
Vol.:(0123456789)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

Discover Computing

Arithmetic N‑gram: an efficient data compression technique

Ali Hassan1 · Sadaf Javed1 · Sajjad Hussain1 · Rizwan Ahmad1 · Shams Qazi1

Received: 3 April 2023 / Accepted: 5 February 2024

© The Author(s) 2024 OPEN

Abstract
Due to the increase in the growth of data in this era of the digital world and limited resources, there is a need for more
efficient data compression techniques for storing and transmitting data. Data compression can significantly reduce the
amount of storage space and transmission time to store and transmit given data. More specifically, text compression
has got more attention for effectively managing and processing data due to the increased use of the internet, digital
devices, data transfer, etc. Over the years, various algorithms have been used for text compression such as Huffman
coding, Lempel-Ziv-Welch (LZW) coding, arithmetic coding, etc. However, these methods have a limited compression
ratio specifically for data storage applications where a considerable amount of data must be compressed to use storage
resources efficiently. They consider individual characters to compress data. It can be more advantageous to consider
words or sequences of words rather than individual characters to get a better compression ratio. Compressing individual
characters results in a sizeable compressed representation due to their less repetition and structure in the data. In this
paper, we proposed the ArthNgram model, in which the N-gram language model coupled with arithmetic coding is
used to compress data more efficiently for data storage applications. The performance of the proposed model is evalu-
ated based on compression ratio and compression speed. Results show that the proposed model performs better than
traditional techniques.

Keywords Data compression · Huffman · LZW · N-gram · Arithmetic coding · Compression ratio · Large language models

1 Introduction

With the significant development of digital technology, according to a statistics report [1], the number of Internet of
Things (IoT) devices worldwide is forecast to triple from 9.7 billion in 2020 to more than 29 billion in 2030. IoT devices
such as sensors, actuators, smart mobiles, appliances, or machines are programmed to transmit data over the internet
for specific applications. Some IoT devices continuously monitor environmental factors and send critical information
to the control center every second. Such IoT devices require high data rates, low latency, and space-efficient storage of
this big data. Similarly, big data has gained attention in many fields. In the medical field, researchers use big data to find
disease risk factors and symptoms to assist doctors in diagnosing diseases and medical disorders. Different companies
use big data to enhance operations and boost customer service. In artificial intelligence (AI), learning models rely on big
data to effectively learn future trends. However, the exponential growth of data from different sources, such as social

 * Rizwan Ahmad, rizwan.ahmad@seecs.edu.pk; Ali Hassan, ahassan.phdee21seecs@seecs.edu.pk; Sadaf Javed, sjaved.phdee22seecs@
seecs.edu.pk; Sajjad Hussain, sajjad.hussain2@seecs.edu.pk; Shams Qazi, shams.qazi@seecs.edu.pk | 1School of Electrical Engineering
and Computer Sciences (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.

Vol:.(1234567890)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

media, smart sensors, IoT devices, mobile phones, medical devices, and online transactions, makes processing, storing,
and transferring big data challenging.

In this era of the digital world and limited resources, there is a need for efficient data compression techniques for the
storage and transmission of data. Compression results in efficient usage of available storage and transmission band-
width [2]. There are two main categories of data compression techniques: lossy compression and lossless compression
[3, 4]. Lossy compression techniques compress the data with loss of certain information which can not be recovered.
Effective compression can be achieved using lossy techniques but these techniques are only limited to the application
where certain loss is acceptable such as video conferencing, stream media, multimedia, etc. On the other hand, lossless
techniques compress the data while preserving all the information, which means original data can be reconstructed.
Lossless techniques are used for medical image compression, text compression, etc., where losing details is unacceptable.

In literature, most of the compression techniques are based on compressing individual letters of each character. Such
compression techniques may not be effective in some cases where data is composed of repeated words or sequences of
words. In such cases, compression based on words or a sequence of words can be more efficient and significantly reduce
the space required for data storage applications such as digital libraries, archives, datasets for learning, sensor networks,
etc. In addition, compression plays a significant role in compressing information in large language models (LLMs) like
ChatGPT, PaLM2, and LLaMA (LLM Meta AI) for reducing storage and memory requirements. These models are mostly
accessed over a cloud-based system. Transmitting large amounts of data over a network makes transmission slow and
requires large bandwidth. The efficient compression can significantly enhance the transmission process and reduce
transmission time to improve user experience. It can enable us to deploy these large models without massive hardware
investment [5]. In this paper, we proposed the ArthNgram model, in which the N-gram language model coupled with
arithmetic coding is used to compress data more efficiently for data storage applications. In this model, the N-gram
language model is used to find the probability distribution and sequence of words. Then arithmetic encoding is used to
compress data based on that distribution. The contributions of this work are as follows:

• Proposed the ArthNgram model that integrates the N-gram language model and arithmetic coding.
• Evaluated proposed ArthNgram model for N = 1, 2, 3, 4, 5 based on performance metrics: compression ratio, time,

complexity, and speed.
• Performed the comparative analysis of the proposed model with traditional compression techniques: Huffman cod-

ing, LZW coding, and arithmetic coding.

The rest of this paper is structured as follows. In Sect. 2, traditional compression techniques are discussed. In Sect. 3, the
proposed model is discussed. Section 4 provides the performance metrics. Results are discussed in Sect. 5. Finally, in
Sect. 6, the proposed paper is concluded.

2 Related work

Since the use of the internet and the growing number of IoT devices, digital storage data systems, text file transfer, and
embedded systems have significantly increased, text compression approaches have drawn more attention to managing
and leveraging this data effectively. It is used in various applications, including data storage and transmission, digital
archives, and cloud computing. It helps to reduce the storage space required for text data, improve transmission efficiency
over slow or limited bandwidth networks, reduce the cost of storing and transmitting large amounts of text data, and
allow quick and effortless transfer of large text files between devices. Text compression is a type of data compression
in which text is compressed based on lossless compression techniques. The methods and technology for text compres-
sion are always being researched to be made better. Different lossless compression techniques have been used for text
compression, such as Huffman, Shannon-Fano coding, arithmetic coding, run-length, Lempel-Ziv-Welch (LZW) coding,
etc [6]. In [7], authors presented an alternative run-length approach based on Burrows-Wheeler Transform (BWT) and
arithmetic coding for text compression. Their approach converts the large text file into smaller text files, with each con-
taining the same number of characters. Each small file is transformed and compressed using BWT and run-length coding.
Then, further compression is achieved using arithmetic coding. In [8], a text file in 8 different languages is compressed
using compression techniques (LZW coding, Arithmetic Coding) to observe the effect of different languages on com-
pression ratio. It is noted that the compression ratio varies with text language. Another lossless approach is proposed
based on Huffman coding for text compression. This approach is also implemented on FPGA for validating the working

Vol.:(0123456789)

Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

of the proposed algorithm [9]. In [10], run-length coding and delta coding-based compression technique is proposed for
compressing medical data with improved compression ratio. Authors in [11] proposed a technique based on Huffman
coding in order to improve the compression ratio and to enhance image compression’s quality. In [12], a hybrid approach
based on LZW and Huffman coding is proposed where data is first compressed by Huffman coding and then by LZW. It
is observed that the proposed hybrid approach provides better compression than these two techniques individually.
In [13], a dictionary-based technique is proposed for text compression based on the quaternary Huffman technique.
Huffman with quaternary tree architecture is used instead of binary tree architecture to improve traversing time and
compression ratio. In [14], n-gram dictionaries up to 5 gs are used to compress text in the Vietnamese language. The
authors in [15] present a compression technique based on Shannon-Fano and Huffman algorithm to compress large
files, more specifically in mobile devices. The dynamic text compression algorithm is proposed based on Huffman and
LZW using n-gram dictionaries up to 2-grams [16]. In [17], a graph compression technique is proposed based on Huff-
man coding, pattern detecting, and matching principles to handle big data issues on resource-constrained IoT devices.
A survey is conducted in [18] on deep learning-based models for compression. Authors in [19] provide a comparative
study of Huffman and LZW techniques on 12 different test files of variable size. Compression plays a significant role in
the practical deployment of LLMs by reducing their size and computational requirements. Authors in [20] proposed the
activation-aware quantization method for LLMs compression. In [21], a structural pruning method is proposed for LLMs
compression which compresses LLMs while maintaining their linguistics capabilities.

3 Compression techniques

This section gives a brief overview of different well-known compression techniques such as Huffman coding, LZW coding,
arithmetic coding, etc.

3.1 Huffman coding

Huffman coding is a lossless compression technique that is based on the frequency of occurrence of symbols. It gives
a variable length codeword to each symbol. It assigns shorter codewords to the symbols with a high frequency of
occurrence and longer codewords to symbols with a low frequency of occurrence. It uses the prefix rule in order to
ensure that the codeword assigned to any symbol is not the prefix of another symbol. The main steps of Huffman coding
are following:

1. Arrange the probabilities of symbols in descending order and consider them as the nodes
2. Repeat the below steps until all nodes form a single tree

(a) Select two nodes with the smallest probability
(b) Merge them to form a new node whose probability is sum of these two nodes.

3. Traverse tree to get codewords for each symbol

The time complexity of Huffman coding is O(nlogn) where n represents the number of unique symbols in data to be
compressed.

3.2 LZW coding

LZW is a dictionary-based lossless compression technique. It is used in many applications such as Win-zip, GIF, 7zip, etc.
LZW replaces the character’s strings with a single code. The idea of this technique depends on reappearing patterns.
It does not involve the analysis of incoming data. During the encoding process, it constructs the indexed dictionary in
order to compress the data. LZW coding involves the following steps:

1. Initialize by creating an indexed dictionary with the single-character entries
2. Read each character of the input data one at a time into a buffer.
3. Check whether the buffer exists in the dictionary or not

Vol:.(1234567890)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

4. If it exists, add a subsequent character to the buffer and repeat step 3.
5. If it does not exist, add it to the dictionary as a new entry and get the buffer’s index in the dictionary as an output
6. Add the next subsequent character to the buffer and repeat from step 2 until the end of input data

The time complexity of LZW coding is O(n). This is because it constructs a dictionary while character-by-character
processing of the input data containing n characters.

3.3 Arithmetic coding

Arithmetic encoding is a technique used for lossless data compression which encodes data to be transmitted into
a string of 1 s and 0 s based on probabilities on the number line between 0 and 1 [22, 23]. It is used in various
applications such as image compression, text compression, data transmission, etc. As the size of the data to be
encoded increases, the interval on the real line between 0 and 1 becomes smaller and the corresponding binary
code string of that interval grows. It involves the following steps:

1. Map the input data over the range [0, 1] based on frequency of occurrence of symbols.
2. Divide the current range into sub-ranges based on the probability of each symbol
3. Select the sub-range associated with the next symbol to be encoded and consider it as a new current range
4. Repeat step 2 and 3 until end of symbols

The time complexity of this technique is O(mn), where m is the total number of characters in data and n is the length
of data.

To summarize, we have presented three benchmark techniques that will be used for comparison of our proposed
scheme.

4 Proposed model

This section presents the proposed model for text compression. The motivation for the proposed model comes
from the fact that modern systems have repetition of data and it can be more advantageous to consider words or
sequences of words rather than individual characters to get a better compression ratio. Figure 1 shows the flow chart
of the proposed model where we integrated the N-gram language model with arithmetic coding to compress text
data effectively. In the proposed Model, first, we constructed the N-grams and calculated their probability distribu-
tions using the N-gram language model. Then, data is encoded using arithmetic coding based on these probability
distributions.

4.1 N‑gram model and N‑gram construction

N-gram refers to a sequence of N words that is present in the text. The N-gram language model is used to predict the
probabilities of N-grams in a given text. It is used in many applications such as spelling error detection and correction, text
compression, language identification, etc. In order to generate N-grams from given text data considering (N = 1, 2, 3, 4, 5)
respectively, the following steps are considered:

• split the text into tokens/smaller units with window size and added enough blank spaces before and after the token.
• Scanned all the tokens to generate all possible N-grams for (N = 1, 2, 3,… 5) and set a counter to each N-gram to get

the frequencies of each unigram, bigram, trigram, four-gram, and five-gram.
• Calculated the probability of each N-gram based on their frequencies using the N-gram probability distribution model.

We considered N-gram based compression model for (N = 1, 2, 3, 4, 5) which differ in their probability distributions.

Vol.:(0123456789)

Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

4.2 Aithmetic N‑gram (ArthNgram)

ArthNgram model couples the N-gram language model with arithmetic coding to compress data more efficiently. In this
work, the ArthNgram model is considered for five different N-gram cases: Arithmetic Unigram (Arth1 g), Arithmetic Bigram
(Arth2 g), Arithmetic Trigram (Arth3 g), Arithmetic Four-gram (Arth4 g), and Arithmetic Five-gram (Arth5 g). Figure 2

Fig. 1 Flow chart of proposed compression technique

Fig. 2 ArthNgram Sequences

Vol:.(1234567890)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

shows the sequence of words considered for five different N-gram cases. In an arithmetic unigram case, unigram-based
arithmetic coding is used to compress the data. Each token in a unigram model is taken into account independently from
every other token and the probability of each token depends on how frequently it appears in the data. In this case, the
probability of a certain word sequence does not depend on its co-occurrence with the previous words. So, the probability
of certain words sequence containing n unigrams can be calculated as follows:

In the case of other ArthNgram cases, the probability of a word in word sequence depends on its co-occurrence with
the (N − 1) previous words in the data where N = 1, 2, 3, 4, 5 . So, the generalized expression for the probability of certain
word sequence containing n N-grams (bigrams, trigrams, four-grams, and five-grams) can be expressed as follows:

Where i = 1, 2, .., (k − 1) , m = 2, 3, 4, 5 , and w0 = 1.

4.3 N‑gram dictionary

N-gram dictionary contained all the N-grams (unigram, bigram, trigram, 4-gram, and 5-gram) of the data with their
probability distributions. It is assumed to be available on both ends: compression and decompression.

4.4 ArithNgram encoding

The ArithNgram Encoding uses the N-gram probabilities obtained from the dictionary to compress the text data using
an arithmetic encoding algorithm. The first step is to find the interval lie in [0,1) for data to be compressed. For that, it
works as follows:

1. We started with the current interval [l,h) as [0,1).
2. For each N-gram in the file, two steps are taken.

(a) For each possible N-gram, We split the current interval [l,h) into sub-intervals based on their probabilities.
(b) The sub-interval corresponds to the next actual N-gram and is selected as a new interval.

In the above step, we only compute the interval corresponding to the actual N-gram gi using their cumulative probabilities
as:

The new sub-interval is obtained as (l + Pcur(h − l), l + Pnext(h − l)) . To specify the end of the file, we assumed the file’s
length to be known. This encoding process is summarized in Algorithm 1, where seq represents the input text and vocab
consists of N-grams, their probabilities, and minr and maxr that represent the minimum and maximum value of the
interval/ range of each n-gram. The vocab is assumed to be available on both encoding and decoding ends.

After getting the interval lies on the number line, a binary code string is generated using a codebook encoding
algorithm for given data based on that interval.

(1)Pr(w1,w2, ...,wn) ≈

n
∏

k=1

Pr(wk)

(2)

Pr(w1,w2, ...,wn) ≈

K−1
∏

i

Pr(wi ∣ wi−1)

n
∏

k=m

Pr(wk ∣ wk−1,k−2,...,k−i)

(3)Pcur =

i−1
∑

k=1

pk(g)

(4)Pnext = Pcur +

i−1
∑

k=1

pk(g)

Vol.:(0123456789)

Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

Algorithm 1 Encoding Algorithm

4.5 Codebook

The codebook is used to convert the obtained interval from arithmetic encoding to binary string and vice versa. The
working of the codebook is described in Algorithm 2 and 3. A codebook Encoding Algorithm 2 is used to encode the
interval obtained from Algorithm 1 into a binary string. In this algorithm, minr and maxr represent the minimum and
maximum value of the internal, and mp represents the midpoint. An empty codeword is defined to store the binary string.
Every time when minr is less the mp, we append 0 in the codeword. The obtained codeword is considered as the binary
string for given data.

Algorithm 2 Codebook Encoding Algorithm

4.6 ArithNgram decoding

The ArithNgram decoding block reverses the encoding process. It converts an encoded binary string back into its original
input sequence. The main steps of this block are as follows:

1. Convert binary string to range using a codebook decoding algorithm
2. Repeat the following steps until the end of the encoded data is reached:

(a) Determine the n-gram symbol corresponding to the current range.
(b) Update the range based on the probability of the n-gram symbol.
(c) Read the next bits of the encoded data and update the value accordingly.

3. Output the original data.

Vol:.(1234567890)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

The whole decoding process is summarized in Algorithm 3 and . In Algorithm 3, codeword represents the binary string
for encoded data, mp is the midpoint, and minr and maxr represent the minimum and maximum value of the interval
respectively. Every time when it reads a bit from codeword, it updates mp with mid

2
+minr until the last bit. When a 0 bit

in the codeword is encountered, it updates maxr with mp and when a 1 bit in the codeword is encountered, it updates
minr with mp. The obtained value of minr and maxr is considered as an interval that is used in the decoding algorithm
to get back the original data. In decoding Algorithm 4, minr represents the minimum value of interval obtained from
the codebook decoding algorithm and Nw represents the number of words in encoded data. Every time N-grams are
stored in seq based on minr and minr is updated until the end of Nw is reached. The obtained seq is the original data.

Algorithm 3 Codebook Decoding Algorithm

Algorithm 4 Decoding Algorithm

The time complexity of the proposed model is the sum of the N-gram language model and arithmetic coding. The
complexity of the N-gram model is O(kn) where k represents N-gram size and n represents the length of input data.
The overall complexity can be O(kn) + O(mn).

5 Results

This section displays and explains simulation results. All the simulation work is done in MATLAB. For performance
analysis, we considered the following performance metrics: number of bits, pre-processing time, compression/decom-
pression time, compression ratio, and compression/decompression Speed. In order to validate the performance of
the proposed model, we compared it with some other techniques including Huffman, Arithmetic, and LZW, based
on performance metrics. We performed the result analysis for 5 different text files of size 8192, 13904, 32400, 40992,
98560 bits respectively. Figure 3 show the frequency of occurrence of unigram, bigram, trigram, four-gram, and five-
gram sequences of different test files respectively.

Vol.:(0123456789)

Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

5.1 Compression time

The compression time is the amount of time taken by the model to compress the data. Figure 4 shows the preprocessing
time taken by different schemes for different test files. Arth5 g takes the highest time among other schemes because the
increased number of words in the N-gram sequence requires more processing time to meet the computational require-
ments. Figure 5 and 6 show the amount of time taken by all test files for the compression and decompression process. It

Fig. 3 Number of sequences in different test file

Fig. 4 Preprocessing Time

Vol:.(1234567890)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

can be seen that Arth5garm takes the highest amounts of time for the compression and decompression process. Huffman
takes the lowest amount of time in all test files.

Fig. 5 Comparison of different compression schemes in terms of Compression Time

Fig. 6 Comparison of different compression schemes in terms of Decompression Time

Vol.:(0123456789)

Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

5.2 Compression ratio

Compression ratio (Cr) is mostly used as a performance metric to evaluate the performance of the proposed algorithm.
The value of Cr depends on the text file to be compressed. Its value can vary for different algorithms. Even the same
algorithm can have different values of Cr for different text files. It is calculated by

Where Uncompressed file size is the size of the input file and Compressed file size is the size of the compressed file.
Figure 7 shows the compression ratio of test files. It can be observed that the compression ratio of the proposed

Arth1 g, Arth2 g, arth3 g, arth4 g, and Arth5 g is more than benchmark techniques which infers the significant impact of
N-grams on compression. As the higher value of the compression ratio denotes a more efficient compression strategy
since it reduces the size of the compressed file in comparison to the uncompressed file.

5.3 Space requirement

Space requirement depends on compression ratio. The higher value of the compression ratio denotes a more efficient
compression strategy since it reduces the size of the compressed file in comparison to the uncompressed file. This infers
that the higher compression ratio results in less space required for storing data. Figure 8 shows the size of test files after
compression. The original size of 5 different test files is 8.192Kb, 13.904Kb, 32.400Kb, 40.992Kb, 98.560Kb respectively.
It can be seen that arth3 g is performing best than others. On average it reduces 65% size as compared to traditional
techniques which significantly reduces the space requirement for storage purposes.

5.4 Compression speed

Compression speed (scom) measures how quickly data can be compressed into a smaller size. It is measured in the number
of megabits per second (Mbits/sec) . It is calculated as

(5)Cr =
Uncompressed file size

Compressed file size

Fig. 7 Comparison of different compression schemes in terms of Compression Ratio

Vol:.(1234567890)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

Similarly decompression speed (sdecom) measures how quickly compressed data can be converted into original data. It is
measured in Mbits/s. It is calculated as

Figure 9 and 10 show the compression and decompression speed of test files respectively. It can be noted that Arth1 g
and convention techniques (Huffman, Arithmetic, LZW) have a higher compression speed. But Arth2 g, arth3 g, arth4 g,
and Arth5 g have a lower compression speed because higher N-gram based compression results in increased complexity
that leads to a lower compression speed as it requires more processing time to process larger N-grams.

From the above results, it is observed that Arth1 g has low performance in terms of both compression ratio and
high compression speed compared to other ArthNgram techniques. Because in the case of Arth1 g, single words are
considered that leads to a large pool of words to be compressed which results in a very low value of interval/range
for the whole data to be compressed. That low value is converted into a longer binary string. However, in the case
of other ArthNgram techniques, the sequence of words is considered. This sequence of words leads to a small pool
of words to be compressed which results in a high value of range for the whole data to be compressed. That high
value is converted into a smaller binary string compared to Arth1 g which makes ArthNgram more efficient in terms
of compression ratio. Furthermore, in the case of ArthNgarm, N-grams (N = 2, 3, 4, 5) calculation for the probability of
word sequences requires more time than Arth1 g. It is important to note that compression speed and compression
time are inversely related. Therefore, Arth1 g has a higher compression ratio than conventional techniques and
a higher compression speed than other ArthNgram techniques. Thus, it is concluded that, in general, selecting a
larger value of N for N-gram based compression will provide a better compression ratio but slower compression
speed, whereas selecting a smaller value of N will provide a higher compression speed but low compression ratio.
The ideal value of N depends on the particular application and its specifications.

(6)scom =
Uncompressed file size

compression time

(7)sdecom =
Uncompressed file size

decompression time

Fig. 8 Comparison of different compression schemes in terms of compressed File Size

Vol.:(0123456789)

Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

6 Conclusion

Text compression involves the process of reducing the size of text data in order to increase processing speed, decrease
transmission time, and conserve storage space. In this paper, we integrate the N-gram language model with arithmetic
coding. The N-gram model captures the structure and patterns of the text data effectively and efficiently in order to model
the probability distribution of data. Then text data is encoded using arithmetic coding based on this obtained probability

Fig. 9 Comparison of different compression schemes in terms of Compression Speed

Fig. 10 Comparison of different compression schemes in terms of Decompression Speed

Vol:.(1234567890)

 Discover Computing (2024) 27:1 | https://doi.org/10.1007/s10791-024-09431-y

distribution which results in a high compression ratio. The simulation results show the effectiveness of the proposed model.
It is observed that this model significantly increased the compression ratio.

Author contributions AH, SJ and SH presented the concept. AH, SJ, SH and RA wrote the main manuscript text. AH and SJ prepared all the figures
and performed all the simulations. SH, SQ and RA helped with the performance comparison. RA, SH and SQ provided supervision. All authors
reviewed the manuscript.

Funding Not applicable.

Data availability Not applicable.

Declarations

 Ethics approval and consent to participate Not applicable.

Competing interests The authors have no conflicts of interest to declare relevant to the content of this work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in
the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Statista. iot-connected-devices-worldwide. https:// www. stati sta. com/ stati stics/ 11834 57/ iot- conne cted- devic es- world wide/. Accessed 16
Feb 2023.

 2. Jayasankar U, Thirumal V, Ponnurangam D. A survey on data compression techniques: from the perspective of data quality, coding schemes,
data type and applications. J King Saud Univ Comput Inform Sci. 2021;33(2):119–40.

 3. Gupta A, Nigam S. A review on different types of lossless data compression techniques 2021.
 4. Hussain AJ, Al-Fayadh A, Radi N. Image compression techniques: a survey in lossless and lossy algorithms. Neurocomputing. 2018;300:44–69.
 5. Zhu X, Li J, Liu Y, Ma C, Wang W. A survey on model compression for large language models. arXiv preprint arXiv: 2308. 07633 2023.
 6. Shanmugasundaram S, Lourdusamy R. A comparative study of text compression algorithms. Int J Wisdom Based Comput. 2011;1(3):68–76.
 7. Rahman MA, Hamada M, Rahman MA. In 2021 IEEE 14th international symposium on embedded multicore/many-core systems-on-chip

(MCSoC)2021;287–291
 8. Ignatoski M, Lerga J, Stanković L, Daković M. Comparison of entropy and dictionary based text compression in English, German, French, Italian,

Czech, Hungarian, Finnish, and Croatian. Mathematics. 2020;8(7):1059.
 9. Hameed M, Khmag A, Zaman F, Ramli AR. A new lossless method of Huffman coding for text data compression and decompression process

with fpga implementation. J Eng Appl Sci. 2016;100(3):402–7.
 10. Banerjee S, Singh GK. A new real-time lossless data compression algorithm for ECG and PPG signals. Biomed Signal Process Contr.

2023;79:104–27.
 11. Otair M, Abualigah L, Qawaqzeh MK. Improved near-lossless technique using the huffman coding for enhancing the quality of image com-

pression. Multimed Tools Appl. 2022;81(20):28509–29.
 12. Shrividhiya G, Srujana KS, Kashyap SN, Gururaj C. In 2021 international conference on emerging smart computing and informatics (ESCI)

2021;234–237
 13. Habib A, Islam MJ, Rahman MS. A dictionary-based text compression technique using quaternary code. Iran J Comput Sci. 2020;3(3):127–36.
 14. Nguyen VH, Nguyen HT, Duong HN, Snasel V. n-gram-based text compression. Computational intelligence and neuroscience 2016;2016
 15. Mantoro T, Ayu MA, Anggraini Y. In 2017 International Conference on Computing, Engineering, and Design (ICCED) (IEEE), 2017;1–5
 16. Aburomman FTA. Dynamic with dictionary technique for arabic text compression. Int J Comput Appl. 2016;975:8887.
 17. Chatterjee A, Shah RJ, Hasan KS. In: 2018 IEEE International conference on big data (big data) 2018;5137–5141
 18. Gupta M, Agrawal P. Compression of deep learning models for text: a survey. ACM Trans Knowl Discov Data (TKDD). 2022;16(4):1–55.
 19. Fauzan MN, Alif M, Prianto C. Comparison of Huffman algorithm and Lempel Ziv Welch algorithm in text file compression. IT J Res Develop.

2023;7(2):155–69.
 20. Lin J, Tang J, Tang H, Yang S, Dang X, Han S. Awq: activation-aware weight quantization for llm compression and acceleration. arXiv preprint

arXiv: 2306. 00978 2023
 21. Ma X, Fang G, Wang X. Llm-pruner: on the structural pruning of large language models. arXiv preprint arXiv: 2305. 11627 2023.
 22. Langdon GG. An introduction to arithmetic coding. IBM J Res Develop. 1984;28(2):135–49.
 23. Kotha HD, Tummanapally M, Upadhyay VK. In J Phys Conf Ser. 2019;1228:012007.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://arxiv.org/abs/2308.07633
http://arxiv.org/abs/2306.00978
http://arxiv.org/abs/2305.11627

	Arithmetic N-gram: an efficient data compression technique
	Abstract
	1 Introduction
	2 Related work
	3 Compression techniques
	3.1 Huffman coding
	3.2 LZW coding
	3.3 Arithmetic coding

	4 Proposed model
	4.1 N-gram model and N-gram construction
	4.2 Aithmetic N-gram (ArthNgram)
	4.3 N-gram dictionary
	4.4 ArithNgram encoding
	4.5 Codebook
	4.6 ArithNgram decoding

	5 Results
	5.1 Compression time
	5.2 Compression ratio
	5.3 Space requirement
	5.4 Compression speed

	6 Conclusion
	References

