note-
worthy is the method proposed by Yao et al. (2016). The
authors adopted a maximal clique mining method to gener-
ate candidates for maximal co-locations and applied a hier-
archical verification to construct a condensed instance tree
for storing instances of candidates.

This paper adopts the concept of maximal co-location
patterns and defines a maximal MDCOP. We introduce a
non-Apriori-based algorithm for efficiently calculating such
patterns in spatio-temporal datasets. Our proposed solution
is inspired by the maximal clique mining method (Yao et al.,
2016) dedicated for CPM, however for efficient finding of
maximal MDCOPs we apply completely different structures
and supporting algorithms.

3 Definitions

Basic Definitions In our work we concentrate on dimen-
sionless objects. Each object is therefore characterized
by its coordinate (which might change over time) and a
type, called a spatial feature or feature for brevity. We
denote the set of features as F and assume that a total
order ≤F is defined on this set. Given any feature f ∈ F ,

its instance (i.e. spatial object) is denoted as if , while the
set of all the feature’s instances is denoted as If . Finally,
the set of all feature instances is denoted as I =

⋃
f∈F I

f .

As mentioned earlier, each spatial object has a coordinate.
We denote the set of all coordinates as K. The properties
of this set are irrelevant w.r.t. to this paper as the presented
algorithms will only be based on the neighborhood relation
given apriori. We introduce this notation solely for the pur-
pose of defining all the necessary formalisms.

We model a spatial (not a spatio-temporal) dataset
as a tuple Sp = (S, p) where S is a subset of I (S ⊆ I) and
p ∶ S → K is a function that associates a coordinate in K
with all the objects in S.

Any non-negative and symmetric function of two
coordinates, which computes a distance between
them is called a distance function and is denoted as
dist ∶ K × K → ℝ

+ ∪ {0} . Two objects are neighbors if the
distance between them is less than or equal to a neighbor-
hood threshold maxdist. Based on this we define a neighbor-
hood relation R(Sp,maxdist) as a set of all pairs of neighbor-
ing objects in the spatial dataset Sp . Formally,

For brevity, in the subsequent text, the relation R(Sp,maxdist)
is shortened to R if the arguments stem from the context.

Co‑location Pattern Mining Most of the presented work has
its roots in the paper (Shekhar & Huang, 2001) on co-loca-
tion pattern mining. Since some of the concepts introduced
there are relevant to this paper as well, we introduce the
basic definitions related to co-location pattern mining.

Any non-empty subset C of a set of features F (C ⊆ F) is
called a spatial co-location pattern. Spatial co-location pat-
terns represent set of features whose instances are frequently
located in their neighborhoods. Given a spatial co-location
pattern C, an instance IC of such pattern (spatial co-location
instance) is a set of objects which are neighbors (pairwise)
and have features in C. Formally,

In order to mine only interesting co-location patterns, some
measure of interestingness is needed. Shekhar & Huang
(2001) suggest to mine spatially prevalent co-locations and
propose a spatial prevalence measure called a participation
index (denoted Pi). In order to compute a participation index
of a co-location C, participation ratios (denoted Pr) of every
feature in C must be computed first. Given a spatial dataset
Sp , let �C

Sp
 be the set of all instances of C in Sp . A participation

ratio Pr of feature f ∈ C is defined as

(1)
R(Sp,maxdist) =

{(
i1, i2

)
∈ S × S ∶ dist(p(i1), p(i2)) ≤ maxdist

}

(2)∀if1 ,if2∈IC
(
if1 , if2

)
∈ R ∧

{
f ∶ if ∈ IC

}
= C ∧ |IC| = |C|

2008 Information Systems Frontiers (2023) 25:2005–2028

1 3

Participation index is the smallest participation ratio over
all features f ∈ C , i.e.

Participation index has the antimonotonicity property.
In order to specify which patterns are interesting, a mini-

mal prevalence threshold minprev is needed. We say that a
co-location C is spatially prevalent if its participation index
is equal to, or greater than the minprev threshold, i.e.

The problem of spatial co-location pattern mining, is a prob-
lem of efficiently finding all spatially prevalent co-location
patterns in a dataset Sp given minimal prevalence threshold
minprev. We denote a set of all spatially prevalent co-loca-
tion patterns of size s as ℂs(S

p,R).

Mixed‑Drove Co‑Occurrence Pattern Mining In this paper we
concentrate on one of the spatio-temporal extensions to co-
location pattern mining called Mixed-Drove Co-Occurrence
Pattern mining (Celik et al., 2008). Below we give defini-
tions which introduce this problem.

We shall start with extending the definitions from the pre-
vious paragraph to incorporate the time domain. Let T be a
finite set of time moments (i.e. timestamps). We assume that
the state of the world is known only at these time moments.
Hence, we define a spatiotemporal ST dataset as a set of pairs
S
p

t = (t, Sp) where t ∈ T and t is a unique identifier of the Spt
pair in the set, while Sp is some spatial dataset. Exemplary
spatiotemporal dataset is shown in Fig. 1.

In this particular spatio-temporal data mining problem,
we mine co-location patterns such that they are spatially
prevalent most of the time. In order to find such patterns,
a spatial co-location time prevalence measure is defined.

(3)Pr(f ,C, Sp) =

|||
{
if1 ∶ f1 = f ∧ if1 ∈ IC ∈ �

C
Sp

}|||
|||
{
if1 ∶ f1 = f ∧ if1 ∈ Sp

}|||

(4)Pr(C, Sp) = min{Pi(f ,C, Sp) ∶ f ∈ C}

(5)Pi(C, Sp) ≥ minprev

Given a pattern C, the spatial co-location time prevalence of
this pattern is a ratio of the number of spatial datasets in ST
in which C is prevalent to the number of all spatial dataset
in ST. Formally,

The time prevalence is antimonotonic similarly to the par-
ticipation index. A co-location pattern with time prevalence
greater than, or equal to, a minimal time prevalence thresh-
old mintprev is called a Mixed Drove Co-occurence Pattern
or MDCOP in short.

Mixed-Drove Co-Occurrence Pattern mining problem
is therefore a problem of efficiently finding all MDCOPs
in a spatiotemporal dataset ST given a minimal prevalence
threshold minprev and a minimal time prevalence threshold
mintprev. We denote a set of all size s MDCOPs as ℂT

s
(ST).

Since the number of MDCOPs can be very large, and
many of them are just subsets of the larger ones, mining of
all of the MDCOPs is not needed. In many cases mining only
the maximal MDCOPs is sufficient. A maximal MDCOP is
such an MDCOP that no proper superset of it is an MDCOP.

Our paper is devoted to the maximal MDCOP mining
problem, which is a problem of efficiently finding all maxi-
mal MDCOPs in a spatiotemporal dataset ST given a mini-
mal prevalence threshold minprev and a minimal time preva-
lence threshold mintprev. A set of all maximal MDCOPs is
denoted as ℂT (ST).

4 MAXMDCOP‑Miner

This section contains the main contribution of the paper.
We propose a novel algorithm called MAXMDCOP-Miner
which is able to efficiently mine maximal MDCOPs. We
adopt two parts of the solution presented by Yao et al. (2016)
which is devoted to mining maximal spatially prevalent co-
locations (not MDCOPS). In particular, we incorporate the
idea in which a maximal clique finding algorithm is used

(6)tprev(C) =
|{t ∶ (t, Sp) ∈ ST ∧ Pi(C, Sp) ≥ minprev}|

|ST|

Fig. 1 Exemplary dataset

2009Information Systems Frontiers (2023) 25:2005–2028

1 3

for generating candidates. We also adapt the co-location
instance compression techniques introduced there. However,
we substantially extend the ideas from (Yao et al., 2016) to
not only increase the compression ratio, but also to be able
to reuse some of the computation results multiple times.

On the other hand, we use different data structures.
For example, spatial co-location instance identification is
done via an iCPI-tree structure (Wang et al., 2009) since
it is better suited to support computations of participation
index values than InsTable structure presented by Yao et al.
(2016). Please refer to (Wang et al., 2009) for methods of
construction of such trees. In the following text, we assume
that an iCPI-tree is available for every spatial dataset Spt in
ST. Hence, given a feature instance if1 , the task of finding all
of its neighbors if2 such that f1 < f2 can be performed effi-
ciently. The set of such neighbors is denoted N(if1 , f2, Sp,R)
and formally defined as:

Moreover, we assume that the number of instances
count(f , S

p

t) of every feature f in every Spt ∈ ST is known.
Formally,

Such numbers can be easily found via a single database scan.
In this paragraph, we present a basic idea for MAXM-

DCOP-Miner algorithm. The detailed description is given
in the following sections. The algorithm consists in several
steps. Each step produces data required by the next one.
Step 1 finds prevalent size 2 co-location patterns in every
spatial dataset in ST. In Step 2, a time prevalence of every
co-location pattern found in Step 1 is computed and non
time prevalent patterns are filtered out. As a result, Step 2
produces all size 2 MDCOPs. In Step 3, using the approach
from (Yao et al., 2016), we generate “local” candidates for
maximal MDCOPs for every Spt ∈ ST . The resulting candi-
dates are sets of features such that every size 2 subset is a)
a spatially prevalent size 2 co-location pattern in Spt (Step 1)
and b) an MDCOP (Step 2). In Step 4, we construct a coher-
ent, global set of candidates for maximal MDCOPs. This is

(7)N
(
if1 , f2, S

p,R
)
=
{
if2 ∈ S ∶

(
if1 , if2

)
∈ R ∧ f1 < f2

}

(8)count
(
f , S

p

t

)
=
|||
{
f ∶ if ∈ S

p

t

}|||

done by processing the results obtained in Step 3. In particu-
lar, all duplicates and candidates that cannot be time preva-
lent are removed. In addition, situations in which candidates
are subsets of other candidates are resolved. This processing
is non-trivial and cannot be described in few words. Please
refer to the appropriate section in the following text for
details. In Step 5, the actual mining takes place. Every can-
didate is verified whether it is time prevalent or not. If not,
its subsets are tested. This verification requires computation
of the participation index of each candidate. Hence, Step 5
consists of two algorithms: the actual mining algorithm and
the participation index computation algorithm.

In the following sections, we give detailed descrip-
tion of each step along with the corresponding algorithm
pseudocodes.

4.1 Step 1. Find spatially prevalent size 2
co‑location patterns ℂ2(S

p

t
, R)

The aim of the first step is to find prevalent size 2 co-location
patterns (denoted ℂ2(S

p

t ,R)) for every spatial dataset Spt in
ST. These patterns are the basis for computations in subse-
quent steps.

Step 1 is presented in Algorithm 1. The main loop iter-
ates over each Spt ∈ ST (lines 1–14). To find the prevalent
size 2 patterns we scan the iCPI-trees associated with every
spatial dataset in ST to retrieve neighbor pairs (if1 , if2) where
f1 < f2 (line 3). The results can be easily grouped by (f1, f2)
by sorting them (line 4). Each such group corresponds to a
spatial co-location {f1, f2} . For each such a co-location (lines
5–13), based on the retrieved pairs, we compute the corre-
sponding participation index (lines 6–9) and compare it with
the minimal prevalence threshold minprev (line 10). If the
result is greater or equal, the co-location {f1, f2} is added to
the result set (line 11).

Example 1 Assuming that the spatiotemporal dataset
from Fig. 1 is mined and minprev threshold is equal to
0.5, the size 2 spatial co-location patterns for each spa-
tial dataset Spt are presented in Table 1 along with their
participation indices.

Table 1 Spatial co-location
patterns of size 2 ℂ2(S

p

t ,R)
S
p

1
S
p

2
S
p

3

pattern Pi pattern Pi pattern Pi pattern Pi pattern Pi

{A,B} 1 {C,D} 1 {A,B} 1 {C,D} 0.5 {A,B} 1
{A,C} 1 {E,F} 1 {A,C} 0.5 {C,E} 0.5 {A,D} 1
{A,D} 1 {B,C} 0.5 {C,F} 0.5 {B,C} 1
{B,C} 1 {B,D} 1 {D,F} 0.5 {B,D} 1
{B,D} 1 {B,F} 0.5 {C,D} 1

2010 Information Systems Frontiers (2023) 25:2005–2028

1 3

4.2 Step 2. Find size 2 MDCOPs ℂT
2
(ST)

In the second step, we aggregate the results obtained
in the previous step in order to find a set of all size 2
MDCOPs (denoted ℂT

2
(ST)). Note that the patterns

obtained in Step 1 are candidates for size 2 MDCOPs.
In order to determine which of them are time prevalent,
it is sufficient to count, for each unique co-location pat-
tern from Step 1, the number of ℂ2(S

p

t ,R) sets in which
it appears.

The second step is presented in Algorithm 2. In a loop
(lines 3–7), for every spatial dataset we iterate over every
pattern in the corresponding set of patterns obtained in Step 1
(lines 4–6) and count the number of times each of them
appears in spatial datasets. In the second loop (lines 8-13), for
every unique pattern we compute its time prevalence based
on the obtained counter value (line 9). In case the pattern is
time prevalent, we add it to the result set (line 11).

Example 2 In this example we continue the mining pro-
cess from Example 1. We assume that mintprev threshold
is equal to 2

3
 . All distinct prevalent spatial co-location

patterns found in Step 1 are presented in Table 2. Given
the value of mintprev threshold, each such candidate
should appear in at least two out of three ℂ2(S

p

t ,R) sets
obtained in Step 1. The co-location patterns in Table 2
are divided into two columns: non time prevalent and
time prevalent. By definition, time prevalent ones are
spatio-temporal co-location patterns of size 2.

4.3 Step 3. Build local candidates for maximal
MDCOPs K(Sp

t
) for Sp

t
∈ ST

In this step, we find initial candidates for maximal MDCOPs.
In order to do so, we incorporate a slightly modified
approach from (Yao et al., 2016). The cited paper presents a
method for mining maximal spatial co-location patterns. In
that approach, the candidates for such patterns are maximal
cliques (obtained via Bron-Kerbosch algorithm with later
modifications) in a specially constructed graph G(V, E). In
this graph, vertices correspond to features (V ⊆ F), while
edges correspond to size 2 spatially prevalent co-location
patterns (E = C2(S

p

t)). A maximal clique in such a graph is
a set of features, where each pair is a spatially prevalent co-
location pattern and no more features can be added without

Algorithm 1 Find spatially
prevalent size 2 co-location
patterns

Table 2 Spatiotemporal co-location patterns of size 2 ℂT
2
(ST)

All distinct co-locations from step 1

Non time prevalent time prevalent ℂT
2
(ST)

pattern tprev Pattern tprev

{B,F} 1/3 {A,B} 1
{C,E} 1/3 {A,C} 2/3
{C,F} 1/3 {A,D} 2/3
{D,F} 1/3 {B,C} 1
{E,F} 1/3 {B,D} 1

{C,D} 1

2011Information Systems Frontiers (2023) 25:2005–2028

1 3

Algorithm 2 Finding size 2
MDCOPs

Table 3 Local candidates
for maximal spatiotemporal
co-locations K(Spt) for Spt ∈ ST

Dataset C2(S
p

t) ∩ C2(ST) Graph Maximal cliques
(candidates)

S
p

1
{A,B} , {A,C} , {A,D} , {B,C} , {B,D} , {C,D} {A,B,C,D}

S
p

2
{A,B} , {A,C} , {B,C} , {B,D} , {C,D} {A,B,C} , {B,C,D}

S
p

3
{A,B} , {A,D} , {B,C} , {B,D} , {C,D} {A,B,D} , {B,C,D}

Algorithm 3 Building local
candidates for maximal
MDCOPs

2012 Information Systems Frontiers (2023) 25:2005–2028

1 3

breaking this property. Due to the antimonocity of the used
prevalence measure, all size 2 subsets of any spatially prev-
alent co-location pattern must also be spatially prevalent.
Hence, a maximal clique in graph G(V, E) is a candidate for
a maximal spatially prevalent co-location pattern.

We modify the above approach by limiting the edge set
to such co-location patterns that appear in C2(S

p

t) and are
MDCOPs as well (E = C2(S

p

t) ∩ C2(ST)). Thus, the candi-
dates contain only spatially and time prevalent pairs of fea-
tures. Due to the antimonotonicity of the time prevalence,
the candidates found in this step are the biggest co-location
patterns that: a) might be MDCOPs and b) can be spatially
prevalent in the corresponding spatial dataset.

The pseudocode for Step 3 is presented in Algorithm 3.
We iterate over every dataset in ST (lines 1–5). For each
such dataset, we create the graph described earlier (lines 2
and 3). Finally, we search for maximal cliques by using the
Bron-Kerbosch algorithm (line 4).

Example 3 We continue the Example 2. For each spatial
dataset Spt we find a set of locally spatially prevalent spa-
tiotemporal co-location patterns C2(S

p

t) ∩ C2(ST) . Those
sets are presented in second column of Table 3. We treat
those sets as edges in a graph. Each corresponding graph is
presented in the third column of the table. We analyze the
graphs to find maximal cliques using Bron-Kerbosch algo-
rithm. Maximal cliques are presented in the fourth column
of the table.

4.4 Step 4. Build global candidates for maximal
MDCOPs K(ST)

The candidates obtained in Step 3 must be further refined
in order to get a coherent, global set of candidates. This is
needed because candidates found in one of the datasets in
ST might be subsets of, or be equal to, candidates found in
other spatial datasets. This problem can be easily solved by
removing duplicates and subsets. However, the candidates
found in the previous step might be also not time prevalent.
While time prevalence is accurately verified during the sub-
sequent step, we can perform some initial filtering based
on the information obtained up to now. Notice, that we can
compute an upper bound on the candidate’s time preva-
lence by finding the number of times it appears in K(Spt) sets
(either equal to or as a subset of another candidate). If the
upper bound is less than the mintprev threshold, the candi-
date cannot be time prevalent.

At this moment, we can choose to use either a top-down
approach or a bottom-up approach to find global candi-
dates. A top-down approach is very similar to the one used
in Step 5 for the actual mining, while bottom-up approach
is based on the well-known Apriori algorithm (Agrawal &
Srikant, 1994). Below we describe the bottom-up method,

which has shown to behave better in our internal experi-
ments. For a top-down approach we refer the reader to a
conference version of this paper (Andrzejewski & Boinski,
2021).

The Apriori algorithm can be used to find (sub)sets such
that the value of their interestingness measure (e.g. support,
participation index) is greater than the specified threshold.
The measure itself needs to be antimonotonic. The Apriori
algorithm is a generate-and-test approach in which smallest
possible candidates for result sets are generated first and
then the value of the interestingness measure is computed
for each of them. Only candidates with the interestingness
greater than the specified threshold are retained. Based on
the retained sets, new, larger candidates are generated and
the process is repeated. The algorithm ends when no more
candidates can be generated. Since the Apriori method
generates its own candidates, there might be some ambigu-
ity with the term “candidate”. Notice that it may mean a
candidate in MAXMDCOP-miner and a candidate in the
Apriori method. For the clarity, we call the Apriori candi-
dates “r-candidates”.

In this step, we want to use the Apriori to find co-loca-
tions that a) have an upper bound on the time prevalence
greater than the mintprev threshold and b) are maximal. We
adapt the algorithm as follows. The initial set of r-candidates
is built from the set ℂT

2
(ST) of all size 2 MDCOPs found in

Step 2. R-candidates one size larger are created by joining
two smaller co-locations by their prefix in the same way as
in the traditional Apriori (Agrawal & Srikant, 1994) or in the
traditional co-location pattern mining (Shekhar & Huang,
2001). As a measure of interestingness we use the upper
bound on time prevalence computed based on K(Spt) sets as
described above. This upper bound is antimonotonic since
given two co-locations C and C′ such that C ⊂ C′ , C can only
be subset of more sets in K(Spt) for Spt ∈ ST than C′ . Finally,
during the mining process, all non maximal co-locations
are removed if no longer needed. The resulting maximal co-
locations are candidates for Step 5 of MAXMDCOP-miner.

The Apriori-based bottom-up algorithm for building
global candidates is shown in Algorithm 4. The algorithm
stores computed co-locations in sets denoted as K′

i
 , where

i is the size of the co-locations. We start by initializing the
set K′

2
 (line 1). Based on this set, a new set of size 3 r-candi-

dates is created (line 2). We also keep rcsize variable which
stores a current size of r-candidates. Before the Apriori loop
starts, a new set K′

rcsize
 (in this case K′

3
) is initialized (line 4).

While the set of r-candidates is not empty, we repeat the
main loop (lines 5–16). For each candidate, (line 6) we com-
pute an upper bound of its time prevalence (lines 7–9). If
the computed upper bound is greater than the minimal time
prevalence threshold, the r-candidate is stored in K′

rcsize
 set

(line 10). Once all the r-candidates have been verified, we
remove all co-location patterns that became non maximal

2013Information Systems Frontiers (2023) 25:2005–2028

1 3

(line 12). Next, new candidates are created, rcsize varia-
ble is updated and a new set K′

rcsize
 set is initialized (lines

13–15). Once the main loop ends, the K′
i
 sets store maximal

co-locations such that their upper bound on time prevalence
is greater than the mintprev threshold. The final K(ST) set is
computed as a sum of all K′

i
 (line 17).

Example 4 In the Example 3 we have found local candidates
for maximal spatio-temporal co-locations (see Table 3). We
can use them in order to compute an upper bound on can-
didate’s time prevalence. In order to generate all maximal
candidates, we use an Apriori-based bottom-up approach

presented in Algorithm 4. The initial set of size 3 r-candi-
dates is generated from the candidates in K�

2
= ℂ

T
2
(ST) . Four

r-candidates are generated:

• {A,B,C} : join {A,B} and {A,C} , {B,C} is in ℂT
2
(ST),

• {A,B,D} : join {A,B} and {A,D} , {B,D} is in ℂT
2
(ST),

• {A,C,D} : join {A,C} and {A,D} , {C,D} is in ℂT
2
(ST),

• {B,C,D} : join {B,C} and {B,D} , {C,D} is in ℂT
2
(ST).

For each of the r-candidates we check whether they are a
subset of at least one candidate for every Sp

i
 . Based on the

number of such datasets we estimate the upper bound on
the time prevalence. The results are presented in Table 4.
Since r-candidate {A,C,D} cannot be time prevalent,
K�
3
= {{A,B,C}, {A,B,D}, {B,C,D}} . Before the next

Apriori iteration we remove all the subsets of sets in K′
3

from K′
2
 leaving it empty. Based on the sets in K′

3
 we attempt

to create new r-candidates. Only r-candidates {A,B,C}
and {A,B,D} can be joined into {A,B,C,D} , but since
{A,C,D} is not time prevalent, then {A,B,C,D} cannot be
time prevalent as well. Hence, the set of global candidates
K(ST) = K�

2
∪ K�

3
= {{A,B,C}, {A,B,D}, {B,C,D}}.

4.5 Step 5. Mine maximal MDCOPs ℂT(ST)

In the last step, we use all the results obtained previously to
mine maximal MDCOPs. In order to achieve this result, we

Table 4 Mining global candidates

r-candidate appears in upper bound status

{A,B,C} S
p

1
 ({A,B,C,D}) 2

3
possibly time prevalent

S
p

2
 ({A,B,C})

{A,B,D} S
p

1
 ({A,B,C,D}) 2

3
possibly time prevalent

S
p

3
 ({A,B,D})

{A,C,D} S
p

1
 ({A,B,C,D}) 1

3
not time prevalent

{B,C,D} S
p

1
 ({A,B,C,D}) 1 possibly time prevalent

S
p

2
 ({B,C,D})

S
p

3
 ({B,C,D})

Algorithm 4 Find global candi-
dates for maximal MDCOPs

2014 Information Systems Frontiers (2023) 25:2005–2028

1 3

use the top-down approach. We verify whether the candi-
dates obtained in the previous step are really time prevalent
or not. If a candidate turns out to not be time prevalent, all
of its subsets (one item smaller) are analysed. We augment
this basic top-down schema with multiple optimizations in
order to reduce the execution time and memory footprint.

To compute the time prevalence, we need to know in
which spatial datasets in ST the candidate is spatially preva-
lent. Unfortunately, the participation index computations are
expensive. We approach this problem in two ways. First,
we incorporate several optimizations which reduce the
required number of spatial prevalence computations. Sec-
ond, we provide a novel participation index computation
algorithm, which uses special data structures to cache and
reuse intermediate results of computations to reduce the cost
as much as possible. Since this algorithm is rather complex,
we describe it separately in the next section (Section 4.6).

The pseudocode of Step 5 is presented in Algorithm 5.
The first operation is the initialization of three results caches
(line 2). Each cache is a family of data structures, one for
each spatial dataset in ST. The lpct structures are sets of co-
locations that are spatially prevalent at corresponding Spt , but
are not time prevalent. Since any subset of such a co-location
is also spatially prevalent, storing this information allows to
skip the participation index computations in some situations.
Similarly, the npct structures are sets of smallest co-locations
in corresponding Spt that are known to not be spatially preva-
lent. If a candidate contains such a co-location, it cannot be
spatially prevalent as well. Finally, pct structures are asso-
ciative arrays that map co-location patterns to correspond-
ing participation indices in the corresponding Spt (if known).
Please note that npc and pc caches are modified only by the
participation index computation algorithm described in the
next section.

After the caches have been created, the set Y is initial-
ized with maximal MDCOP candidates obtained in Step 4
(line 3). Since we use a top-down approach, candidates are
processed from the largest to the smallest. In each iteration
of the main algorithm loop (lines 3–37), the largest candi-
dates are moved from the set Y into the set M (line 10). Since
new candidates can be generated during mining, a structure
for storing them is needed. Thus, a set N is created (line 11).

The candidates from the set M (the largest, still unverified
candidates) are processed in the outer for loop (lines 12–34).
A candidate co-location pattern currently processed in the
outer loop is denoted as P. For each such candidate we keep
4 sets: TPe , TPc , TNe and TNc (initialized in line 13). The
TP sets store time moments t of Spt datasets at which the
candidate P is known to be spatially prevalent. The TN sets
store time moments at which the candidate P is known to
not be spatially prevalent. The difference between c and e
variants of these sets is that for c sets the candidate’s spatial
prevalence is determined based on the participation index

computations, while for e, the candidate’s spatial prevalence
stems from results obtained in previous iterations.

Sizes of the TP and TN sets allow to find upper and lower
bounds on a candidate’s time prevalence. A lower bound
lb(P) can be computed by assuming that the candidate is spa-
tially prevalent only in datasets Spt for t ∈ TPc ∪ TPe . Hence,

Similarly, upper bound ub(P) can be computed by assuming
that the candidate is spatially prevalent in all datasets Spt in
ST except for the ones with time moments in TNc ∪ TNe .
Thus,

For each of candidates P, we attempt to determine whether
they are time prevalent based on the information obtained up
to now. This is done in the first inner for loop (lines 14–19).
In each iteration, we check results related to the one spatial
dataset Spt from ST. We check whether the candidate is a sub-
set of any local candidates in K(Spt) . The K(Spt) set contains
all maximal feature sets (co-location patterns) such that they
a) might be an MDCOP and b) can be spatially prevalent
in the corresponding spatial dataset. If the candidate P is
not a subset of one of them, it either cannot be an MDCOP
or cannot be spatially prevalent in the corresponding spa-
tial dataset. In either of cases, we know that the current
spatial dataset Spt cannot contribute to the candidate’s time
prevalence. Thus, the time moment t is added to the TNe set
(line 15). Second check uses the non prevalent co-locations
cache npct . As mentioned before, the cache contains the
smallest known patterns that are not spatially prevalent. If
this set contains any pattern that is a subset of the candidate
P, the candidate cannot be spatially prevalent and thus, the
time moment t should be added to the TNe set (line 16). Third
and last check makes use of the lpct cache introduced earlier.
If the candidate P is a subset of a co-location pattern that
is spatially prevalent in Spt , it must be spatially prevalent as
well (due to the antimonotonicity of the participation index
measure). In such a case, the time moment t is inserted into
the TPe set (line 17).

Each iteration of the first inner for loop might update
either the TPe or the TNe set. Hence, with each itera-
tion tighter bounds on candidate P time prevalence can
be computed. If lb(P) ≥ mintprev (P is time prevalent) or
ub(P) < mintprev (P is not time prevalent), no further com-
putations are necessary (line 18). However, if neither of
these conditions is fulfilled by the end of the first inner loop,
accurate computations are required (line 20).

Accurate computations are performed in the second inner
for loop (lines 21–26). This loop iterates over all Spt datasets

(9)lb(P) =
|TPe| + |TPc|

|ST|
.

(10)ub(P) = 1 −
|TNe| + |TNc|

|ST|
.

2015Information Systems Frontiers (2023) 25:2005–2028

1 3

for which the spatial prevalence status of candidate P is not
yet known. In each iteration, we compute the candidate’s
participation index (line 22) using Algorithm 7 described
later in Section 4.6. During computations, the npc and pc
caches are updated as well. Depending on the result, the time
moment of the current spatial dataset is added either to TPc
or TNc set (lines 23 and 24).

Based on the updated TPc and TNc sets, lower lb(P) and
upper ub(P) bounds on the candidate’s time prevalence are
computed. If lb(P) ≥ mintprev or up(P) < mintprev , further
computations can be aborted (line 25).

After the second inner for loop, we check whether the
candidate is time prevalent. If it is, the set ℂT (ST) is updated
accordingly (lines 28 and 29). If it is not, we add all of the
candidate’s subsets (one item smaller) to the set N (line 31).
Moreover, the lpct sets are updated accordingly (line 32).

After the outer for loop ends, all the candidates in M are
processed. However, before the next iteration of the main
loop can be started, it is necessary to filter out all non max-
imal candidates in the set N. For this purpose we search
ℂ

T (ST) for supersets of candidates in N. Only candidates
without supersets are added to the set Y (line 35) to be pro-
cessed in the subsequent iteration of the main loop.

The main loop is terminated either when the set Y is
empty (line 4) or only size 2 candidates are left (line 6).
Note that size 2 MDCOPs were already mined in Steps 1 and
2. Thus, no costly computations are necessary. In order to
find maximal size 2 MDCOPs, it is sufficient to compute the
intersection Y ∩ ℂ

T
2
(ST) (lines 6-8). This also explains the

condition in line 32. Since the smallest analysed candidates
are size 3, then the lpct cache should store only candidates
with more than 3 items.

Once the while loop ends, the set ℂT (ST) stores all the
maximal MDCOPs.

Example 5 In this example, we refer to three tables: Table 5,
6 and 7. The figures in the row “Data structures” of these
tables however are not explained. They will be covered in the
example for the participation index computation algorithm
in the Section 4.6.

In the Example 4 three global candidates were found:
{A,B,C} , {A,B,D} and {B,C,D} . Since all of the candidates
are of the same size, all of them are processed in the same
iteration of the main loop of the Step 5. Moreover, let us
assume that they are processed in the order given above.

First, the candidate {A,B,C} is processed. All the com-
putations regarding this candidate are presented in Table 5.
Before the actual participation index computations take
place, the pattern is checked against the sets of local can-
didates and the npct and lpct caches (see row “Estimating
results”). Analysis of Sp

1
 and Sp

2
 spatial datasets, does not

yield any results. Hence, the TNe and TPe sets are empty and

consequently lower and upper bounds on the time prevalence
are 0 and 1 respectively. However, in spatial dataset Sp

3
 , the

candidate {A,B,C} is not a subset of any local candidate and
thus it cannot be spatially prevalent at the corresponding
time moment. Consequently, TNe = {3} and upper bound on
the time prevalence is lowered to 2/3.

Table 5 Processing of the candidate pattern {A,B,C}

Pattern {A,B,C}

Spatial dataset S
p

1
S
p

2
S
p

3

Estimating TNe = { } TNe = { } TNe = {3}

results TPe = { } TPe = { } TPe = { }

lb = 0 lb = 0 lb = 0

ub = 1 ub = 1 ub = 2∕3

Accurate Pi = 1 Pi = 0 −
computations TNc = { } TNc = {2} −

TPc = {1} TPc = {1} −
lb = 1∕3 lb = 1∕3 −
ub = 2∕3 ub = 1∕3 −
pc1[{A,B}] = 1 pc2[{A,B}] = 1 −
pc1[{A,B,C}] = 1 npc2 = {{A,B,C}} −

Data structures −

Table 6 Processing of the candidate pattern {A,B,D}

Pattern {A,B,D}

Spatial dataset S
p

1
S
p

2
S
p

3

Estimating TNe = { } TNe = {2} TNe = {2}

results TPe = { } TPe = { } TPe = { }

lb = 0 lb = 0 lb = 0

ub = 1 ub = 2∕3 ub = 2∕3

Accurate Pi = 1 − Pi = 1

computations TNc = { } − TNc = {}

TPc = {1} − TPc = {1, 3}

lb = 1∕3 − lb = 2∕3

ub = 2∕3 − ub = 2∕3

pc1[{A,B,D}] = 1 − pc3[{A,B}] = 1

− pc3[{A,B,D}] = 1

Data structures −

2016 Information Systems Frontiers (2023) 25:2005–2028

1 3

Next, the accurate computations take place. The par-
ticipation index computed for Sp

1
 is 1. Hence, TPc set is

updated to store time moment 1 and the lower bound on
the time prevalence is updated to 1/3. As a side effect
of the participation index computation algorithm (see
Section 4.6), pc1 cache is updated to store participation
indices for patterns {A,B} and {A,B,C} (both equal to 1).
Next, accurate computations for Sp

2
 are performed. This

time, the participation index is equal to 0, which means
that at the time moment 2, the candidate {A,B,C} is not
spatially prevalent. The TNc set is updated accordingly as
well as lower and upper bounds. Since the upper bound
is now equal to 1/3 (which is less than mintprev = 2∕3),
we know that the candidate is not time prevalent. As a
side effect of the participation index computation algo-
rithm, pc2 cache is updated with the participation index
of {A,B} . Moreover, the pattern {A,B,C} is stored in the
npc2 cache.

Since {A,B,C} candidate is not time prevalent, the N
set is updated with all of the candidate’s subsets (one item
smaller). Thus, N = {{A,B}, {A,C}, {B,C}}.

The candidate {A,B,D} is processed next. All the com-
putations regarding this candidate are presented in Table 6.
Based on the contents of the caches and the sets of local
candidates we are able to determine that the candidate can-
not be spatially prevalent at Sp

2
 . Consequently, TNe = {2}

and upper bound on time prevalence is ub = 2∕3 . Accurate
computations are therefore needed only for Sp

1
 and Sp

3
 . In both

cases, the computed participation index is equal to 1. Hence,
the lower bound on time prevalence is first updated to 1/3

and next to 2/3. Since lower bound is greater or equal to
mintprev = 2∕3 , we know that this candidate is time preva-
lent. As a side effect of the participation index computation
algorithm pc1 cache is updated with the participation index
of {A,B,D} . Note that the participation index of the prefix
{A,B} was computed in previous iterations. Moreover, pc3
cache is updated with participation indices of {A,B} and
{A,B,D} at Sp

3
.

Finally, the candidate {B,C,D} is processed. All the com-
putations regarding this candidate are presented in Table 7.
Analysis of caches and local candidates does not yield any
usable information. Hence, no results could be estimated
and the lower and upper bound at this step are respectively
0 and 1. Accurate computations for Sp

1
 yield the participa-

tion index equal to 1, which raises the lower bound to 1/3.
Moreover, pc1 cache is updated with participation indices of
{B,C} and {B,C,D} . Accurate computations for Sp

2
 yield par-

ticipation index equal to 0.5, which is still greater or equal
to minprev = 0.5 . Thus, the candidate is spatially prevalent
at Sp

2
 and consequently, the lower bound on the time preva-

lence can be raised to 2/3. Since lower bound is greater or
equal to mintprev = 2∕3 , we know that this candidate is time
prevalent and no subsequent computations are necessary.
Moreover, the pc2 cache is updated with participation indi-
ces of {B,C} and {B,C,D}.

Since all size 3 candidates are now processed, we need to
determine the set of the next candidates. We remove from
the set N all subsets of {A,B,D} and {B,C,D} . Only the
set {A,C} remains, which in the absence of other candi-
dates of this size in the K(ST), is the only size 2 candidate.

Table 7 Processing of the
candidate pattern {B,C,D}

Pattern {B,C,D}

Spatial dataset S
p

1
S
p

2
S
p

3

Estimating TNe = { } TNe = { } TNe = { }

results TPe = { } TPe = { } TPe = { }

lb = 0 lb = 0 lb = 0

ub = 1 ub = 1 ub = 1

Accurate Pi = 1 Pi = 0.5 −
computations TNc = {} TNc = {} −

TPc = {1} TPc = {1, 2} −
lb = 1∕3 lb = 2∕3 −
ub = 1 ub = 1 −
pc1[{B,C}] = 1 pc2[{B,C}] = 0.5 −
pc1[{B,C,D}] = 1 pc2[{B,C,D}] = 0.5 −

Data structures −

2017Information Systems Frontiers (2023) 25:2005–2028

1 3

Candidates of this size can be easily verified, since their time
prevalences were computed in Step 2. In Table 2 we can see
that the candidate {A,C} is time prevalent and thus it should
be included in the result set.

Finally, we obtain three time prevalent maximal
MDCOPs: {A,B,D} , {B,C,D} and {A,C}.

Algorithm 5 Mining maximal
MDCOPs

4.6 Step 5a. Computing spatial prevalence

As we have mentioned before, the participation index com-
putations are the most time consuming part of the algorithm.
In this section, we provide an efficient algorithm which is
used in Step 5 described in the previous section. The new

2018 Information Systems Frontiers (2023) 25:2005–2028

1 3

algorithm is inspired by the solutions presented by Yao et al.
(2016). In the approach presented in that paper, authors com-
press co-location instances of a single co-location pattern by
inserting them into a trie structure (Fredkin, 1960). In our
approach, we extend this solution by introducing a novel
method for storing such tries. The new method not only fur-
ther improves the compression ratio of co-location instances,
but also allows to improve the performance of co-locations
participation index computations and reuse partial results
when finding instances of another co-location with a com-
mon prefix. Hence, this section can be logically divided into
two parts: description of the data structures and description
of the participation index computation algorithm. These
parts are presented below as two subsections.

4.6.1 Data structures

A trie is a well known data structure, initially introduced for
indexing and compressing of strings (Fredkin, 1960). Never-
theless, any sequence can be stored in it. The trie is a tree in
which a sequence is represented as a path from the root to a
leaf. If multiple sequences are inserted, common sequence
prefixes are compressed, since they share the same paths.

In order to insert either a co-location pattern or a
co-location pattern instance into a trie, we must represent it
as a sequence. To convert a set to a sequence, all the items in
it must be sorted. Hence, a total order on the set of features
F is needed. Since there are no other requirements, such
order is easy to define. Thus, both co-location patterns and
co-location pattern instances can be stored in a trie. Because
construction of tries is beyond the scope of this paper, we will
not cover this subject. We refer the reader to (Fredkin, 1960;
Yao et al., 2016) for details.

In the following paragraphs we gradually introduce the
data structures used in our algorithm.

In Fig. 2, we present an exemplary trie for a set of
instances of a co-location pattern {A,B,C,D} . In our
approach we store levels of a trie as arrays. Each entry in
such an array is a triple (if , pos, visited) , where if is a feature
instance, pos is an index of a parent entry in a higher level

array and visited is a flag which allows to optimize preva-
lence computations. Such arrays are called the level arrays.

Notice, that aside from instances of a single co-location,
the same trie can be used to store instances of the co-loca-
tion’s prefixes. For example, a trie that stores instances of
co-location {A,B,C,D} , can also store instances of {A,B,C}
and {A,B} . This is due to the fact that prefixes of co-location
instances are instances of the corresponding co-location
prefix. Thus, in order to retrieve all instances of some co-
location prefix, one can follow paths from the nodes at level
corresponding to the prefix’s size towards the root of the
trie. Based on these observations, we store instances of a
co-location and all of its prefixes in a single trie. Figure 3
shows an exemplary trie which compresses instances of co-
location {A,B,C,D} and all of its prefixes. We call such tries
the instance tries.

The presented compression method can be improved even
further. Consider two co-locations with a common prefix,
e.g. {A,B,C,D} and {A,B,E} . A very important observation
is that the instance tries for these two co-locations will have
the same first n levels, where n is the size of the common
prefix. For the two exemplary co-locations, two first levels
of the instance tries (without the root) will be the same.
Thus, when finding instances of a co-location, we can reuse
several first levels of a trie corresponding to another co-loca-
tion with a common prefix. For example, when building an
instance trie for co-location {A,B,E} , we can reuse two first
levels of a trie for co-location {A,B,C,D} assuming it has
been built earlier. Moreover, since these levels are the same,
we do not need to store them multiple times in memory.

In order to take advantage of the last observation, we
need to create a more complex data structure. We propose
a two part structure. This first part is a collection of level
arrays. It can be anything that allows for random access,
e.g. another array. By storing the level arrays in a single
collection, we lose information about which level arrays
correspond to which tries. This information is stored in
the second part of the data structure. The second part of
the structure is also a trie, however it stores co-location
patterns instead of co-location pattern instances. Such a
trie is called a co-location trie. In this trie, a single node

Fig. 2 A trie with co-location instances

Fig. 3 A trie with instances of a co-location and its prefixes

2019Information Systems Frontiers (2023) 25:2005–2028

1 3

corresponds to a single co-location pattern, which is
composed of features on a path from the node to the root.
Each node stores a reference to a level array in the collec-
tion. Thus, to reconstruct an instance trie corresponding
to some co-location, one needs to retrieve all references
to level arrays on the path from the co-location trie’s
node to the root. Due to the specificity of co-location
patterns, the above idea needs a slight tweak to make it
work correctly. Note that the first level of the instance
trie corresponds to single feature instances. Hence, every
level array corresponding to the first level of the trie
would need to contain all feature instances of a single
feature. To avoid this, we propose to create first and sec-
ond level of the instance trie together and store only such
instance pairs that are neighbors. In other words, we do

not store size 1 co-location pattern instances. As will be
apparent later, such instances are not needed anyway. As
a consequence to this change, the nodes at the first level
of the co-location trie should not store any references.
On the other hand, nodes at the second level should store
references for the first and the second level of the cor-
responding instance trie. Figure 4 shows two instance
tries for a set of co-location instances, as well as their
representation in the form of a co-location trie and a cor-
responding collection of level arrays.

4.6.2 Participation index computations

Having described the data structures, we now continue to the
participation index computation algorithm. The algorithm

Algorithm 6 Building a co-
location trie

Fig. 4 A co-location tree with
the corresponding collection of
level arrays

2020 Information Systems Frontiers (2023) 25:2005–2028

1 3

itself can be divided into two parts. The first part is used to
construct an instance trie of a candidate and store it in the
level array collection as well as the co-location trie. If pos-
sible, previously computed level arrays should be reused.
The first part is presented in Algorithm 6. The second part is
executed once the complete instance trie is known. This part
computes the actual participation index value. It is presented
in Algorithm 7.

Let us start with the first part (Algorithm 6). The first
task performed in this algorithm is sorting the candidate
P, so that it becomes a sequence. Next, we determine
how many levels of a candidate’s instance trie were built
previously (line 2). If all levels are available, subsequent
computations are aborted (line 3). If not all levels have

been built, there are two other possibilities. There are
either no available results to reuse or there exists a
partially built instance trie (there are at least two first
levels available, i.e. at least two first features of P are in
the co-location trie).

In the first case, we need to build two first levels of the
trie (lines 5–13) and then proceed to the second case. In the
second case, we build all the remaining levels (lines 15–23).

The first two levels can be easily constructed based on
the data stored in the iCPI-tree structure. First, new level
arrays are allocated (line 5). Next, we scan two first levels
of the iCPI-tree corresponding to the current spatial dataset
to retrieve instances of a feature V[0] (the first feature in an
ordered candidate P) with neighbors (lines 6–11). For each

Algorithm 7 Computing the
spatial prevalence (the partici-
pation index).

2021Information Systems Frontiers (2023) 25:2005–2028

1 3

such instance, we determine whether it has neighbors with
a feature V[1] (line 7). If such neighbors exist, then appro-
priate entries are added to the new level arrays: L0 and L1
(lines 8–10). Finally, the co-location trie is updated with
nodes representing size 2 prefix of the candidate. The node
corresponding to the feature V[1] is associated with refer-
ences to the level arrays L0 and L1.

Construction of the remaining levels starts with the
retrieval of the references to the levels that have already been
built (line 15). Subsequent levels are constructed one by one
in a loop (lines 16–23). A new level array is constructed as
follows. We start by scanning the entries in the level array
of the previous (i.e. parent) level (lines 18–21). Each of
these entries corresponds to an instance of the candidate’s
prefix with the appropriate length. In order to build a next
level, we must find common neighbors with the feature
V[j] of all feature instances in the prefix instance (i.e. all
the feature instances on the path to the root), where j is the
number of the new level. Neighbors with feature V[j] can be
easily retrieved from iCPI-tree. Thus, to find such common
neighbors, we just need to intersect neighbor sets retrieved
from the iCPI-tree for each of the feature instances on the
path to the root (line 19). Each such common neighbor is
used to create a new entry in the new level array (line 20).
After the new level array is finished, a new node is appended
to the co-location trie along with the reference to the newly
created level array (line 22). The algorithm ends once all the
level arrays are inserted into the co-location trie. Please note
that the above method is an adaptation of the co-location
instance identification algorithm presented by Wang et al.
(2009).

We shall now describe Algorithm 7, which is used
for computing participation indices of candidates. As
will be shown later, the algorithm not only computes the
participation index of a candidate, but also of all of its
prefixes.

In order to compute participation index of a candidate
co-location P, it is necessary to find unique feature instances
appearing in the candidate’s instances. Therefore, the first
step of this algorithm is the execution of Algorithm 6 to
ensure that all candidate’s instances have been identified
(line 2). Next, the corresponding instance-trie is retrieved
from the co-location trie in the form of an array L of refer-
ences to consecutive level arrays (line 3). The visited flags in
the retrieved level arrays are reset to false since they might
have been modified by some previous computations (line 4).
To obtain unique feature instances mentioned earlier, we
need a data structure for storing them and removing the
duplicates. For this purpose we allocate an array of sets U,
one set for every feature of P (line 5).

For the sake of clarity, we will now skip some parts of
the code to explain the main idea behind the algorithm. Let
us assume that the outer for loop (lines 7 and 23) does not

exist, and the lev variable is constant and equal to |P| − 1 .
Note, that in such a case P� = P and we compute only the
participation index of the candidate P.

We retrieve feature instances from the instance trie by
traversing it in a specific way. We start at each leaf (entry
at the lowest level of the instance trie - level number lev)
(lines 10–20) and we travel towards the root (lines 13–19).
We store all feature instances on the path in the correspond-
ing sets in the U array (lines 11 and 16). Note that since this
is a tree, it might happen that the same node can be reached
from multiple lower level entries. To cope with this problem,
we use the aforementioned flag visited, to mark visited nodes
(line 17). Note that if a node has already been visited, then
all of its parents must have been visited as well. Thus, when
a visited node is reached, the travel towards the root can be
aborted (line 15). After all paths have been retrieved, and
the corresponding feature instances stored in the U sets, the
participation index is computed (line 21). The value of the
participation index is stored in the pct cache (described in
the previous section) and returned as a result at the end of
the algorithm (line 28).

Let us notice that most of the work needed to compute
a one item smaller prefix P′ of the candidate P has already
been done. The U sets contain most of the feature instances
of the P′ co-location instances. What is left, is to traverse
unvisited paths that start at level lev − 1 , update the U sets
and recompute the participation index. Now let us return
to the outer for loop (line 7). In each iteration, the lev
variable is decreased by one. Moreover, in the middle for
loop, we iterate over unvisited nodes in level array number
lev. Therefore, the next iteration of the outer for loop
will perform computations that are necessary to compute
the participation index of the prefix P′ . The same line of
reasoning can be applied to any size of the candidate’s
prefix. Thus, the outer for loop iterates over consecutive lev
values up to one (which corresponds to size 2 prefixes) and
computes participation indices for all prefixes.

Let us now consider line 9. In this line, we check whether
the participation index of the current prefix P′ has already
been computed or not. If it has, then all of subsequent pre-
fixes are associated with their participation indices as well
and we can safely abort subsequent computations.

The final part of this algorithm is the construction of the
npct cache. Before the actual participation index computa-
tions take place, we initialize a variable nonprev_P (line 6).
This variable will store the smallest, spatially non prevalent
candidate prefix found during the computations. We com-
pare the computed participation index with the minprev
threshold and if the prefix is not spatially prevalent, it is
assigned to the nonprev_P variable (line 22). In the end of
the algorithm, we verify whether a spatially non prevalent
prefix was found (line 24) and if it was, the npct cache is
updated. First, all supersets of nonprev_P co-location are

2022 Information Systems Frontiers (2023) 25:2005–2028

1 3

removed (line 5). Second, the nonprev_P co-location is
added to the npct cache (line 26).

Example 6 In the previous example three maximal MDCOPs
were found. All the results computed during execution of the
mining algorithm are presented in Tables 5, 6 and 7.

Let us now consider the spatial dataset Sp
1
 . When the

participation index is computed for candidate {A,B,C} no
structures are constructed yet. Hence, the whole co-location
trie as well as instance trie are built. These structures are
shown in Table 5. Due to space limitations we only present
graphical representation of instance tries (not the level array
representation). Nevertheless remember that every level of
an instance trie is represented as a separate array. When the
participation index of the candidate {A,B,D} is computed,
most of the instance trie is already built (Table 6). We can
reuse level arrays for the feature A and B and only add level
array for the feature D. New data is drawn as black, while
old data is drawn as gray. Finally, when the participation
index of the {B,C,D} candidate is computed, no data can
be reused. Hence completely new paths are added to the
co-location trie and instance trie (Table 7) and consequently
three new level arrays for B, C and D features are created.

Let us now consider the spatial dataset Sp
2
 . The partici-

pation index is computed for the candidates {A,B,C} and
{B,C,D} . In the case of the first of the two patterns we can
notice that the level array for the feature C is empty. Hence,
participation index of the candidate in Sp

2
 is zero. However,

level arrays for {A,B} prefix were built as well and its par-
ticipation index was also computed and stored in the cache
pc2 . The computation of the participation index of {B,C,D} ,
similarly to Sp

1
 , requires completely new paths (see Table 7).

The participation index in the spatial dataset Sp
3
 was com-

puted only once, for {A,B,D} candidate. All the found struc-
tures are shown in Table 6. For the sake of the example, let
us analyse how the participation index computations would
work. First, the level array representing the level correspond-
ing to the D feature is scanned. First entry is D1. Hence, this
object is added to the appropriate set. It’s parent entry – B1,
and parent entry of B1 – A1, are also added to the appropri-
ate sets. All the nodes on the path to the root are marked as
visited. Similar operations are performed for the next entry
in the level array corresponding to the D feature. Finally,
the last entry in this array (the second D2) is analysed. D2
is added once again to the appropriate set as well as its par-
ent B2. Note however, that we do not continue to travel to
the node A2 since it was already visited. Therefore, the sets
should now contain unique items for every feature and the
participation index of {A,B,D} can now be computed. We
can now reuse the computations to find participation index
of the prefix {A,B} . We now scan the level array for the fea-
ture B in order to find all the unmarked entries. In this case
there are none. We can therefore use the sets for features A

and B to compute the participation index of {A,B} . In case
there were such unmarked entries, we would just have to
insert the corresponding objects and all the yet unvisited par-
ents into the appropriate sets. The sizes of the updated sets
can be used to compute the new participation index value.

5 Experiments

Algorithms and Testing Environment Since, up to now, no
solutions for mining maximal MDCOPs were proposed in the
literature, we compare our algorithm with two “competitors”:

• FastMDCOP-Miner - a state-of-the-art MDCOP min-
ing algorithm. Unfortunately, this algorithm mines all
MDCOPs, not just the maximal ones.

• A vanilla variant of MAXMDCOP-Miner stripped of
many optimizations. We treat this variant as an initial
viable solution. We codename this variant MAXM-
DCOP-Miner STD, while the full version is called
MAXMDCOP-Miner ENH.

The following features were stripped from the MAXMD-
COP-Miner STD:

• No upper and lower bounds on time prevalence are
computed in Step 5. Instead, all datasets in ST are
always analyzed.

• The algorithm uses only the accurate participation
index computations. Hence, the sets TNe , TPe , TNc and
TPc are not computed and consequently caches npc
and lpc are not used (and are not created). Instead we
only count the number of times a candidate is spatially
prevalent if order to compute the time the prevalence.

• The participation index computation algorithm com-
putes only the participation index of a single candidate
(without prefixes). The instance tree is always created
from scratch and removed after the participation index
is computed. Hence, the cache pc is not used (and is
not created).

All implementations are in Python3 language. Experi-
ments have been conducted on a machine with Intel Xeon
Gold 6138 2.00GHz CPU and 24GB RAM.
Datasets The procedure to generate synthetic data was based
on the method used by Celik et al. (2006). The overall idea
was to prepare persistent and transient patterns, generate
their instances and instances of noise. Persistent patterns
occur in at least specified number of time moments, while
transient patterns occur in a less than specified number of time
moments. At the beginning, a set of PATct initial patterns was
created. The initial patterns represent subsets of feature types

2023Information Systems Frontiers (2023) 25:2005–2028

1 3

that could be involved in MDCOPs. For each initial pattern,
its size was randomly chosen using the Poisson distribution
with mean PATavs . Next, initial features from a user defined set
of Fct were assigned randomly to the initial patterns. Having
the set of initial patterns, persistent and transient pattern sets
were created by dividing the initial patterns in the proportion
described by RATp parameter - a ratio of persistent patterns
over transient patterns. Instances of patterns were placed
in a spatial framework defined as a square of side dim. For
simplicity, the spatial framework was divided into square cells
of size equal to the neighborhood distance dist. Each pattern
instance was placed in a square randomly chosen from the
spatial framework. For each pattern, its instances were placed
in a randomly chosen number of time moments from the set of
TFct frames w.r.t. mintprev parameter, i.e. persistent patterns
had to occur in at least mintprev fraction of time moments.
Notice that mintprev also defines the maximal number of time
moments in which a transient pattern instance can occur. The
number of instances of the particular pattern in a given time
moment was randomly chosen from the Poisson distribution
with mean INSavc . Finally, a noise was generated by placing
NOISEct objects in the spatial framework. Each noise object
was assigned a spatial feature randomly chosen from a set
of noise features. This set consisted of RATn percent of Fct
initial features. Notice that some of those features could also
participate in generated patterns.

Using the aforementioned procedure, we have prepared
two datasets, namely SD1 and SD2 with 136K objects and
29K objects respectively. To generate those datasets we have
used the parameter values presented in Table 8. In both cases
the spatial framework size and neighboring distance were the
same (dim = 10000 and dist = 10). Dataset SD1 contains
many small MDCOP patterns, whereas SD2 has fewer pat-
terns, although their size can be significantly larger. The total
number of spatial features used to generate SD1 is twice as
small as in the second dataset. Considering the greater ratio
for noise features and the number of instances of such fea-
tures, SD1 contains much shorter patterns than SD2.

The real world dataset RD contains the positions of
pigeons from the animal study (Zannoni et al., 2020). Our
analysis was limited to the data from a single day and we
used linear interpolation to calculate pigeons’ positions for
each of 1440 time moments (one per minute). There were
29192 objects and 29 spatial features in the RD dataset.

Results In the experiments, the processing time of the
algorithms and their memory usage were studied. By
memory usage, we mean the largest memory requirement
during the execution of the algorithm. Measurements were
made for varying the values of three parameters: the minimal
spatial prevalence threshold (minprev), the minimal time
prevalence threshold (mintprev) and the maximal distance
threshold (maxdist). In a given experiment, only one of the
parameters was changed, while the other two were set to
particular values. We will begin the discussion of the results
by analyzing the processing times of the algorithms.

In the first experiment, we observed the impact of chang-
ing the minimal prevalence threshold on the processing time
of the synthetic datasets SD1 and SD2. In this experiment, the
minimal time prevalence threshold was set at 0.3 and the maxi-
mal distance threshold was set at 10. The results are shown in
Fig. 5a and b for SD1 and SD2 respectively. In general, the lower
the minprev, the greater the probability of finding a pattern in
a given frame. Thus, processing times should decrease with
decreasing values of minprev. This is exactly the behavior that
can be observed for the FastMDCOP-Miner algorithm. In both
versions of the proposed algorithm, a lower minprev will have
a higher likelihood of producing long and prevalent patterns,
eliminating the need to check their subsets. For small values of
minprev, MAXMDCOP-Miner in both versions is nearly 4 times
faster than FastMDCOP-Miner. For larger values of minprev, the
performance difference between the two versions of MAXM-
DCOP-Miner becomes clear. The STD version, due to lack
of optimizations, generates significantly more computations,
resulting in processing times that exceed the processing times
achieved by ENH version as well as FastMDCOP-Miner. The
ENH version, for both datasets, is more efficient than FastMD-
COP-Miner over the entire range of examined minprev values.

In the second experiment, we used the same SD1 and SD2
data sets to explore the effects of changing mintprev on pro-
cessing time. The minimal prevalence threshold was set at 0.3
and the maximum distance threshold was set once again at 10.
Figure 5c and d presents the achieved results. For the Fast-
MDCOP-Miner algorithm, increasing mintprev has almost a
linear effect on reducing the processing time. This is, to some
extent, a result of the way the synthetic data is generated. For
slightly more diverse data, the relationship does not need to be
linear. MAXMDCOP-Miner ENH was once again the fastest
method and achieved the best results for low and high values
of mintprev. For low mintprev, there is a higher chance that

Table 8 Synthetic data
generator parameters

Dataset PATct PATavs Fct RATp TFct mintprev INSavc NOISEct RATn

SD1 15 5 100 0.4 100 0.6 25 20000 0.4
SD2 5 10 200 0.3 50 0.6 15 10000 0.2

2024 Information Systems Frontiers (2023) 25:2005–2028

1 3

lower or upper bound time prevalence filtering will take place,
resulting in a reduced number of computations. The same can-
not be said for the STD version, where mechanisms for more
advanced filtering are not present. Hence, the performance

of such a basic version of the algorithm is almost always not
better than that of FastMDCOP-Miner. For high values of
mintprev, the number of patterns decreases as well as the per-
formance gap among all algorithms.

 0

 5

 10

 15

 20

 25

 30

 35

 0
.0

5
 0

.1
 0

.1
5

 0
.2

 0
.2

5
 0

.3
 0

.3
5

 0
.4

 0
.4

5
 0

.5

P
ro

ce
ss

in
g

tim
e

[s
]

Minimal spatial prevalence threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

 0

 100

 200

 300

 400

 500

 0
.0

5
 0

.1
 0

.1
5

 0
.2

 0
.2

5
 0

.3
 0

.3
5

 0
.4

 0
.4

5
 0

.5

P
ro

ce
ss

in
g

tim
e

[s
]

Minimal spatial prevalence threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

 0

 10

 20

 30

 40

 50

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

P
ro

ce
ss

in
g

tim
e

[s
]

Minimal time prevalence threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

 0

 50

 100

 150

 200

 250

 300

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

P
ro

ce
ss

in
g

tim
e

[s
]

Minimal time prevalence threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

 0

 10

 20

 30

 40

 50

 60

 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

P
ro

ce
ss

in
g

tim
e

[s
]

Maximal distance threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

 0

 100

 200

 300

 400

 500

 600

 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

P
ro

ce
ss

in
g

tim
e

[s
]

Maximal distance threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

 0

 50

 100

 150

 200

 250

 300

 350

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

P
ro

ce
ss

in
g

tim
e

[s
]

Minimal time prevalence threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

 0

 200

 400

 600

 800

 1000

 0
.2

5
 0

.3
 0

.3
5

 0
.4

 0
.4

5
 0

.5
 0

.5
5

P
ro

ce
ss

in
g

tim
e

[s
]

Maximal distance threshold

FastMDCOP-Miner

MAXMDCOP-Miner STD

MAXMDCOP-Miner ENH

Fig. 5 Results of the experiments - processing times

2025Information Systems Frontiers (2023) 25:2005–2028

1 3

 170
 180
 190
 200
 210
 220
 230
 240
 250

 0.
05 0.

1
 0.

15 0.
2

 0.
25 0.

3
 0.

35 0.
4

 0.
45 0.

5

M
em

or
y

us
ag

e
[M

B]

Minimal spatial prevalence threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0.
05 0.

1
 0.

15 0.
2

 0.
25 0.

3
 0.

35 0.
4

 0.
45 0.

5

M
em

or
y

us
ag

e
[M

B]

Minimal spatial prevalence threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

 170

 180

 190

 200

 210

 220

 230

 240

 0.
1

 0.
2

 0.
3

 0.
4

 0.
5

 0.
6

 0.
7

 0.
8

 0.
9

M
em

or
y

us
ag

e
[M

B]

Minimal time prevalence threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

 0

 50

 100

 150

 200

 250

 0.
1

 0.
2

 0.
3

 0.
4

 0.
5

 0.
6

 0.
7

 0.
8

 0.
9

M
em

or
y

us
ag

e
[M

B]
Minimal time prevalence threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

 140

 160

 180

 200

 220

 240

 260

 6 7 8 9 10 11 12 13 14

M
em

or
y

us
ag

e
[M

B]

Maximal distance threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

 0

 100

 200

 300

 400

 500

 6 7 8 9 10 11 12 13 14

M
em

or
y

us
ag

e
[M

B]

Maximal distance threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.
1

 0.
2

 0.
3

 0.
4

 0.
5

 0.
6

 0.
7

 0.
8

 0.
9

M
em

or
y

us
ag

e
[G

B]

Minimal time prevalence threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.
25 0.

3
 0.

35 0.
4

 0.
45 0.

5
 0.

55

M
em

or
y

us
ag

e
[G

B]

Maximal distance threshold

FastMDCOP-Miner
MAXMDCOP-Miner STD
MAXMDCOP-Miner ENH

Fig. 6 Results of the experiments - memory usage

In the third experiment, we tested how the maximal
distance maxdist affects the performance on synthetic
datasets. In this experiment, both the minimal prevalence
threshold and the minimal time prevalence threshold were

set at 0.3. The results for datasets SD1 and SD2 are presented
in Fig. 5e and f. In classical co-location pattern discovery,
increasing maxdist significantly affects the number of
candidates, instances, and thus the total processing time.

2026 Information Systems Frontiers (2023) 25:2005–2028

1 3

Similar relationships can be observed for the FastMDCOP-
Miner algorithm. In particular, there is a clearly observable
increase in processing times when maxdist reaches a
value of 10. This is related to the parameters used for the
synthetic data generator, namely dist set at 10. For high
maxdist values, the number of instances (and candidates)
can increase very rapidly and the Apriori-based approach
is inefficient in comparison to the new method (both STD
and ENH versions). For lower values of maxdist, the STD
version generates many unnecessary candidates, resulting
in the worst processing times. The ENH version is similar
in execution times to FastMDCOP-Miner and is slightly
faster or slightly slower depending on the dataset. It is worth
noticing that for higher values of maxdist, the new method
can be an order of magnitude faster than FastMDCOP-Miner.

The next experiment involved a study of the
processing times of a real dataset. As with the synthetic
data, we examined the impact mintprev and maxdist on
processing time. Due to the limited number of observed
pigeons, we skip the minprev threshold assuming that
all candidates are spatially prevalent. Figure 5g presents
the effect of varying mintprev, while maxdist was set at
0.4. Figure 5h shows the impact of changing maxdist,
while mintprev was set at 0.3. These values were
arbitrarily chosen to present the most interesting results.
The collected data confirms the results achieved for the
synthetic dataset. With respect to the synthetic data,
one can observe that for real data the relationships are
definitely nonlinear. Nevertheless, in all cases the new
method (in both versions) was more efficient than the
FastMDCOP-Miner.

In addition to examining the processing times of the
algorithms, the level of demand for memory resources
was also studied. The results showing the maximum
memory usage are shown in Fig. 6a-h, which correspond
to the time performance experiments shown in Fig. 5a-
h. In all performed experiments, the STD version of the
MAXMDCOP-Miner algorithm showed the least memory
requirements. This is due to the fact that MAXMDCOP-
Miner always utilizes data compression structures. At
the same time, the STD version lacks elements related to
data caching, which sometimes require quite significant
memory resources. The ENH version, which uses (among
others) various types of caches, for synthetic data in
certain ranges of examined parameters variability,
shows slightly higher demand for operating memory than
FastMDCOP-Miner. However, for the most demanding
parameter ranges (i.e. low minprev or mintprev or high
maxdist), the memory requirements are significantly
lower than for FastMDCOP-Miner. For the examined real
world dataset, again the MAXMDCOP-Miner algorithm
in the STD version was the least memory intensive; the
MAXMDCOP-Miner in the ENH version performed only

slightly worse. By far the largest memory requirements
were for FastMDCOP-Miner.

6 Summary and Future Work

This is the first algorithm that tackles the problem of
mining Maximal Mixed-Drove Co-occurrence Patterns.
To achieve the best performance, we have resigned from
the traditional Apriori generate-and-test approach and
adapted the method based on maximal cliques mining
that was successfully applied in mining of classical co-
location patterns. We have developed novel data struc-
tures that provide efficient compression of instances of
MDCOPs. We have also proposed a new participation
index computation algorithm, which uses the aforemen-
tioned data structures to cache and reuse intermediate
results of computations.

We have tested the proposed solution using both
synthetic and real world datasets. Gathered results show
that new approach is more efficient than the current state-
of-the-art method when comparing processing times as well
as memory requirements. The more demanding parameter
values (i.e. low spatial or time prevalence thresholds or high
maximum distance threshold), the greater the performance
gain. Therefore, our method can be particularly useful
in analyzing dense datasets that can contain patterns of
significant length.

The important limitation of the proposed method is the
requirement to fit all structures in memory, which for some,
very large MDCOP mining problems can be impossible.
Therefore, one of the main directions of further develop-
ment is to design structures that can be efficiently stored and
processed on disk drives.

There are also some more technical elements that
can be improved in the MAXMDCOP-Miner, namely
the maintenance of visited flags and data structures for
sets operations. Visited flags are used to prevent visiting
the same nodes in a tree when traversing from lower
level entries. Although these flags prevent unnecessary
operations, they must be periodically set to false in
retrieved level arrays, which imposes an additional cost.
The second mentioned improvement concerns the use of
more specialized structures for performing operations on
sets, which are widely used in the algorithm.

In the future work, we also intend to parallelize the
MDCOP mining process, which can result in order of
magnitude speedups. Currently, we are working on detailed
calculations of the MAXMDCOP-Miner complexity.

Acknowledgements This research has been partially supported by the
statutory funds of Poznan University of Technology.

2027Information Systems Frontiers (2023) 25:2005–2028

1 3

Declarations

Conflicts of interest The authors have no competing interests to
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article's Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of
this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining associa-
tion rules in large databases. In Proc. of the 20th international
conference on very large data bases (pp. 487–499). Morgan Kauf-
mann Publishers Inc.,

Andrzejewski, W., & Boinski, P. (2021). Maximal mixed-drove co-
occurrence patterns. In L. Bellatreche, M. Dumas, P. Karras, &
R. Matulevičius (Eds.) Advances in databases and information
systems (pp. 15–29.) Springer

Andrzejewski, W., & Boinski, P. (2018). Efficient spatial co-location
pattern mining on multiple gpus. Expert Systems with Applica-
tions, 93(Supplement C), 465–483. https:// doi. org/ 10. 1016/j. eswa.
2017. 10. 025.

Andrzejewski, W., & Boinski, P. (2019). Parallel approach to
incremental co-location pattern mining. Information Sciences,
496, 485–505.

Cao, H., Mamoulis, N., & Cheung, D. W. (2006). Discovery of colloca-
tion episodes in spatiotemporal data. In Proc. of the 6th interna-
tional conference on data mining. ICDM ’06 (pp. 823–827). IEEE
Computer Society, Washington, DC, USA

Celik, M., Shekhar, S., Rogers, J. P., & Shine, J. A. (2006). Sustained
emerging spatio-temporal co-occurrence pattern mining: A sum-
mary of results. In Proc. of the 18th IEEE international confer-
ence on tools with artificial intelligence (ICTAI’06) (pp. 106–115)

Celik, M., Shekhar, S., Rogers, J. P., & Shine, J. A. (2008). Mixed-
drove spatiotemporal co-occurrence pattern mining. IEEE Trans-
actions on Knowledge and Data Engineering, 20(10), 1322–1335.

Fredkin, E. (1960). Trie memory. Communications of the ACM, 3(9),
490–499.

Hamdi, S. M., Aydin, B., & Angryk, R. A. (2016). A pattern growth-
based approach for mining spatiotemporal co-occurrence patterns.
In Proc. of the 16th IEEE international conference on data mining
workshops (pp. 1125–1132)

Huang, Y., Zhang, L., & Zhang, P. (2008). A framework for mining
sequential patterns from spatio-temporal event data sets. IEEE
Transactions on Knowledge and Data Engineering, 20(4),
433–448.

Li, Z. (2014). Spatiotemporal pattern mining: Algorithms and applica-
tions (Vol. 9783319078212, pp. 283–306). New York: Springer,

International Publishing. https:// doi. org/ 10. 1007/ 978-3- 319-
07821-2_ 12.

Pillai, K. G., Angryk, R. A., Banda, J. M., Schuh, M. A., & Wylie, T.
(2012). Spatio-temporal co-occurrence pattern mining in data sets
with evolving regions. In 2012 IEEE 12th international confer-
ence on data mining workshops (pp. 805–812). IEEE

Qian, F., Yin, L., He, Q., & He, J. (2009). Mining spatio-temporal co-
location patterns with weighted sliding window. In 2009 IEEE
international conference on intelligent computing and intelligent
systems (Vol. 3 pp. 181–185). https:// doi. org/ 10. 1109/ ICICI SYS.
2009. 53581 92

Qian, F., He, Q., & He, J. (2009). Mining spread patterns of spatio-
temporal co-occurrences over zones. In O. Gervasi, D. Taniar,
B. Murgante, A. Laganà, Y. Mun, & M. L. Gavrilova (Eds.),
Computational science and its applications - ICCSA 2009 (pp.
677–692). Springer.

Shekhar, S., & Huang, Y. (2001). Discovering spatial co-location
patterns: A summary of results. In Proc. of the 7th international
symposium on spatial and temporal databases (SSTD 2001).
Lecture Notes in Computer Science, (Vol. 2121 pp. 236–256).
Springer

Tran, V., Wang, L., Chen, H., & Xiao, Q. (2021). Mcht: A maximal
clique and hash table-based maximal prevalent co-location pat-
tern mining algorithm. Expert Systems with Applications, 175,
114830.

Wang, L., Zhou, L., Lu, J., & Yip, J. (2009). An Order-clique-based
approach for mining maximal co-locations. Information Sci-
ences, 179(19), 3370–3382.

Wang, L., Bao, Y., & Lu, J. (2009). Efficient discovery of spatial
Co-Location patterns using the iCPI-tree. The Open Information
Systems Journal, 3(2), 69–80.

Wang, Z., Han, T., & Yu, H. (2019). Research of MDCOP mining
based on time aggregated graph for large spatio-temproal
data sets. Computer Science and Information Systems, 16,
32–32.

Wei, W. W. S. (2006). Time series analysis: Univariate and multivari-
ate methods, 2nd edn. Pearson Addison Wesley

Yang, H., Parthasarathy, S., & Mehta, S. (2005). A generalized
framework for mining spatio-temporal patterns in scientific
data. In Proc. of the 11th ACM SIGKDD international confer-
ence on knowledge discovery in data mining. KDD ’05, (pp.
716–721). ACM

Yao, X., Peng, L., Yang, L., & Chi, T. (2016). A fast space-saving
algorithm for maximal Co-location pattern mining. Expert Sys-
tems with Applications, 63(C), 310–323.

Yoo, J. S., & Bow, M. (2011). Mining maximal Co-located event
sets. In J.Z. Huang, L. Cao, & J. Srivastava (Eds.) Proc. of the
15th pacific-asia conference on knowledge discovery and data
mining (PAKDD 2011). Lecture Notes in Computer Science
(Vol. 6634, pp. 351–362). Springer

Yoo, J. S., & Shekhar, S. (2006). A joinless approach for mining
spatial colocation patterns. IEEE Transactions on Knowledge
and Data Engineering, 18(10), 1323–1337. https:// doi. org/ 10.
1109/ TKDE. 2006. 150.

Zannoni, N., Wikelski, M., Gagliardo, A., Raza, A., Kramer, S.,
Seghetti, C., et al. (2020). Identifying volatile organic com-
pounds used for olfactory navigation by homing pigeons. Sci-
entific Reports UK, 10(15879), 1–16.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.eswa.2017.10.025
https://doi.org/10.1016/j.eswa.2017.10.025
https://doi.org/10.1007/978-3-319-07821-2_12
https://doi.org/10.1007/978-3-319-07821-2_12
https://doi.org/10.1109/ICICISYS.2009.5358192
https://doi.org/10.1109/ICICISYS.2009.5358192
https://doi.org/10.1109/TKDE.2006.150
https://doi.org/10.1109/TKDE.2006.150

2028 Information Systems Frontiers (2023) 25:2005–2028

1 3

Witold Andrzejewski is an assistant professor of Computer Science at
Poznan University of Technology in Poznan, Poland. He received PhD
from the same university in 2008. His main research interests include
spatial data analysis, optimization of query processing of complex data
structures and data mining via auxiliary structures (indices) as well as
hardware acceleration and parallelization (GPU based) of some typical
database and data mining operations. Witold published many papers in
important journals and proceedings of influential conferences. He took
part in commercial scientific projects related to data processing analysis
and optimization. He teaches all subjects related to GPUs, including
parallel data processing and computer graphics.

Pawel Boinski holds a PhD in Computing Science from Poznan University
of Technology. In his research, he focuses on spatial data mining, especially
discovery of co-locations and temporal patterns in spatial datasets. He par-
ticipates in multiple projects related to data processing. Pawel authored
papers that have been published in high-ranked journals, such as Informa-
tion Sciences or Expert Systems with Applications. He primarily teaches
subjects involving databases, data warehousing, internet applications,
knowledge discovery and applications of computer science in e-society.

	Maximal Mixed-Drove Co-occurrence Patterns
	Abstract
	1 Introduction
	2 Related Work
	3 Definitions
	4 MAXMDCOP-Miner
	4.1 Step 1. Find spatially prevalent size 2 co-location patterns
	4.2 Step 2. Find size 2 MDCOPs
	4.3 Step 3. Build local candidates for maximal MDCOPs for
	4.4 Step 4. Build global candidates for maximal MDCOPs K(ST)
	4.5 Step 5. Mine maximal MDCOPs
	4.6 Step 5a. Computing spatial prevalence
	4.6.1 Data structures
	4.6.2 Participation index computations

	5 Experiments
	6 Summary and Future Work
	Acknowledgements
	References

