Skip to main content

Advertisement

Log in

Correlation of choroidal thickness with age in healthy subjects: automatic detection and segmentation using a deep learning model

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Propose

The proposed deep learning model with a mask region-based convolutional neural network (Mask R-CNN) can predict choroidal thickness automatically. Changes in choroidal thickness with age can be detected with manual measurements. In this study, we aimed to investigate choroidal thickness in a comprehensive aspect in healthy eyes by utilizing the Mask R-CNN model.

Methods

A total of 68 eyes from 57 participants without significant ocular disease were recruited. The participants were allocated to one of three groups according to their age and underwent spectral domain optical coherence tomography (SD-OCT) or enhanced depth imaging OCT (EDI-OCT) centered on the fovea. Each OCT sequence included 25 slices. Physicians labeled the choroidal contours in all the OCT sequences. We applied the Mask R-CNN model for automatic segmentation. Comparisons of choroidal thicknesses were conducted according to age and prediction accuracy.

Results

Older age groups had thinner choroids, according to the automatic segmentation results; the mean choroidal thickness was 253.7 ± 41.9 μm in the youngest group, 206.8 ± 35.4 μm in the middle-aged group, and 152.5 ± 45.7 μm in the oldest group (p < 0.01). Measurements obtained using physician sketches demonstrated similar trends. We observed a significant negative correlation between choroidal thickness and age (p < 0.01). The prediction error was lower and less variable in choroids that were thinner than the cutoff point of 280 μm.

Conclusion

By observing choroid layer continuously and comprehensively. We found that the mean choroidal thickness decreased with age in healthy subjects. The Mask R-CNN model can accurately predict choroidal thickness, especially choroids thinner than 280 μm. This model can enable exploring larger and more varied choroid datasets comprehensively, automatically, and conveniently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Linsenmeier RA, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 41:3117–3123

    CAS  PubMed  Google Scholar 

  2. Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646. https://doi.org/10.1016/0002-9394(80)90280-9

    Article  CAS  PubMed  Google Scholar 

  3. Grossniklaus HE, Green WR (2004) Choroidal neovascularization. Am J Ophthalmol 137:496–503. https://doi.org/10.1016/j.ajo.2003.09.042

    Article  PubMed  Google Scholar 

  4. Spaide RF, Hall L, Haas A et al (1996) Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina Phila Pa 16:203–213. https://doi.org/10.1097/00006982-199616030-00004

    Article  CAS  Google Scholar 

  5. Flitcroft DI, He M, Jonas JB et al (2019) IMI: defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci 60:M20–M30. https://doi.org/10.1167/iovs.18-25957

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gomi F, Tano Y (2008) Polypoidal choroidal vasculopathy and treatments. Curr Opin Ophthalmol 19(3):208–212. https://doi.org/10.1097/ICU.0b013e3282fb7c33

    Article  PubMed  Google Scholar 

  7. Cheung CMG, Lee WK, Koizumi H et al (2019) Pachychoroid disease. Eye 33:14–33. https://doi.org/10.1038/s41433-018-0158-4

    Article  PubMed  Google Scholar 

  8. Wakatsuki Y, Shinojima A, Kawamura A, Yuzawa M (2015) Correlation of aging and segmental choroidal thickness measurement using swept source optical coherence tomography in healthy eyes. PLoS One 10:e0144156. https://doi.org/10.1371/journal.pone.0144156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Entezari M, Karimi S, Ramezani A et al (2018) Choroidal thickness in healthy subjects. J Ophthalmic Vis Res 13:39–43. https://doi.org/10.4103/jovr.jovr_148_16

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ding X, Li J, Zeng J et al (2011) Choroidal thickness in healthy chinese subjects. Invest Ophthalmol Vis Sci 52:9555–9560. https://doi.org/10.1167/iovs.11-8076

    Article  PubMed  Google Scholar 

  11. Tian J, Marziliano P, Baskaran M et al (2013) Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images. Biomed Opt Express 4:397–411. https://doi.org/10.1364/BOE.4.000397

    Article  PubMed  PubMed Central  Google Scholar 

  12. Masood S, Fang R, Li P et al (2019) Automatic choroid layer segmentation from optical coherence tomography images using deep learning. Sci Rep 9:3058. https://doi.org/10.1038/s41598-019-39795-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He F, Chun RKM, Qiu Z et al (2021) Choroid segmentation of retinal OCT images based on CNN classifier and l2-lq fitter. Comput Math Methods Med 2021:8882801. https://doi.org/10.1155/2021/8882801

    Article  PubMed  PubMed Central  Google Scholar 

  14. He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. pp 2961–2969

  15. Hsia WP, Tse SL, Chang CJ, Huang YL (2021) Automatic segmentation of choroid layer using deep learning on spectral domain optical coherence tomography. Appl Sci 11:5488. https://doi.org/10.3390/app11125488

    Article  CAS  Google Scholar 

  16. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173–2176. https://doi.org/10.1167/iovs.09-4383

    Article  PubMed  Google Scholar 

  17. Kim M, Kim SS, Koh HJ, Lee SC (2014) Choroidal thickness, age, and refractive error in healthy Korean subjects. Optom Vis Sci Off Publ Am Acad Optom 91:491–496. https://doi.org/10.1097/OPX.0000000000000229

    Article  Google Scholar 

  18. Russell BC, Torralba A, Murphy KP, Freeman WT (2005) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77(1):157–173

    Google Scholar 

  19. Fujiwara A, Shiragami C, Shirakata Y et al (2012) Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes. Jpn J Ophthalmol 56:230–235. https://doi.org/10.1007/s10384-012-0128-5

    Article  PubMed  Google Scholar 

  20. Chhablani J, Rao PS, Venkata A et al (2014) Choroidal thickness profile in healthy Indian subjects. Indian J Ophthalmol 62:1060–1063. https://doi.org/10.4103/0301-4738.146711

    Article  PubMed  PubMed Central  Google Scholar 

  21. Akay F, Gundogan FC, Yolcu U et al (2016) Choroidal thickness in systemic arterial hypertension. Eur J Ophthalmol 26:152–157. https://doi.org/10.5301/ejo.5000675

    Article  PubMed  Google Scholar 

  22. Shao L, Zhou LX, Xu L, Wei WB (2021) The relationship between subfoveal choroidal thickness and hypertensive retinopathy. Sci Rep 11:5460. https://doi.org/10.1038/s41598-021-84947-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee HK, Lim JW, Shin MC (2013) Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol 27:433–439. https://doi.org/10.3341/kjo.2013.27.6.433

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abadia B, Suñen I, Calvo P et al (2018) Choroidal thickness measured using swept-source optical coherence tomography is reduced in patients with type 2 diabetes. PLoS One 13:e0191977. https://doi.org/10.1371/journal.pone.0191977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  26. Kong M, Choi DY, Han G et al (2018) Measurable range of subfoveal choroidal thickness with conventional spectral domain optical coherence tomography. Transl Vis Sci Technol 7:16. https://doi.org/10.1167/tvst.7.5.16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Wang YX, Zhang Q et al (2018) Macular choroidal small-vessel layer, sattler’s layer and haller’s layer thicknesses: the Beijing eye study. Sci Rep 8:4411. https://doi.org/10.1038/s41598-018-22745-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mansouri K, Medeiros FA, Marchase N et al (2013) Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography. Ophthalmology 120:2508–2516. https://doi.org/10.1016/j.ophtha.2013.07.040

    Article  PubMed  Google Scholar 

  29. Marneros AG, Fan J, Yokoyama Y et al (2005) Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol 167:1451–1459. https://doi.org/10.1016/S0002-9440(10)61231-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blaauwgeers HGT, Holtkamp GM, Rutten H et al (1999) Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris: evidence for a trophic paracrine relation. Am J Pathol 155:421–428. https://doi.org/10.1016/S0002-9440(10)65138-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramrattan RS, van der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    CAS  PubMed  Google Scholar 

  32. Foo VHX, Gupta P, Nguyen QD et al (2020) Decrease in choroidal vascularity index of Haller’s layer in diabetic eyes precedes retinopathy. BMJ Open Diabetes Res Care 8:e001295. https://doi.org/10.1136/bmjdrc-2020-001295

    Article  PubMed  PubMed Central  Google Scholar 

  33. Esmaeelpour M, Ansari-Shahrezaei S, Glittenberg C et al (2014) Choroid, haller’s, and sattler’s layer thickness in intermediate age-related macular degeneration with and without fellow neovascular eyes. Invest Ophthalmol Vis Sci 55:5074–5080. https://doi.org/10.1167/iovs.14-14646

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dhoot DS, Huo S, Yuan A et al (2013) Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br J Ophthalmol 97:66–69. https://doi.org/10.1136/bjophthalmol-2012-301917

    Article  PubMed  Google Scholar 

  35. Ouyang Y, Heussen FM, Mokwa N et al (2011) Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:7019–7026. https://doi.org/10.1167/iovs.11-8046

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hirata M, Tsujikawa A, Matsumoto A et al (2011) Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 52:4971–4978. https://doi.org/10.1167/iovs.11-7729

    Article  PubMed  Google Scholar 

  37. Chhablani J, Barteselli G, Wang H et al (2012) Repeatability and reproducibility of manual choroidal volume measurements using enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 53:2274–2280. https://doi.org/10.1167/iovs.12-9435

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hwang S, Kong M, Song Y-M, Ham D-I (2020) Choroidal spatial distribution indexes as novel parameters for topographic features of the choroid. Sci Rep 10:574. https://doi.org/10.1038/s41598-019-57211-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Copete S, Flores-Moreno I, Montero JA et al (2014) Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98:334–338. https://doi.org/10.1136/bjophthalmol-2013-303904

    Article  PubMed  Google Scholar 

  40. Lee M-W, Park H-J, Shin Y-I et al (2020) Comparison of choroidal thickness measurements using swept source and spectral domain optical coherence tomography in pachychoroid diseases. PLoS One 15:e0229134. https://doi.org/10.1371/journal.pone.0229134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujiwara T, Imamura Y, Margolis R et al (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450. https://doi.org/10.1016/j.ajo.2009.04.029

    Article  PubMed  Google Scholar 

  42. Agrawal R, Gupta P, Tan K-A et al (2016) Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci Rep 6:21090. https://doi.org/10.1038/srep21090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iovino C, Pellegrini M, Bernabei F et al (2020) Choroidal Vascularity index: an in-depth analysis of this novel optical coherence tomography parameter. J Clin Med 9:595. https://doi.org/10.3390/jcm9020595

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

All authors have no relevant financial or non-financial interests to disclose. No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia Jen Chang.

Ethics declarations

Conflict of interest

All authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria, educational grants, or participation in speakers’ bureaus) or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

Approval was obtained from the Institutional Review Board (IRB) of Taichung Veteran General Hospital with case number: CE21201B. All procedures performed in this study involving human participants were in accordance with the ethical standards of IRB of Taichung Veteran General Hospital and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

It is not necessary to obtain consent. Informed consent was granted exemption by ethical research committee of Taichung Veteran General Hospital. Images applied in the study were OCT sequence, which could be completely anonymized. The submission does not include information that may identify the participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C.Y., Huang, Y.L., Hsia, W.P. et al. Correlation of choroidal thickness with age in healthy subjects: automatic detection and segmentation using a deep learning model. Int Ophthalmol 42, 3061–3070 (2022). https://doi.org/10.1007/s10792-022-02292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02292-8

Keywords

Navigation