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Abstract
With the increasing penetration of renewable energy, uncertainty has become the main challenge of power systems operation. 
Fortunately, system operators could deal with the uncertainty by adopting stochastic optimization (SO), robust optimization 
(RO) and distributionally robust optimization (DRO). However, choosing a good decision takes much experience, which can 
be difficult when system operators are inexperienced or there are staff shortages. In this paper, a decision-making approach 
containing robotic assistance is proposed. First, advanced clustering and reduction methods are used to obtain the scenarios 
of renewable generation, thus constructing a scenario-based ambiguity set of distributionally robust unit commitment (DR-
UC). Second, a DR-UC model is built according to the above time-series ambiguity set, which is solved by a hybrid algorithm 
containing improved particle swarm optimization (IPSO) and mathematical solver. Third, the above model and solution 
algorithm are imported into robots that assist in decision making. Finally, the validity of this research is demonstrated by a 
series of experiments on two IEEE test systems.

Keywords Renewable generation · Scenario-based ambiguity set · Distributionally robust unit commitment · Hybrid 
solution algorithm · Robotic assistance

1 Introduction

The target of unit commitment (UC) is to reduce the opera-
tion cost of power systems while ensuring high power supply 
reliability (Egbue et al., 2022). For many years, UC has been 
regarded as one of the most important control process of 
power systems. Nowadays, with the concern of environmen-
tal issues, renewable energy generation has received great 
attention. For example, the wind power installed capacity in 
China has reached 26GW in 2019, accounting for 44 percent 
of newly installed global capacity (Zhu et al., 2022). How-
ever, renewable generation like wind power and photovoltaic 

(PV) power usually shows strong intermittence and random-
ness, which brings significant uncertainty and challenge to 
the economic and reliable operation of power systems (Yuan 
et al., 2021).

In order to solve the above problem, scholars mainly use 
point forecast, interval forecast, probabilistic forecast and 
scenario generation to handle the uncertainty of renewable 
power, and adopt stochastic optimization (SO) and robust 
optimization (RO) to solve the UC problem. Stochastic unit 
commitment (SUC) takes numerous possibilities of uncer-
tain information into account, and the solution aims to make 
the overall performance of the objective function best under 
various scenarios. Liu et al. proposed a SUC model for elec-
tric-gas coupling system and used the improved progressive 
hedging (PH) algorithm to accelerate the optimization of 
SUC (2021) (Liu et al., 2021). Asensio et al. added a CVaR 
constraint to the traditional SUC model to effectively quan-
tify risks and make reasonable decisions according to risks 
(2016) (Asensio & Contreras, 2016).

Generally, SO can reduce the cost of power generation on 
the premise of improving the reliability of system operation, 
but it may not guarantee system reliability under extreme 
situation, which makes the risk of SUC solution difficult 
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to measure. Therefore, RO is introduced as a better way to 
alleviate the above shortcomings. Based on the analysis of 
power systems under various uncertainties, the UC sched-
ule generated by RO performs well in the worst case (Chen 
et al., 2022). In the literature (Gupta & Anderson, 2019), 
robust unit commitment (RUC) method based on the feature 
sorting algorithm used in the traditional pattern recogni-
tion problem was proposed, which is flexible on the basis 
of considering all cases. Lee et al. considered both unit and 
transmission line failure rates, then used N-K criterion to 
establish a generation cost minimization model in the worst 
scenario (Lee et al., 2015). However, RO tends to pay more 
attention on low probability events, making the generated 
schedule too conservative (Lin et al., 2021).

By contrast, distributionally robust optimization (DRO) 
combines the characteristics of SO and RO, and has 
attracted great attention in recent years (Bian et al., 2015). 
Instead of setting exact type and parameters of the probabil-
ity distribution of uncertain information, DRO establishes 
the so-called ambiguity set based on available data, and 
makes UC decisions on the worst-case probability distribu-
tion within the set. Essentially, DRO ensures the robustness 
of system operation compared with SO, and improves the 
economy of UC decision compared with RO.

It is worth noting that, constructing ambiguity sets is 
the key and prerequisite of DRO. In the literature, there 
are many ways to construct an ambiguity set, including the 
moment-based method (Zhang et al., 2017) and the distance-
based method (Zhu et al., 2019). The statistical moment 
reflects the statistical information of random variables.

A. Constants
Cg Energy generation cost of thermal 

units
CSU
g

 Start-up cost of thermal units
CU
g
(CD

g
) Upward (downward) reserve capac-

ity procurement cost
C+
g
(C−

g
) Upward (downward) reserve 

deployment offer cost
Cshed Penalty cost of involuntary load 

shedding
u0
g
 Initial commitment status of unit g

LU
g
(LD

g
) Number of generators g must be 

online (offline)
from the beginning of the scheduling 

horizon
UTg Minimum up time for generator g
DTg Minimum down time for generator g
RU
g
(RD

g
) Upward (downward) ramping limit

P
g
(Pg) Minimum (maximum) generation 

bound
R+
g
(R−

g
) Upward (downward) reserve capac-

ity

Wj Wind power capacity
W∗

jt�
 Wind power production in scenario ω

f̂l Day-ahead network power flows
Fl Transmission capacity limits
D Ambiguity set
B. Variables
ugt On/off status of unit g at hour t
ygt Status indicator of unit g at hour t 

for the startup process
zgt Status indicator of unit g at hour t 

for the shutdown process
pgt Setting value of power output by 

unit g at hour t
r+
gt
(r−

gt
) Amount of upward (downward) 

reserve capacity of unit g at hour t
ωjt Wind power dispatch under sce-

nario j at hour t
f̂lt Network power flows

f̂lt𝜔 Real-time power flows
p+
gt�

 Upward reserves of unit g at hour t 
under scenario ω

p−
gt�

 Downward reserves of unit g at 
hour t under scenario ω

�
spill

jt�
 Amount of wind power production 

under scenario ω at hour t
lshed
nt�

 Allowable load shedding at each 
node

Compared with the specific probability distribution function, 
the moment information is easier to obtain. For instance, 
Zhang et al. constructed an ambiguity set based on moment 
information of wind power uncertain variable (2019) (Zhang 
et al., 2019). However, because different random variables 
may have the same statistical moment, the ambiguity sets 
based on statistical moment may contain probability distri-
butions that deviate greatly from the empirical distribution. 
By contrast, distance-based method is more widely used 
in DRO UC. Essentially, the distance method first obtains 
the empirical probability distribution of random variables 
based on historical data, and then constructs the ambigu-
ity set by defining the distance between other probability 
distributions and the empirical distribution. Therefore, the 
measurement of distance and the boundary of ambiguity set 
are two important parts of the distance method. In existing 
studies, norm and Kullback-Leibler (KL) divergence are 
commonly used distance measurement functions, and the 
boundary is usually selected according to a given formula or 
expert experience. For example, Ding et al. used the 1 norm 
and infinite norm to measure the distance, and obtained the 
boundary of the proposed ambiguity set according to certain 
formula (2019) (Ding et al., 2019). Chen et al. constructed 
an ambiguity set based on KL divergence, and the boundary 
was selected according to the experience of decision makers 
(2018) (Chen et al., 2018).
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Although the above studies provide promising ways to 
solve DRO UC, all the ambiguity sets were constructed 
under a single time horizon, which ignores the time series 
features of uncertain information over the scheduling hori-
zons. By contrast, renewable generation scenarios contain 
spatial-temporal correlation, therefore some scholars have 
also carried out relevant studies. For an instance, Zhang 
et al. screened historical data according to real-time infor-
mation, then obtained a series of scenarios through cluster-
ing and constructed ambiguity set based on the 1-norm and 
the infinite norm (2021) (Zhang et al., 2021). Nonetheless, 
the construction methods based on norm only assume that 
the probability value of each scenario is variable. Consider-
ing the strong randomness of renewable generation and the 
limitation of historical data, there will also be some error 
in the power generation of each period in each scenario. 
Besides, in the face of different data sets, many existing stud-
ies use the same formula to obtain the boundary of ambi-
guity sets, which makes the effectiveness and objectivity 
of such methods questionable. Therefore, constructing time 
series ambiguity sets based on scenarios still has a lot of 
room for improvement.

Apart from constructing ambiguity sets, the solution 
methods of DRO UC is also significant. In order to solve 
the DRO problem, many scholars employ mathematical opti-
mization methods that transform the infinite dimensional 
subproblems in the model based on linear decision program-
ming and duality theory, then use mathematical solvers to 
handle the main problem and subproblems repeatedly. For 
example, a DRO framework of an electric-gas coupling sys-
tem was proposed in Sayed et al. (2021), and at the same 
time, the model was solved by using nested columns and 
constraint generation algorithm. Liang et al. proposed an 
alternate iteration method based on bender decomposi-
tion to solve a min-max bi-level DRO model (2022) (Liang 
et al., 2022). Although mathematical solvers can guarantee 
the solution optimality, the model transformation process is 
rather complicated, and sometimes impossible to achieve. 
Besides, the use of linear decision rules in the transforma-
tion process may also make the solution deviate from the 
original model.

In addition, system operators need to evaluate and select 
UC decision, which often requires much experience and 
makes scheme selection highly subjective. Especially in 
some new energy power plants in bad environment, system 
operators can not be stationed in large numbers. Nowadays, 
the rapid development of robots has brought great conveni-
ence and help to many aspects of people’s life. Some tasks 
that require precision or are dangerous can be assisted by 
robots. Chen et al. used robots to explore unknown envi-
ronments based on deep learning (2022) (Chen et  al., 
2022). Besides, artificial intelligence plays an important 
role in fighting the COVID-19 pandemic, including robotic 

assistance in isolation area (Piccialli et al., 2021). However, 
there is still much room for robotic assistance in the field of 
renewable energy generation.

Therefore, to mitigate the above defects, this paper pro-
poses a scenario-based distributionally robust unit commit-
ment (S-DR-UC) model handled by an improved hybrid 
solution algorithm, which contains robotic assistance. Spe-
cifically, this study firstly conducts clustering, classifica-
tion and scenario reduction on the collected actual renew-
able power data and point forecast renewable power data 
to obtain the empirical distribution of ambiguity set. Then, 
the historical distribution method (Jabr, 2020) and bootstrap 
method (Luo et al., 2019) are used to get the boundary of 
the ambiguity set. After that, a S-DR-UC model based on 
the time series ambiguity set is established, and a hybrid 
solution algorithm containing improved particle swarm opti-
mization (PSO), mathematical solver and parallel computing 
is designed to handle the complicated nonlinear S-DR-UC 
model, which are imported into robots that assist in decision 
making. Therefore, the contributions of this study can be 
summarized as follows:

(1) Scenario-based ambiguity set: Compared with exist-
ing studies, scenario can better integrate the temporal 
correlation between uncertain information and directly 
serve the optimization scheduling of power systems. In 
addition, by using the historical method and bootstrap 
method, the scenario-based ambiguity set proposed in 
this study is more comprehensive in considering uncer-
tainty, and more objective in setting the boundary of 
ambiguity sets.

(2) Improved PSO: Compared with classical PSO, cosine 
similarity is introduced to measure the similarity 
between empirical distributions for temporal ambigu-
ity set, thus dynamically adjusts weight to mitigates the 
local convergence problem.

(3) An improved hybrid solution algorithm for S-DR-UC 
model: A novel algorithm containing PSO, mathemati-
cal solver and parallel computing is designed to handle 
S-DR-UC model. Compared with existing studies, our 
algorithm avoids complex transformations and con-
duces to assure the physical meaning of the original 
model. Besides, our method can achieve a satisfied 
solution of the model within an acceptable runtime 
cost.

(4) Robotic assistance: Compared with the traditional UC 
decision for prediction results, this study introduces 
robots into the decision-making process. By importing 
models and algorithms into multiple robots, helping to 
reduce the subjectivity of scheme selection.

The rest of the paper is arranged as follows: Section 2 
explains the way to construct the scenario-based ambiguity 
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set. Section 3 provides the S-DR-UC formulation which 
includes the objective function and constraints considered. 
Section 4 introduces the hybrid solution algorithm which 
integrates an improved PSO, mathematical solver and paral-
lel computing. In Section 5, the effectiveness of the research 
is justified on modified IEEE RTS-96 and RTS-24 systems. 
Finally, Section 6 concludes the work.

2  Ambiguity Set Construction Based 
on Renewable Generation Scenarios

In this section, the method to construct the scenario-based 
ambiguity set is explained. The ambiguity sets in most exist-
ing studies has been constructed by taking certain probabil-
ity distribution e.g., Gaussian distribution as the empirical 
distribution, which ignores the temporal correlation among 
the scheduling horizons. By contrast, the method proposed 
in this study constructs the ambiguity set based on a number 
of scenarios with temporal attributes. The architecture of the 
overall process is shown in Fig. 1. We first introduce the way 
to obtain the empirical distribution of the ambiguity set, i.e., 

a set of renewable generation scenarios based on clustering 
and reduction techniques, then the method to construct the 
ambiguity set is explained.

2.1  Acquiring the Scenario Set

Nowadays, it is possible to collect both actual generation 
(AG) data and point forecast (PF) data of renewable power 
from several database. Taking wind power as an example, PF 
data and AG data of desired years are easily obtained from 
certain database like NERL (Hodge, 2016), which mostly 
refer to the wind power value with a time interval of five 
minutes. Since PF data and actual AG data have huge vol-
ume that cannot be directly applied to UC scheduling and 
this study considers day-head hourly UC optimization, the 
data is processed on an hourly basis to obtain daily scenar-
ios. In detail, the data is divided on hours first, and the mode 
in the data of each hour is selected to represent the forecast 
and actual value of the hour. After that, these data are clas-
sified on a daily basis to obtain daily scenarios.

Obviously, the original scenarios are numerous and diver-
sified, thus we need to carefully select a number of special 

Fig. 1  Structure of constructing ambiguity set
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scenarios among them for the day to be scheduled. In this 
research, a data clustering method named clustering by fast 
search and find of density peaks (CFSFDP) is adopted to 
process the original scenarios to obtain different categories 
of scenario sets, each of which contains daily PF scenarios 
with statistical similarity.

CFSFDP was first proposed in Rodriguez and Laio 
(2014). Generally, compared with traditional clustering 
methods such as k-means, CFSFDP avoids repeated itera-
tive operation, which is greatly time-saving. In detail, we 
define Ssum = {s1,...,sm,...,sM} as a total set of scenarios 
of PF data, and each daily scenario si = {s1

i
, ..., st

i
, ..., sT

i
} 

has T dimensions that correspond to the T time intervals 
of a day, and in this study T is equal to 24. The distance 
between scenarios si and sj is measured by Euclidean 
distance.

After deciding the truncation distance distcutoff based on 
adjustment of parameters, ρi and δi can be calculated by 
Eqs. 1.2 and 1.3 for scenario si, where ε is the unit step 
function and ρi represents the density of scenario si and δi 
represents the minimum distance between scenario si and 
other scenario with higher density, which are seen as coor-
dinates to draw a decision graph. In detail, ρi is the X-axis 
and δ is the Y-axis. After setting the minimum of ρ and δ, 
the point i.e., scenario on the upper right of the decision 
graph is the center point of the cluster, and the remain-
ing points will be grouped into the cluster with the nearest 
cluster center.

Then a number of daily scenario sets of PF are obtained 
and AG scenarios are separated into corresponding AG sce-
nario sets according to PF sets. Since the number of sce-
narios in these AG sets could be greatly different, reduction 
and consolidation are performed to obtain AG sets including 
the specified number of scenarios. In detail, scenarios that 
have high ρ and δ are retained for large sets, while small sets 
are consolidated with similar classes. Besides, AG scenarios 
are classified corresponding to each AG scenario set accord-
ing to Euclidean distance, and the initial probability value of 
each scenario is its corresponding quantity divides by total 
number of AG scenarios. So far, the scenario set i.e., the 
empirical distribution is obtained for the sake of subsequent 
ambiguity set constructing and its form is as follows.

(1.1)dist(si, sj) =

√√√√ T∑
t=1

(
st
i
− st

j

)2

(1.2)�i =
∑

sj∈Ssum

�
�
distcutoff − dist(si, sj)

�

(1.3)𝛿i = min
j∶𝜌j>𝜌i

(
dist(si, sj)

)

where st
i
 is wind power value at hour t of scenario si in the 

scenario set and pi is initial probability value of scenario si.

2.2  Construction of Ambiguity Set

In this part, the ambiguity set is constructed according to the 
scenario set obtained in Section 2.1. Apart from the fluctua-
tion range of power value in each scenario, the fluctuation 
range of probability of each scenario is also taken into con-
sideration. Specially, the historical distribution method is 
adopted to determine the fluctuation range of power value 
of scenarios, while the bootstrap method helps to find the 
fluctuation range of scenario probability, which is explained 
as follows respectively.

As the name suggests, historical distribution method is 
based on reliable historical distribution to determine the 
fluctuation range, so it is of importance to find several rep-
resentative historical distributions. Firstly, the upper and 
lower bounds of the scenario si at hour t in scenario set S are 
denoted as �up

i,t
 and �low

i,t
 . As can be seen from the previous 

section, the scenarios with the high ρ and δ are closer to the 
center. So we select z such scenarios in all the classes, corre-
sponding to the set of scenarios that make up the z historical 
distribution and denote the upper and lower bounds of the 
ith scenario at hour t in historical scenario set as [�up

i,t
]z and 

[�low
i,t

]z . Therefore, the fluctuation of upper and lower bounds 
of scenario are expressed as follows.

So far, the scenario set S is transformed into the follow-
ing form.

Secondly, the bootstrap method is used to calculate the 
fluctuation range of each scenario probability. Based on the 
above form, the probability of the scenario si in S is written 

(1.4)S =

⎛
⎜⎜⎜⎜⎜⎝

s0
1
... st

1
... sT

1

⋅ ⋅ ⋅

s0
i
... st

i
... sT

i

⋅ ⋅ ⋅

s0
n
... st

n
... sT

n

⎞
⎟⎟⎟⎟⎟⎠

&

⎛
⎜⎜⎜⎜⎜⎝

p1
⋅ ⋅ ⋅

pi
⋅ ⋅ ⋅

pn

⎞
⎟⎟⎟⎟⎟⎠

(1.5)�
up

i,t
= st

i
+ max

z∈1,...,Z

{[
�
up

i,t

]
z
− st

i
, 0

}

(1.6)�
low
i,t

= st
i
+ min

z∈1,...,Z

{[
�
low
i,t

]
z
− st

i
, 0

}

(1.7)S →

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�
�
low
1,t

, �
up

1,t

�
...

�
�
low
1,T

, �
up

1,T

�

⋅ ⋅ ⋅�
�
low
i,t

, �
up

i,t

�
...

�
�
low
i,T

, �
up

i,T

�

⋅ ⋅ ⋅�
�
low
n,t

, �
up

n,t

�
...

�
�
low
n,T

, �
up

n,T

�

⎞⎟⎟⎟⎟⎟⎟⎟⎠

&

⎛⎜⎜⎜⎜⎜⎝

p1
⋅ ⋅ ⋅

pi
⋅ ⋅ ⋅

pn

⎞⎟⎟⎟⎟⎟⎠
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as pi, while the set including all AG scenarios is written as 
H and the number of scenarios in AG scenario set is equal 
to M. Then these AG scenarios are divided into AG scenario 
sets based on Euclidean distance between scenarios in H and 
scenarios in AG scenario sets. Generally, the number of AG 
scenarios corresponding to the category of the ith scenario 
in set is recorded as m0

i
 , so the initial probability pi = m0

i
∕M . 

Later sampling with replacement is performed on set H for 
Q times and the qth new scenario set is denoted as Hq. By 
performing the above classification operation on these Q 
scenario sets, it can be obtained that the number of scenarios 
corresponding to scenario i in the S in scenario set Hq is mq

i
 . 

Denoting �mq

i
= m

q

i
− m0

i
 , and �mq

i
 is arranged in ascending 

order. The μth and the (Q − μ)th �mq

i
 are respectively 

expressed as �m∗
i

(
1 −

�

Q

)
 and �m∗

i

(
�

Q

)
 . 
(
100 ∗

Q−2∗�

Q

)
% 

bootstrap confidence interval is 
[
pi −

�m∗
i
(1−

�

Q
)

m
, pi −

�m∗
i
(
�

Q
)

m

]
 . 

In conclusion,the ambiguity set D is as follows.

It is worth noting that the left part refers to the fluctuation 
range of the scenario value, while the right part refers to the 
fluctuation range of the scenario probability.

3  Problem Formulation

In this section, the mathematical formulation of S-DR-UC is 
provided, which involves two stages of decision making. The 
objective function and operation constraints are described 
as follows.

3.1  Objective Function

The proposed S-DR-UC aims to minimize the total operation 
cost that comprises both day-ahead and real-time compo-
nents as follows:

(1.8)

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(�low
1,t

, �
up

1,t
) ...

�
�
low
1,T

, �
up

1,T

�

⋅ ⋅ ⋅�
�
low
i,t

, �
up

i,t

�
...

�
�
low
i,T

, �
up

i,T

�

⋅ ⋅ ⋅�
�
low
n,t

, �
up

n,t

�
...

�
�
low
n,T

, �
up

n,T

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

&

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
p1 −

�m∗
1
(1−

�

Q
)

m
, p1 −

�m∗
1
(
�

Q
)

m

�

⋅ ⋅ ⋅�
pi −

�m∗
i
(1−

�

Q
)

m
, pi −

�m∗
i
(
�

Q
)

m

�

⋅ ⋅ ⋅�
pn −

�m∗
n
(1−

�

Q
)

m
, pn −

�m∗
n
(
�

Q
)

m

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the operation cost in the day-ahead part accounts for 
the production and start-up costs of thermal units in the wind 
power prediction base case i.e., the empirical distribution 
obtained by Eq. 1.4. The operation cost in real-time is the 
expectation of re-dispatch cost under the worst-case distri-
bution of wind power, where πω represents the probability 
of distribution ω.

3.2  System Constraints

The power system constraints in the wind power empiri-
cal distribution include (2.2)-(2.17), which ensure that 
the day-ahead schedule respects the technical limits of 
power systems. The value range of first stage variable is 
{ugt , ygt , zgt = {0, 1}, pgt, r

+∕−

gt ≥ 0,∀g, t;𝜔jt ≥ 0, ∀j, t;𝛿nt free,∀n, t;f̂lt free,∀l, t} Spe-
cifically, constraint (2.2) is the initial state of the units in 
the beginning of the scheduling horizon, where the result-
ing allowable start-up and shut-down actions are imposed 
through constraints (2.3) and (2.4), respectively.

Constraints (2.5) and (2.6) model the transition from 
start-up to shut-down state. Constraint (2.7) states whether 
an unit can start up or shut down at time period t.

Constraints (2.8) and (2.9) respectively enforce the 
upward ramping limit and the downward ramping limit. 
Constraints (2.10) and (2.11) give the minimum and maxi-
mum generation bounds. Constraints (2.12) and (2.13) limit 
the procurement of upward and downward reserves by the 
corresponding capacity offers.

(2.1)

min
∑
t∈�

∑
g∈�

�
Cgpgt + CSU

g
ygt + CU

g
r+
gt
+ CD

g
r−
gt

�

+max
∑
�∈D

�
�
min

∑
t∈�

�∑
g∈�

�
C+
g
p+
gt�

− C−
g
p−
gt�

�
+ Cshed

∑
n∈N

lshed
nt�

�

(2.2)ugt = u0
g

(2.3)
t∑

t�=t−UTg+1

ygt� ≤ ugt

(2.4)
t∑

t�=t−DTg+1

zgt� ≤ 1 − ugt

(2.5)ygt − zgt = ugt − u0
g

(2.6)ygt − zgt = ugt − ug−1

(2.7)ygt + zgt ≤ 1

(2.8)pgt − pgt−1 ≤ +r+
gt−1

− r+
gt
+ RU

g
(ugt−1 + ygt)
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Constraint (2.14) bounds wind power dispatch to the 
installed wind power capacity.

Constraint (2.15) is the nodal power balance, which 
considers the day-ahead network power flows constraints 
(2.16) and (2.17) based on a DC flow approximation.

3.3  Real‑Time Dispatch Constraints

The real-time dispatch constraints (2.18)-(2.24) model the 
balancing recourse actions under the worst-case distribution 
of wind power. The value range of real-time variable is 
{p∗

gt𝜔
≥ 0,∀g, t,𝜔;𝜔

spill

jt𝜔
≥ 0,∀j, t;f̃lt𝜔 free,∀l, t,𝜔;lshed

nt𝜔
, 𝛿nt𝜔 free,∀n, t,𝜔} Constraint 

(2.18) ensures that conventional generation, wind power 
production and load are properly re-dispatched such that the 
whole system remains in balance.

Constraints (2.19) and (2.20) ensure that the upstream and 
downstream reserve deployments are within the range of the 
corresponding purchase quantity in the day-ahead period.
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Constraints (2.21) and (2.22) are node requirements, lim-
iting the amount of wind power that can overflow from each 
node and the amount of wind power that can be realized 
under each scenario. The transmission capacity limits on 
the real-time power flow are expressed in constraints (2.23) 
and (2.24)

Finally, the complete model of S-DR-UC is built by tak-
ing (2.1) as the objective function, and (2.2)-(2.24) as the 
constraints.

4  Solution Algorithm

Generally, S-DR-UC is difficult to be solved by existing 
methods due to the complicated nature of DRO and the 
introduction of scenario-based ambiguity set. Therefore in 
this section, a hybrid solution algorithm named improved 
PSO-mathematical solver (IPSO-MS) for the proposed 
model is designed, which combines an improved PSO algo-
rithm, a mathematical optimization solver and parallel com-
puting. In what follows, the basic knowledge of classical 
PSO is firstly introduced, followed by our improvements on 
the algorithm itself. Then the way to combine PSO with 
mathematical solver and implementation of parallel comput-
ing is explained.

4.1  Classical PSO

PSO was first proposed by Kennedy and Eberhart (1995). 
The basic idea of PSO is to find the optimal solution through 
the cooperation and information sharing among individuals 
in the group. Basically, each particle Pi has only two proper-
ties, i.e., speed vi and position xi. Each particle searches for 
its optimal solution in its search space as individual extreme 
values pbesti, and then finds the optimal solution among 
these individual extreme values as the global optimal solu-
tion gbesti. All particles are then varied according to indi-
vidual and global extremes. The formulas that update the 
velocity and position of each particle are as follows:

(2.21)�
spill

jt�
≤ W∗

jt�

(2.22)lshed
nt�

≤ Lnt

(2.23)|f̃lt𝜔| ≤ Fl

(2.24)f̃lt𝜔 = Bl

∑
n∈Nl

𝛿nt𝜔

(3.1)
vi = � × vi + c1 × rand() × (pbesti − xi) + c2×

rand() × (gbesti − xi)
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where c1 and c2 are learning factors, usually taking the value 
of 2. Besides, ω is a non-negative inertia parameter, which 
is used to adjust the global and local optimization ability of 
each particle. Basically, ω is positively correlated with the 
global optimization ability, and negatively correlated with 
the local optimization ability.

4.2  Improved PSO with Cosine Similarity‑Based 
Nonlinear Inertia Weight

It can be found that the inertia weight ω in Eq. 3.1 has a 
direct impact on the velocity as well as the position of each 
particle. In most existing PSO algorithms, ω is treated as a 
fixed value. A large ω value is unfavourable for local search 
of each particle, especially in the later iterations, while a 
small ω value will deteriorate the global search ability of the 
swarm. In recent years, there have been many researches on 
the improvement of PSO (Zhao et al., 2017). For example, 
Alkhraisat et al. proposed a dynamic inertia weight parti-
cle swarm optimization (DIW-PSO) algorithm in (2016) 
(Alkhraisat & Rashaideh, 2016), which updated the inertia 
weight value through the law of linear decline. The update 
formula of inertia value is as follows:

where ωmin and ωmax are the minimum value and maximum 
value of the range of inertia change respectively. itmax is 
the maximum number of iterations. i represents the current 
iteration. In this way, the iteration speed of particles with 
different iterations is adjusted, and the imbalance between 
global and local optimization of classical PSO algorithm 
is improved to some extent. However, the above improve-
ment cannot be used directly in this study. The reason is 
that the ambiguity set of this research is scenario-based, 
and each particle position represents a possible realiza-
tion of the worst-case scenario set whose form is shown in 
Eq. 3.4 within the ambiguity set.

In order to dynamically adjust the global optimization 
capability, the similarity among each particle position, i.e., 
different realizations of Eq. 3.4 should be taken into account. 
Fortunately, an effective measurement named cosine simi-
larity can reflect the directional consistency of two vectors, 
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and cosine similarity of vector a and vector b is defined as 
follows:

In this paper, cosine similarity is introduced to measure 
the similarity of the optimal scenario set and other scenario 
sets. By constructing the matrix between the current sce-
nario set and the optimal scenario set, cosine similarity is 
used as the distribution index. The similarity of particle p 
and particle q is defined as follows:

According to the above formula, when the scenario dis-
tribution difference between particle p and current global 
optimum is great, R(Sp,gbesti) will take a small value. It 
means that the particle p needs to jump out of the current 
region and therefore the inertia weight in the next iteration 
should be lager. While if the particle is close to the optimal 
particle, the optimization would need to be conducted in 
a local small range, so the inertia weight of the particle in 
the next iteration should be small. Therefore, according to 
the above definition of particle similarity value, the weight 
function is updated as:

The dynamic inertia weight adjustment method based on 
cosine similarity can update the evolution speed of particles 
according to the difference between particles and the optimal 
particle, and better adapt to each stage of the optimization 
process.

In additions, multiprocess module is used to create sev-
eral processes at the same time, and the whole particle 
swarm is separated into some processes in a certain number 
for parallel computation, which should greatly reduce the 
runtime cost of the entire algorithm.

4.3  Proposed IPSO‑MS

Based on the above improvement, a hybrid algorithm IPSO-
MS is designed to solve the two-stage S-DR-UC in a hier-
archical way. Specifically, the upper layer algorithm tries 
to extract the worst scenario set of the ambiguity set, while 
the lower layer is a mathematical solver that minimizes the 
objective function under the scenario set given by the upper 
layer. Based on the above knowledge, the detailed IPSO-MS 
to solve S-DR-UC problem is as follows:
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(3.6)R(Sp, Sq) =
1

n2

(
n∑
i=1

cos(spi, sqi)

)2

(3.7)

�
∗ = �min +

(
itmax − i

itmax

)2

× (�max − �min) × (1 − R(Sp, gbesti))



17Information Systems Frontiers (2024) 26:9–23 

1 3

Firstly, the S-DR-UC model can be summarized as fol-
lows, which includes two stages.

The front portion i.e., minCday−ahead is the setting of the 
day-ahead stage, accounting for the energy production and 
start-up costs of all conventional units. In order to avoid the 
complex solution brought by the three-layer optimization 
problem, we optimize this stage directly and focus on the 
optimization of the real-time stage. Since the real-time phase 
is a max-min problem, IPSO-MS adopts the mathematical 
solver Gurobi to solve the lower min problem that minimizes 
re-dispatch cost, where the upper improved PSO is used to 
find the worst-case distribution of wind power uncertainty. 
The flow chart of IPSO-MS is depicted in Fig. 2, which can 
be summarized as follows.

Step 1: Initialization of particles. According to the 
ambiguity set D, a specified number of particles and their 
corresponding probability are obtained by taking a random 

(3.8)
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∑
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(3.9)s.t.(2.2) − (2.24)

value within the fluctuation range. Probability of scenarios 
is normalized and will be adjusted if there is probability 
that oversteps the fluctuation range. A certain proportion of 
scenario values are selected as the initial value and boundary 
of particle velocity.

Step 2: Evaluating the fitness of particles. Multiprocess 
module is adopted to created several processes and math-
ematical solver is called to solve the min problem based on 
the given particles i.e., scenario sets. Finally, the operation 
cost obtained by the mathematical solver is taken for the 
fitness value of each particle.

Step 3: Updating the position and velocity of each par-
ticle. Local optimum pbest and global optimum gbest are 
determined according to fitness of each particle. Position and 
velocity of each particle are updated according to Eqs. (3.10) 
and (3.11), so is probability of scenario. Then the position 
and velocity of particles are judged and adjusted to ensure 
that the scenario set and its corresponding probability and 
velocity are within the specified range.

(3.10)
vi = �

∗ × vi + c1 × rand() × (pbesti − Si) + c2
×rand() × (gbesti − Si)

(3.11)Si = Si + vi

Fig. 2  IPSO-MS flow chart
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Step 4: Algorithm iteration. If the condition that the num-
ber of iterations reaches the maximum is satisfied, algorithm 
stops iterating, records the current optimal particle position 
i.e., the worst-case distribution and returns the scheduling 
scheme and scheduling cost for the worst-case distribution. 
Otherwise, algorithm goes to step 2.

5  Case Study

In this section, the effectiveness of scenario-based ambiguity 
set, S-DR-UC model as well as the hybrid solution algorithm 
IPSO-MS is demonstrated by a number of experiments on 
two modified IEEE test systems. Firstly, the performance 
of ambiguity set obtained by scenario clustering and reduc-
tion techniques is evaluated and the impact of ambiguity set 
fluctuation is analyzed. Then, the performance of the S-DR-
UC model is discussed by comparing with existing SUC 
and RUC. Finally, the effectiveness of IPSO-MS algorithm 
is demonstrated on the modified IEEE RTS-24 system and 
IEEE 3-Area RTS-96 system. Node data of IEEE RTS-24 
comes from Ordoudis et al. (2016) and that of IEEE 3-Area 
RTS-96 is provided in Pandzic et al. (2015).

The numerical experiments carried out on both test sys-
tems were performed on a server with an intel(R) Xeon(R) 
E5-2650 CPU with 2 processors clocking at 2.20GHz. All 
test cases were implemented and solved in python with 
Gurobi as the MILP mathematical solver. The parallelization 

of the particles was realized using the Joblib Python library 
with a multi-processing scheme.

5.1  Performance of Scenario‑Based Ambiguity Set 
Construction

The clustering algorithm and ambiguity set are evaluated 
respectively in Sections 5.1.1 and 5.1.2.

5.1.1  Evaluation of Clustering Algorithm

The wind power data used in this paper comes from NREL 
database, which includes the AG data and the correspond-
ing day-ahead PF data from May 2003 to September 2007 
in USA. Firstly, PF and AG data is transformed into PF and 
AG daily scenarios. Then CFSFDP is adopted for scenarios 
clustering. According to the principle of CFSFDP, after 
calculating the truncation distance ρ and density δ of each 
scenario, a decision graph is obtained, as shown in Fig. 3(a). 
After the experiments of adjusting parameters, the minimum 
values of ρ and δ are respectively set as 2 and 3.5, resulting 
in 22 scenario sets, which is shown in Fig. 3(b). Since the 
number of objects in different categories are greatly differ-
ent, two categories whose object quantity is huge are chosen 
to evaluate the clustering algorithm. In addition, only part of 
two categories is shown in Fig. 3(c)-(d) for ease of display. As 
can be seen, scenarios in the same category are closely related 
to each other with similar trends, while the trend of objects in 

Fig. 3  Performance of CFSFDP
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different categories varies significantly. Therefore, CFSFDP 
can quickly and efficiently cluster scenarios without the need 
for repeated iterations, which effectively reduces the time of 
the data processing part of the overall algorithm.

5.1.2  Evaluation of Ambiguity Set

So far, a series of PF scenario sets have been obtained by 
using the clustering algorithm CFSFDP. Then AG scenarios 
are separated into corresponding sets to obtain AG scenario 
sets. Obviously, due to the geographical features of farm, the 
number of scenarios in each set is different, which may be 
either larger or smaller than our expectation. Usually, we hope 
to obtain a specified number of scenarios to conduct the sub-
sequent UC optimization. Therefore, if the number exceeds 
our expectation, scenarios whose ρ and δ are both high will 
be retained, while sets whose number of scenarios is too small 
will be merged according to Euclidean distance. Finally, 20 
AG sets of 20 scenarios are obtained. In addition, for the sake 
of universality of study, the set corresponding to the largest 
scenario sets is chosen for subsequent experiments.

The initial probability value of each scenario in the sce-
nario sets is determined based on Euclidean distance between 
objects in AG scenario sets and AG scenarios, which is the 
number of the corresponding AG scenarios divided by the 
total number. Then the scenario sets are converted to ambigu-
ity sets based on historical distribution and bootstrap meth-
ods. In detail, scenarios slashed of initial set with high ρ and 

δ are chosen as representative historical distributions. When 
more historical distributions are introduced, the fluctuation 
range of scenarios is larger. In our study, 2, 5 and 8 histori-
cal distributions are introduced and ambiguity sets are con-
structed respectively, which are shown in Fig. 4. After that, 
sampling with replacement is performed for several times and 
partial frequency values are selected to construct the speci-
fied confidence interval on the basis of Eq. 1.8. Specially in 
this study, sampling process is repeated for 100 times and the 
 5th and  95th frequency values in descending order are selected 
to obtain a 90% confidence interval.

In what follows, experiments based on different ambigu-
ity sets are performed to evaluate effect of different fluctua-
tion. As can be seen in Fig. 4(a)-(c), the introduction of more 
historical distributions leads to a great diversity of scenarios 
and a larger range of ambiguity sets. Generally, large ambi-
guity sets could contain more extreme worst-case distribu-
tions, resulting in higher operation cost of DRO UC scheme. 
Our model can effectively reflect the above phenomenon, 
which is shown in Fig. 4(d). Hence, it is significant to choose 
the fluctuation range reasonably. In particular, the subse-
quent experiment adopts ambiguity set D2.

5.2  Performance of the S‑DR‑UC Model 
and the IPSO‑MS Algorithm

Firstly, the performance of the S-DR-UC is evaluated 
compared with SUC and RUC. Besides, the numerical 

Fig. 4  Performance of different 
ambiguity sets
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experiments of IPSO-MS algorithm were performed to prove 
its validity in Section 5.2.2.

5.2.1  Evaluation of the S‑DR‑UC

In this section, experiments based on ambiguity sets i.e., 
D1, D2 and D3 obtained by Section 5.1 are performed 
on IEEE 3-Area RTS-96 to evaluate the robustness and 
economy of the S-DR-UC model. SUC takes the numer-
ous possibilities of uncertain information into account, 
and the scheduling results performs the best considering 
all the scenarios. In this study, we initialized 60 sce-
nario sets and called Gurobi one by one to solve, and 
regarded the minimum solution as the solution of SUC. 
By contrast, RUC aims to performs the best considering 
the worst case of all the scenarios. Given the worst sce-
nario set in this study, RUC modeling is carried out on 
the original model, and Gurobi is called to solve it, and 
the obtained solution is regarded as the solution of RUC.

The operation costs of the SUC and RUC models are 
$2.445 ×  106 and $2.913 ×  106, respectively. The com-
parison of the S-DR-UC based on three ambiguity sets 
with SUC and RUC is shown in Fig. 5. The proposed 
S-DR-UC outperforms both the SUC and RUC models. In 
detail, take D2 as an example, the proposed model is able 
to see all distributions in the ambiguity set, therefore it 
tackles more wind uncertainty and finds the 7.1% worse 
worst-case distribution compared with SUC. Besides, 
compared with the RUC model, the proposed model 
provides a less conservative decision whose operation 
cost reduces 10.2%. Based on the above discussion, the 
proposed model has better performance in balancing the 
robustness and economy of the dispatch scheme than the 
SUC and RUC models.

5.2.2  Evaluation of IPSO‑MS

In this section, the validity of IPSO-MS is evaluated on both 
test systems. In addition, the parameters of PSO are con-
firmed through random search (Do and Ohsaki, 2021), which 
are shown in Table 1.

First of all, in order to assess the improvement of PSO 
algorithm, experiments on IEEE RTS-24 system are con-
ducted by changing the number of particles and controlling 
the maximum number of iterations. Nonlinear weights and 
cosine similarity in Section 3 are introduced to improve the 
fast convergence of traditional particle swarm optimization 
algorithm. Therefore, the experiments of 400 iterations were 
carried out for 40, 60 and 80 sets containing 20 scenarios 
respectively. And then the results are compared in terms of 
the worse-case distribution found by each algorithm, which 
is expressed by the corresponding operation cost as shown 
in Fig. 6. The experimental result shows that the proposed 
improved scheme performs well under different particle 
number conditions. At the same time, compared with the 
classical PSO, it avoids excessive convergence, and the clas-
sical PSO basically converges in 200 iterations. However, the 
improved scheme proposed by us converges around the 300 
iterations, and at the same time finds the worse worst-case 

Fig. 5  The performance of S-DR-UC

Table 1  The parameters set of IPSO

Parameters Value

Population size N 40,60,80
Learning factor c1 2
Learning factor c2 2
Range of inertia weight ω∗ [0.35,0.75]
Speed maximum Vmax 20 % of search space
Iterations 400

Fig. 6  Comparison between PSO and IPSO
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distribution i.e., scenario set that makes the cost value larger, 
effectively avoiding local convergence.

Therefore, in the subsequent experiment on the IEEE 
3-Area RTS-96 system, the number of particles is selected as 
60 and the maximum iteration number is set as 300. Besides, 
to facilitate the evaluation, we include one improvement at a 
time in the IPSO-MS algorithm and compare the results in 
terms of calculation time and worst-case found.

(1) PSO-mathematical solver (PSO-MS): In order to estab-
lish a benchmark to evaluate the improvement of our 
IPSO-MS, we try to combine classical PSO and math-
ematical solver to handle the S-DR-UC model and the 
process is as follows. After initializing the particle 
swarm, mathematical solver Gurobi is called to solve 
problem based on particles i.e., scenario sets one by 
one, and the solved value is regarded as particle swarm 
fitness, and iterated according to the iterative nature of 
the classical PSO.

(2) DIW-PSO-MS: On the basis of the version of the PSO-
MS algorithm, dynamic inertia weight is introduced to 
improve PSO. The rest of the process is the same as 
PSO-MS.

(3) IPSO-MS: On the basis of the version of the DIW-
PSO-MS, cosine similarity is adopted to measure the 
similarity between scenarios. Besides, 10 processes are 
created to realize parallel computation

Table 2 summarizes the different improved performance 
of PSO-MS, DIW-PSO-MS and IPSO-MS and compares 
the final running time and worst-case found and the conver-
gence process of the three ways is also shown in Fig. 7. It 
can be clearly seen that, compared with the classical PSO 
algorithm, both DIW-PSO-MS and IPSO-MS can mitigate 
the premature local convergence and find more extreme sce-
narios distributions within the ambiguity set, thus resulting 
in higher operation costs. Besides, the introduction of cosine 
similarity indeed helps to find worse case than DIW-PSO-
MS and parallel computing makes our method save 81% 
computing time.

5.3  Evaluation of Robotic Assistance

A complete forecasting process often takes a lot of time, 
which also leads to few options for system operators. In 
this study, robots are introduced to help make decisions. 

Specifically, the model and algorithm designed above are 
imported into robots R1, R2 and R3, and the decision results 
are output together to provide reference for the decision P 
already made.

As can be seen from Fig. 8, the assistance of robots 
effectively helps verify the rationality of the system oper-
ators’ choice. In some areas having bad environment but 
suitable for the construction of new energy power plants, 
power plants are often unable to station many stationed staff. 
Robotic assistance can effectively reduce the burden of sys-
tem operators, and in the future it may be possible to make 
some simple decisions alone.

Table 2  Comparison among 
different versions

Versions Runtime(h) Reduced(%) Worst-case found($) Improved(%)

PSO-MS 46.1 − 2618778.12 −
DIW-PSO-MS 43.9 4.8% 2650898.05 1.3%
IPSO-MS 8.7 81.0% 2687782.33 2.6%

Fig. 7  Improvement performance of IPSO-MS

Fig. 8  Assistance of robots
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6  Conclusions

In this paper, a scenario-based distributionally robust unit 
commitment model was proposed to advance the tempo-
ral sequence feature of existing DRO models, and a hybrid 
algorithm IPSO-MS which combines an improved PSO with 
mathematical solver was designed to improve the effective-
ness of existing solution algorithms, and robots were intro-
duced to assist decision-making. Especially, ambiguity set is 
constructed with scenario based on historical and bootstrap 
methods. Besides, nonlinear inertia weight, cosine similar-
ity and parallel computing were introduced to improve the 
shortcomings of classical PSO algorithm. Experiments on 
IEEE RTS-24 system and IEEE RTS-96 system show that 
the S-DR-UC model has good reliability and economy and 
IPSO-MS algorithm can be used to solve S-DR-UC prob-
lems with high efficiency. The assistance of robots provides 
more options and also helps verify the rationality of the sys-
tem operators’ choices.

Future research will focus more on human-robot coopera-
tion and interaction. Besides, the decision-making ability of 
robots could be trained and improved.
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