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Abstract
In the context of distributed machine learning, the concept of federated learning (FL) has emerged as a solution to the privacy 
concerns that users have about sharing their own data with a third-party server. FL allows a group of users (often referred to 
as clients) to locally train a single machine learning model on their devices without sharing their raw data. One of the main 
challenges in FL is how to select the most appropriate clients to participate in the training of a certain task. In this paper, we 
address this challenge and propose a trust-based deep reinforcement learning approach to select the most adequate clients 
in terms of resource consumption and training time. On top of the client selection mechanism, we embed a transfer learn-
ing approach to handle the scarcity of data in some regions and compensate potential lack of learning at some servers. We 
apply our solution in the healthcare domain in a COVID-19 detection scenario over IoT devices. In the considered scenario, 
edge servers collaborate with IoT devices to train a COVID-19 detection model using FL without having to share any raw 
confidential data. Experiments conducted on a real-world COVID-19 dataset reveal that our solution achieves a good trade-
off between detection accuracy and model execution time compared to existing approaches.

Keywords Federated learning · Deep reinforcement learning · Transfer learning · Internet of things (IoT) · Edge 
computing · COVID-19 detection

1 Introduction

The Internet of Things (IoT) is increasingly being used 
by the public and private sectors to process personal and 
industrial data. This inevitably means that large amounts 
of data are being generated on a daily basis. These data are 
often used to train machine learning models, which can then 
be used to detect, classify, and predict future events. For 
this purpose, centralized machine learning approaches are 
usually employed, where data from different IoT devices 
to transmitted to a central server whose task is training a 
machine learning model over these data. Unfortunately, this 
approach has been lately criticized for breaching users’ data 
privacy as these data need to be shared with a third-party 
server. Federated learning (FL) can provide a solution to 
this problem through enabling an on-device cooperative 
training of the machine learning model (Wahab et al., 2021; 
Zhang et al., 2021; Rjoub et al., 2022; Rjoub et al., 2021b) 
across many users (called clients). We propose in this paper 
a trust-based client selection mechanism for FL using deep 
reinforcement learning (DRL) to enable the system to select 
the most appropriate clients in terms of resource utilization 
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and training time. As case study, we consider an IoT-enabled 
healthcare application in which a collection of IoT devices 
are asked to collaboratively train a COVID-19 detection 
model using FL without having to share any raw confiden-
tial data.

1.1  Motivations of the Work

IoT is one of the most significant advances in the sector of 
information technology. IoT stays at the intersection of the 
concepts of edge computing, cloud computing and network-
ing and has been applied in the few past years in many criti-
cal domains such as healthcare, traffic planning, and military 
monitoring tasks. Interestingly, there has lately been many 
attempts to capitalize on IoT to boost the research efforts 
on healthcare domain. IoT has been mainly investigated for 
effective tracing of the patients and the suspicious cases 
(Singh et al., 2020; Al-Dhaen et al., 2021; Li et al., 2015; 
Bataineh et al., 2021).

Edge computing is another interesting technology, which 
has been proposed to complement the concept of cloud com-
puting through enabling the execution of certain data pro-
cessing tasks at the edge of the network with lower latency. 
Edge computing is particularly appropriate for boosting the 
performance of executing deep learning models, as it ena-
bles the offloading of some parts of the deep learning layers 
to the edge servers (ESs) and then the transfer of only the 
reduced intermediate data to the central cloud server. Recent 
studies (Rahman et al., 2020; Brunese et al., 2020; Tuli et al., 
2020; Otoom et al., 2020; Bataineh et al., 2020; Rjoub et al., 
2020a) have tried to employ IoT over cloud and edge com-
puting environments to analyze data stored on ESs for high-
accuracy detection results (i.e., healthcare, transport, etc.).

FL is one of the highly effective paradigm shifts in recent 
years in AI-based computing. It allows us to obtain better 
results by cooperatively training a single machine learn-
ing model instead of forcing each edge machine to share 
its actual input data. The FL architecture consists of two 
phases, namely, global computing and local training. In the 
local training phase, a parameter server, such as an ES, ini-
tializes the machine learning algorithm and shares the initial 
parameters with the end/edge devices (e.g., IoT devices). 
The shared parameters are thereafter used by these devices 
to train the model on their own data. Then, the devices 
share the modified parameters acquired from the training 
of the model on their data with the parameter server. Global 
computing allows the whole model to be reconstructed by 
aggregating all the received parameter updates in coordina-
tion with all the IoT devices. This method is repeated until 
a certain degree of accuracy is achieved. The applications 
of FL in medical big data are quite promising (Wahab et al., 
2021; Brisimi et al., 2018; Kumar et al., 2021).

As a proof of concept, we implemented our trust-based 
DRL solution for FL client selection on a healthcare scenario 
(COVID-19 detection) as shown in Fig. 1. Different layers 
and technologies are involved in this complex scenario. As 
illustrated in Fig. 1, our architecture consists of three lay-
ers: the public environment layer, the physical layer, which 
has sensors (cameras) for sensing and gathering information 
about the environment (COVID-19 detection for the case 
study), the edge computing and aggregation server layer, 
and the smart IoT devices layer. The role of the edge com-
puting server is to aggregate local models from IoT devices 
into a global model based on devices’ local data. The IoT 
devices only share their local models with the edge comput-
ing server, rather than their local data, in order to protect 
the privacy. The purpose is to investigate the effectiveness 
of a trust-based selection mechanism in improving the per-
formance of FL in this scenario. We also aim to explore 
how the integration of state-of-the-art concepts such as FL, 
DRL, transfer learning (TL), trust management, IoT and 
edge computing could contribute in an improved detection 
of COVID-19 cases.

1.2  Problem Statement

In the healthcare domain, FL can be extremely useful to 
analyze huge amounts of heterogeneous data from a multi-
tude of sources (e.g., hospitals, clinics, smartphones, and IoT 
devices) in a privacy-preserving fashion, while eliminating 
the need to share the raw data with a third-party platform. 
This is of great importance to encourage citizens and medi-
cal centres to participate in any detection process.

In this paper, we argue that FL, combined with IoT and 
edge computing, has a lot to offer to advance the research 
in the area of collaborative computing, in particular col-
laborative detection methods. Yet, a main challenge toward 
applying these technologies together is how to select the 
IoT devices to perform the FL tasks and how to transfer the 
learning among ESs. In fact, it is of prime importance to 
select devices that enjoy enough computing resources that 
enable them to perform local training. Moreover, it is crucial 
to select trusted IoT devices to avoid having (intentionally 
or unintentionally) bogus or poor-quality results (Bentahar 
et al., 2022; Drawel et al., 2021, 2022; Wahab et al., 2020, 
2022). For example, since the training is carried out locally 
at the level of the IoT devices, some malicious devices might 
optimize for a malicious objective that aims to generate tar-
geted wrong results such as misclassifications. Some other 
devices might not dedicate enough resources to the local 
training, which could lead to poor-quality results. To address 
this challenge, we propose a DRL-based scheduling algo-
rithm that takes into account the resources’ availability and 
trust scores of the IoT devices to schedule the tasks, which 
we then apply to the COVID-19 case study.
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Furthermore, due to the variability in the availabil-
ity and volumes of data from one region to another and 
the overhead of constantly training from scratch, it is 
important to come up with an effective learning sharing 
approach. Therefore, we complement our solution with 
a TL approach that is integrated into the FL paradigm 
to allow the ESs to transfer pre-trained models from one 
server to another, thus reducing the training time and han-
dling the scarcity of data in some areas.

In a preliminary version of our investigation (Rjoub 
et al., 2020b), we put forward a scheduling algorithm for 
FL, which assists the server in selecting the subset of IoT 
devices to minimize resource consumption while maximiz-
ing the overall trust of the process. This paper extends our 
previous work by (1) adapting and testing our solution in a 
COVID-19 scenario; and (2) integrating a TL method into 

our solution to enable inter-server knowledge sharing to han-
dle the problem of data scarcity in some regions.

1.3  Contributions

Our solution consists of a client selection mechanism in FL 
that relies on a resource and trust-aware DRL strategy. To 
illustrate the benefits of the solution, we consider the con-
crete scenario of IoT devices that communicate with ESs to 
provide detection-aware IoT services. Each set of IoT devices 
is managed by an ES. The ES initializes a FL model using a 
publicly available dataset to derive initial model parameters. 
It then uses our resource and trust-aware DRL scheduling 
algorithm to select the set of IoT devices to participate in 
the detection process. The initial set of parameters is hence 
shared with the selected IoT devices. Upon receiving these 

Fig. 1  System architecture and communication process of federated transfer learning in edge cloud
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parameters, each IoT device uses them to locally train the 
machine learning model on its collected data. The different 
IoT devices then share the set of updated parameters with the 
ES, which then aggregates the parameters to derive a global 
model. This process repeats until a desired accuracy level is 
attained. The knowledge achieved at the ES is then passed 
to other ESs, resulting in faster data access and reduced 
training time while addressing the issue of data shortage at 
some of these devices. This scarcity might be caused by the 
lack of suitable IoT devices that can participate in the train-
ing process or the small crowd in some areas (e.g., airports, 
shopping malls, etc.). The main contributions of the paper 
can be summarized by the following points:

• In order to find the most efficient FL selection decision in 
terms of level of trust and execution time, we put forward 
a DRL scheduling algorithm. Technically speaking, We 
begin by formulating a stochastic optimization problem 
to determine the collection of IoT devices to which the 
FL tasks will be sent, where the goal of each ES is to 
minimize the execution time while maximizing the trust 
of the overall process. The optimization problem is then 
solved using a DRL algorithm that models the server’s 
uncertainty about the resource and trust levels of IoT 
devices about which the server has little direct control.

• We propose a multi-faceted approach for a concrete 
detection-driven scenario, which integrates relevant 
state-of-the-art approaches and technologies such as 
federated transfer learning, IoT, edge computing, trust 
management and DRL. To the best of our knowledge, 
no existing approach has yet considered the integration 
and interconnection between all these technologies for 
a detection method. This makes our approach the most 
holistic in the literature through considering the dif-
ferent aspects that are necessary for detection such as 
monitoring and tracking (using IoT and edge devices), 
trust-aware participant selection and job scheduling 
(using trust management and DRL), privacy-preserving 
machine learning (using FL) and training time reduction 
(using TL).

  We study the performance of the proposed solution 
experimentally on a COVID-19 dataset. We compare the 
accuracy of our solution under different combinations, 
i.e., Trust, Deep Reinforcement learning, Federated and 
Transfer learning (TDRFT); Trust, Deep Reinforcement 
learning, and Federated learning (TDRF); and Deep 
Reinforcement learning, Federated and Transfer learning 
(DRFT). We also compare these different combinations 
of our solution with two common scheduling approaches, 
i.e., Round Robin (RR) and Random Scheduling (RS) 
while integrating our trust establishment solution into 
them. In particular, the average accuracy obtained by 
the TDRFT, TDRF, DRFT, RR and RS approaches are 

97.3%,99.4%; 96.4%,98.8%; 94.2%,97.1%; 90%,93.2%; 
and 87.3%,92.6% respectively.

1.4  Paper Organization

The remainder of this article is organized as follows. In 
Section 2, we review the literature on current IoT and edge 
computing scheduling approaches, on existing FL selection 
approaches, and on COVID-19 detection. In Section 3, we 
present our solution where the different components are 
discussed. In Section 4, we explain the experimental set-
ting and comprehensively assess the performance of the 
proposed approach through experiments and simulations 
against a benchmark of three selection approaches. Lastly, 
Section 5 concludes the paper and highlights some possible 
future extensions.

2  Related Work

In this section, we first survey the main scheduling 
approaches proposed for edge and cloud computing systems 
and the main resource management approaches that employ 
FL to automate the process, and then discuss the COVID-19 
detection approaches

2.1  Task Scheduling in IoT and Edge Computing 
Environments

Since our approach involves a scheduling component over 
IoT and edge devices, we survey in this section the relevant 
literature in this field (Arisdakessian et al., 2020). Lei et al. 
(2019) propose a semi-distributed scheduling algorithm in 
narrow-band IoT and edge computing systems. The objec-
tive is to minimize the long-term average weighted sum of 
delay and power consumption over all the IoT devices under 
stochastic traffic arrival. Technically speaking, the stochastic 
arrival model has been formalized using a dynamic optimi-
zation problem. The underlying framework is a continuous-
time Markov decision process with infinite-horizon and 
average reward. The curse-of-dimensionality issue has been 
addressed using approximate dynamic programming tech-
niques, including linear function approximation and semi-
gradient TD learning. Hu and Li (2019) study the request 
scheduling problem in ultra-dense edge computing (UDEC) 
networks and provide a non-cooperative game model based 
on sub-gradients. The considered UDEC network consists 
of a macro base station, many micro stations, and a large 
number of mobile users under the 5G architecture. Zhai 
et al. (2020) introduce a DRL-based approach to deploy 
mobile edge services in 5G networks. They consider the 
resource constraints of users along with the request patterns 
to reduce the total response time by increasing the number 
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of services executed on the ESs. The problem is solved using 
the Dueling-Deep Q-network algorithm deployed over a 
Markov decision process to learn the access patterns on ESs. 
To improve the management and consumption of resources 
in cloud-based systems, Song et al. (2018) tackle the host 
load prediction challenge. The problem in cloud environ-
ments is establishing precise forecasts because of the large 
load variance. To address this problem, a long short-term 
memory model (LSTM) is being developed to forecast the 
mean host load in future intervals.

A two-step framework is recommended in Liu et  al. 
(2017) to cover both the distribution of VM resources to 
servers and the control of power on each individual server. 
Focusing on DRL to ensure effective allocation of VM 
resources on servers constitutes the first step. In the second 
step, LSTM along with weight sharing are used to handle 
server power management efficiently.

Luo et al. (2019) discuss a multi-fog scheduling approach. 
The proposed solution considers the transmission energy 
consumption of the devices and schedules requests in real-
time by making use of a dynamic threshold mechanism. The 
solution guarantees the energy balancing of the devices with-
out increasing the delay. Rjoub and Bentahar (2017) suggest 
a scheduling method named “Multi Label Classifier Chains 
Swarm Intelligence (MLCCSI)” with the aim of reducing the 
job scheduling makespan. Two approaches are introduced. 
The first approach uses the Ant Colony Optimization (ACO), 
the Particle Swarm Optimization (PSO), and the Artificial 
Bee Colony (ABC) to find the best resource allocation solu-
tion. In the second approach, the best algorithm to run each 
appropriate task is predicted using an automatic learning 
technique based on various variables such as the number of 
virtual machines (VMs) and the size of the task to reinforce 
the load balancing and throughput of cloud networks.

FMPSO, a “hybrid task scheduling algorithm” that uses 
a fuzzy approach combined with the Modified PSO strategy 
is investigated by Mansouri et al. (2019). To improve the 
global search capability, FMPSO considers four updated 
velocity mechanisms along with a selection strategy. Then, 
to solve any of the PSO’s drawbacks, it employs “cross-over 
and mutation operators” employed in genetic algorithms. 
Finally, the fitness values are computed using fuzzy infer-
ence in the proposed process. A multi-objective optimisation 
problem is proposed by Gomathi et al. (2018), which aims 
to optimize three conflicting goals, namely use of resources, 
cost of execution, and makespan. The “composite discrete 
artificial bee colony (EDCABC)” centered in the Epsilon-
fuzzy domination is then used to extract optimum solu-
tions from Pareto for multi objective task scheduling in the 
cloud. Zhou et al. (2019) suggest a new algorithm that aims 
at enhancing the task scheduling process by exploiting a 
greedy strategy-driven genetic algorithm. Qiu et al. (2016) 
use deep learning to forecast VM workloads. The Deep 

Belief Network (DBN) in particular is constructed using 
regression layers and restricted Boltzmann multi-layered 
machines. The regression layer is used to forecast potential 
VM workloads, whereas the DBN layer is executed to extract 
important features from the VM workload data.

In all these approaches, the main objective is to analyze 
the historical data obtained from IoT devices to predict 
potential workload and, as a result, improve IoT alloca-
tion processes. However, none of these approaches has yet 
addressed the issue of dynamic task scheduling automation 
in complex and large-scale edge computing systems. In fact, 
no previous study has combined FL and DRL for dynamic 
scheduling in the way investigated in this paper.

2.2  Client Scheduling in Federated Learning 
Environments

Hu et al. (2019) propose a decentralised FL at the segment 
level to enhance the efficiency of network resources usage 
among client devices. The authors explicitly recommend a 
segmented gossip strategy, which makes maximum use of 
node-to-node bandwidth and achieves strong convergence 
training. Nishio and Yonetani (2019) introduce a protocol 
that optimizes FL’s efficiency with a heterogeneous client in 
a mobile edge computing setting called FedCS. FedCS pro-
vides a solution for a resource-constrained client selection 
problem that enables the server to aggregate client updates 
and speed up the rate of the training convergence.

Chen et al. (2019) address the problem of FL training 
over wireless realistic networks. They define an optimiza-
tion problem considering both the user’s selection and the 
allocation of resources to minimize the loss function. The 
predicted FL algorithm convergence rate, which takes wire-
less factors into account, is expressed in a closed-form. 
Nguyen et al. (2019) incorporate Deep Q Network (DQN) 
into a mobility-aware FL network for resource allocation. 
The authors suggest using the DQN to allow the model 
owner to find the optimal decisions that take into account 
the energy consumption and the quality of the selected chan-
nels without having prior knowledge about the network. The 
authors formulate the model owner’s decision as a stochastic 
optimization problem. The optimization problem’s goal is to 
maximize the model owner’s number of successful transmis-
sions while minimizing energy and channel costs. Anh et al. 
(2019) provide a DQN, which enables the server to learn and 
find optimal decisions without knowing the network dynam-
ics in the first place. They use Mobile Crowd-Machine 
Learning (MCML) to tackle the traditional machine learn-
ing data privacy.

In general, the existing scheduling methods in edge com-
puting, FL, and IoT concentrate primarily on the resource 
characteristics of the participant devices. To ensure high-
quality and consistent output of the FL, we consider both the 
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resource and trust aspects in this work. Furthermore, we inte-
grate a transfer learning strategy into our solution to enable 
servers to exchange knowledge without having to train from 
scratch. This is crucial to minimize the amount of time spent 
training per ES and to cope with data shortage issues.

2.3  Trust Establishment

In Rjoub et al. (2022), the authors argue that trust should 
be a component of the decision-making process and there-
fore design a mechanism to establish trust between the 
edge server and an IoT device. During local training, the 
trust mechanism will identify the devices that utilize their 
resources excessively or inefficiently. After that, they pro-
pose DDQN-Trust, a selection algorithm based on double 
deep Q learning that considers both the trust value and power 
level of IoT devices in order to plan scheduling accordingly. 
They finally integrate their solution into four federated learn-
ing aggregation approaches, namely FedAvg, FedProx, Fed-
Share, and FedSGD. The authors in Drawel et al. (2020) 
and Drawel et al. (2021), propose a formal framework for 
reasoning about how well individuals and groups of agents 
trust one another. Particularly, they propose a branching time 
temporal logic BT with operators that express the concepts 
of every-one trust, distributed trust, and propagated trust.

To allow for model checking BT logic at design time, the 
authors extend their work in Drawel et al. (2022) to develop 
efficient and scalable reduction algorithms. The researchers 
analyze satisfiability and model checking problems in this 
logic. Furthermore, they present in this article BT Transfor-
mation Tool (BTT), which is used to automate the verifica-
tion process. As a solution to the item cold-start problem in 
recommendation systems, the authors in Wahab et al. (2022) 
propose a federated learning-based approach. Compared to 
existing federated learning-based solutions, their originality 
is derived from (1) using federated learning for cold-start 
problems; and (2) using a double deep Q learning schedul-
ing algorithm to select the best candidates based on trust 
and energy levels.

2.4  Covid‑19 Detection

Ozturk et al. (2020) tackle the problem of detecting and then 
classifying COVID-19 cases through the exploitation of 
X-ray images using a deep learning framework. The frame-
work enjoys an automatic procedure and requires no manual 
feature extraction. The proposed model provides accurate 
results in terms of both binary classification (i.e., COVID 
vs. No-Findings) and multi-class classification (COVID vs. 
No-Findings vs. Pneumonia). In Hu et al. (2020), the authors 
design a “weakly supervised deep learning” framework 
that allows us to classify COVID-19 cases after detecting 
them using CT images extracted from various scanners and 

multiple centres. The proposed framework can accurately 
recognize COVID-19 cases from community-acquired pneu-
monia and nasopharyngeal, while minimizing the require-
ments of manual labelling of the CT images. Wang et al. 
(2020a) introduce a noise-resistant model, which can be 
trained efficiently by a noisy dataset to segment COVID-
19-related pneumonia lesions at various scaling levels. At 
first, the authors propose a modified U-Net-based COVID-
19 lesion segmentation network that generalizes the “Dice 
loss” used for segmentation and the “Mean Absolute Error 
(MAE) loss” utilized for robustness against noise. The 
authors then introduce a new “noise-robust loss function”, 
and a “COVID-19 Pneumonia Lesion segmentation network 
(COPLE-Net)”. The proposed solution enables a better treat-
ment of the scales and appearances of the lesions. Finally, 
they define a robust noise-driven learning approach using a 
self-ensembling framework. Toraman et al. (2020) propose 
a Capsule Neural Network (CapsNet) for the detection of 
COVID-19 using chest X-ray images. The proposed model 
provides fast and accurate diagnostics in both binary (i.e., 
COVID-19, and No-Findings) and multi-class classifications 
(i.e., COVID-19, No-Findings, and Pneumonia).

Wang et al. (2020b) design a deep learning model based 
on Convolutional Neural Networks (CNN) for the detection 
of COVID-19 using chest X-ray (CXR) images. The solution 
exploits a human-machine collaborative design strategy. At the 
output layer, the investigators use the Softmax activation func-
tion of the initial network to perform a three-way classification 
task (i.e., normal, non-COVID infection, and COVID infection). 
Then, they employ a machine-driven strategy to explore the best 
network design based on the specific design requirements.

Nour et  al. (2020) propose an intelligent model that 
detects positive COVID-19 cases using a CNN architecture. 
They employ CNN for feature extraction and then capital-
ize on the extracted features to be used as inputs for sev-
eral machine learning techniques (i.e., k-nearest neighbor, 
support vector machine (SVM) and decision tree). Finally, 
they employ a Bayesian optimization algorithm to tune the 
hyper-parameters of the machine learning models. In Meng 
et al. (2020) the investigators introduce a 3D densely con-
nected CNN-based predictive model to recognise high-risk 
COVID patients. First, the authors use Hounsfield Unit as a 
threshold-based method to segment lung regions from CT 
images. Then, the computer automatically gives a set of seed 
nodes. Finally, the lung volumes are re-sampled.

The key drawback of these detection methods is that they 
require an offline mode in order to refine the detection preci-
sion through a range of parameters. On the other hand, these 
approaches work with a limited dataset without trying to use 
multiple data sources from more than one ES and transfer the 
knowledge among these servers.

In this work, we aim to show how our FL client selec-
tion method can be used to further improve the detection of 
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COVID-19 through proposing a multi-faceted approach which 
integrates many state-of-the-art approaches and technologies 
such as federated transfer learning, IoT, edge computing, trust 
management and DRL. To the best of our knowledge, no exist-
ing approach has yet considered the integration and intercon-
nection of all these technologies for COVID-19 detection. 
This makes our approach the most holistic in the literature 
through considering the different aspects that are necessary for 
COVID-19 detection such as health monitoring and tracking 
(using IoT and edge devices), trust-aware participant selec-
tion and job scheduling (using trust management and DRL), 
privacy-preserving machine learning (using FL) and training 
time reduction (using TL).

3  Client Selection Solution

3.1  Problem Formulation

Let M = {m1,m2,… ,mx} be a set of x IoT devices (i.e., cli-
ents). For the COVID-19 case study, these IoT devices are 
responsible for COVID-19 detection. In this case, each IoT 
device is equipped with X-ray scanning and machine learning 
capabilities, which enable it to train a COVID-19 detection 
model. E = {e1, e2,… , er} is a set of r ESs responsible for 
aggregating the model updates received from the IoT devices. 
Let Tm = {tm1, tm2,… , tml} be a set of l training models to 
be analyzed on the IoT device m ∈ M, which forms a tuple. 
Let αm be a trust value assigned by an ES from E to the IoT 
device m, and ζm be the cost of transmitting the model from 
the parameter server (i.e., the ES) to the device m and run-
ning the model. An ES e ∈ E chooses to schedule one or 
more tasks over the IoT devices at each time step τ.

Let εm be the time needed to train a local model on the 
device m. We introduce two functions: Θ1(�1, �2,…�n) an 
aggregation function that computes the execution time of the 
overall FL process involving the selected n IoT devices partici-
pating in the federated training, and Θ2(�1, �2,…�n) an aggre-
gation function that computes the overall trust of the selected 
n IoT devices. The sum of εi and αi ( i ∶= 1…n ), the average, 
the min and the max are examples of these aggregation func-
tions. The objective of our scheduling solution is to minimize 
Θ1 and maximize Θ2 subject to the constraints Eqs. (1) to (8).

(1)KCPU
mi

≤ CPU�
m
, ∀tmi ∈ Tm

(2)
∑

tmi∈Tm

KCPU
mi

≤ CPUm

(3)KRAM
mi

≤ RAM�
m
, ∀tmi ∈ Tm

(4)
∑

tmi∈Tm

KRAM
mi

≤ RAMm

where Kz

mi
 represents a requirement of the training model 

tmi where each z represents a certain resource parameter, 
i.e., CPU, RAM, bandwidth (BW), and disk storage (DS). 
CPU�

m
,RAM�

m
,BW�

m
, andDS�

m
 are the current amounts of 

available CPU, RAM, Bandwidth, and disk storage on IoT 
device m.

3.2  Trust Management

To model the trust relationships between an ES ei ∈ E and 
the clients in terms of efficiently and honestly executing the 
required duties, we employ the trust establishment algo-
rithm that we recently proposed in Rjoub et al. (2020b). The 
algorithm monitors the IoT devices’ resource consumption 
over time and uses a modified Z-score approach to classify 
the IoT devices that exhibit some suspicious behavior in 
terms of over-consumption or under-consumption. This is 
highly important to consider in concrete scenarios such as 
the COVID case study to identify those devices that (1) do 
not allocate sufficient resources to perform the COVID-19 
detection tasks or (2) perform additional computations to 
embed some malicious goals (e.g., optimize for a malicious 
objective that seeks to cause misclassification) into their 
local training problems. Note that each ES monitors the IoT 
devices that are located within its range. The fundamental 
idea behind the trust method is to estimate the difference 
between a particular score and the median using the median 
absolute deviation MADz

m
(�) of a metric z (e.g., CPU, RAM, 

BW, DS) consumed by the IoT device m at the current time τ.
More precisely, the modified Z-score (β) is computed 

by dividing the difference between the consumption of 
the device m and the medium consumption of that device 
in terms of the resource metric z at time moment τ by the 
median absolute deviation of the metric z as follows:

where the constant ϱ = 0.6745 represents the 0.75th quar-
tile of the standard normal distribution, to which the MAD 
technique converges (Iglewicz and Hoaglin, 1993). There-
after, the trust method checks to see whether there is any 

(5)KBW
mi

≤ BW�
m
, ∀tmi ∈ Tm

(6)
∑

tmi∈Tm

KBW
mi

≤ BWm

(7)KDS
mi

≤ DS�
m
, ∀tmi ∈ Tm

(8)
∑

tmi∈Tm

KDS
mi

≤ DSm

(9)βz
m
(𝜏) =

𝜚(xz
m
(𝜏) − x̄zm(𝜏))

MADz
m(𝜏)
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consumption that surpasses or falls below the calculated 
abnormal limit for any possible consumption of the IoT 
device. Afterwards, by dividing the sum of this relative 
abnormal consumption Prop Abnormal Metricsz

m
 over all 

the z ∈ Z metrics by the number of Abnormal Metricsm of 
metrics that the device has overused/underused, we derive 
the trust value of each device αm. If no metric has been over-
used/underused, the initial trust in the IoT device’s trustwor-
thiness will be 100%.

3.3  Deep Reinforcement Learning Selection Policy

The proposed selection strategy is implemented by a multi-
layered neural network which capitalizes on the parameters 
of the network to specify actions, all of which are fed into 
the network itself, to produce a final action vector for the 
state (Rjoub et al., 2020b; Rjoub et al., 2021a). As a global 
Markov Decision Process (MDP), the problem is formu-
lated as a combination of local states and actions of the IoT 
devices and the system’s global actions. The selection policy 
is defined by the tuple 

⟨
S,A, T,R, �

⟩
 , where:

• S: Set of global states of the system.
• A: Set of joint actions over all the IoT devices.
•  T  : Transition probability function defined as: 

T(s, a, s�) = Pr(s� ∣ s, a) , where s, s� ∈ S and a ∈ A.
•  R ∶ S × A ↦ ℝ : Reward function of the model.
• γ: Discount factor that decreases the impact of the past 

reward.

Let Sm be the set of local states of the IoT device m ∈ M. The 
global state space S is obtained through the Cartesian prod-
uct of the IoT devices’ local states, i.e., S =

∏
m∈M

Sm . Each 

local state sm ∈ Sm is computed as follows:

where αm is the trust value of the IoT device m computed in 
Eq. (10), 𝜗m is the time needed to run the local model on the 
device m, and δm is the normalized amount of resources (i.e., 
CPU, RAM, bandwidth, and disk storage) on the device m. 
Trust value and execution time are dynamic, so they could 
change from state to state. The global action space of the 
parameter server is the joint action space of each device: 
A =

∏
m∈M

Am where Am is the set of local actions of m. A local 

action am ∈ Am is as follows:

(10)�m =

∑
z∈ZProp Abnormal Metricsz

m

Abnormal Metricsm

(11)

sm =(�m, �m, �m); �m ∈ {0, 1,… , �max},

�m ∈ {0, 1,… , �max},

�m ∈ {0, 1,… , �max}

where σm = 1 means that the parameter server assigns a train-
ing task to the IoT device m and σm = 0 means that the server 
does not assign the task to m. εm refers to the time needed by 
the IoT device m to download, train and upload the model, 
and Km is the normalized amount of resources needed to 
assign the model from the ES to the IoT device m, and ζm is 
the cost of transmitting the model from the parameter server 
to the device m and running the model. For an action a to be 
feasible from a state s the following conditions should hold:

where εm(a) and Km(a) refer to εm and Km in the action a 
from s; and 𝜗m(s) and δm(s) are 𝜗m and δm in s respectively. 
The reward function R is defined in such a way to maximize 
the selection of trustworthy IoT devices to perform the feder-
ated training and to minimize overall training time. The cost 
ζm is also considered proportional to the maximum cost ζmax. 
The reward Ψm for the device m is a function of state s ∈ S 
and action a ∈ A and is computed as follows:

In fact, the reward function considers the trust scores of 
the IoT devices and the available energy level of the devices 
to make sure that these devices have enough battery capacity 
to download, train and upload the model. The global reward 
of the parameter server is given by the following equation:

The parameter ES determines the optimal policy 
�∗ ∶ S → A that indicates the actions to be taken at each 
state to maximize the cumulative reward. The Q-learning 
(QL) algorithm’s essential goal to find π∗ is to update the 
Q-value of a state-action pair, Q(s,a), which encodes the 
expected future discounted reward for taking action a in 
certain state s. The optimal action-value function Q∗(s,a) is 
Q∗(s, a) = max

�
Q�(s, a) . This optimal value function can be 

nested within the Bellman optimality equation as follows:

(12)

am =(�m, �m,Km, �m);

�m ∈ {0, 1}, �m ∈ {0, 1,… , �max},

Km ∈ {0, 1,… ,Kmax}, �m ∈ ℝ

(13)�m(a) ≤ �m(s) ∀m ∈ M

(14)Km(a) ≤ �m(s) ∀m ∈ M

(15)Ψm(s, a) =

⎧
⎪⎨⎪⎩

�m.�m.Km −
�m

�max
, if Km(a) ≤ �m(s)

and �m(a) ≤ �m(s).

−
�m

�max
, otherwise.

(16)R(s, a) =
∑
m∈M

Ψm(s, a)

(17)Q∗(s, a) = R(s, a) + �
∑
s�∈S

Pr(s� ∣ s, a). max
a�∈A

Q∗(s�, a�)
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The parameter server calculates the optimal action from any 
state to maximize the cumulative reward, based on the Q-table 
that emerges from updating the Q(s,a) values. The QL algo-
rithm is only feasible for networks with limited state and action 
spaces, but the issue of assigning training tasks to IoT devices 
becomes highly dimensional when the number of network par-
ticipants increases (as is the case for IoT networks consisting of 
a large number of devices). To solve the high dimensionality 
problem, the deep Q network (DQN) algorithm (a combination 
of QL and deep neural network) comes into play. The DQN 
takes as input one of the online network’s states, and outputs the 
Q-values Q(s,a;𝜃), as well as the weight-matrix 𝜃 of the neural 
network of all eventual actions. In order to obtain approximate 
values Q∗(s,a), DQN needs to be trained using experience 
(s, a,R(s, a), s�) . To define the loss function, we use the mean 
square error (MSE), and DQN uses the Bellman equation to 
minimize the following loss function:

where 𝜃i denotes the online network parameters of the ith 
iteration, �′

i
 represents the goal network parameters of the ith 

iteration, and E[.] represents the expected value. Note that the 
action a is chosen on the basis of the 𝜖-greedy policy (Lopez-
Martin et al., 2020). This policy is general as it does not rely on 
strong assumptions about the underlying domain. It also has the 
advantage of being simple, not requiring too much implementa-
tion effort or per-domain fine tuning. This makes it an appealing 
alternative despite the fact that it may not be performing bet-
ter than some of its more complex counterparts (i.e. the 𝜖-soft 
policy and the softmax action selection policy) in all the cases.

3.4  Federated Learning Model

We use the FL model we recently introduced in Rjoub et al. 
(2020b). Let Dm be a local dataset collected by the IoT device 
m. For instance, in the COVID-19 scenario, the local dataset 
includes X-ray images. The dataset is represented as follows: 
Dm = {(x1m , y1m),… , (xnm , ynm )} , where xim is the ith training 
sample and yim represents the corresponding ground-truth 
label. We assume that a given learning model is employed 
on each Dm. For the COVID-19 case study, we employ a 
general CNN model to perform our analysis on the X-ray 
data. The ES first trains a global learning model on a pub-
licly available dataset and then sends the initial parameters 
to the set of IoT devices selected as per our selection solu-
tion discussed in Section 3.3. These IoT devices capitalize 
on the shared parameters to locally train the model on their 
own set of collected data and hence derive an updated set of 
the parameters. Upon receiving the updated parameters from 
the IoT devices, the server aggregates (using Eq. (19)) these 
parameters to derive a global aggregate model:

(18)
L(�i) = E[(R(s, a) + � argmax

a�∈A
Q(s�, a�;��

i
) − Q(s, a;�i))

2]

where 𝜆m ⊆ Dm is a subset of local data collected by IoT 
device m for a training period ν and gm[�] is the local gradi-
ent which is computed as per Eq. (20):

where wm is the set of local parameters of the learning 
model, Lm is the local loss function (in terms of training 
error) to be minimized on IoT device m and ∇wm

Lm(.) is the 
gradient of the loss function Lm with respect to wm.

We explain in Algorithms 1 and 2 the FL process we pro-
pose. In Algorithm 1, nm is the volume of the data that are 
available on IoT device m, n is the volume of the overall data 

(19)g[�] =
1∑

m∈M

∣�m∣

�
m∈M

∣�m∣ gm[�]

(20)gm[�] = ∇wm
Lm

(
wm, �m

)
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across all IoT devices, S is the total number of selected IoT 
devices to participate in the FL process, φ is an index that 
represents a training communication round and Wφ is the set 
of global parameters at training round φ. In Algorithm 1, at 

each round φ we use our DRL selection solution (Section 3) 
to select a subset of IoT devices E and then send the set of 
global parameters at training round (Wφ) to each selected IoT 
(line 4). The local update is computed for each IoT device in 
the selected subset (the call to Algorithm 2). Finally, Algo-
rithm 1 calculates the global parameters for the next training 
round (line 8). In Algorithm 2, after the global parameters 
are received from the ESs, the local update is calculated for 
each IoT device at each local iteration i (Line 4). Finally, the 
calculated local update is returned to the ES. The Stochastic 
Gradient Descent (SGD) algorithm is run by each IoT device 
based on the obtained global gradient. The local loss func-
tion Lm(wm), which has to be minimized on each device m, 
is calculated as shown in Eq. (21):

Table 1  Comparisons on COVID-19 detection performance

Methods Precision Recall F1 score

TDRFT 0.915 0.967 0.958
TDRF 0.901 0.946 0.922
DRFT 0.842 0.918 0.878
RR 0.798 0.882 0.838
RS 0.764 0.821 0.791
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Fig. 3  Average execution time of the proposed model phases. a 5 Edge Servers. b 25 Edge Servers. c 50 Edge Servers
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where �
(
wm, x, y

)
 is the sample-level loss function that quan-

tifies the prediction error between the learning output (via 
the input x and parameter wm) and ground-truth label y, and 
Nm is the number of data samples on device m. Each device 
attempts to minimize this local loss function, thereby reduc-
ing the error of the training process. The main objective of 
the global model at the ES level is to optimize the set of 
parameters to minimize the global loss function L(W) using 
the SGD algorithm as shown in Eq. (22):

(21)Lm
(
wm

)
=

1

Nm

∑
(x,y)∈Dm

�
(
wm, x, y

)

(22)L(W) =
1∑S

m=1
Nm

S�
m=1

NmLm(wm)

3.5  Inter‑Edge Transfer Learning

Our solution comprises a TL component that allows ESs’ 
knowledge to be shared without disclosure of their raw data. 
Doing so is useful in many situations such as:

• One ES is newly deployed, but another server has already 
explored some knowledge.

• Some ESs do not have enough IoT devices in their vicin-
ity or have IoT devices that do not have enough data to 
obtain efficient learning.

• Some ESs couldn’t obtain enough knowledge for a given 
task compared to the knowledge obtained by other serv-
ers.

The intuition is that knowledge transferred among the 
aggregation servers can boost the optimization on the edge. 
As such, we propose to transfer knowledge bidirectionally. 
We explain in Algorithm 3 the TL process that is proposed 
to share the knowledge among ESs. In Algorithm 3, each ES 
e ∈ E aggregates the local models received from the selected 
IoTs (Algorithm 1) and then calculates the global loss func-
tion (Eq. 22), where We

�
 is the global model Wφ on the ES e. 

The optimal global model W∗ is calculated over all the ESs 
based on the minimum loss function value (line 9) before 
sending it back to the selected IoT devices.

4  Experiments

4.1  Experimental Setup

To carry out our experiments, we capitalize on a data-
set1 that consists of chest X-ray images for individuals 
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infected with COVID-19, individuals with viral Pneumo-
nia, as well as normal images. In total, the dataset consists 
of 219 COVID-19 positive images, 1341 normal images 
and 1345 viral pneumonia images. The data distribution is 
non-IID and unbalanced, reflecting the characteristics of 
real-world FL scenarios. We train a CNN model to deter-
mine our algorithm’s efficiency and effectiveness. The 
CNN model used consists of six 3 × 3 convolution layers 
as follows: 32, 32, 64, 64, 128, 128. The Rectified Linear 
Unit (ReLU) activates each layer and normalizes the batch. 
Every pair of convolution layers is followed by a 2 × 2 
max pooling layer, then by three fully-connected layers 
(where each fully connected layer takes a 2D input of 382 
and 192 units) with ReLU activation and another 10 units 
activated by the soft-max. We employ the TensorFlow 
Federated (TFF) platform, which provides an open source 
framework for decentralized data learning. TFF facilitates 
a variety of collaborative learning scenarios on a number 
of heterogeneous devices with different resources. The 
SGD algorithm is used to train the model on IoT devices 
with a batch size of 128 rows per IoT device for every 
training round. We distributed the training data on 1000 
IoT devices (i.e., ∣M∣ = 1000) of four various resource 
categories:

• Category-1 with 1 CPU core and 1.75GB RAM,
• Category-2 with 2 CPU cores and 3.5GB RAM,
• Category-3 with 4 CPU cores and 7GB RAM, and
• Category-4 with 8 CPU cores and 14GB RAM.

The ES selects the top 50 IoT devices returned by the 
scheduling algorithm (e.g., ∣E∣ = 50), at each iteration. Our 
program is written in Python 3 and executed on a 64-bit 
Windows 7 threaded environment on an Intel Core i7 3.40 
GHz CPU and 16 GB of RAM.

4.2  Experimental Results

In Fig. 2, we compare the accuracy of our solution under dif-
ferent combinations, i.e., Trust, Deep Reinforcement learn-
ing, Federated and Transfer learning (TDRFT); Trust, Deep 
Reinforcement learning, and Federated learning (TDRF); and 
Deep Reinforcement learning, Federated and Transfer learn-
ing (DRFT). We also compare these different combinations 
of our solution with two common scheduling approaches, i.e., 
Round Robin (RR) and Random Scheduling (RS) while inte-
grating our trust establishment solution into them. The differ-
ent approaches are executed at five different ESs to closely 
inspect the accuracy values. It is important to notice that our 

model does not depend on the number of edge servers. Each 
edge server can work independently by playing the role of the 
parameter server in the federated learning process. This server 
is mainly responsible for creating the machine learning model 
and aggregating the updated model weights from the IoT 
devices. Although our solution aims to help one edge server 
select the most trusted IoT devices, it can easily be applied in 
a multi-edge scenario, at the level of each edge server.

We notice from the figure that the accuracy obtained with 
TDRFT is higher than that obtained with the other combi-
nations and approaches. In particular, the accuracy levels 
obtained with TDRFT varies between 97.2% and 99.1% 
across the five ESs. With TDRF, the accuracy level varies 
between 96.4 and 99.1%. With DRFT, the accuracy level var-
ies between 93% and 97.7%. With RR, the accuracy level var-
ies between 91.6% and 94.2%. Finally, with RS, the accuracy 
level varies between 90.2% and 91.6%. Thus, we conclude that 
our solution with all of its components improves the accuracy 
of detecting COVID-19 cases. The reason is that it employs 
deep Q-learning to select the IoT devices that achieve the best 
combinations in terms of resource availability and trust maxi-
mization, and includes a TL component to compensate the lack 
of learning from which some ESs might suffer.

To investigate further the five methods in the COVID-19 
detection, we use the following metrics: Precision, Recall, and 
F1 score. We analyse our solution by omitting the trust first, 
and then the transfer learning in order to study the impact of 
such specific components of our solution. This allows us to 
illustrate the strength of the proposed trust transfer federated 
learning method in the edge computing scenario. We also 
compare these different combinations of our solution with 
RR and RS after augmenting them with our trust establish-
ment solution. The evaluation indicators used in performance 
comparisons are introduced and defined as follows:

• True positives (TP): The number of times a COVID-19 has 
been predicted as a correct type.

• True negatives (TN): The number of times a non-
COVID-19 has been predicted as a correct type.

• False positives (FP): The number of times a COVID-19 has 
been predicted as a wrong type.

• False negatives (FN): The number of non-COVID-19 has 
been predicted as a wrong type.

According to the definition above, Precision, Recall, and F1 
score, can be calculated as follows.

(23)Precision =
TP

FP + TP

(24)Recall =
TP

FN + TP

Fig. 5  Average accuracy values in TDRFT, TDRF, DRF, RR, and RS. 
a 10 Edge Servers. b 20 Edge Servers. c 30 Edge Servers. d 40 Edge 
Servers. e 50 Edge Servers

◂
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The results are listed and compared in Table 1. The 
table clearly shows that the proposed TDRFT achieves the 
best results, with F1 score of 0.958, Recall of 0.967, and 
Precision of 0.915. This means that the proposed TDRFT 
approach enables the ES to better learn and recognize 
COVID-19 by adopting our solution with trust transfer and 
federated learning.

In Fig. 3, we measure the execution time of each single 
component of our solution. To do so, we vary the number 
of IoT devices from 50 to 200, while also varying the num-
ber of ESs from 5, to 25, to 50. The key outcome from this 
figure is that raising the number of IoT devices results in 
a slight increase in execution time, especially during the 
DRL process. This can be justified by the fact that having 
a larger number of IoTs to assign the tasks to increases the 
search space of the most of the components, except for the 
TL phase, which is independent from the number of IoT 
devices. The second observation is that the increase in the 
number of the ESs leads to increasing the execution time of 
the TL component, without having any significant impact 
on the other components. The reason is that having more 
servers means that more TL processes might need to be per-
formed among these servers.

In Fig. 4, we provide experimental comparisons in terms 
of average accuracy while varying the number of ESs 
between 5 and 50. Again, in this scenario, the accuracy 
obtained with TDRFT is much higher than that obtained 
than the rest of the compared approaches. In particular, the 
average accuracy obtained by the TDRFT, TDRF, DRF, RR 
and RS approaches are 97.3 − 99.4, 96.4 − 98.8, 94.2 − 97.1 
90 − 93.2 and 87.3 − 92.6, respectively. This means that the 
proposed TDRFT approach enables the ES to better learn 
and recognize COVID-19 by adopting our solution with all 
of its components.

In Fig. 5, we measure the average accuracy of the CNN that 
was trained by IoT devices selected by the TDRFT, TDRF, 
DRF, RR, and RS approaches. We ran the experiments over 
1000 iterations (i.e., T = 1000) to study the scalability of the 
different considered solutions, while varying the number of ESs 
from 10 to 50 and also varying the number of IoT devices from 
50 to 150. The main observation that can be drawn from this 
experiment is that our proposed solution, with all of its com-
ponents, achieves the highest accuracy level compared to the 
other approaches and exhibits a better scalability to an increas-
ing number of IoT devices and ESs. In particular, the average 
accuracy level obtained by our TDRFT varies between 94.2% 

(25)F1 =
2 × Precision × Recall

Precision + Recall

and 96.4% with 10 edge servers; between 96.3% and 98.1% 
with 20 edge servers; between 96.6% and 97.9% with 30 edge 
servers; between 96.3% and 97.6% with 40 edge servers; and 
between 96.5% and 97.7% with 50 edge servers. A significant 
hypothesis to be considered is that providing a greater number 
of IoT devices might increase the likelihood of erroneously 
assigning global learning to some inappropriate IoT devices. 
Yet, the TL component that we integrate in our solution, which 
enables sharing the knowledge among servers, leads to increas-
ing the accuracy at the level of some servers that might have 
made some poor selections in terms of IoT devices.

In Fig.  6, we provide experimental comparisons in 
terms of average reward. We ran the experiments over 
10000 (i.e., T = 10000) iterations. We observe from this 
figure that the average rewards obtained by TDRF and 
DRF are much higher than those obtained by the RR and 
RS approaches. In particular, the average rewards obtained 
by the TDRF, DRF, RR, and RS approaches are 143, 131, 
67, and 61 respectively with 50 IoT devices; 137, 130, 70, 
and 64 respectively with 75 IoT devices; 134, 122, 66, and 
62 respectively with 100 IoT devices; 133, 125, 67, and 
63 respectively with 125 IoT devices; and 134, 128, 65, 
and 60 respectively with 150 IoT devices. This means that 
TDRF enables the ES to better learn how to schedule the 
COVID-19 detection tasks in such a way that best maxi-
mizes the reward in terms of minimizing the execution 
time and maximizing the trust.

In Fig. 7, we measure the execution time of the dif-
ferent studied approaches, while varying the number of 
IoT devices from 50 to 200 and varying the number of 
servers from 5 to 100. In particular, the execution time 
obtained by the TDRF, DRF, RR, and RS approaches are 
257 ms, 361 ms, 407 ms, and 597 ms respectively. The 
main observation that can be drawn from this simula-
tion is that increasing the number of IoT devices leads 
to a modest increase in the execution time in our solu-
tion (i.e., TDRF) compared to the other models. This is 
because our solution employs deep Q-learning to select 
the IoT devices that achieve the best combinations in 
terms of resource availability and trust maximization. On 
the other hand, increasing the number of ESs results in 
a slight increase in the execution time in all the studied 
approaches, even in our model as we use TL to exchange 
knowledge among the servers.

5  Discussion and Conclusion

In this paper, we proposed an approach to select the most 
appropriate clients for FL in terms of resource consump-
tion and training time based on a trust-augmented DRL. 
We embedded a transfer learning mechanism on top of 
the client selection mechanism to address the scarcity of 

Fig. 6  Average reward values in TDRF, DRF, RR, and RS. a 50 IoT 
Devices. b 75 IoT Devices. c 100 IoT Devices. d 125 IoT Devices. e 
150 IoT Devices

◂
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data in some regions and compensate potential lack of 
learning at some servers. We applied our solution in the 
healthcare domain in a COVID-19 detection scenario over 
IoT devices. To the best of our knowledge, no existing 
approach has yet considered the integration and inter-
connection among all these technologies for collabora-
tive tasks such as detection. This makes our approach the 
most holistic in the literature through considering different 
aspects that are important for this type of tasks, includ-
ing trust-aware participant selection and job scheduling 
(using trust management and DRL), privacy-preserving 
machine learning (using FL) and training time reduc-
tion (using TL). Experiments conducted on a real-world 
COVID-19 dataset reveal that our solution achieves a good 
trade-off between detection accuracy and model execution 
time compared to existing approaches. The results show 
as well that the components of our solution are important 
for the success of our approach.

The results presented in this paper are applicable not only 
for the COVID-19 detection, but also to other domains. This 
would be possible through tuning the corresponding met-
rics in the formulation of the problem and solution, as well 
as in the experimental environment. In fact, the high level 
architecture of our solution is highly generic and could be 
tuned to model a variety of applications. Thus, the proposed 
solution can be effectively extended to other environments 
including path prediction, traffic planing, military monitor-
ing tasks, etc. For example, to adapt our solution to a traffic 
planing application, the reward function could be tuned or 
changed to include domain-specific metrics such as velocity 
and residual distance.

Although the results obtained by our solution are very 
promising, the work can be improved in the future in many 

aspects. The first aspect is the relatively high computation 
time of our approach which is mainly caused by the fact that 
in the transfer learning phase, edge servers need to share the 
knowledge among each other. To address this problem, we 
plan to include information about the geographic locations 
of the edge servers into the transfer learning decisions to 
make sure that no data has to be shared among geographi-
cally far servers. The second aspect concerns the cyberat-
tacks that could be launched against many parts of our solu-
tion. For example, the federated learning model could be a 
target to many elaborate attacks such as model poisoning 
and label flipping. Moreover, the communications among 
the edge servers could make room for many attacks such as 
eavesdropping and probing. In the future, we plan to address 
these security challenges in order to make our model more 
robust and secure (Wahab et al., 2016; Wahab, 2022).
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