Skip to main content

Advertisement

Log in

Diagnostic performance of laser speckle flowgraphy in glaucoma: a systematic review and meta-analysis

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic value of laser speckle flowgraphy (LSFG) in glaucoma by investigating the mean blur rate (MBR) in the optic nerve head.

Methods

Systematic literature search was performed in the CENTRAL, Web of Science, PubMed, and EMBASE databases to obtain relevant studies published until December 2020 without restrictions. The Newcastle–Ottawa Scale (NOS) was used for study quality assessment. The outcome measures included the MBRs of the entire (MA), vascular (MV), and tissue (MT) areas. Subgroup analyses were performed according to glaucoma type. All data were analyzed using RevMan and Comprehensive Meta-Analysis 3.3 software.

Results

Fifteen studies, including 692 glaucomatous and 386 healthy eyes, were included. Of these, 11 studies reported the MA, MV, and MT, three studies only reported MT, and one study only reported MV. All were classified as case–control studies and had good NOS scores. The meta-analysis showed that the MA and MT were significantly reduced in glaucomatous eyes (mean difference [MD] − 5.59, 95% confidence interval [CI] − 6.19 to − 4.99, p = 0.1; MD − 2.2, 95% CI − 2.49 to − 1.91, p = 0.07, respectively) with moderate heterogeneity (p = 0.1, I2 = 38%; p = 0.07, I2 = 39%, respectively). There was also a significant difference in the MV between glaucomatous and healthy eyes (MD − 5.92, 95% CI − 7.77 to − 4.07) with significant heterogeneity (p = 0.0003, I2 = 69%). The subgroup analyses revealed significant differences in the MBR among different glaucoma types.

Conclusions

Glaucoma is closely related to ocular blood flow changes. This meta-analysis suggests that LSFG is a feasible diagnostic tool for glaucoma. However, further longitudinal prospective studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  PubMed  Google Scholar 

  2. Wareham LK, Calkins DJ (2020) The neurovascular unit in glaucomatous neurodegeneration. Front Cell Dev Biol 8:452

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chan KKW, Tang F, Tham CCY, Young AL, Cheung CY (2017) Retinal vasculature in glaucoma: a review. BMJ Open Ophthalmol 1(1):e000032

    Article  PubMed  PubMed Central  Google Scholar 

  4. Galassi F, Giambene B, Varriale R (2011) Systemic vascular dysregulation and retrobulbar hemodynamics in normal-tension glaucoma. Invest Ophthalmol Vis Sci 52(7):4467–4471

    Article  PubMed  Google Scholar 

  5. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393

    Article  PubMed  Google Scholar 

  6. Nakazawa T (2016) Ocular blood flow and influencing factors for glaucoma. Asia Pac J Ophthalmol (Phila) 5(1):38–44

    Article  CAS  Google Scholar 

  7. Hasegawa T, Ooto S, Akagi T, Kameda T, Nakanishi H, Ikeda HO, Suda K, Tsujikawa A (2020) Expansion of retinal nerve fiber bundle narrowing in glaucoma: An adaptive optics scanning laser ophthalmoscopy study. Am J Ophthalmol Case Rep 19:100732

    Article  PubMed  PubMed Central  Google Scholar 

  8. Russo A, Costagliola C, Rizzoni D, Ghilardi N, Turano R, Semeraro F (2016) Arteriolar diameters in glaucomatous eyes with single-hemifield damage. Optom Vis Sci 93(5):504–509

    Article  PubMed  Google Scholar 

  9. Kurvinen L, Kyto JP, Summanen P, Vesti E, Harju M (2014) Change in retinal blood flow and retinal arterial diameter after intraocular pressure reduction in glaucomatous eyes. Acta Ophthalmol 92(6):507–512

    Article  PubMed  Google Scholar 

  10. Karvonen E, Stoor K, Luodonpaa M, Hagg P, Lintonen T, Liinamaa J, Tuulonen A, Saarela V (2020) Diagnostic performance of modern imaging instruments in glaucoma screening. Br J Ophthalmol 104(10):1399–1405

    Article  PubMed  Google Scholar 

  11. Wei X, Balne PK, Meissner KE, Barathi VA, Schmetterer L, Agrawal R (2018) Assessment of flow dynamics in retinal and choroidal microcirculation. Surv Ophthalmol 63(5):646–664

    Article  PubMed  Google Scholar 

  12. Mohindroo C, Ichhpujani P, Kumar S (2016) Current imaging modalities for assessing ocular blood flow in glaucoma. J Curr Glaucoma Pract 10(3):104–112

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aizawa N, Yokoyama Y, Chiba N, Omodaka K, Yasuda M, Otomo T, Nakamura M, Fuse N, Nakazawa T (2011) Reproducibility of retinal circulation measurements obtained using laser speckle flowgraphy-NAVI in patients with glaucoma. Clin Ophthalmol 5:1171–1176

    PubMed  PubMed Central  Google Scholar 

  14. Takeyama A, Ishida K, Anraku A, Ishida M, Tomita G (2018) Comparison of optical coherence tomography angiography and laser speckle flowgraphy for the diagnosis of normal-tension glaucoma. J Ophthalmol 2018:1751857

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mursch-Edlmayr AS, Luft N, Podkowinski D, Ring M, Schmetterer L, Bolz M (2018) Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study. Sci Rep 8(1):5343

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zeng X, Zhang Y, Kwong JS, Zhang C, Li S, Sun F, Niu Y, Du L (2015) The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med 8(1):2–10

    Article  PubMed  Google Scholar 

  17. Kuroda F, Iwase T, Yamamoto K, Ra E, Terasaki H (2020) Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma. Sci Rep 10(1):729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kohmoto R, Sugiyama T, Ueki M, Kojima S, Maeda M, Nemoto E, Tokuoka S, Ikeda T (2019) Correlation between laser speckle flowgraphy and optical coherence tomography angiography measurements in normal and glaucomatous eyes. Clin Ophthalmol 13:1799–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mursch-Edlmayr AS, Luft N, Podkowinski D, Ring M, Schmetterer L, Bolz M (2019) Differences in optic nerve head blood flow regulation in normal tension glaucoma patients and healthy controls as assessed with laser speckle flowgraphy during the water drinking test. J Glaucoma 28(7):649–654

    Article  Google Scholar 

  20. Mursch-Edlmayr AS, Pickl L, Calzetti G, Waser K, Wendelstein J, Beka S, Aranha Dos Santos V, Luft N, Schmetterer L, Bolz M (2020) Comparison of neurovascular coupling between normal tension glaucoma patients and healthy individuals with laser speckle flowgraphy. Curr Eye Res 45(11):1438–1442

    Article  PubMed  Google Scholar 

  21. Kiyota N, Kunikata H, Shiga Y, Omodaka K, Nakazawa T (2017) Relationship between laser speckle flowgraphy and optical coherence tomography angiography measurements of ocular microcirculation. Graefes Arch Clin Exp Ophthalmol 255(8):1633–1642

  22. Kiyota N, Kunikata H, Shiga Y, Omodaka K, Nakazawa T (2018) Ocular microcirculation measurement with laser speckle flowgraphy and optical coherence tomography angiography in glaucoma. Acta Ophthalmol 96(4):e485–e492

    Article  PubMed  Google Scholar 

  23. Shiga Y, Kunikata H, Aizawa N, Kiyota N, Maiya Y et al (2016) Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma. Curr Eye Res 41(11):1447–1453

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi W, Kunikata H, Omodaka K, Togashi K, Ryu M, Akiba M, Takeuchi G, Yuasa T, Nakazawa T (2014) Correlation of optic nerve microcirculation with papillomacular bundle structure in treatment naive normal tension glaucoma. J Ophthalmol 2014:468908

    Article  PubMed  Google Scholar 

  25. Gardiner SK, Cull G, Fortune B, Wang L (2019) Increased optic nerve head capillary blood flow in early primary open-angle glaucoma. Invest Ophthalmol Vis Sci 60(8):3110–3118

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kiyota N, Shiga Y, Suzuki S, Sato M, Takada N et al (2017) The effect of systemic hyperoxia on optic nerve head blood flow in primary open-angle glaucoma patients. Invest Ophthalmol Vis Sci 58(7):3181–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoue-Yanagimachi M, Himori N, Sato K, Kokubun T, Asano T, Shiga Y, Tsuda S, Kunikata H, Nakazawa T (2019) Association between mitochondrial DNA damage and ocular blood flow in patients with glaucoma. Br J Ophthalmol 103(8):1060–1065

    Article  PubMed  PubMed Central  Google Scholar 

  28. Iida Y, Akagi T, Nakanishi H, Ohashi Ikeda H, Morooka S et al (2017) Retinal blood flow velocity change in parafoveal capillary after topical tafluprost treatment in eyes with primary open-angle glaucoma. Sci Rep 7(1):5019

    Article  CAS  PubMed  Google Scholar 

  29. Newman A, Andrew N, Casson R (2018) Review of the association between retinal microvascular characteristics and eye disease. Clin Exp Ophthalmol 46(5):531–552

    Article  PubMed  Google Scholar 

  30. Omodaka K, Horii T, Takahashi S, Kikawa T, Matsumoto A et al (2015) 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One 10(4):e0122347

    Article  PubMed  PubMed Central  Google Scholar 

  31. Trivli A, Koliarakis I, Terzidou C, Goulielmos GN, Siganos CS, Spandidos DA, Dalianis G, Detorakis ET (2019) Normal-tension glaucoma: Pathogenesis and genetics. Exp Ther Med 17(1):563–574

    CAS  PubMed  Google Scholar 

  32. Nascimento ESR, Chiou CA, Wang M, Wang H, Shoji MK et al (2019) Microvasculature of the optic nerve head and peripapillary region in patients with primary open-angle glaucoma. J Glaucoma 28(4):281–288

    Article  Google Scholar 

  33. Kawasaki R, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Mitchell P (2013) Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology 120(1):84–90

    Article  PubMed  Google Scholar 

  34. Yip VCH, Wong HT, Yong VKY, Lim BA, Hee OK et al (2019) Response: optical coherence tomography angiography of optic disc and macula vessel density in glaucoma and healthy eyes. J Glaucoma 28(7):e132–e133

    Article  PubMed  Google Scholar 

  35. Baek SU, Kim YK, Ha A, Kim YW, Lee J, Kim JS, Jeoung JW, Park KH (2019) Diurnal change of retinal vessel density and mean ocular perfusion pressure in patients with open-angle glaucoma. PLoS One 14(4):e0215684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wareham LK, Dordea AC, Schleifer G, Yao V, Batten A et al (2019) Increased bioavailability of cyclic guanylate monophosphate prevents retinal ganglion cell degeneration. Neurobiol Dis 121:65–75

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81570841).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantive intellectual contributions to this study. CG and LY contributed to study conceptualization and design. CG and LA performed the literature search and data collection. CG analyzed the data and drafted the manuscript. All authors contributed to statistical analysis. All authors have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Ling Yu.

Ethics declarations

Conflict of interest

The authors of this manuscript have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, C., Li, A. & Yu, L. Diagnostic performance of laser speckle flowgraphy in glaucoma: a systematic review and meta-analysis. Int Ophthalmol 41, 3877–3888 (2021). https://doi.org/10.1007/s10792-021-01954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01954-3

Keywords

Navigation