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Abstract
The emerging information revolution makes it necessary to manage vast amounts of unstructured data rapidly. As the world is
increasingly populated by IoT devices and sensors that can sense their surroundings and communicate with each other, a digital
environment has been created with vast volumes of volatile and diverse data. Traditional AI and machine learning techniques
designed for deterministic situations are not suitable for such environments. With a large number of parameters required by each
device in this digital environment, it is desirable that the AI is able to be adaptive and self-build (i.e. self-structure, self-configure,
self-learn), rather than be structurally and parameter-wise pre-defined. This study explores the benefits of self-building AI and
machine learning with unsupervised learning for empowering big data analytics for smart city environments. By using the
growing self-organizing map, a new suite of self-building AI is proposed. The self-building AI overcomes the limitations of
traditional AI and enables data processing in dynamic smart city environments. With cloud computing platforms, the self-
building AI can integrate the data analytics applications that currently work in silos. The new paradigm of the self-building AI
and its value are demonstrated using the IoT, video surveillance, and action recognition applications.
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1 Introduction

Urban migration is an increasing trend in the twenty-first cen-
tury and it is estimated that more than 68% of the worlds’
population will live in urban environments by 2050 (World
population projection byUN 2018). Suchmigration will strain
the abilities of cities to cope and this situation has created an
urgent need for finding smarter ways to manage the challenges
such as congestion, traffic and transport, increased crime rates,
social disorder, higher need and distribution of utilities and

resources, etc. with smart cities being proposed as the solution
(Gupta et al. 2019). Using technological advancement as the
base, smart cities are expected not only to cater to the needs of
a huge increase in population, but also provide improved liv-
ing environments, business functions, utilize resources more
efficiently and responsibly as well as be environmentally sus-
tainable (Kar et al. 2019; Pappas et al. 2018). In such environ-
ments, the city and home infrastructures, human behaviors
and the technology which captures such behaviors in digital
form develop in to an eco-system with dependencies and
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interactions. Artificial Intelligence (AI) and data analytics are
becoming essential enablers for such eco-systems to function
and it is important to understand the limitations of existing AI
and data analytics technologies and address these for the
future.

Basic technology facilitated functions within smart cities
will include the collection of data using sensors, CCTV cam-
eras, smart energy meters as well as social media engines that
capture real-time human activity which are then relayed
through communication systems such as fibre optics, broad-
band networks, internet and Bluetooth (Alter 2019), thereby,
generating a digitalized eco-system of Big Data and smart
environments, augmented by analytics has the potential to
drive optimized and informed decision making (Mikalef
et al. 2020). For smart city services to take shape, large
amounts of such data emerging from many sources must be
(i) collected, (ii) integrated, and (iii) analyzed to generate in-
sights in order to take informed actions and decisions auto-
matically and/or semi-automatically (Jones et al. 2017;
Eldrandaly et al. 2019; Guelzim and Obaidat 2016). The data
generated are generally very large in volume, diverse and
could be in structured, semi-structured or unstructured form
and thus requires big data management and analysis tech-
niques to manage them effectively (Sivarajah et al. 2017;
Allam and Dhunny 2019). While the Internet of Things
(IoT) technologies have extended the borders of capturing
and collecting the smart city environments in high granularity
(Li et al. 2015), cloud computing technologies have emerged
to provide a solution for big data integration and to be used as
the foundation to combine physical infrastructure and orga-
nize service delivery platforms for managing, processing, and
synthesizing huge flows of information in real time. Cloud
computing systems have demonstrated capabilities in smart
cities for moving data into the cloud, indexing and searching
as well as coordinating large scale cloud databases (Lin and
Chen 2012).

Artificial Intelligence (AI) has the potential to analyze the
collected and integrated big data, and use insights derived to
optimize operational costs and resources, and enable sound
citizen engagement in smart city environments. As discussed
in (Guelzim and Obaidat 2016), public safety and security
could be enhanced by AI through sophisticated surveillance
technologies, accident pattern monitoring, linking crime data-
bases and combating gang violence. AI can also help with
crowd management, estimation of size, predicting behaviour,
tracking objects and enabling rapid response to incidents
(Emam 2015; L. Wang et al. 2010). Utilities management
and optimal use of resources such as distributed energy and
water are further applications which could benefit from the use
of AI (De Silva et al. 2020). Social media analytics to under-
stand citizen needs in real time and use of AI powered chat
bots for routine communication has also shown value (Adikari
et al. 2019; Peng et al. 2019).

In the smart city environments, the type of data captured
will vary widely from images, videos, sensors, electricity and
water consumption, social media, text etc. A key factor will be
that there will be an infinite number of potential situations that
could occur in such an environment (Mohammad et al. 2019).
Although the utilization of cloud computing technology and
AI, machine learning and advanced analytics have provided
much value for smart cities, there are three key constraints that
limit the realization of the advantages from such technological
advances. The first is that the utilization of AI and advanced
analytics is currently carried out in silos and as isolated appli-
cations due to the lack of information integration and sharing
mechanisms (Bundy 2017; Varlamov et al. 2019). The second
problem is the need for significant human involvement in the
application of AI and machine learning technology in an en-
vironment which is volatile and dynamic as such making fast,
real time automated applications difficult (B. Liu 2018;
Nawaratne et al. 2019a, b, c). Majority of AI and machine
learning techniques used for smart city related applications
use supervised learning which are better suited for determin-
istic situations and require past data which are labelled with
known outcomes. As such, the third significant problem in
many smart city situations where even labelled or classified
past data for training machine learning algorithms are avail-
able, the relevance of labels become obsolete due to the fast-
changing dynamics (Nawaratne et al. 2018). As such unsuper-
vised machine learning techniques without the need of pre-
labelled data that could self-learn and incrementally adapt to
new situations become more relevant (Nallaperuma et al.
2019). The research discussed in this paper proposes an inno-
vative solution to address these problems based on a new
paradigm of self-building AI.

Since each incident, occurrence, behavior and situation will
be different in terms time taken, number of people and objects
involved, spatial features, background and types of data rep-
resentations, smart city environments are non-deterministic
and deciding the appropriate architecture or structure of ma-
chine learning models becomes a difficult of even impossible
task (Mohammad et al. 2019). Therefore, the main require-
ments of AI and machine learning for dynamic and volatile
environments (non-deterministic) such as smart cities are:

1. The ability to self-learn and adapt without pre-labelled
past data

2. The ability to self-build the architecture or network struc-
ture to represent a particular situation

Themain contribution of this paper is the proposal of a self-
building AI framework which is capable of providing the self-
learning and self-adapting capability within an unsupervised
learning paradigm to address key issues highlighted above in
smart cities environments. The proposed solution framework
is built using Growing Self-Organizing Map (GSOM)
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algorithm and its extensions as the core components. As such
this paper proposes to use GSOM algorithm as the base tech-
nology for a novel concept of machine learning models with
the ability self-build and self-learn (unsupervised learning) to
match individual situations. The GSOM (Alahakoon et al.
2000) is a variant of the unsupervised learning algorithm
called the Self Organizing Map (SOM) (Kohonen 1997) with
the ability to adapt its structure depending on the input data.
The self-building capability of the model is harnessed to re-
duce the need for human involvement in utilizing machine
learning at the ‘front end’ data capture and initial analysis
stage where real time detection of anomalies, pattern and trend
detection and prediction could be achieved. The captured data
could then be passed on for further specialized processing and
advanced analytics. A further innovation based on the GSOM
called the Distributed GSOM (Jayaratne et al. 2017), that is
proposed as a data fusion technology to develop a ‘position-
ing’ mechanism for local incidents and detected patterns. The
proposed techniques can provide a Global Position Map for
the local on-site applications and for integrated global process-
ing where appropriate.

The rest of the paper is organised as follows. Section 2
provides the contextual and theoretical background for the
work. The proposed framework with local and global process-
ing using cloud platforms is described in Section 3. Section 4
provides experimental results to demonstrate the effect of self-
building AI in several smart city situations and Section 5 con-
cludes the paper with an extensive discussion about the appli-
cability of proposed framework in real-world situations.

2 Background

The background and foundations for the research described in
this paper are twofold: the application context and theoretical
background. The research focuses the smart city environment
and enabling technologies as well as technological infrastruc-
ture. Thereby, Section 2.1 provides an outline of smart cities,
cloud computing platforms for smart cities and how AI is
being used within smart cities. The proposed technology so-
lution is based on unsupervised machine learning technique
called Self OrganizingMap (SOM) and a suite of self-building
(structure adapting) versions of the SOMdeveloped in the past
decade. The theoretical background of these base techniques
and algorithms are described in section 2.2 and used as the
components of the proposed solution in Section 3.

2.1 Context

2.1.1 Smart Cities

Cities with heavy populations escalate burden on transporta-
tion, energy, water, buildings, security and many other things,

resulting in poor livability, workability and sustainability. In
order to remedy such circumstances, it is important to bring
the advancements of technology into practical applications.
This brings up the concept of ‘Smart Cities’, which can be
defined as “A city that monitors and integrates conditions of
all of its critical infrastructures including roads, bridges, tun-
nels, rails, subways, airports, sea-ports, communications, and
water, power. Even major buildings can better optimize its
resources, plan its preventive maintenance activities, and
monitor security aspects while maximizing services to its cit-
izens.” (Hall et al. 2000). A multitude of world cities has
embarked on smart city projects, including Seoul, New
York, Tokyo, and Shanghai. These cities seem futuristic, how-
ever with current advances in technology and especially cloud
computing, they are exploiting to a certain extent what current
technology has to offer (Guelzim and Obaidat 2016).
Ultimately, as per to the vision of ‘Smart Cities’, the futuristic
city should made safe, secure environmentally green, and ef-
ficient with all the utility functions such as power, water,
transportation, etc. are designed, constructed and maintained
making use of integrated materials, sensors, electronics and
networks which are interfaced with computerized systems
comprised of databases, tracking and real-time decision-mak-
ing algorithms. Therefore, the communication and con-
nectedness between these connected sensors, networks
and electronics has been an utmost important part of
this smart city eco-system.

2.1.2 Cloud Vs Edge Computing for Smart Cities

Cloud computing represents the delivery of hardware and
software resources on demand over the world wide networks
(Marinescu 2017). Current cloud computing systems have
demonstrated large capabilities for moving data into the cloud,
indexing and searching it as well as coordinating large scale
cloud computer systems across networks (Guelzim and
Obaidat 2016). Cloud computing can provide a sustain-
able and efficient solution to fill the communication and
connectedness gap in smart city eco-systems. Further
cloud computing over smart cities could provide a glob-
al common approach for communication and connected-
ness (Petrolo et al. 2017).

“Edge computing” refers to computing as a distribut-
ed paradigm which brings data storage and computing
power closer to the device or data source which requires
such resources thus eliminating lag time and bandwidth
usage. This is in contrast to cloud computing which
could be considered as a more centralized form of data
storage and processing. Chen et al., have proposed a
self-organizing architecture which uses edge computing
as a platform for enabling services within a smart city
environment (B.-W. Chen et al. 2019). In the AI frame-
work proposed in this paper, we propose a combined
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edge and cloud computing approach where advantages
of both concepts are harnessed.

2.1.3 Smart Cities and AI

Big data and cheap computing have enabled the explosion of
AI in software applications supporting every aspect of life.
With the radical transformation of smart city eco-systems,
by the emergence of big data streams generated by large arrays
of smart sensors and surveillance feeds, it is timely and
pertinent to harness the potential of AI to uplift the
smart city eco-systems.

With the recent advancements in AI, a number of
approaches has been suggested for the upliftment of
different aspects of smart cities such as smart road net-
works, intelligent surveillance, smart electricity, etc. In
(Lana et al. 2018), the authors present a comprehensive
review on the novel AI techniques utilized for traffic
forecasting in order to condense the road traffic using
forecasting based optimization algorithms. Garcia-Font
et al. (Garcia-Font et al. 2016) presents a comparative
study on anomaly detection techniques for smart city
wireless networks using real data from the smart city
of Barcelona.

However, a majority of AI and machine learning tech-
niques used for smart city related applications use supervised
learning which require past data which are labelled with a
known outcome. The availability of labelled or classified past
data for training machine learning algorithms becomes a sig-
nificant problem in many smart city situations where even
when such data is available, the relevance of labels becoming
obsolete due to the fast-changing dynamics. As such
unsupervised machine learning techniques without the
need of pre-labelled data which could self-learn and
incrementally adapt to new situations become more rel-
evant (Nawaratne et al. 2018).

Thus, focusing on the unsupervised domain, (Silva
et al. 2011) presents an self-learning algorithm for elec-
tricity consumption pattern analysis based on smart me-
ter readings. Further, Nawaratne et al. presents an AI
based intelligent surveillance approach to detect anoma-
lies on smart-city and smart-factory based contexts
(Nawaratne et al. 2017). Here, the authors use an unsu-
pervised machine learning based incremental learning
approach to detect such anomalies. Moving along the
unsupervised AI spectrum, (Kiran et al. 2018) provides
a comprehensive overview on novel unsupervised deep
learning techniques for anomaly detection on video sur-
veillance footages, applicable to smart city contexts. A
further key limitation in current AI applications in smart
cities is that they are carried out as silos and in isola-
tion while combining and integrating these applications
can provide far more value.

2.2 Theoretical Background

2.2.1 The Need for Unsupervised Learning to Cater
Technology Advancement

Given the importance of development of advance AI systems,
it is vital to select a proper algorithmic base from its ideation.
The widely used prospects in algorithmic development are: i)
mathematical modeling, ii) supervised learning, and iii) unsu-
pervised learning. The former relates to the development of
mathematical models in order to represent a rigid formulation
of the data, whereas the latter, supervised and unsupervised
machine learning paradigms relate to learn representations
based on the experience derived from input data.

The nature is unpredictable if not indeterminate. In (Cziko
2016), the authors argue the complexity of nature based on
multiple directions including individual differences in entities,
chaos theory, the evolutionary nature of natural entities, the
role of consciousness, free will in human behavior and the
implications of quantum mechanics relating to the feasibility
of modeling the natural environment (Boccaletti et al. 2000).
With this indeterminism, it is not practical to develop mathe-
matical models to represent input stimuli from the natural
environment. Thus, developing on the foundations of machine
learning paradigms can be thought suitable as they merely
derive the representation from previous experience, similar
to how human perceives the nature and learn from it.

The machine learning mainly constitutes of two learning
paradigms: supervised learning and unsupervised learning. In
supervised learning, the algorithm infers a function from a set
of training examples. The aim is to approximate a mapping
function, such that given a new input, the mapping function to
be able to infer (or predict) the output. In contrast, unsuper-
vised learning aims to find the hidden structure in unlabeled
data. The main difference of aforementioned is the availability
of labeled data or ground truth. The supervised learning
requires a prior knowledge of what the output values
for the training samples should be, while unsupervised
learning does not.

In typical smart city environments, a wide array of sensors
exists to capture the environment in the forms of images,
videos, sensor readings, social media, text etc. With that,
due to the indeterministic nature of the environment there will
be an infinite number of potential situations that could occur in
such an environment. In such smart city environments, most
of the AI and machine learning techniques used for smart city
related applications use supervised learning that are better
suited for deterministic situations which require past data
which are labelled with known outcomes. A significant prob-
lem in many smart city situations where even labelled or clas-
sified past data for training machine learning algorithms are
available, the relevance of labels become obsolete due to the
fast-changing dynamics. If a system is to develop using
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supervised AI, it will typically need a large number of training
examples in order to learn effectively. However, labeling of
training data is often done manually and it is highly labour-
intensive and time-consuming. The world is widely complex
with many possible tasks, making it almost impossible to label
a large number of examples for every possible task for an AI
algorithm to learn. Adding further complications, the environ-
ment changes constantly, and any labeling thus needs to be
done frequently and regularly to be useful, making it a daunt-
ing task for humans. As such unsupervised machine learning
techniques without the need of pre-labelled data that could
self-learn and incrementally adapt to new situations become
more relevant (Nallaperuma et al. 2019). In this light, AI sys-
tems of the future is expected to incorporate higher degrees of
unsupervised learning in order to generate value from unla-
beled data (Nawaratne et al. 2019a, 2019b, 2019c).

Usually, unsupervised machine learning approaches derive
grouping of data with similar characteristics. This process is
known as clustering, where the unsupervised learning process
separate the input space into groups of data points that are
called clusters based on the similarity between the data points.
As such, the outcomes of this learning process represent sim-
ilarity of the information presented at the inputs, and the un-
supervised learning models have a memory capacity, learning
capacity and pattern recognition capacity (Tan et al. 2016). K-
Means algorithm and Self Organizing Maps algorithm (SOM)
are two unsupervised learning algorithm families that have
been widely used in smart city domain application (W.-C.
Liu and Lin 2017; Nallaperuma et al. 2019; Nawaratne et al.
2019a, 2019b, 2019c; Yang et al. 2020). In recent work,
Riveros et al. compared the validity and robustness of K-
means with respect to SOM in a case study of smart
healthcare. The results demonstrated that the learning resulted
by the SOM outperforms K-means results, evaluated based on
Cohen’s Kappa index to evaluate concordance and measures
such as higher sensitivity, specificity, precision, and negative
predictive value (NPV) where SOM is used in classification
context (Melo Riveros et al. 2019). Further, Chen et al. com-
pared SOM and K-means for natural language clustering,
which resulted in identifying that K-means is sensitive to ini-
tiative distribution, whereas the overall clustering perfor-
mance of SOM is better than that of K-means (Y. Chen
et al. 2010). It was also identified that SOM performs well
for noisy inputs and topology preservation. Thereby, given the
ability to represent complex data environments and the ability
of topology preservation demonstrated by SOM, it presents a
viable option to further explore self-organization under the
context of unsupervised learning.

In general, self-organization can be identified a natural phe-
nomenon which has been computationally recreated to
achieve unsupervised learning that resemble both biological
brain and natural phenomenon. Self-organization can be un-
derstood as a process where a form of overall order arises from

local interactions between parts of an initially disordered sys-
tem. Self-organization process is spontaneous when sufficient
energy is available, without any need for control by any ex-
ternal agents. The self-organization provides means in chaos
theory in terms of islands of predictability in a sea of chaotic
unpredictability (Khadartsev and Eskov 2014).

On this premise, Teuvo Kohenen’s Self-Organizing
Feature Maps (abbreviated as SOFM or SOM) is a human
cerebral cortex inspired neural network that produce a nonlin-
ear high-dimensional input space into a reduced dimensional
discretized representation, while preserving the topological
relationship in the input space (Kohonen 1997). On the basis
of Hebbian Learning (Hebb 1949), competition and correla-
tive learning (Webber 1991), as input signals are presented,
neurons compete amongst for ownership of the input and the
winner strengthens its relationships with this input.

Prior research has suggested that the paradigm of compet-
itive learning might constitute a viable mechanism based on
the fact that the response properties of the cells of the visual
cortex could develop to form coding units suitable for
representing the visual stimuli encountered in natural life
(Webber 1991). Thereby, the competitive learning can be
based as suitable in representing a self-building foundation
in computation models, which in turn makes self-
organization a viable candidate for the proposed approach.

2.2.2 Self Organizing Map (SOM)

The Self-Organizing Map (SOM), as introduced prior, is a
neural network that produce a reduced dimensional, typically
a two-dimensional, representation of the input space while
preserving the topological relations in the input space. This
enables to conduct exploratory data analytics in the input data
space in a wide range of applications.

In SOMworkings, initially, the neural network is mapped as
a lattice of neurons each having a weight vector, Wk(t) ∈ℝn,
representing the input space. The coordinate systems in the
SOM represents the output space. In the growing phase of
SOM, each input vector, xi ∈ℝn, is presented to the neural net-
work to calculate the best matching unit (BMU) based on the
distance between the input and the weight vectors of the neu-
rons. Usually, the Euclidian distance is selected and the distance
is named the quantization error E, which is given by Eq. (1).

E ¼ Wk−xik k ð1Þ

After calculation of the quantization error, the neuron with
the lowers quantization error is selected and it is called the
Best Matching Unit (BMU) or the winning node.
Subsequently, the winning node and its neighbours are up-
dated using the Eq. (2).

wk t þ 1ð Þ ¼ wk tð Þ þ αhck tð Þ xi−wk tð Þ½ � ð2Þ
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In which wk(t + 1) is the updated value of the weight vector
of the kth neuron while wk(t) is the previous value of the
weight vector of the same neuron. α is the learning rate, in
which has the function of time-decaying, hck is a neighbor-
hood function which decays the neighbourhood over time.
Generally, the input space is presented to the SOM for a
predefined number of times, which is names as training
iterations.

In the SOM algorithm, the size of the reduced dimensional
grid structure and dimensionality needs to be defined in ad-
vance. However, as SOM is typically employed for explorato-
ry analytics tasks, in which a little or no information about the
data is presented upfront. Thus, having to define the structure
and dimensionality would result in limiting the self-
organizing structure to represent the input data space as it is.
This this is a key limitation with the SOM.

2.2.3 Growing SOM (GSOM)

In order to overcome the limitations of SOM architecture,
several studies have introduced growing variants of the
SOM. Growing Cell Structure (Fritzke 1994) is one of the
growing variants of SOM, in which, a k-dimensional network
space is made where the constant k is predefined. Node
growth occurs at every iteration by inserting a node and posi-
tion to facilitate the node that has accumulated highest error.
The network will grow until the stop criterion is met, either
limited by the predefined network size or to satisfy the max-
imum accumulated error predefined is met. Grow When
Required (Marsland et al. 2002) is another growing variant
of SOM, which grows nodes whenever the neural network
does not adequately match the input.

The growing self-organizing map (GSOM) (Alahakoon
et al. 2000) is an improved growing variant of SOM, in which
the output network structure starts with a minimal number of
nodes and grows on boundary based on heuristics and input
representation. Generally, the initial structure starts with
four nodes in the GSOM. GSOM consists of two
phases, firstly the growing phase where the neural net-
work adjusts its weights to sufficiently represent the
input space and secondly, the smoothing phase in which
the node weights are fine tuned.

In the growing phase, once the input vectors are presented
to the map over a number of iterations, the best matching units
neurons accumulate quantization error based on the distance
between the input and its weight vector. A neuron is said to
under represent the input space once the accumulated quanti-
zation error of the neuron is greater than the growth threshold
(GT), as defined in (3). In that case, new nodes are inserted
into the neural network to sufficiently represent the input
space. If BMU neuron is on the boundary, the map is grown
from boundary by adding new neurons to the map. Otherwise,

the error is spread among neighbouring neurons. The newly
added neuron is initialized to match the weights of the existing
neighbouring neurons.

GT ¼ −D� ln SFð Þ ð3Þ

The GT is determined by the number of dimensions D in
the input space, and novel introduced parameter named the
spread factor (SF). The SF can be utilized to control the spread
of the network structure independent of the dimensionality of
the dataset.

In the smoothing phase similar to the growing phase, inputs
are presented and weights are adjusted. However, no new
neuron will be inserted in this phase as the purpose of the
smoothing phase is to smooth out any existing quantization
error.

The capability of (self-building) self-structuring without
any prior knowledge about the data space is one of the key
advantages of GSOM over SOM and its variants. GSOM is
capable of self-structuring on the latent space to discriminate
between distinct input as well, cluster similar input. And its
ability to control the spread of the map enables achieving
structural adaptation and hierarchical clustering, which are
two important aspects in the human sensory perception
system.

2.2.4 Distributed GSOM

Amajor drawback of SOM algorithm and its growing variants
is time complexity, which makes SOM unsuitable for Big
Data applications in their current form. In (Ganegedara and
Alahakoon 2012; Ganegedara and Alahakoon 2011) a parallel
version of GSOM algorithm which utilizes data parallel-
ism and horizontal data splitting has been proposed as a
solution. Further, a number of strategies have been pro-
posed for data partitioning, including random partitioning,
class based partitioning and high-level clustering-based
partitioning. The main advantage of the proposed algo-
rithm is that it preserves the final map of the whole
dataset. Sammon’s projection (Ganegedara and Alahakoon
2011) is used to generate the final map using the inter-
mediate SOMs. Sammon’s projection is based upon
point mapping of higher dimensional vectors to lower
dimensional space such that the inherent structure of the
data is preserved.

Distributed GSOM utilize a distributed SOM growing
phase where multiple smaller SOMs are trained on partitions
of data in parallel. Algorithms for MapReduce, bulk synchro-
nous parallel (BSP) and restorative digital dentistry (RDD)
paradigms have been developed based on the working princi-
ples of the Distributed GSOM algorithm and implemented on
popular platforms Apache Hadoop, Hama and Spark
respectively.
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2.2.5 GSOM Fusion

In the context of growing self-organization, there has been
focus on the hierarchical element of clustering because hier-
archical information processing closely resembles how human
brain perceive their external environment from different sen-
sors and processes information in order to produce ultimate
perception. As such, an enhanced variant of the GSOM has
been implemented, a Multi–Layer GSOM (A. Fonseka and
Alahakoon 2010), which is motivated by the hierarchical sen-
sory information processing in the human brain.

The proposedMulti–Layer GSOM approach uses a layered
architecture which resembles the cortical hierarchy of the hu-
man brain to build concepts (cluster) hierarchy. The input data
space is initially represented to the lowest level GSOM and
finds the trained weights or prototypes which represent the
input space. These set of prototypes are next fed to the next
layer and obtained the trained weights. This process is itera-
tively carried out until a certain criterion is met.

The Multi–Layer GSOM algorithm is based on several
layers of growing self-organizing maps which are connected
together (Fig. 1).

Generally, Multi–Layer GSOM employs several layers of
GSOMs (which represent the cortical layers of the human
brain) to build cluster (concept) hierarchy for the input data
space and subsequently calculates a cluster validity index for
each layer to select the best GSOM layer which represent the
input space more accurately. The use of layered GSOMs,

enable to capture more abstract concepts which can be seen
at the top levels of the hierarchy and drilling down through the
levels allows obtaining more granular and detailed concepts.

This was extended to fuse multimodal sensory information
by proposing a multisensory self-organizing neural architec-
ture by (Jayaratne et al. 2019). This consists of GSOM layers
for learning individual modalities. This algorithm has incor-
porated scalable computing for self-organization, so the pro-
cessing can be scaled to support large datasets leading to short
computation times. The lateral associative connections cap-
ture the co-occurrence relationships across individual modal-
ities for cross-modal fusion in obtaining a multimodal repre-
sentation. Themultimodal fusion algorithmwas experimented
audio-visual datasets consisting of utterances to evaluate the
quality of multimodal fusion over individual unimodal repre-
sentations, demonstrating its capability to form effective mul-
timodal representations in short computation times from con-
gruent multisensory stimuli. A further limitation in the tradi-
tional SOM is the inability to adapt to changing dimensions
(variables). This has been addressed in the GSOM fusion ex-
tension by incorporating dynamic time warping where the
number of variables are different across similar data types to
calculate the difference for creating a common mapping
(Fonseka et al. 2011). In addition, when there are sig-
nificant variations in the type of variables collected
(even within the same type of applications), Jayaratne et al.
(Jayaratne et al. 2017) create multiple GSOMs and use a con-
cept graph layer above the GSOMs to link the GSOM clusters
using either existing or custom built knowledge hierarchies/
ontologies, that will enable to transfer the new information
post growing phase.

We have presented a summarization of the evolution of the
self-building AI algorithms in Table 1. Starting from the prim-
itive self-organizing maps (SOM) to produce a reduced di-
mensional representation of the input space while preserving
the topological relations in the input space, the unsupervised
self-building AI has evolved to hierarchical, multimodal fu-
sion based self-organization architectures that are implement-
ed on distributed computing environments enabling the explo-
ration and latent representation generation of the natural world
and behaviors using Big Data.

3 Proposed Self-Building AI Framework
for Smart Cities

3.1 Overview of the Framework

This section describes the proposed AI framework for smart
cities based on unsupervised machine learning and using the
structure adapting GSOM based AI algorithms components.
The proposed framework addresses the problems of AI and
advanced analytics being carried out in silos and as isolated

Fig. 1 Multi-Level GSOMwith K number of levels. Red nodes represent
the wining nodes
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applications due to the lack of information integration and
sharing mechanisms and the need for significant human in-
volvement in building the structure of the models. Figure 2
represents the framework as three layers. On-site and local
layers sit within local machines while global layer could be
implemented as a platform layer within a cloud platform.

The first (lower) layer handles onsite data capturing with
devices such as CCTV cameras or sensors and generates the
on-site GSOM after the initial data pre-processing. The onsite
GSOM could be spawned with each new incident (or at reg-
ular time intervals) and transforms the map to layer 2, the local
GSOM and local analytics. The on-site GSOM also receives
inputs from the upper layers with updates of global and local
trend, anomaly and pattern information thus enabling the on-
site processing to detect occurrences of interest and generate
alerts.

The second (local processing) layer receives inputs from
on-site processing and spawns a local GSOM, which is passed
on to layer 3, Cloud PaaS processing. The local GSOM may
be passed on to Global layer at a suitable level of granularity
with the spread factor of GSOM thus representing an appro-
priate level of abstraction. The appropriate spread factor will
be self-generated based on the abstraction required by the
individual application or the level of summarization required
for confidentiality. Layer 2 receives a regular Global GSOM
which will provide the ‘positioning’ of the local data within
the overall domain. For instance, consider a situation where a
pedestrian monitoring video camera. The local videos may
only show low density of pedestrians while the global map
might show that some cameras from other regions captured
high density as well as faster moving pedestrian flow, thus
providing an overall understanding of the bigger picture).

Fig. 2 Overview of the framework

Table 1 Evolution of Self-Building AI Algorithms based on the SOM foundation

Proposed Model Algorithm Remarks

Self-Organizing Maps (Kohonen 1997) SOM Original implementation of SOM. Fixed 2-dimensional lattice.

Growing Cell Structure (Fritzke 1994) GCS Growing variant of SOM. k-dimensional network space is defined
where constant k needs to be predefined.

Growing Self Organizing Maps
(Alahakoon et al. 2000)

GSOM Growing variant of SOM. Start with minimal number of nodes and
grow on either direction to represent the input data space.

Multi–Layer GSOM (A. Fonseka and
Alahakoon 2010)

ML-GSOM Improved GSOM to process hierarchical sensory information.

Distributed GSOM (Hiran Ganegedara
and Alahakoon 2011)

DGSOM GSOM algorithm was improved to utilize data parallelism and
horizontal data splitting.

Scalable Fusion for Active Perception
(Jayaratne et al. 2019)

DGSOM-Fusion Multimodal fusion architecture using unsupervised machine learning (GSOM)
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The third layer (cloud and global processing) receives in-
puts from multiple local processing units of similar applica-
tions and using the Distributed GSOM technique, generates a
global GSOM. The GSOMmapping supports global analytics
to detect global patterns and insights and is also passed on to
the second (local) layer to provide the global positioning as
described above.

The GSOMs with their ability to spawn when required and
self-build according to the needs of the individual local situa-
tion, reduce the need for human involvement in the process.
The unsupervised learning capability enables the models to
learn patterns from inputs without the need of pre-labelled
inputs. The global GSOMs facilitates the integration of mul-
tiple data sources of the same domain and therefore serves the
valuable function of positioning local data within the bigger
picture. The Global GSOMs, thus, addresses the prob-
lem of applications working in isolation. After the initial
unsupervised processing with GSOMs, the data could be
directed to specialized supervised analytics using appro-
priate techniques. The series and layers of GSOMs will
thus act as the position identifiers which enable the
linking of outcomes from different applications from
multiple locations.

3.2 Task Flow within the Proposed AI Framework

The different tasks and functionality of the local and global
layers are detailed in this section. Figure 3 elaborates the task
flow within layer 2 (local) and layer 3 (global). Layer 2 has
three main tasks, local GSOM generation, granularity calibra-
tion and local analytics. Once the local GSOM is generated
using information provided from layer 1 (on-site processing)
the content of clusters from GSOMwill be compared with the
application requirements. For example, if the application is
facial recognition, the cluster content will be analysed to de-
tect if the clusters provide suitable images. Where unsuitable,
the GSOM will self-generate different levels of abstractions
using spread factors and resulting clusters will be analysed
until suitable outcomes are found. As such, the ability of the
GSOM to self-structure into multiple levels of abstraction is
used in layer 2 to self-generate appropriate outcomes to match
the need of the application. Further localized analysis and
trend capture will be conducted for local insight generation.
In layer 3, once a global GSOM is generated, a cluster disam-
biguation phase is carried out. Since GSOMs are unsupervised
techniques, the cluster content may not directly relate to the
needs of the application. The disambiguation phase carried out
by bringing in domain ontologies and other forms of domain
knowledge to clear up ambiguity and associate diverse con-
tents of clusters with each other using any additional domain
knowledge available. The global GSOM is used as the base
for global analysis and the outcomes are the communicated to
the local sites (where appropriate).

4 Experiments

The proposed AI framework is experimented on a smart city
context in this section. In the context of smart cities, a number
of sensory modalities are available such as vehicular traffic
data, pollution data, weather data, parking data, surveillance
data, etc. Among these data types video surveillance data can
be considered as one of the most complex type of data in terms
of computational overhead (Nawaratne et al. 2019a, 2019b,
2019c). Thereby, we intend to conduct experiments on the
proposed self-building AI framework using three video
benchmark datasets applicable to smart city environments:
CUHKAvenue dataset (C. Lu et al. 2013), UCSD Ped dataset
(Mahadevan et al. 2010) and the Action Recognition Dataset
(Choi et al. 2009). With this empirical evaluation, we demon-
strate the capability of the self-building AI to represent input
data in exploratory manner for further processing.
Functionality of the components of the framework is demon-
strated separately. The self-building AI platform is material-
ized for this experiment using GSOM algorithm discussed in
Section 2.2.3, however, in instances with multiple streams of
large data volumes, we can achieve a super linear speed ad-
vantage using the scalable implementation of GSOM present-
ed in Section 2.2.4.

4.1 Experimental Setup

The experiment intends to demonstrate capabilities for Layers
2 and Layer 3 of the proposed AI framework. The experimen-
tal setup is four-fold:

1. First, we evaluate local feature map generation at the on-
site local processors reside in Layer 2 of the proposed AI
framework. We derive SOM based local feature maps to
demonstrate limitations exist in structuring the input data
space into a latent space representation. The objective of
this experiment is to explore the validity of using a self-
structuring AI core algorithm in order to represent the
input space with context based structural adaptation.
This experiment validates the benefit of structural adapta-
tion in the AI technology.

2. Second, we develop the local feature maps using the
growing counterpart of SOM, i.e., GSOM, with multi-
granular structural adaptation and show how the granular-
ity calibration can be implemented based on the require-
ments of the context. This capability enables the AI to
self-build representations at different level of abstraction
which could be calibrated to link objects of interest or
events from different source data or time lines.

3. Third, we compare the optimal representation for selected
datasets with respect to its context and the granularity,
demonstrating the capability of structural adaptation to
optimally represent the input data for further processing.
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The feature in self-building AI enables automatically
representing the object or event optimally without human
involvement.

4. Fourth, we evaluate the Global Position Maps derived
using GSOM for multiple data sources demonstrating re-
gion development upon similar categories based on its
visual features. The experiment justifies the use of
GSOM self-building AI technology for generating a glob-
al mapping from multiple and distributed applications.

The experiments of step 1–3 demonstrate the capabilities of
Layer 2 of the proposed AI framework workflow, where
fourth experiment demonstrates the applicability of Layer 3.

4.2 Datasets

The CUHK Avenue dataset (C. Lu et al. 2013) was recorded
street activity at City University, Hong Kong that were ac-
quired using a stationary video camera. This dataset contains
total of 37 video samples ranging from human behaviour such
as people walking on walking paths and groups of people
meeting on the walking path to unusual behaviour such as
people throwing objects, loitering, walking towards the cam-
era, walking on the grass and abandoned objects.

The UCSD pedestrian Dataset (Mahadevan et al. 2010)
was captured focusing on a pedestrian walkway. This dataset

captures different crowd scenes, ranging from sparse to dense
crowd flow in its video samples. Here we utilize the training
data set which contains 34 video samples. For the experimen-
tal purposes, we manually labelled the videos based on their
crowd density into 4 categories (low, mid, high, very high).

The Action Recognition Dataset (Choi et al. 2009) was
selected for demonstration of fusion exploratory analytics as
it contains 44 short video clips acquired under unconstrained
real-world conditions. The videos are 640 × 480 pixels in size
and were recorded using a consumer handheld camera. The
video dataset contains a number of scenarios broadly grouped
under road surveillance and indoor surveillance. Road surveil-
lance scenarios contain videos where pedestrians crossing the
road, walking on the sidewalk, waiting near a bus stop, walk-
ing in groups and having conversations beside the road. The
indoor surveillance video scenarios contained videos of peo-
ple having conversations in shopping malls, waiting in queues
for delivery at food courts and people walking in an indoor
environment.

As the video samples have different dimensionality, we
pre-process the inputs by resizing the extracted frames to
30 × 30 pixels, and normalizing pixel values by scaling be-
tween 0 and 1. Then we extract the histogram of optical flow
(HOF) (T. Wang and Snoussi 2012) and histogram of gradi-
ents (HOG) (Dalal and Triggs 2005) to be utilized as feature
vector for online structural adaptation.

Fig. 3 Task flow within the proposed AI framework
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4.3 Representation of Smart City Video on SOM

The aim of the first experiment is to demonstrate the qualita-
tive effect of using self-building AI algorithm to develop local
feature maps at the on-site local processors that reside in Layer
2 of the proposed AI framework. On this basis, we analyse
GSOM with respect to its constrained counterpart, i.e., SOM.
Initially, we have developed SOM based local feature maps
for the UCSD pedestrian dataset (Fig. 4) and Avenue datasets
(Fig. 5), which we consider as two data sources of our system.
For this feature map development, we used 20 × 20 feature
map with a learning rate of 0.01. In the growing phase, the
SOM feature maps were learnt for 100 iterations.

The latent representation of the pedestrian flow of UCSD
dataset can be visualized in the SOM map shown in Fig. 4.
The colour code elicits the density of the pedestrian flow. It
can be identified here that the dense pedestrian movements are
clustered in the center and middle of the SOMmap. However,
low dense and mid-dense videos are scattered throughout
without any fine-grained cluster region. Analysis of the
SOM visualization shows that the self-structuring of the neu-
ral network has become restricted due to the rigid structure
(pre-defined 20 × 20 grid). Thereby, initial learning of dense
pedestrian movements has been firmly clustered while the rest
of the scenarios were constrained to grow as required by the
feature representation.

The latent space representation of the avenue dataset is
plotted (Fig. 5) with detailed frames each SOM node has been

clustered. A fine grain analysis resulted in identifying 4
unique regions, which have different characteristics of images.
Figure 5 (A) is composed of frames that are idle with minimal
crowd present and negligible motion activity. Figure 5 (B)
contains frames that large crowd stays idle and slight move-
ments at distance. Figure 5 (C) contains rapid movements
across the frame (left-right), whereas Fig. 5 (D) contains
movements of crowd to and out of the camera position.

Both the SOMs that were developed upon the UCSD and
Avenue datasets are constrained by the initial node size con-
straint. Thus, the structural adaptation of the node map is
restricted making the natural spread limited to a pre-defined
threshold. Due to this limitation, we propose the growing var-
iant of the SOM, i.e., GSOM, to be utilized for the structural
adaptation of the video input data in the proposed AI frame-
work workflow, specifically Layer 2. From a smart city per-
spective, the diversity and distribution of input data in a single
stream (e.g., video data) could be unpredictable, thereby,
forming a pre-defined structure is unrealistic. This further em-
phasizes the need for unconstrained self-organizing algorithm
such as GSOM.

4.4 Representation of Smart City Video on Structural
Adapting Network

The second experiment aims to demonstrate capability of
using GSOM to overcome the aforementioned limitations
with constrained self-organization as shown previously. In

Fig. 4 SOM based local feature map for UCSD Pedestrian Dataset
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addition, we explore multi-granular structural adaptation ca-
pability lies with GSOM and how the granularity calibration
can be implemented based on the requirements of the context.
The capability shown here relates to the Layer 2 of the pro-
posed self-building AI framework workflow. In this experi-
ment, we develop growing feature maps for two select-
ed datasets using the GSOM algorithm. Due to the un-
constrained nature, we do not need to specify the map
size constraint. We let the GSOM algorithm to structur-
ally adapt based the dynamicity of the input feature
space on the video data.

The growing feature map for multiple granularities for
UCSD dataset is depicted in Fig. 6. The structural adaptation
has been conducted for three levels of abstractions, namely
spread factor of 0.3, 0.5 and 0.8. For demonstration purposes,
we have selected 8 distinct video frames from different crowd
density characteristics (plotted identically in Fig. 6). The col-
our code elicits the density of the crowd flow. Based on the
structural adaptation, it can be seen that the network growth
wider when the spread factor increases. At the same time, the
data points that were closer in Fig. 6 (a) have parted when
spread increases, i.e., Fig. 6 (b). This will enable the GSOM
map to represent input data space in detailed with different
calibrations of spread factor.

Similarly, we derive GSOM feature maps (Fig. 7) for
Avenue datasets with different abstraction levels. Same obser-
vations we identified in UCSD dataset applies here, such that,
the calibration of spread factor change the granularity of rep-
resentation of the input data.

It can be seen from the multiple feature maps with multiple
abstraction levels, that the structural adaptation is possible
with GSOM algorithm. Here, the growth/structural adaptation
of the neuron network is not restricted by a pre-defined map
size constraint, but allow the input data space to decide how it
should spread, restricted only using a friction parameter (i.e.,
spread factor). Thus, in contrast to the SOMs, GSOM has the
capability to structurally adapt with respect to the input data
space dynamicity and optimal to utilize in the proposed frame-
work. In the context of smart city, multi-granular exploration
capability is imminent as the distribution and diversity of input
data is not known prior. For instance, consider a sce-
nario that requires facial recognition from a surveillance
camera. Depending on the targeted person’s position
from the camera (i.e., distance from the camera lens),
it might be required to change the granularity in which
the face should be identified.

In addition to the structural adaptation analysis, we con-
ducted a quantitative analysis of the topology preservation of
SOM and GSOM for both the datasets. We used the topo-
graphic error (TE) proposed by Kiviluoto (Kiviluoto 1996),
which is a measure of the proportion of data vectors in the
input space that have non-adjacent first and second best
matching units (BMU) in the output space. The TE is
defined in Eqs. (4) and (5), where, K is the number of
input data points.

u xið Þ ¼ 0 if first and second BMU are adjecent
1 otherwise

�
ð4Þ

Fig. 5 SOM based local feature map for Avenue Dataset
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TE ¼ 1

K
∑
K

i¼1
u xið Þ ð5Þ

Typically, the TE converges to zero for a perfectly preserv-
ing map. In practical settings, TE can be used to compare
topography preservation between number of self-organized
feature maps. As such, we evaluate the topology preservations
for the UCSD Pedestrian Dataset and Avenue datasets, which
are presented in Table 2. The results demonstrate that for both
the datasets, GSOM has a higher topology preservation com-
paratively to the SOM.

In the next experiment, we will further explore the posi-
tioning capability of the proposed AI framework.

4.5 Structural Adaptation with Context Awareness

The objective of the third experiment is to evaluate the optimal
structural adaptation of the feature maps for pre-defined con-
text requirements. Here we define the context requirement for
the UCSD data source as to detect the flow of pedestrians, and
context requirement for the Avenue data source as to detect
forward facing frames that are optimal to run through face
recognition due to pixilation constraints (i.e., direct facing
people with a large pixel coverage).

Fine grain analysis of the UCSD feature maps shows that
the minimally spread feature map (Fig. 8 (a)) is optimal to

represent the crowd density, based on the color-coded nodes
as well, the manually tagged sample video frames (note that
Fig. 6 (a) is replicated as Fig. 8 (a)). In contrast, in the feature
maps of Avenue dataset, we have analyzed the manually
tagged video frames as highlighted at the pointer level in the
Fig. 7. Based on this region analysis, it can be seen that feature
map of SF = 0.3 (Fig. 7 (a)) is closely grouped together thus
both forward facing frames as well across walking frames are
closely represented. The feature map of SF = 0.8 (Fig. 7 (c))
shows a sparse representation. However, the feature map with
SF = 0.5 (Fig. 7 (b)) provided a fine cluster of forward-facing
frames. Therefore, it can be shown that, for the current context
requirement of identifying forward facing frames, the feature
map of SF = 0.5 is optimal. Thereby, we have replicated Fig. 7
(b) as Fig. 8 (b) for a close comparison. It is important to note
that if the context requirement differs, then the optimal repre-
sented feature map could be different from what is current
optimal.

In the context of smart cities, diverse sensory devices have
specific requirements. For instances, there are CCTV cameras
that are designed to capture anomalies from the surveillance
context, detect faces in entrances, automatically detect vehicle
license plates and/or speed of vehicles and for general surveil-
lance. These specific cameras would have different objectives,
thus, each would need to calibrate for specific context

Fig. 7 GSOM based local feature maps with multiple granularities for Avenue Dataset (Spread Factor – (a) 0.3, (b) 0.5, (c) 0.8, Learning Rate – 0.01,
Learning Iterations - 100)

Fig. 6 GSOM based local feature maps with multiple granularities for UCSD Pedestrian Dataset (Spread Factor – (a) 0.3, (b) 0.5, (c) 0.8, Learning Rate
– 0.01, Learning Iterations - 100)
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requirement. I.e., anomaly detection cameras should be cali-
brated to capture high granular movements to capture subtle
changes in motion, facial detection cameras should be cali-
brated to obtain optimal representation of face regions and
vehicle detection cameras should be calibrated to zoom into
vehicle license plate and extract that specific region. Thereby,
having the capability to derive optimal structural adaptation
for each local feature map for pre-defined context require-
ments is a prominent capability provided by the proposed
self-building AI framework to smart city context applications.

4.6 Fusion Map for Smart City Video

The fourth experiment intends to explore the Global Position
Maps derived using growing self-structuring algorithm for
multiple data sources demonstrating region development upon
similar categories based on its visual features. For this exper-
iment, we utilize the Action Recognition Dataset in order to
demonstrate the fusion of diverse videos to regions of the
same map. Due to the focused nature of UCSD and Avenue
dataset, we did not only use those two datasets but augmented
the diversity of video contexts with video samples from the
Action Recognition Dataset. We evaluated the fused feature
map for both a lower spread of 0.3 and a higher spread of 0.5
for the structural adaptation to explore the multi granularities
representation, as illustrated in Fig. 9.

Figure 9 (a) illustrates the initial region analysis of the
surveillance data. In contrast, Fig. 9 (b) shows the marked
region A and B expanded into finer details. In Fig. 9 (a),
region A contains videos of people walking on pathways both

on sidewalks, between buildings and in parks. Our previously
usedUCSD Pedestrian video samples have been clustered into
this region, as they contain pedestrians walking on a pathway.
In Fig. 9 (b), the same region has expanded and the videos
were sub regions into multiple granularities such that one sub-
region contained people walking on roadside sidewalks and
another region contained people walking on sidewalks near
parks. One video, where the people walk between buildings,
has moved to a single node with no similar videos as it was the
only video of that kind. Similarly, in Fig. 9 (a), region B
contains videos of people crossing the road, and vehicles mov-
ing. The same region has expanded in Fig. 9 (b) such that the
videos which the vehicles are passing by having clustered
together and the videos of people crossing the road have clus-
tered together. It can be visualized that the Avenue video
samples has been clustered in the region C. However, it further
illustrates that the region C in both GSOMmaps are together.
The granularity which the spread was increased has not been
adequate to expand the cluster, which includes videos of in-
door, in a shopping environment where people formed as
groups.

We clustered the video samples into 5 regions, as shown in
Fig. 10. In the interpretation, the region 1 contains videos of
people in indoor environments, where people meet, conduct
casual conversations, etc. In the region 2, the grouped video
samples contain a people in queues. Interestingly, the Avenue
dataset video samples have been grouped here, especially the
frames where people stay still under the shade, similar to a
queue. The region 3 contains outdoor and garden locations as
well pedestrian walks near them. UCSD dataset video samples
have also been grouped into this section. Further, it can be
visualized that region 4 and region 5 contains similar types
of video samples of road traffic, where region 4 mostly people
waiting near the road and region 5 with pedestrian crossings.

Apart from these, there were a few video samples that were
not grouped into the selected regions but had similar

Fig. 8 Optimal local feature maps derived based on the context requirements. SF-0.3 for UCSD feature maps, SF-0.5 for Avenue feature map

Table 2 Topology
Preservation Analysis Dataset SOM GSOM

UCSD Pedestrian 0.42 0.25

Avenue 0.24 0.18
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characteristics. That is due to the feature representation ap-
proach we undertook, which flow (temporal) and gradient
(spatial) features of the video.

This experiment demonstrates how the fusion of local on-
site map outcomes can be used to develop a global holistic
understanding of the context, thereby, provide feedback
to local on-site maps on context requirements. The
above experiment only presented the interpretable re-
gions in order to convey the outcomes, however, in
practice even the non-human-interpretable clustered re-
gions will be taken into account when developing the
holistic view. From smart city based application context,
fusion of multiple sensory modalities can aid to provide a
holistic view of the environment. Further, the use of GSOM
will enable distinguish the view points and cluster them in
order for convenient surveillance.

4.7 Analysis of Computational Overhead

The experiments were carried out on a multicore CPU at
2.4 GHz with 16GB memory and GPU of NVIDIA GeForce
GTX 950 M. The average processing time for activity repre-
sentation (HOG and HOF features) and self-organization was
respectively 12 milliseconds and 144.7 milliseconds per
frame. Thus, the overall computational is 156.7 milliseconds
per frame, i.e., the algorithm is able to process 7 frames per
second (FPS). From the runtime analysis, it is evident that the
maximum computation occurs at self-organization phase,
thus, by speeding up this process using parallelized implemen-
tation, it would be possible to further enhance runtime
efficiency.

In general, a typical video camera can acquire surveillance
footages at 30 FPS, i.e., the time difference between two

Fig. 9. a Distributed GSOM with SF = 0.3, b: GSOM with SF = 0.5.

Fig. 10 Interpretable regions derived from the Fused GSOM
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consecutive frames are 33.4 milliseconds. However, in the
context of video surveillance, an anomaly, or an unexpected
action to happen considerably it will take more time than that.
For instance, for the surveillance of pedestrians the proposed
runtime (i.e., 157 milliseconds per frame) can be considered
adequate to serve anomaly detection requirements. However,
in a scenario where a vehicle is travelling in a highway at
100 km/h, the vehicle would have moved close to 4.36 m
during the 157 milliseconds. As such, the proposed computa-
tional technique can be considered to perform near-real time,
and could further improve its runtime efficiency with better
computing resources for real-time use.

5 Discussion and Conclusion

Smart cities are becoming an essential requirement for most
countries around the world due to migration of the population
into urban areas. Using technological advancement as the ba-
se, smart cities are expected not only to cater to the needs of a
huge increase in population, but also provide improved living
environments, utilize resources more efficiently and responsi-
bly as well as be environmentally sustainable. The main tech-
nologies that are expected to support the creation of smart
cities are the cloud based IT systems, and AI and machine
learning based intelligent data processing and advanced
analytics.

5.1 Theoretical Implications

This research introduces and highlights unsupervised learning
and self-structuring AI algorithms to cater to the needs of the
big data era. In the past, supervised machine learning tech-
niques have been more popular where the use of AI/machine
learning has been for clearly defined tasks which are well
separated defined and scoped. As described in the introduction
of this paper, the new digital era with a plethora of technolo-
gies and processors generating streams of data, it is now not
only possible but necessary that AI and machine learning are
able to process natural events and situations represented dig-
itally in this new digital era.

This paper highlights three major limitations in current AI
and machine learning technology when used in volatile and
dynamic, non-deterministic environments such as smart cities.
First limiting factor in current smart city AI applications is that
most are carried out in isolation due to the difficulty of inte-
gration of different localities or data sources. Second is the
need for human expertise and experience in deciding the ap-
propriate structure (or architecture) of the model, that limits
real-time automated applications difficult. Third is the need
for labelled past data to build and train supervised models.
These three factors were highlighted as limitations which arise
due to the assumption of deterministic environments when

using these techniques. Such training/learning was suitable
for the post mortem type data processing and analysis of the
past but not at all suitable to take advantage from the new
digital environments and eco-systems (where data and digital
representations impact and influence each other). With big
data, it is difficult or impossible in many situations to have
sufficient knowledge of the distributions, dimensions, granu-
larity and frequency of data to be able to successfully pre-
build appropriate AI structures. As a solution, this paper pro-
poses self-structuring AI which can be created with a few
starting nodes and develop the suitable structure incrementally
to suit the environment as represented by the data. The pro-
posed framework is built upon a suite of unsupervised self-
organization algorithms with the Growing SOM as the base
building block.

The extendibility of the proposed framework in multi-
modal diverse data sources addresses the first limitation
discussed above. As such, the new structure adapting AI
framework enables local processing and modelling of data
as well as the generation of global positioning of related data
sources. The global positioning provides a way of linking
different but related applications and data sources with the
result of enabling localized applications to ascertain their rel-
ative position. Detailed descriptions of the different tasks and
processing requirements were highlighted. The key compo-
nents and functionality were demonstrated using several smart
city related benchmark data sets. The second and third limita-
tions are addressed in the proposed framework with the use of
unsupervised machine learning with self-organization as
building blocks. Due to the unsupervised self-learning capa-
bility of the GSOM algorithm, any human involvement or
labelled (annotated) data sets are not needed for the frame-
work to function. The paper further presents extensions to
the GSOMalgorithmwhich enables incremental unsupervised
learning, GSOM fusion and distributed and scalable GSOM
learning to address practical needs of real situations using
unsupervised learning algorithms.

Although many AI based applications are currently being
used successfully in smart cities, the real advantage lies in the
ability to consider the data created from multiple sources as a
whole. This paper proposes self-building AI as a base for
addressing the key limitations for holistic processing, integra-
tion and analysis of multiple data sources. The volume, variety
and volatility of the data (Big Data) make it essential that the
technology has the ability to self-adapt, with human involve-
ment becoming impossible. The self-building AI proposed in
this paper can self-learn in an unsupervised manner, grow or
shrink the architecture to optimally represent the data and
develop multiple levels of abstract representations of the same
event. As such, instead of attempting to match each individual
event with similar events or behaviours, it will be possible to
identify similarity in an abstract sense; for example level of
density in traffic and drill down to possible causes such as is it
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road works, large trucks, etc. or link to other sources such as
pedestrian movements to identify causality or predict next
events.

5.2 Practical Implications

Due to the ability to generate global scenarios from local in-
formation, the proposed technology could be used to
support decisions on diverting traffic during emergen-
cies, police and security positioning, understand flu or
epidemic spread within neighborhoods, optimize road or
infrastructure repairs based on traffic, public functions,
etc. and also improve delivery of essential services such
as electricity, gas, water.

The proposed self-building AI framework is primarily
focused on smart cities in this paper that can be material-
ized for Big Data driven traffic management systems
(Bandaragoda et al. 2020; Nallaperuma et al. 2019), intel-
ligent video surveillance in public places/ pedestrian
walks with capability to detect anomalies (Nawaratne
et al. 2019a, 2019b, 2019c), recognize human actions
(Nawaratne et al. 2019a, 2019b, 2019c), summarise sur-
v e i l l a n c e v i d eo t o d e t e c t unu su a l b eh av i ou r
(Gunawardena et al. 2020), intelligent energy meter read-
ing for smart energy (Silva et al. 2011) and digital health
(Carey et al. 2019) in smart city environments. In addi-
tion, the proposed self-building AI framework can even
be extend to develop resource-efficient computing infra-
structure to support effective implementation of smart cit-
ies (Jayaratne et al. 2019; Kleyko et al. 2019).

Future work will focus on conducting specialized local
and global analytics over time to ascertain the value of
the framework with its ability to continuously update
based on new data. It is also planned to implement the
framework on a cloud environment to further simulate
the complete local and global functionality with the inter
layer communications.
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