Skip to main content

Advertisement

Log in

The possible effect of topically applied azithromycin and moxifloxacin on the alleviation of uveitis

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the inhibitory effect of topically administered azithromycin (AZM), and moxifloxacin (MXF) against tumor necrosis factor-α (TNF-α) production in a rat model of endotoxin-induced uveitis (EIU).

Methods

Thirty-six Wistar albino rats were divided into 6 equal groups. Groups 1, 2 and 3 were determined as sham, control group for topical AZM application and control group for topical MXF application, respectively. Sterile saline, topical AZM 1.5%, and topical MXF 0.5% were instilled 5 times daily for totally 6 days on both eyes of the rats in Group 4, Group 5, and Group 6, before and after inducing EIU by intravitreal injections of lipopolysaccharide, respectively. At 24 h after intravitreal injections, aqueous humor was collected from both eyes of each rat for the assessment of TNF-α concentration. Also, density of nuclear factor kappa B (NF-κB) in ciliary body, and the number of cells infiltrating the posterior segment of EIU rat eyes was assessed in one eye of each rat.

Results

There was a significant reduction in mean aqueous humor concentration of TNF-α in EIU rats pretreated with topical AZM in comparison with those pretreated with sterile saline (139 ± 38.6 in Group 4 vs. 72 ± 12.6 in Group 5, p = 0.006). There was also a marked decrease in mean aqueous humor concentration of TNF-α in EIU rats pretreated with topical MXF (139 ± 38.6 in Group 4 vs.86.1 ± 35.5 in Group 6, p = 0.025). Also, evident suppressions were determined in mean density of NF-κB, and in mean number of cells in EIU rats pretreated either with topical AZM, or topical MXF.

Conclusions

Topically applied AZM or MXF may be beneficial in the suppression of TNF-α production in aqueous humor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data is available upon request.

Code availability

Not applicable.

References

  1. Group SoUNW (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol 140(3):509–516

    Article  Google Scholar 

  2. Zierhut M, Abu El-Asrar AM, Bodaghi B, Tugal-Tutkun I (2014) Therapy of ocular Behçet disease. Ocul Immunol Inflamm 22(1):64–76. https://doi.org/10.3109/09273948.2013.866257

    Article  CAS  PubMed  Google Scholar 

  3. Yadav UC, Srivastava SK, Ramana KV (2007) Aldose reductase inhibition prevents endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 48(10):4634–4642. https://doi.org/10.1167/iovs.07-0485

    Article  PubMed  Google Scholar 

  4. El-Asrar AMA, Struyf S, Kangave D, Al-Obeidan SS, Opdenakker G, Geboes K, Van Damme J (2011) Cytokine profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Clin Immunol 139(2):177–184. https://doi.org/10.1016/j.clim.2011.01.014

    Article  CAS  PubMed  Google Scholar 

  5. Hangai M, He S, Hoffmann S, Lim JI, Ryan SJ, Hinton DR (2006) Sequential induction of angiogenic growth factors by TNF-α in choroidal endothelial cells. J Neuroimmunol 171(1–2):45–56. https://doi.org/10.1016/j.jneuroim.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  6. Martel JN, Esterberg E, Nagpal A, Acharya NR (2012) Infliximab and adalimumab for uveitis. Ocul Immunol Inflamm 20(1):18–26. https://doi.org/10.3109/09273948.2011.633205

    Article  CAS  PubMed  Google Scholar 

  7. Markomichelakis NN, Theodossiadis PG, Pantelia E, Papaefthimiou S, Theodossiadis GP, Sfikakis PP (2004) Infliximab for chronic cystoid macular edema associated with uveitis. Am J Ophthalmol 138(4):648–650. https://doi.org/10.1016/j.ajo.2004.04.066

    Article  CAS  PubMed  Google Scholar 

  8. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295(19):2275–2285. https://doi.org/10.1001/jama.295.19.2275

    Article  CAS  PubMed  Google Scholar 

  9. Marjanović N, Bosnar M, Michielin F, Willé DR, Anić-Milić T, Čulić O, Popović-Grle S, Bogdan M, Parnham MJ, Haber VE (2011) Macrolide antibiotics broadly and distinctively inhibit cytokine and chemokine production by COPD sputum cells in vitro. Pharmacol Res 63(5):389–397. https://doi.org/10.1016/j.phrs.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  10. Gogos C, Skoutelis A, Lekkou A, Drosou E, Starakis I, Marangos M, Bassaris H (2004) Comparative effects of ciprofloxacin and ceftazidime on cytokine production in patients with severe sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 48(8):2793–2798. https://doi.org/10.1128/AAC.48.8.2793-2798.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi J-H, Song M-J, Kim S-H, Choi S-M, Lee D-G, Yoo J-H, Shin W-S (2003) Effect of moxifloxacin on production of proinflammatory cytokines from human peripheral blood mononuclear cells. Antimicrob Agents Chemother 47(12):3704–3707. https://doi.org/10.1128/AAC.47.12.3704-3707.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aghai ZH, Kode A, Saslow JG, Nakhla T, Farhath S, Stahl GE, Eydelman R, Strande L, Leone P, Rahman I (2007) Azithromycin suppresses activation of nuclear factor-kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Pediatr Res 62(4):483–488. https://doi.org/10.1203/PDR.0b013e318142582d

    Article  CAS  PubMed  Google Scholar 

  13. Li D-Q, Zhou N, Zhang L, Ma P, Pflugfelder SC (2010) Suppressive effects of azithromycin on zymosan-induced production of proinflammatory mediators by human corneal epithelial cells. Invest Ophthalmol Vis Sci 51(11):5623–5629. https://doi.org/10.1167/iovs.09-4992

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang J-Z, Cavet ME, Ward KW (2008) Anti-inflammatory effects of besifloxacin, a novel fluoroquinolone, in primary human corneal epithelial cells. Curr Eye Res 33(11–12):923–932. https://doi.org/10.1080/02713680802478704

    Article  CAS  PubMed  Google Scholar 

  15. Ando Y, Keino H, Kudo A, Hirakata A, Okada AA, Umezawa K (2019) Anti-inflammatory effect of dehydroxymethylepoxyquinomicin, a nuclear factor–κB inhibitor, on endotoxin-induced uveitis in rats in vivo and in vitro. Ocul Immunol Inflamm. https://doi.org/10.1080/09273948.2019.1568502

    Article  PubMed  Google Scholar 

  16. Chi Z-L, Hayasaka S, Zhang X-Y, Hayasaka Y, Cui H-S (2004) Effects of rolipram, a selective inhibitor of type 4 phosphodiesterase, on lipopolysaccharide-induced uveitis in rats. Invest Ophthalmol Vis Sci 45(8):2497–2502

    Article  PubMed  Google Scholar 

  17. Stewart WC, Crean CS, Zink RC, Brubaker K, Haque RM, Hwang DG (2010) Pharmacokinetics of azithromycin and moxifloxacin in human conjunctiva and aqueous humor during and after the approved dosing regimens. Am J Ophthalmol 150(5):744–751

    Article  CAS  PubMed  Google Scholar 

  18. Sandhu HS, Brucker AJ, Ma L, VanderBeek BL (2016) Oral fluoroquinolones and the risk of uveitis. JAMA Ophthalmol 134(1):38–43

    Article  PubMed  PubMed Central  Google Scholar 

  19. Peñaranda Henao M, Reyes-Guanes J, Muñoz-Ortiz J, Gutiérrezn M, De-La-Torre A (2021) Anterior uveitis due to intracameral moxifloxacin: a case report. Ocul Immunol Inflamm 29(7–8):1366–1369

    Article  PubMed  Google Scholar 

  20. Herbort CP, Okumura A, Mochizuki M (1989) Immunopharmacological analysis of endotoxin-induced uveitis in the rat. Exp Eye Res 48(5):693–705. https://doi.org/10.1016/0014-4835(89)90010-9

    Article  CAS  PubMed  Google Scholar 

  21. Rosenbaum JT, Kievit P, Han YB, Park JM, Planck SR (1998) Interleukin-6 does not mediate endotoxin-induced uveitis in mice: studies in gene deletion animals. Invest Ophthalmol Vis Sci 39(1):64

    CAS  PubMed  Google Scholar 

  22. Lee EJ, Vance EE, Brown BR, Snow PS, Clowers JS, Sakaguchi S, Rosenzweig HL (2015) Investigation of the relationship between the onset of arthritis and uveitis in genetically predisposed SKG mice. Arthritis Res Ther 17(1):1–10

    Article  Google Scholar 

  23. Chen W, Zhao B, Jiang R, Zhang R, Wang Y, Wu H, Gordon L, Chen L (2015) Cytokine expression profile in aqueous humor and sera of patients with acute anterior uveitis. Curr Mol Med 15(6):543–549. https://doi.org/10.2174/1566524015666150731100012

    Article  CAS  PubMed  Google Scholar 

  24. Sijssens KM, Rijkers GT, Rothova A, Stilma JS, Schellekens PA, de Boer JH (2007) Cytokines, chemokines and soluble adhesion molecules in aqueous humor of children with uveitis. Exp Eye Res 85(4):443–449. https://doi.org/10.1016/j.exer.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  25. Durrani K, Zakka FR, Ahmed M, Memon M, Siddique SS, Foster CS (2011) Systemic therapy with conventional and novel immunomodulatory agents for ocular inflammatory disease. Surv Ophthalmol 56(6):474–510. https://doi.org/10.1016/j.survophthal.2011.05.003

    Article  PubMed  Google Scholar 

  26. Dalhoff A (2005) Immunomodulatory activities of fluoroquinolones. Infection 33(2):55–70. https://doi.org/10.1007/s15010-005-8209-8

    Article  CAS  PubMed  Google Scholar 

  27. Morikawa K, Zhang J, Nonaka M, Morikawa S (2002) Modulatory effect of macrolide antibiotics on the Th1-and Th2-type cytokine production. Int J Antimicrob Agents 19(1):53–59. https://doi.org/10.1016/s0924-8579(01)00457-5

    Article  CAS  PubMed  Google Scholar 

  28. Azuma Y, Shinohara M, Murakawa N, Endo M, Ohura K (1999) Possible interaction between new quinolones and immune functions in macrophages. Gen Pharmacol 32(5):609–614

    Article  CAS  PubMed  Google Scholar 

  29. Shalit I, Horev-Azaria L, Fabian I, Blau H, Kariv N, Shechtman I, Alteraz H, Kletter Y (2002) Immunomodulatory and protective effects of moxifloxacin against Candida albicans-induced bronchopneumonia in mice injected with cyclophosphamide. Antimicrob Agents Chemother 46(8):2442–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stellari FF, Sala A, Donofrio G, Ruscitti F, Caruso P, Topini TM, Francis KP, Li X, Carnini C, Civelli M (2014) Azithromycin inhibits nuclear factor-jB activation during lung inflammation: an in vivo imaging study. Pharmacol Res Perspect. https://doi.org/10.1002/prp2.58

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haydar D, Cory TJ, Birket SE, Murphy BS, Pennypacker KR, Sinai AP, Feola DJ (2019) Azithromycin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF-κB signaling pathways. J Immunol 203(4):1021–1030

    Article  CAS  PubMed  Google Scholar 

  32. Kuo C-H, Lee M-S, Kuo H-F, Lin Y-C, Hung C-H (2019) Azithromycin suppresses Th1-and Th2-related chemokines IP-10/MDC in human monocytic cell line. J Microbiol Immunol Infect 52(6):872–879

    Article  CAS  PubMed  Google Scholar 

  33. Gupta SK, Agarwal R, Srivastava S, Agarwal P, Agrawal SS, Saxena R, Galpalli N (2008) The anti-inflammatory effects of Curcuma longa and Berberis aristata in endotoxin-induced uveitis in rabbits. Invest Ophthalmol Vis Sci 49(9):4036–4040. https://doi.org/10.1167/iovs.07-1186

    Article  PubMed  Google Scholar 

  34. Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN (2014) Expert panel recommendations for the use of anti–tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology 121(3):785–796. https://doi.org/10.1016/j.ophtha.2013.09.048

    Article  PubMed  Google Scholar 

  35. Kalariya NM, Shoeb M, Ansari NH, Srivastava SK, Ramana KV (2012) Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 53(7):3431–3440. https://doi.org/10.1167/iovs.12-9432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sugama Y, Tiruppathi C, Offakidevi K, Andersen TT, Fenton J 2nd, Malik AB (1992) Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol 119(4):935–944. https://doi.org/10.1083/jcb.119.4.935

    Article  CAS  PubMed  Google Scholar 

  37. Koizumi K, Poulaki V, Doehmen S, Welsandt G, Radetzky S, Lappas A, Kociok N, Kirchhof B, Joussen AM (2003) Contribution of TNF-α to leukocyte adhesion, vascular leakage, and apoptotic cell death in endotoxin-induced uveitis in vivo. Invest Ophthalmol Vis Sci 44(5):2184–2191. https://doi.org/10.1167/iovs.02-0589

    Article  PubMed  Google Scholar 

  38. Tilton RG, Chang K, Corbett JA, Misko TP, Currie MG, Bora NS, Kaplan HJ, Williamson JR (1994) Endotoxin-induced uveitis in the rat is attenuated by inhibition of nitric oxide production. Invest Ophthalmol Vis Sci 35(8):3278–3288

    CAS  PubMed  Google Scholar 

  39. Asano N, Wiseman JM, Tsuji F, Kawazu K (2017) Limited azithromycin localization to rabbit meibomian glands revealed by LC–MS-based bioanalysis and DESI imaging. Biol Pharm Bull 40(9):1586–1589

    Article  CAS  PubMed  Google Scholar 

  40. Yağcı R, Oflu Y, Dinçel A, Kaya E, Yağcı S, Bayar B, Duman S, Bozkurt A (2007) Penetration of second-, third-, and fourth-generation topical fluoroquinolone into aqueous and vitreous humour in a rabbit endophthalmitis model. Eye 21(7):990–994

    Article  PubMed  Google Scholar 

  41. Kowalski RP, Romanowski EG, Mah FS, Yates KA, Gordon YJ (2005) Intracameral Vigamox®(moxifloxacin 0.5%) is non-toxic and effective in preventing endophthalmitis in a rabbit model. Am J Ophthalmol 140(3):497

    Article  CAS  PubMed  Google Scholar 

  42. Kuehne JJ, Yu ALT, Holland GN, Ramaswamy A, Taban R, Mondino BJ, Yu F, Rayner SA, Giese MJ (2004) Corneal pharmacokinetics of topically applied azithromycin and clarithromycin. Am J Ophthalmol 138(4):547–553

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No financial support was received for this submission.

Author information

Authors and Affiliations

Authors

Contributions

SA designed the study, collected the data, SG, SA drafted the manuscript, MHS and SE created the figures.

Corresponding author

Correspondence to Sedat Arıkan.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest. The authors are responsible for the content and writing of the paper.

Ethical approval

Canakkale University, The Committee on the Ethics of Animal Experiments, 12.11.2018/2018–25.

Animal research

This study complied with the ethical standards on welfare of animals.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arıkan, S., Guven, S., Sehitoglu, M.H. et al. The possible effect of topically applied azithromycin and moxifloxacin on the alleviation of uveitis. Int Ophthalmol 43, 4451–4460 (2023). https://doi.org/10.1007/s10792-023-02845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-023-02845-5

Keywords

Navigation