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Abstract
E-commerce is a massive sector in the US economy, generating $767.7 billion in revenue in 2021. E-commerce sites 
maximize their revenue by helping customers find, examine, and purchase products. To help users easily find the most 
relevant products in the database for their individual needs, e-commerce sites are equipped with a product retrieval sys-
tem. Many of these modern retrieval systems parse user-specified constraints or keywords embedded in a simple natural 
language query, which is generally easier and faster for the customer to specify their needs than navigating a product 
specification form, and does not require the seller to design or develop such a form. These natural language product 
retrieval systems, however, suffer from low relevance in retrieved products, especially for complex constraints specified 
on products. The reduced accuracy is in part due to under-utilizing the rich semantics of natural language, specifically 
queries that include Boolean operators, and lacking of the ranking on partially-matched relevant results that could be of 
interest to the customers. This undesirable effect costs e-commerce vendors to lose sales on their merchandise. In solv-
ing this problem, we propose a novel product retrieval system, called QuePR , that parses arbitrarily simple and complex 
natural language queries with(out) Boolean operators, utilizes combinatorial numeric and content-based matching to 
extract relevant products from a database, and ranks retrieved resultant products by relevance before presenting them 
to the end-user. The advantages of QuePR are its ability to process explicit and implicit Boolean operators in queries, 
handle natural language queries using similarity measures on partially-matched records, and perform best guess or 
match on ambiguous or incomplete queries. QuePR is unique, easy to use, and scalable to all product categories. To 
verify the accuracy of QuePR in retrieving relevant products on different product domains, we have conducted different 
performance analyses and compared QuePR with other ranking and retrieval systems. The empirical results verify that 
QuePR outperforms others while maintaining an optimal runtime speed.

Keywords Natural language query · Interpretation · Matching · Ranking · Data retrieval
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1 Introduction

Customers with the intention to buy products conduct search that will fulfill their specific needs and wants. With the 
popularity of Internet, the search is made much more convenient for the average customers who choose to shop 
whenever and wherever they like and are given a broad variety of products on a number of retailer’s websites. For 
example, approximately 75 million distinct products were offered on Amazon in March 2021 [1]. It is well-known that 
online stores offer greater variety for two different reasons. First, online stores do not have the same restrictions on 
space as brick and mortar stores and have essentially unrestricted display room. Second, a wider variety is available, 
since the customer is not limited to a single fixed location. For product variety to be useful, consumers need to be able 
to find what they are looking for. However, as the number of products sold online increases, finding the right ones 
becomes more and more difficult. With about 256 million digital customers in the Unites States alone, this problem 
is common to many people [2]. Furthermore, the number of digital shoppers is expected to grow to 292 million by 
2025 [2], making the problem even more endemic.

As users look for products, they often relay their needs and requirements to product retrieval systems, such as the 
ones offered by Amazon, Walmart, and Apple, which help them locate the best matching products. Some of these 
product retrieval systems rely on the users entering the desired items in strict forms or based on keyword search [3]. 
This search strategies impose unnecessary complexity on the user, who must become familiar with the options avail-
able, formulate their desires as inputs the system expects, and take time to navigate in order to enter these inputs. 
In fact, it is more convenient for the user to simply specify the required product in a natural language query. Users 
can formulate their needs in terms of their language, which of course imposes the burden of the product retrieval 
system to parse and interpret the desired products and fetch results. Current natural language product retrieval 
systems exists for languages such as English [4], Japanese [5], and Finnish [6], but lack the accuracy of form-based 
systems [7, 8] that restrict the search constraints.

The two primary challenges that these product retrieval systems face are the inherent complexity of natural lan-
guage and ambiguity in the search query. To enhance the effectiveness and efficiency of processing natural language 
queries on products, we propose a new system, called the Query Product Retriever ( QuePR for short), which addresses 
these challenges. On a high level, QuePR parses the natural language query for product constraints, searches the 
underlying database (DB) for exact and partial matches, and sorts the results by relevance to be returned to the 
user. There are three notable contributions of QuePR in extracting relevant products to satisfy the needs of users: 
(i) a novel approach for interpreting and evaluating an arbitrary number of recursively nested explicit and implicit 
Boolean operators is presented, (ii) a unique strategy of relevancy scoring is introduced with an accurate notion of 
similarity both for categorical and numeric data based on the constraint specification detected by our typification 
approach on data attributes, and (iii) a simple and elegant method in computing the relevancy scores for individual 
constraints for scaling the product attribute types in calculation of the final product score is employed.

To enhance the effectiveness and efficiency of processing user queries on products, QuePR (i) first uses the Multino-
mial Naive Bayes classifier to automatically identify the domain of a query on products Q, (ii) corrects spelling mistakes 
using the noisy channel model when processing Q, (iii) performs an intelligent “best guess” and retrieves answers that 
most adequately match an incomplete and/or ambiguous selection criterion specified in Q, (iv) applies substring 
matching to speed up the process of retrieving answers to Q, and (v) processes each SQL query converted from Q.

The effectiveness and merits of QuePR have been experimentally verified in terms of achieving high accuracy of 
interpretation for simple and complex queries. Furthermore, it has been validated that QuePR retrieves more relevant 
results to the user than other contemporary product retrieval systems. This accuracy manages to save customers’ 
time and efforts in product searching and offer them all the relevant and related products available, which leads to 
higher degree of satisfaction and greater security at the time of purchase.

2  Related works

To answer natural language queries and retrieve the records in DB to answer the queries, QuePR applies the hybrid 
data extraction approach by integrating the information retrieval and data retrieval strategies. Both of these retrieval 
strategies are popular areas of study. As such, there are a number of notable contributions to both areas [9–12].
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There is no luck of publications in the literature that propose procedures to handle natural language queries and 
transform them into another form for processing. Query rewriting, especially of anaphora and ellipses, has proven to 
be effective, especially when used in conjunction with embedded context of previous queries [13]. Other systems 
opt for a simpler keyword extraction from the natural language query [14, 15], which is simpler, but may not yield 
comprehensive results. One solution that has been tried is to blend the concepts of rewriting and keyword extraction, 
i.e., important keywords can be extracted from the original query, then other related keywords may be generated in 
order to focus the search [16]. Besides identifying significant keywords in a natural language query, QuePR applies 
typification and standarization, two sophisticated approaches, to recognize important terms specified in a query.

It often occurs that natural language queries are ambiguous, and there is no single interpretation that can be generated 
with confidence. Researchers have attempted to create systems that collaborate with the user to develop an accurate inter-
pretation of the query intent. Li and Jagadish [17] present the query users with several possible interpretations for one to be 
chosen from, whereas Kum et al. [18] adopt the user-feedback strategy, asking the user to indicate the intent of the targeted 
questions. These approaches are similar to conversational question-answer systems [19], which save the context of user 
queries and responses. However, these strategies require user’s relevant feedback and could be troublesome to the users.

In different natural language query processing systems, after information has been retrieved by each system, relevant 
data is expected to be presented to the user. Among these systems, the deep neural network model has proven to be suc-
cessful, such as the one retrieves data from cells of web tables [20]. If the domain is formatted as a database, SQL queries 
or similar query languages may be constructed to retrieve the relevant data [17, 21]. Executing these retrieval queries yield 
accuracy results only if the specification of the search constraints are precise. In systems over single domain, the accuracy 
design goal could be easier to achieve [22]. However, it is an irresistible challenge to deal with multiple domains, especially 
domains that are similar in nature.

In a product retrieval system, an extension of the concept of ranking is to find related products. Information can be “ranked” 
by similarity in the source, and based on that similarity, results are presented in a ranked order. Ontological concept hierar-
chies [23, 24] can be constructed to determine relevance of arbitrary terms. QuePR , on the other hand, applies the concept 
of similarity extensively in ranking the attribute values of partially-matched products.

With very few publicly available datasets to appropriately train systems that handle natural language queries, efforts have 
been made to resolve this issue. In 2021, Papenmeier et al. [25] released an e-commerce dataset of natural language descrip-
tions of jackets and laptops, which is a good step in the right direction. The descriptions, however, were written as descrip-
tions of desired features rather than queries. Moreover, the products were limited exclusively to jackets and laptops only.

3  Query product retriever ( QuePR)

Users prefer to express search queries in natural language, since expressing natural language queries is easier for the user and 
does not require them to learn a service-specific selection language, such as SQL, the complexity of which is directly related 
to its syntax and semantics. For this reason, we have developed QuePR , a natural language querying system for product 
retrieval. Figure 1 depicts the overall process of QuePR in retrieving DB records.

3.1  Classification of product domains

Prior to answering a user query Q, QuePR first determines the category to which Q belongs. QuePR adopts the Multinomial 
Naïve Bayes classifier (MNB) [26] to classify Q into one of the available domains. MNB, a supervised learning approach, is a 
probabilistic model widely used in natural language processing [27]. The model is applicable in calculating the probability 
that a given query Q is in a particular category based on the probability value of each word in Q being in the category, and 
the category with the highest probability is given as the output. Equation 1 computes the multinomial probability of Q given 
a particular category C. For purposes of testing, QuePR was verified by using six different categories: automobiles, furniture, 
housing, jewelry, jobs, and motorcycles as running examples. MNB, a widely-used supervised-learning classifier, is capable 
of handing any number of categories [26].

(1)P(Q ∣ C) = Πw∈VP(w ∣ C)tfw,Q
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where V is the set of words in the training dataset, tfw,Q is the count of the word w in Q, and P(w ∣ C) is the probability 
that w appears in C. In case a word in Q never appears in the training data, we adopt the Laplacian smoothing strategy 
[28] to assign P(w ∣ C) to a non-zero probability as

where ∣ Q ∣ is the number of words in Q, and ∣ V ∣ is the number of distinct words in the training set C.
For example, given the natural language query SQ , “hond ared accord or silver civic 2008 less than $6K in NY”, SQ belongs, 

and should be assigned, to the automobiles category,1

3.2  Tokenization

Once a query has been classified into one of the categories, it is divided into its component tokens. Each token is a 
semantically indivisible combination of symbols, which may include alphabetic characters, digits, and punctuation. 
Tokens are typically divided by space delimiters, but may be divided further between words and punctuation, numbers 
and punctuation, or unit symbols (e.g., $ and £) and digits. To extract tokens from an input user query, QuePR employs 
the Natural Language Toolkit’s word tokenizer [29], with only an alteration on hyphens.2 QuePR splits tokens which con-
tain a hyphen if all the characters on both sides are exclusively numeric symbols. Thus, the example “10–15” would be 
converted into three tokens: “10”, “-”, and “15”. For example, SQ, given above, is tokenized into SQt : “hond, ared, accord, or, 
silver, civic, 2008, less, than, $, 6K, in, NY”.

3.3  Spelling correction

It is common for users to make spelling mistakes when entering natural language queries. It is also very common for 
users to have abbreviations in natural language queries to save them time typing whole words. However, these spell-
ing mistakes and abbreviations can severely decrease the ability of QuePR to properly identify constraints and match 
on requested products. As such, two subprocesses, abbreviation expansion and spelling correction transform the query 
tokens into a more meaningful form.

The first step of spelling correction is abbreviation expansion, where abbreviation tokens are transformed into their 
more verbose forms extracted from a database of expanded abbreviations. One common form of abbreviations is the 
two letter state acronyms (such as NY and CA), which indicate the location of the product being sold. In the sample 

(2)P(w ∣ C) =
tfw,Q + 1

∣ Q ∣ + ∣ V ∣

Fig. 1  The process of match-
ing natural language queries 
with DB records

1 Note that SQ contains an intentional typo hond ared which should read honda red.
2 By the typical behavior, hyphens are not used as a delimiter, yet for product searches, hyphens can sometimes be used to indicate ranges 
of numbers (such as “$10–15”).
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query, “NY” is identified as the abbreviation for the state of New York. Another common abbreviation is the shorthand 
“K”, which stands for 1000 in a numeric value. The abbreviation expansion on SQt yields SQa : “hond, ared, accord, or, silver, 
civic, 2008, less, than, $, 6000, in, New York”.

The noisy channel model (NCM) [30] for spelling correction is a general framework that can address the issues of context 
and run-on errors. The intuition of NCM is that a person chooses a word w to write, based on the probability distribution 
P(w), i.e., the language model probability. The person then tries to write w, but the noise channel (presumably the person’s 
brain) causes the person to write the (misspelled) word e instead, with the error model probability P(e ∣ w) [30]. To estimate 
the probability that given an error written word e, the correct word is w, i.e., P(w ∣ e) , NCM computes the frequency of 
different types of errors using a product test dataset (see 4.1 on test data for details) as

where wp is a previous word of w, and � is a parameter, which specifies the relative importance of P(w) and P(w ∣ wp) , 
and is experimentally set to be 0.5.

Performing the error checking on SQa (based on NCM) yields SQe : “honda, red, accord, or, silver, civic, 2008, less, than, $, 
6000, in, New York”.

3.4  Typification

Although there are many different ways for users to express constraints in a natural language query, some broad pat-
terns emerge based on which attribute of a desired product the user is constraining. For example, some attributes, such 
as product cost, product age, etc., are inherently numeric, and thus a constraint on them may include an upper or lower 
bound. We categorize each product attribute into one of the three types: Type I, Type II, or Type III, which allows QuePR to 
abstract away in parsing which product attribute is being constrained and instead focus on how the constraint is likely 
to be seen.

• Attributes of Type I describe core identity features of a product. They are commonly the most important feature of the 
product. Each value of a Type I attribute is always mutually exclusive with the other values of that same attribute. As 
such, if two or more values, which correspond to a single Type I attribute, appear in proximity to each other in a user 
query, we assume that the user implies a disjunctive constraint with those attributes.

• Attributes of Type II describe non-numeric ancillary features about the product. These attributes can describe the aes-
thetic, location, customization, or other features of the product. Type II values may be mutually exclusive, but are not 
constrained to be.

• Attributes of Type III describe a numeric status of the product. When users describe a constraint on the value of a Type 
III attribute, it may contain a numeric value, a relative bound, and a unit of number. For example, “< $5000” contains 
“<” as the bound, “5000” as the numeric value, and “$” as the unit.

QuePR classifies each token in the user query as at most one of the three product attribute types. In some cases, such as 
prepositions or articles, a token does not describe any attribute, whereas all the Boolean operators (e.g., and and or) and 
comparison operators (e.g., less/greater than) are essential in selecting products. For the sake of uniformity, these tokens 
are also assigned a type, called Type IV. As an example of typification, SQe is typified as SQy as: “ honda1 , red2 , accord1 , or4 , 
silver2 , civic1 , 20083 , less4 , than4 , $ 3 , 60003 , in4 , New York2 ”. Table 1 shows the different attribute types, i.e., Type I–III, of 
constraints applicable to different attributes specified in a user query that can be handled by QuePR.

Identifying the type of each token is a difficult task because there are no token-level abstractions which corre-
spond directly to the type. Utilities which identify the part of speech of each token in a sentence are available (such 

(3)
P(w ∣ e)

rank
= P(e ∣ w)P(w),

P(w) = �P(w) + (1 − �)P(w ∣ wp)

Table 1  Attribute types and 
sample values of various types 
in a product DB

Attr. type Product description Automobile values Housing values Jewelry values

I Core features Honda, Accord Single family Nicklace
II Customization 4 Cylinder NY County Blue
III Quantification 35K, 2015 4 Bedrooms 20K
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as Stanford’s Part of Speech Tagger [31]), but value types correlate only loosely to parts of speech. Type I values are 
often nouns, but Type III tokens can often be nouns as well, since their units (such as “dollar” or “miles”) are nouns. 
Type II values are sometimes adjectives, but other times can be nouns, even when describing the same attribute. For 
example, in “gold necklace”, the Type II value ‘gold’ can be identified as an adjective, but in “necklace with gold”, the 
Type II value ‘gold’ is a noun.

In lieu of a better typification approach, a trie data structure [32] is constructed for all the value types for each prod-
uct category. Type I values are relatively easy to maintain, since the set of core identity values for a category is limited, 
whereas Type II values are more difficult to control due to their variation. There is no entry in the trie used by QuePR for 
Type III, since numerical values are infinite; however, bound and superlative phrases of Type IV are included in the trie.

When a token (i.e., word) in a query is encountered, QuePR searches for its type in the trie of the corresponding cat-
egory. To expedite look-ups, tokens are stored in a trie and each letter of the token is a transition to a node in the tree 
structure. Each node in the trie, including the root, may have a path to another node on a single letter. To find the type of 
a token K, the path formed from the sequential order of letters in K is followed. If following the path leads to a type (I, II, III, 
or IV) node in the trie, then the particular attribute of K is given as the end node. For example, Accord, Acura, Audi, and 
Toyota are all words of Type I values for automobiles. (See Fig. 2 for a small segment of the trie used by QuePR for identify-
ing the type of a given token in which “Model” and “Make” are Type I attributes of the corresponding strings in the trie.)

3.5  Standarization

To simplify the step of constraint clustering, some synonymous phrases, especially bounding or superlative phrases, are 
systematically converted into a standard, easier to parse, form. For example, the phrases “at most” and “at maximum” 
are synonymous, meaning that the desired value is less than or equal to the subsequent number. Bounding phrases are 
comparisons phrases. Comparisons specify a desired range relative to a fixed point. Examples of comparisons include 
“<”, “ ≤ ”, “>”, and “ ≥ ”. All Comparisons require a numeric value. Superlatives, on the other hand, define the optimal value, 
such as “MAX”, “Largest”, “MIN”, “Least”, “Fewest”, and “Lowest”. As such, they do not use a numeric value. QuePR simplifies 
common phrases to the symbolic or short form. Lastly, Boolean operation keywords and , or , not , and not equal are also 
simplified to ∧ , ∨ , ¬ and ≠, respectively.

Bounds and superlatives are considered to be either complete or partial. In a complete bound or complete superlative, 
the product attribute to which it is applied can be inferred. Consider, for example, the query excerpts “cheapest” and “less 
than $6K”. “Cheapest” is a complete superlative, since the attribute “price” is implied, whereas “less than $6K” is a partial 
bound applies to the price.

Another nuance contained in bounds is their relative location to the number they describe. Independent of the bound 
meaning, some bound phrases may only come before the number they describe, whereas others may only come after, 
or either before or after. For example, “less than or equal to” occurs before a numeric value, whereas “or less” appears 
exclusively after a numeric value, even though they both mean “ ≤ ”. Furthermore, a useful structure to standardize is 
range phrases that frequently appear in one of three forms which are identical in meaning. These forms are “between x 
and/to/-y”, “from x to y”, and “ x − y ”. QuePR analyzes sequences of tokens in the query for any phrase matches, which if 
found, are replaced by the simplified form. (Table 2 depicts the most common phrases in a natural language query and 
their standardized form.) As an example of standardization, SQy is standarized as SQs : “ honda1 , red2 , accord1 , ∨ , silver2 , 
civic1 , 20083 , <, $ 3 , 60003 , New York2”.

Fig. 2  A segment of the trie 
used by QuePR for typification
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3.6  Constraint clustering

Constraint clustering is the process of finding groups of juxtaposed tokens that work together to define a single 
constraint. The simplest form of constraint clustering is to use each token as a different constraint. For example, the 
short query “blue apartment”, refers to a single noun chunk as defined by NLP techniques, but holds two different 
constraints: the apartment housing type and the color blue. This simple clustering is applicable to Type I and Type II, 
but not for Type III, which may contain more than one token in each constraint. For Type III constraints QuePR needs 
to find where one constraint ends and another begins to create clusters. However, in natural language, users will 
not always provide clear indications of which tokens go together. Consider the query excerpt “$7500 less than 9000 
miles highest gas mileage”. This excerpt contains two comparison constraints, i.e., “= $7500” and “< 9000 miles”, and 
one superlative, i.e., “highest gas mileage”, but there is no punctuation or explicit indication to divide the query into 
these constraints. QuePR creates clusters by identifying constraint forms and looking for corresponding component 
tokens. There are two forms of Type III constraints:

• Comparison constraints may have up to three components: a number (such as 100), a unit (such as $, miles, or feet), 
and a bound (such as < or ≥ ). The ordering of these components is not strictly defined, since a user may specify 
a price with a unit preceding the value (such as “$500”), but a mileage with the value preceding the unit (such as 
“9000 miles”). We cannot assume a consistent pattern for each unit, since a user may specify the monetary unit 
with a symbol that precedes the value, or an equivalent word representation that follows the value (such as “$500” 
or “500 dollars”). We cannot assume a consistent pattern for each bound either: synonymous bounds may occur 
either before the value (such as “no more than $900”) or after the value (“$900 or less”).

• Superlatives, where an extreme value of the product attribute is described. Some superlatives are lowest price, 
newest building, or cheapest jewelry, among others. Superlatives may have up to two components: a unit and a 
phrase, with no strict ordering.

QuePR traverses the token list looking for comparison and superlative constraints. If a constraint component is found, 
other adjacent components are added to the cluster, assuming that the components are needed by the constraint 
form and have not already been fulfilled. For the earlier example, “$7500 less than 9000 miles highest gas mileage”, 
“7500” is identified as a number component, which often appears in comparison constraints. The token before, 
“$”, is identified as a unit and added to the cluster with 7500. Hereafter, “less than” is encountered, which has been 
standardized to “<” with a location hint that it must appear before the number. Therefore, this bound cannot belong 
to the same cluster as $7500 and a new cluster must start. The final result is three clusters: ($7500), ( < 9000 miles), 

Table 2  Commonly-used 
phrases in a natural language 
query and their standardized 
form (STF)

1Phrases must come after the bound; 2Phrases may come before or after the bound; _: All phrases that 
have the implied units

Phrases STF Phrases STF Phrases STF

At most2 Less than At least2

At maximum2 Fewer than At minimum2

Or fewer1 ≤ Lower than < At fewest2 ≥

Or less1 Older than Or more1

Or cheaper1 Cheaper than Or over1

Or older1 Smaller than Or newer1

More than Maximum Minimum
Greater than Most Cheapest
Exceeding > Greatest MAX Fewest MIN
Larger than Most expensive Newest/lowest
Over Largest Least/smallest
Newer than Oldest Youngest
Not (equal), no ≠ And (also), plus ∧ Or ∨
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(highest gas mileage), in which “gas mileage” is a unit. With that in mind, SQs is clustered as SQc : “ honda1 , red2 , accord1 , 
∨ , silver2 , civic1 , 20083 , (< $ 6000)3 , New York2”.

3.7  Logical operators

While searching for constraints in a query Q, it is also necessary to simultaneously check for logical operators, i.e., 
or ( ∨ ), intersect ( ∧ ), and negation ( ¬ ), or a combination of them, in Q. To evaluate each detected operator, the oper-
ands need to be determined. In natural language, users do not use punctuation or symbols to demarcate the logical 
operands. In the example query excerpt, “Honda red Accord ∨ silver Civic”, there is no indicator whether “Honda” 
and “red” are included as operands to the ∨ operator in addition to “Accord”. As such, QuePR is required to make the 
best guess as to what the operands may be. In some simple cases, the operands can be decided as the first appear-
ing constraint. However, in a natural language query, it often has more complexity, and users may include several 
constraints in a single operand. In the query excerpt, “Honda red Accord ∨ silver Civic”, it is clear to a human what 
the user wants, i.e., a Honda car that is either a red Accord or a silver Civic, and each operand of the “or” operator 
contains two constraints, i.e., the color and the model. QuePR relies on some common patterns to make assumptions 
about what the intention of a user. The two patterns that QuePR uses are descriptor ordering and operand symmetry.

• QuePR uses the natural ordering of descriptors to determine which query keywords should be included in an oper-
and cluster. Descriptors typically precede the object that they describe. For example, a car that is blue is the “blue 
car”. Type I values are typically the objects, and Types II and III are typically descriptions. Thus, if a Type I value is 
detected immediately before an operator, any preceding descriptor values are included in the operand.

• QuePR relies upon operand symmetry, where operands have matching form. In the sample query Q, “Honda red 
Accord ∨ silver Civic”, each operand contains values for the same types. The colors “red” and “silver” are Type II, and 
the models “Accord” and “Civic” are Type I. Once the pattern has been decided for one of the operands, the same 
pattern can be searched for in the other. Query SQc can be thought of as perfect symmetry, because all terms had 
an analogous component in the other operand. Imperfect symmetry, in which only some of the types match or 
exist, is also a notable variant. For example, “Honda red Accord or Civic” is an imperfect symmetry. In this case, 
there is still symmetry of the car model. QuePR uses (im)perfect symmetry by relying on the left operand to know 
where the right operand terminates.

Consider the list of constraints in SQc : honda1 , red2 , accord1 , ∨ , silver2 , civic1 , 20083 , (< $ 6000)3 , New York2 , there is one 
logical operator to evaluate. Operand evaluation immediately begins on the left of ∨ , which is red2 followed by accord1 , 
a Type II and Type I constraint descriptor constraint, respectively. As the leftmost constraint is honda1 , a Type I con-
straint, it is therefore not be a descriptor of accord1 . Thus, the left operand group contains red2 and accord1 . The right 
operand of ∨ is grouped accordingly. The logically grouped result for SQc yields SQg , which is honda1 , ( red2 , accord1 ) 
∨ ( silver2 , civic1 ), 20083 , (< $ 6000)3 , New York2.

3.8  Constraint simplification

Some user queries can be simplified, which can reduce the length of the DB query, and can avoid redundancy in 
(partial) matching and scoring. The first part of query simplification is to remove redundancies. In QuePR , query sim-
plification occurs after logical operator evaluation but before query translation. QuePR removes some redundancies 
by looking for and removing any duplicates within each logical cluster. For Types I and II constraints, a duplicate is an 
exact match of value and linked attribute. For Type III constraints, the idea of duplication may also include the idea of 
subsumption, where one constraint may convey all information of another constraint. Subsumption may occur with 
the range operators (>, ≥ , <, and ≤ ). For example, a constraint “price ≤ 1000 ” is a duplicate of “price < 2000 , but not 
the other way around. In such a case, the less specific of the two constraints is removed. Moreover, query simplifica-
tion can also combine overlapping constraints to create a new constraint that captures the information of both. This 
can happen using the BETWEEN (in SQL) constraints, as well as < and > combinations, since BETWEEN specifies an 
inclusive range.
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3.9  Query translation

Constraints specified by users must be translated to a query for execution. For the implementation of QuePR , we selected 
SQL as the query language of translation output. The same principles apply to any similar relational query language. 
There are three distinct components to each SQL query: the SELECT-FROM, WHERE, and ORDER BY clauses.

3.9.1  The SELECT‑FROM clause

During the classification process, QuePR determines the category of the given query, which determines the correspond-
ing table name in the underlying database scheme. To retrieve all the information to the user about each product, QuePR 
extracts all the columns of the table for each product using the wildcard (*). For the running query SQg , QuePR creates 
the SELECT-FROM clause in SQL as “SELECT * FROM Cars”.

3.9.2  The WHERE clause

The WHERE clause is a logical combination of each of the previously parsed constraints specified in a user query. QuePR 
links each constraint to the corresponding attribute/column in the database table in the WHERE clause. Since in the 
natural language queries, users will not identify the correct table column in every case, QuePR is required to make infer-
ences of the correct attribute based on the information provided in the queries. QuePR performs the matchings based 
on the “type” constraints.

• For Type I and Type II constraints, the corresponding table column can be determined by a local search of the value, 
called value matching, using our “trie” data structure. For example, if “Honda” and “Civic” are specified as constraints, 
QuePR looks up the corresponding trie on “Make” and “Model”, which are created using the column values in the cor-
responding table to determine where the values appear and their corresponding column names.3 Value matching 
has the potential to return multiple matches for a single value, since a constraint value could appear in more than 
one table column. For example, the word “new” may refer to the condition of the automobile, or it may refer to a 
part of a location name (such as “New York” or “New Jersey”). If the ambiguity was not able to be resolved earlier in 
tokenization, QuePR allows either alternative for a match by using the “Boolean Or” operator. Such ambiguity results 
in a WHERE clause “condition LIKE “new” OR region LIKE “new””.

• For Type III constraints, they cannot be identified by using their corresponding attributes based on value matching 
due to the infinite nature of numbers. A similar approach to the value matching, however, can be performed by using 
the unit of the Type III constraint instead of the value alone. For this strategy to be effective, two conditions should 
be satisfied: (i) each Type III attribute in the DB table includes a list of related units (which is anticipated) and (ii) there 
is an attached unit for each Type III constraint in the user query (which is often the case).

The WHERE clause of the SQL query is composed of the translated constraints of Types I, II, and III. The values of Type I 
and Type II constraints are compared with the column in SQL using the LIKE operator, which requires that the given 
substring appears in all matches. For Type III comparison constraints, if a comparison operator is not given, the equality 
operation (=) is assumed. For range Type III comparisons, the BETWEEN operator is used.

3.9.3  The ORDER BY clause

The “ORDER BY” clause is created for Type III superlative constraints and implicit sorting order of Type III comparisons. These 
implicit constraints come from sorting each result by its distance from the optimal value of the comparison. Equality 
comparisons have an optimal value of the number to be matched on, thus results can be sorted by ABS(x - y), 
where x is the Type III attribute and y is the expected value. < or ≤ operations have an optimal value of 0, whereas > or ≥ 
operations have an optimal value of infinity, i.e., ∞ . Ranges have no optimal value, and therefore do not create an implicit 
sorting constraint. For an example of query translation, consider the constraint clusters in SQg : honda1 , ( red2 , accord1 ) ∨ 
( silver2 , civic1 ), 20083 , (< $ 6000)3 , New York2 . In the WHERE clause, the constraint “honda” is determined to be car Make. 

3 Note that the trie is updated periodically to reflect the latest changes to the corresponding column values in the actual database table.
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The constraints “red” and “silver” are colors, where “accord” and “civic” are car Models. “2008” is assumed to be a year, 
since it is within the range of Years. The constraint “< $ 6000” matches with Cost because of the dollar sign. Lastly, 
“New York” is matched in the Cars table as a Location value. Hereafter, the ORDER BY clause is constructed in which 
“2008” is the optimal value for Years and Price is minimized. The SQL for the constraints specified in SQg is

3.10  Holistic (partial) matching

The DB query is generated through query translation (as presented in Sect. 3.9) and any exact product matches to the 
query constraints are extracted from the DB. This behavior is sufficient if there are many exact matches, especially if the 
user query is vague or there are many matched products. However, in the case that no exact matches or very few are 
found, it may be confusing or frustrating for the user. For this reason, QuePR supplements results with partial matches. 
Relevant product are searched for, first exact matches and then partial matches, until some threshold number of prod-
ucts is achieved. This threshold number of records to be extracted is set to be 15 based on the user’s attention span 
determined by [33] to not overwhelm the user.

Partial matches are conducted by iteratively altering search constraints one by one and searching for products not 
previously retrieved. These alterations occur in rounds, numbered by the number of search constraints changed from the 
original. The 1st round is responsible for exact matches on all the constraints specified in the user query. The 2nd round 
is a union of all combinations of subqueries with 1 altered constraint. The 3rd round is a union of all unique subqueries 
with 2 altered constraints. This pattern continues for all needed rounds.

Example 1 Consider the five constraints specified in SQg : 

1. Make LIKE “honda”
2. (color LIKE “red” AND model LIKE “accord”) OR
  (color LIKE “silver” AND model LIKE “civic”)
3. Year = 2008
4. Price < 6000

5. Location LIKE “New York”

The 1st round would use a query of ( 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ), whereas for the 2nd round ( ≈ 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ) ∨ 
( 1∧ ≈ 2 ∧ 3 ∧ 4 ∧ 5 ) ∨ ( 1 ∧ 2∧ ≈ 3 ∧ 4 ∧ 5 ) ∨ ( 1 ∧ 2 ∧ 3∧ ≈ 4 ∧ 5 ) ∨ ( 1 ∧ 2 ∧ 3 ∧ 4∧ ≈ 5 ) would be used, where “ ≈ x ” indi-
cates that the xth constraint was altered, and so on.  □

Constraints can be altered in two different ways: a similarity replacement or a removal. A similarity replacement captures 
more information about the original constraint, and is therefore done first. If no similarity replacement can be found for 
the value or if the similarity replacement does not yield any results, the constraint is removed.

To find similarity replacements of Types I and II values, QuePR relies on a similarity graph [34] for values of the classified 
product category. For example, in the automobiles category, similarity graphs are given to QuePR for automobiles make, 
model, color, condition, and location. To alter a value, QuePR replaces the value with a disjunction of all near replace-
ments. For example, near replacements for the color orange include yellow, brown, and red. Thus, the constraint color 
LIKE “orange” can be replaced with (color LIKE “yellow” OR color LIKE “brown” OR color LIKE “red”). Figure 3 is the similarity 
graph for automobile color.

These similarity graphs can be produced by a number of different methods [35–38]. One of the methods is to reduce 
each value to some other quantifiable measure. For the example of color, each color has a red, green, and blue compo-
nent. Two color’s similarities can be computed by calculating the distance for each of the components. Another method 
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to create similarity graphs is by survey. A sufficiently large number of people may be asked questions similar to “If you 
were looking for a product with X, would a product with Y be acceptable?”, where X and Y are values to compare simi-
larity. Again for the example of color, the question could be asked, “If you were looking for a red automobile, would an 
orange-colored automobile be acceptable?” Similarity is the result of the percentage of respondents who deemed the 
replacement acceptable. We have derived degrees of similarity of items in a similarity graph based on the approach 
presented in [35], since the mapping rules developed for deriving the similarity measures based on WordNet [39] have 
been verified to be accurate.

3.11  Scoring and ranking

After a list of products L is retrieval with respect to a given query Q, QuePR sorts L according to the degree of relevance 
of each product in L. The degree of relevance of a product is determined by the matched constraints specified in Q 
and the product. If a constraint is met exactly, one point is awarded, whereas a partially-matched constraint receives 
a value between 1 and 0, exclusively. QuePR uses an exponential decay curve [40] to model similarity regression [41], 
which is contrast to other approaches which use a linear regression model [42]. The exponential decay formula is 
useful in a variety of real world applications, most notably for tracking inventory that is used regularly in the same 
quantity (like inventory for a car dealer) and it is especially useful in its ability to quickly assess the long-term cost of 

Fig. 3  The similarity graph of 
colors

Fig. 4  An exponential regres-
sion graph
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use of a product over time. QuePR uses the exponential regression model [43] because it better fits common notions 
of both fixed and relative points (see Fig. 4).

The exponential model fits notions of similarity for fixed points. Linear regression models are typically set up such 
that

Eq. 4 has an inherent bound of applicability. In the case just given, any actual value that is greater than twice the expected 
value would result in an undesirable negative score.

Therefore, the formula is complicated by requiring the minimum similarity score to be 0. As a result, values that are 
beyond the bound of applicability are not differentiated for similarity. These cases are rather common for prices and 
mileages in cars, especially if the user has a low expectation. For example, if the user was looking for a car costing $10K 
and there were three alternatives, $11K, $20K, and $21K, the car for $11K should be most similar, then the $20K car, then 
the $21K car. A linear model may incorrectly rank the $20K car and the $21K car to have equal similarity. On the other 
hand, an exponential regression model has no inherent bound, and would rank the three similarities correctly.

Furthermore, the exponential model better fits notions of similarity for relative points. As the actual value becomes 
more distant from the expected value, the amount by which the similarity decreases should decrease. This is exemplified 
in the concept of automobile depreciation: An automobile which is brand new has 100% of its value, but may depreciate 
in value by 15% each year thereafter, i.e., the worth of the automobile decreases by a decreasing amount each year. Or 
in other words, a car from 2021 is worth less than a car from 2022, but the difference between the cars from 2022 and 
2021 is greater than the difference between 2010 and 2009.

The concept of exponential decay also applies to similarities of categorical values. If the customer is looking for a red car, 
then orange is the closest color, but the difference between red and orange is larger than the difference between black 
and gray, since neither black nor gray are close in similarity to red. QuePR uses the exponential decay formula, which is 
Eq. 5 given below, to calculate attribute similarity score.

where distance is the difference between the expected value and the actual value, and typical is some measurement of 
how large of a difference is common for values of the specific attribute. This notion of typical scales scores to cooperate 
in computing the final score. If large differences are typical for a specific attribute, then each difference for that attribute 
will be minimized. Otherwise, a single attribute may trivialized or be trivialized by others. There are two different pro-
cedures for determining distance and typical, where one procedure is for Type III attributes and the other is for Types I 
and II attributes.

The first procedure for evaluating partial match is used for Type III values, which are inherently numeric, and thus it is 
possible to compare the found product value to the expected product value with arithmetic, i.e., Distance = expected - 
actual. Typical is set as the standard deviation of the numeric values in the attribute column.

The second procedure for evaluating partial match is used for Types I and II values. These values are not numeric, 
which poses a challenge for using the numeric formula. QuePR solves the problem by relying on the aforementioned 
similarity graphs. The distance from one value to another can be calculated as the shortest path from the first node to 
the other in the similarity graph. The typical value can be estimated as the standard deviation of shortest paths for all 
nodes in the weighted graph.

When evaluating constraints, it may be necessary to evaluate logical Boolean operators: ∧ , ∨ , and ¬ . A constraint of 
∧ returns the lower score of its two operands, whereas ∨ extracts the higher score of its two operands and ¬ returns 
1 − s , where s is the score of its operand. The final score for a product can be calculated as a sum of weighted constraint 
scores, where each constraint is weighted by type. The definition of each type implies an importance. Type I attributes 
are the core identity attributes of the product, and as such, are most important to the customer. Thus, Type I constraints 
are scaled by 1. Type II attributes are customizable details of the product. As such, Type II constraints are typically less 
important than Type I constraints, but more important than Type III constraints. They are scaled by 0.5. Lastly, Type III 
constraints are generally the least important than Types I and II, and are scaled by 0.25, which is a commonly-used geo-
metric sequence [44]. Products are sorted in descending order before being presented to the user, and a higher score 
indicates a more relevant product.

(4)similarity = 1 −
∣ expected − actual ∣

expected
.

(5)partial = 0.5x , and x =
2× ∣ distance ∣

typical
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4  Experimental results

To demonstrate the effectiveness of the overall design of QuePR , we have conducted a number of empirical studies 
on its individual components, which include domain classification, query interpretation, exact query matching and 
ranking of partially-matched results. In addition, we have also measured the average run time in terms of processing 
a user query. In all these studies, QuePR either performed competitively with or outperformed contemporary systems. 
Each of these experimental results is described in details in subsequent sections.

4.1  Test data used for performance evaluation

Since there is no benchmark dataset available for evaluating the performance of natural language query retrieval 
systems on products, to obtain a representative test dataset for verifying the effectiveness of QuePR in retrieving 
exact- and/or partially-matched answers to users’ queries, we have solicited natural language queries on six product 
domains through the Internet using Facebook. The six product domains we consider are automobile, furniture, hous-
ing, jewellery, jobs, and motorcycles. These domains or categories are diverse and representative of everyday living 
essentials, i.e., transportation, accommodation, employment, and personal adornment.

In testing QuePR and other baseline systems for the performance analysis, we downloaded and created a database 
of database records in each of the six different product categories listed above. The data for these records was found 
online for free and in the public domain through Kaggle [45], an online community platform for data scientists and 
machine learning researchers to collaborate with other users, besides finding and publishing datasets. Out of the 
different categories and datasets that we could have chosen on the Kaggle website, we found data that covered a 
diverse range of common products. The extracted test data was downloaded for the purpose of analyzing the perfor-
mance of QuePR on domain classification, typification, implicit/explicit Boolean query analysis, and partial-matching 
of retrieved results. We also intentionally selected the similar categories of “motorcycles” and “automobiles” to test 
the classifier adopted by QuePR . Of the categories selected, we retrieved tables that contained descriptive records 
with at least five columns for each. Where possible, we fetched datasets with American dollar prices. For the others, 
we converted the price of the product by the current exchange rate to the American dollar.

4.2  Appraisers recruited for performance evaluation

To analyze the performance of different components of QuePR , it is required that outside appraisers provide objective 
feedback. In order to avoid any potential bias, we enlisted a number of Facebook users who are friends (of friends) 
of the authors to participate in the evaluation process. Facebook, which is a free-access social network, was chosen 
for conducting various empirical studies, since it reaches people from various age groups and backgrounds who can 
objectively perform the required evaluations. Facebook users have been used extensively in literature to conduct 
performance evaluation on a number of research projects [46, 47]. We recruited a total of 135 Facebook users who 
created different natural language queries for the six different product categories. Table 3 includes a sample query 
of each one of the six categories.

To determine performance accuracy, we relied on realistic user queries for categorization. We created a request 
for each one of the 135 Facebook users to response who created test queries: four simple queries and four complex 
queries among the six different categories. Simple queries provided constraints for 4 or fewer attributes about the 

Table 3  Sample natural 
language queries created by 
Facebook users

Automobile Jeep SUV new less than 10,000 miles under $10,000
Furniture Dining table with 8 chairs no longer than 8 feet long under 1000
Housing Single family home with 4 BDR, 2 BATH, 2-car garage in Los Angeles, CA for 

$790,000 built in 1990
Jewelry Combo of wedding band, ring, necklace, price $500 gold and silver
Jobs Senior Data Scientist job, Private Company, MS Degree, 90k or 100k in Arizona
Motorcycle 2021 Suzuki Boulevard M109R Up to $15,000 Daytona Beach, FL
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product, whereas complex queries included constraints for 5 or more attributes, with the potential for implicit/explicit 
Boolean operators. The request was set up in September and October of 2021, and we received a total of 1080 natural 
language queries on products.

4.3  Accuracy on query classification

To evaluate the effectiveness of QuePR in classifying natural language queries among the six different categories, we rely 
on the accuracy ratio as defined below.

where Total_number_of_instances is the total number of queries to classify, which is 1080 in our case, i.e., 180 for each 
of the 6 different categories, and Correctly_classified_ instances is the number of queries correctly assigned to their cor-
responding categories by the Naïve Bayes classifier.

QuePR uses a Naïve Bayes classifier (see details in Sect. 3.1) to determine the product category to which each query 
applies. We tested the accuracy of the classifier by partitioning the training queries, training the classifier with 80% of 
them and testing it with the remaining 20%. The classifier determined the correct product category for 91.5% of tested 
user queries. The accuracy of classification was slightly lower for the motorcycles and automobiles categories, which is 
anticipated, due to their common attributes, such as Make, Model, Year, and Mileage. Nonetheless, the accuracy for these 
lowest categories was still in the mid-80 percentile. (See Fig. 5 for the accuracy ratios of our classifying the product queries 
into each of the six different categories.)

4.4  Accuracy on query interpretation

The recruited Facebook users also helped test the interpretation accuracy of our system. From the 1080 natural language 
test queries, we selected 210 different queries that varied in product category and query complexity. One hundred and 
eighty of these queries were run through QuePR to generate the system’s interpretation. We crafted clearly incorrect inter-
pretations for the other 30 queries, which served as the controls in the empirical study. Finally, each of the 135 Facebook 
users were presented with the same 10 randomly selected queries, with explicit/implicit Boolean operators, out of the 
210 test queries, along with the associated interpretation. They were asked whether each interpretation presented was 
the “most reasonable” and allowed to select yes/no. This survey was posted for about a week in February of 2022. There 
were a total of 1283 responses4 among the 135 Facebook users.

We ran QuePR on each of these test queries Q to generate the system interpretation on Q. These ten interpretations 
were presented, along with 2 randomly-chosen control interpretations out of the 30 control ones, to the 135 Facebook 
users between February 12 and February 20, 2022, who deemed QuePR ’s interpretation to be “the most reasonable 

(6)Accuracy =
Correctly_classified_instances

Total_number_of_instances

Fig. 5  Classification accuracy 
of the product classifier

4 Some Facebook users did not submit their responses to our requests.
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interpretation” 90.0% of the time. We threw out the responses of all the respondents who answered both of the control 
questions incorrectly, which increased the statistical significance of our test. Figure 6 depicts the accuracy obtained for 
each Boolean query.

Observe that as shown in Fig. 6, it is not clear what was the intention by some of the natural language queries. For 
example, Query 10, “cheap sedan not red or yellow with less than 100,000 miles or $8000,” is an ambiguous query, with 
two reasonable interpretations, i.e., “cheap sedan {{NOT red} OR yellow} with less than 100,000 miles or $8000” or “cheap 
sedan {NOT (red OR yellow)} with less than {100,000 miles or $8000}”. Despite the ambiguity, QuePR was able to generate 
an interpretation for the query that was satisfactory to a majority of respondents. Figure 7 shows the screenshot of the 
query provided by a Facebook user and its corresponding interpretation created by QuePR.

4.5  Evaluation measures of retrieving exact‑matched query answers

To measure the performance of QuePR in retrieving answers that exactly match the constraints specified in users’ queries, 
we considered half of the queries created by our Facebook users, i.e., 540 queries, in one of our Facebook surveys and 
evaluated them using QuePR . The evaluation metrics for measuring the correctness of retrieving exactly-matched answers 
to a product query are (i) precision (P), which is the ratio of the number of correct matches retrieved by QuePR over the 
total number of records retrieved by SQL, (ii) recall (R), which is the ratio of the number of correct matches retrieved by 
QuePR over the number of correct answers in the DB, and (iii) F-measure = 2

1

P
+

1

R

 , where a correct match is a retrieved (up till 

the 15th) DB record, that satisfies all the search criteria specified in a question.
We measured precision based on the correct (up till the 15th) DB records retrieved, and recall without restricting the 

total number of DB records retrieved. Since it can be non-relevant to measure the effectiveness of QuePR using precision 
and recall separately, we consider the F-measure which combines precision and recall with the same weight assigned to 
the two measures.

To analyze the correctness of the retrieved answers to the test queries, The averaged precision , recall , and F-measure 
for the 540 test queries, yield 94.2% precision, 93.3% recall, and an F-measure of 93.9%. We have observed that most of 
the test questions yield 100% for precision and recall , whereas a few yield 0%, i.e., answers are either correct or incorrect.

4.6  Accuracy on ranking partially‑matched answers

In order to objectively measure the accuracy on the rankings of partially-matched answers to user queries, we com-
pared the ranking strategy of QuePR with four other ranking approaches, with the most relevant retrieved product 
ranked first, and so on. We have implemented four baseline approaches on ranking, and compared the ranked results of 
each approach based on the 173 (out of the 1080) Facebook user created queries, denoted Test_Queries . Test queries in 

Fig. 6  Boolean query interpre-
tation accuracy achieved by 
QuePR based on the responses 
of a Facebook survey

Fig. 7  A screenshot of an 
interpretation generated by 
QuePR on a query created by a 
Facebook user Q: cheap sedan not red or yellow with

less than 100,000 miles or $8000
I: cheap sedan {NOT {red OR yellow}} with
less than {100,000 miles or $8000}

Given the query Q belo
I of Q on the right correct? Yes No
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Test_Queries do not yield any exact-matched results. Since all the ranking methods were given the same set of products, 
i.e., query results, for ranking, the comparison was fair.

4.6.1  Evaluation metrics

To measure the effectiveness of the ranking strategy of QuePR on partially-matched answers to queries, we apply two 
well-known information retrieval metrics, average Precision at K and Mean Reciprocal Rank [48].

The average P@K measures the overall user’s satisfaction with the top-K ranked answers (generated by QuePR ) to a 
particular query which measures the overall user’s satisfaction with the top-K answers (generated by QuePR).

where K is the (pre-defined) number of answers to be considered, N is the total number of queries in Test_Queries , i is 
the ith question in Test_Queries , and Number_of_Related_Answersi is the average number of answers (out of K) that are 
treated as related to the ith question by the appraisers who evaluated question i. Note that in our study, we set K to be 1 
and 3, respectively, to evaluate the relatedness of the answers positioned at the top-one and the top-three most relevant 
results in the ranking, respectively.

Besides average P@K, we also evaluated the ranking strategy of QuePR using Mean Reciprocal Rank ( MRR ). MRR is the 
averaged sum of the reciprocal of the ranking position of the first related answer among the top-3 answers, if there is 
any, or 0, otherwise for each query in Test_Queries.

where ri is the average (position in the) rank of the first related answer to question i in Test_Queries , if it exists; otherwise, 
ri = ∞ , and N and i are as defined in Eq. 7.

Average P@K and MRR evaluate the ranking strategy of QuePR , such that the higher relevant answers are positioned 
in the ranking list, the higher their corresponding P@K and MRR scores are.

4.6.2  Ranking approaches to be compared

We have implemented and analyzed four other ranking approaches, besides the one used by QuePR : random ranking 
[49], TF-IDF-based FAQFinder [50], cosine-similarity-based Vector Space Model [51], and super-tuples-based AIMQ [4]. 
For each of these approaches, we analyzed the performance of their accuracy in ranking query results and computed 
their execution time.

Random ranking shuffles all the retrieved product records into some potentially new order by using a random num-
ber generator. In this case, we implemented the number generator using the pseudorandomness from Python’s random 
module, which served as a useful baseline measure.

FAQFinder uses TF–IDF for ranking the similarity of different results to the constraints specified in a query in our 
case. Generally, TF is the number of times the product fulfills some constraint, and IDF is the relative rarity of that con-
straint being fulfilled by other products. The TF-IDF score of a product is computed by summing the TF-IDF value of all 
constraints involved.

where k is a constraint, v is the number of times the product fulfills k, which is either 1 or 0 in our case, ∣ K ∣ is the number 
of constraints in their corresponding query, R is the set of partially-matched records with respect to Q, and ∣ V ∣ is the 
number of partially-matched records that fulfill k.

Cosine similarity ranking relies on the Vector Space Model (VSM). Each retrieved product is represented as a vec-
tor of numeric values, where each value indicates whether the correspondent constraint C is satisfied, which is ‘1’ if it is, 
and ‘0’ otherwise, and the score of the product is calculated as the cosine similarity between the product vector and the 
query constraint vector.

(7)P@K =

∑N

i=1

Number_of_Related_Answersi

K

N

(8)MRR =
1

N

N
∑

i=1

1

ri

(9)TFk =
v

∣ K ∣
, and IDFk = log2

∣ R ∣

∣ V ∣
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AIMQ relies on attribute-value pairs (denoted AV-pairs) to generate the associated supertuple of each attribute. A 
supertuple is an inferred DB tuple A that contains a set of attribute values, each of which includes a summary of values 
in the corresponding table column, and is used for calculating the similarity of categorical attributes. AIMQ determines 
the similarity between query Q and tuple A using Eq. 10.

Sim(Q,A) =
∑n

i=1
Wimp(Ai) ×

where n is the number of attributes in Q, Ai in an attribute (in either Q or A), Wimp(Ai) is the importance weight of Ai , 
which in our implementation of AIMQ is set to be 1

n
 for each attribute, Q.Ai ( A.Ai , respectively) is the value of attribute Ai 

in Q (A, respectively), 1 − ∣Q.Ai−A.Ai ∣

Q.Ai
 generates the similarity between any two numerical attributes Q.Ai and A.Ai in which 

∣ Q.Ai − A.Ai ∣ is the absolute difference between the two numerical attribute values Q.Ai and A.Ai , and VSim(Q.Ai ,A.Ai) , 
which is the similarity between two categorical attributes Q.Ai and A.Ai , is computed using

where Ai and n are as defined in Eq. 10, C1.Ai ( C2.Ai , respectively) is the supertuple of Q.Ai ( A.Ai , respectively), and 
J(C1.Ai ,C2.Ai) is the Jaccard Coefficient computed as ∣ C1.Ai ∩ C2.Ai ∣ ∕ ∣ C1.Ai ∪ C2.Ai ∣ , which is the proportion of attribute 
values in common between C1 and C2 for Ai and the distinct number of attribute values in C1 and C2.

4.6.3  Comparisons of the different ranking approaches

To avoid bias, the results for each test query were ranked by 135 Facebook appraisers. We conducted two different types 
of empirical studies to determine the ranking accuracy of each ranking approach as presented in Sect. 4.6.2. First, we 
had the Facebook appraisers rank the relative accuracy of results for each system. In other words, the appraisers were 
presented with a set of 15 answers to each test query for each system and asked to choose the top-3 results. This required 
that the top-3 results were more relevant than the remaining ones based on the corresponding query. Second, we asked 
the appraisers to rank the relevance of the top-3 result of all five systems for the corresponding query, i.e., to provide a 
proper ordering such that the 1st result was more relevant than the 2nd, and so on. This empirical study was performed 
between April 2 and April 11, 2022. Figure 8 depicts a sample Facebook user query and (5 out of the 15) partially-matched 
answers retrieved by QuePR to be evaluated by Facebook appraisers.

As shown in Fig. 9, QuePR outperforms the other four ranking systems based on P@1, P@3, and MRR , which verifies 
the effectiveness of the partial-matching strategy adopted by QuePR . A high P@1 (P@3, respectively) score implies 
that the ranking strategy of QuePR is highly effective in presenting first (top-3, respectively) answers that users are 
interested in (early to be examined by users, respectively). Finally, the higher MRR score obtained by QuePR compared 
with others indicates that QuePR users browse through less partially-matched answers before locating the ones 

(10)

{

VSim(Q.Ai ,A.Ai), if Domain(Ai) = Categorical

1 −
∣Q.Ai−A.Ai ∣

Q.Ai
, if Domain(Ai) = Numerical

(11)VSim(Q.Ai ,A.Ai) =

n
∑

i=1

J(C1.Ai ,C2.Ai)

Fig. 8  A sample Facebook 
user query and (a portion of 
the) partially-matched DB 
records retrieved by QuePR 
to be ranked by Facebook 
appraisers who chose the 
top-3 most relevant record 
with respect to the given 
query

For the query given below, rank each one of the following
records from 1 to 3, with 1 being the and 3most relevant

being the 3rd with respect to the query:most relevant

A: Model: Suzuki, Price: 7600, Year: 2019, Mileage: 5700

B: Model: Honda, Price: 2500, Year: 2013, Mileage: 10050

C: Model: Honda, Price: 4500, Year: 2017, Mileage: 9250

D: Model: Royal, Price: 1500, Year: 2012, Mileage: 10250

E: Model: Honda, Price: 5700, Year: 2019, Mileage: 6320
...

2018 honda motorcycle one owner $8000 or less with 10000 mi. or less

Instructions

User Query

...
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relevant to their query. The results are statistically significant based on the Wilcoxon Signed-Ranks Test ( p < 0.01 ). 
The three different metric scores were computed based on the rankings provided by the 135 Facebook users on 
the 173 test cases, which serve as the ground truth of the rankings for this empirical study.

Among all the five approaches, the P@1, P@3, and MRR values for FAQFinder are the lowest, except the Random 
approach, since FAQFinder uses a simple method that does not compare numerical attributes. On individual cat-
egory, we observed that the lowest scores on the three measures for QuePR occur in the jobs category. For this 
category, appraisers did not rank the answers based on their similarity to the original query. For example, a Java 
programmer job is closely related to a C++ programmer job, but the appraisers ranked the answers based on which 
result is more relevant to their own expertise and experience, which is different from one user to another.

4.7  The efficiency of QuePR and other ranking methods

The efficiency of QuePR and four other ranking approaches are presented in Fig. 10, which shows the average 
query processing time for the 173 test queries obtained from the Facebook survey. QuePR outperforms all ranking 
approaches except the Random ranking strategy (by 0.1 s, on the average). This is due to the fact that the Random 
approach does not perform any processing or employ any similarity measures, but rather selects records randomly. 
Unlike the compared ranking methodologies, QuePR retrieves exact matches besides partially-matched answers, if 
needed. Thus, there is an additional time imposed on QuePR for retrieving (partially-)matched answers. As shown 
in Fig. 10, the query processing time for QuePR is the fastest compared to FAQFinder, SVM and AIMQ when partially- 
and exact-matched answers are retrieved by QuePR . QuePR was implemented using PHP and Javascript and runs on 
a MacBook Pro with Apple M1 processor and 16 GB of memory.

Fig. 9  Precision@K  ( K = 1 , 3) 
and MRR scores on the (top-3) 
answers achieved by QuePR 
and other ranking approaches 
for the 173 test queries

Fig. 10  Average query 
processing time of QuePR and 
others
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5  Conclusion

E-commerce is a large industry that is rapidly growing. Customers are most attracted to the sites that help them find the 
products that they are satisfied with. Product retrieval systems thus play an integral role in helping the user and thereby 
generating revenue for the site. For this reason, it is very essential to develop the ever-increasing relevance of efficient 
product retrieval systems. Existing product retrieval systems, however, have revealed a significant number of design faults 
and shortcomings, such as their inflexibility in user interface, inability to handle complex semantics in a natural language 
query, or inaccuracy in retrieving the most relevant results a product catalog has to offer. To address the drawbacks of 
these systems, we propose a new product retrieval system, called QuePR , which can (i) handle implicit/implicit Boolean 
operators in a natural language query, (ii) rank retrieved results accurately with an exponential similarity model and scalar 
weights for types of attributes, and (iii) perform best guess on incomplete or ambiguous queries. QuePR is easy to use, 
quick to execute, and yields accurate results. Furthermore, QuePR has been experimentally verified to extract relevant 
results and perform better than a number of baseline approaches in terms of (i) positioning properly ranked partially-
matched products in satisfying the user’s needs and (ii) optimal time in processing a natural language user query.
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