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Abstract
Online learning to rank (OLTR) aims to learn a ranker directly from implicit feedback 
derived from users’ interactions, such as clicks. Clicks however are a biased signal: spe-
cifically, top-ranked documents are likely to attract more clicks than documents down the 
ranking (position bias). In this paper, we propose a novel learning algorithm for OLTR 
that uses reinforcement learning to optimize rankers: Reinforcement Online Learning to 
Rank (ROLTR). In ROLTR, the gradients of the ranker are estimated based on the rewards 
assigned to clicked and unclicked documents. In order to de-bias the users’ position bias 
contained in the reward signals, we introduce unbiased reward shaping functions that 
exploit inverse propensity scoring for clicked and unclicked documents. The fact that our 
method can also model unclicked documents provides a further advantage in that less users 
interactions are required to effectively train a ranker, thus providing gains in efficiency. 
Empirical evaluation on standard OLTR datasets shows that ROLTR achieves state-of-
the-art performance, and provides significantly better user experience than other OLTR 
approaches. To facilitate the reproducibility of our experiments, we make all experiment 
code available at https:// github. com/ ielab/ OLTR.

Keywords Online learning to rank · Unbiased reward shaping · Reinforcement learning

1 Introduction

Learning to rank (LTR) is a supervised machine learning technique that has been widely 
used in modern search engines to learn rankers. Explicit feedback, consisting of asses-
sors manually judging the relevance of query-document pairs, is required for LTR (Liu, 
2011; Li, 2011). This labelled dataset requirement poses obvious limitations: these 
datasets take substantial effort and cost to compile (Qin et al., 2010; Qin & Liu, 2013; 
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Chapelle & Chang, 2011), labelling personal documents is unethical and often impos-
sible (Wang et  al., 2016), static datasets cannot model user intent change over time 
(Lefortier et  al., 2014; Zhuang & Zuccon, 2021), and user preferences may not agree 
with that of annotators (Sanderson, 2010).

In order to overcome these limitations, implicit feedback, such as clicks, has been 
leveraged. This type of training signal is not affected by the above limitations and has 
been an attractive alternative to annotated datasets (Joachims, 2002). However, train-
ing rankers with implicit feedback has its own drawbacks and challenges. For exam-
ple, clicks are a weak relevance signal because they often are affected by a number of 
biases and noise. One of the most prominent bias in web search is the position bias, 
where higher ranked documents have a higher chance to be observed and thus gain more 
clicks, even if they may be not relevant (Guan & Cutrell, 2007; Pan et al., 2007; Hof-
mann et al., 2016; Joachims et al., 2017). Therefore, it is important to consider the influ-
ence of such biases.

Two main families of approaches have emerged that attempt to learn effective rankers 
from users’ implicit feedback (Jagerman et al., 2019): counterfactual learning to rank 
(CLTR) (Joachims et al., 2017) and online learning to rank (OLTR) (Yue & Joachims, 
2009). In CLTR, given a historical click through log, clicks are treated as pure binary 
relevance labels and inverse propensity scoring (IPS) is used to re-weight clicks in order 
to discount the effect of biases. Rankers are trained in an offline manner and deployed 
online after training. This offline batch updates pipeline can avoid the risk of exposing 
users to low-quality results since it only displays the best search engine results that are 
possible for a given CLTR algorithm and training data.

On the other hand, OLTR algorithms interactively update rankers after each user 
interaction has taken place, thus being more responsive to a non-stationary user envi-
ronment (Zhuang & Zuccon, 2021). In contrast to CLTR, current OLTR methods do not 
directly model position or selection bias, and only assume relevant documents are more 
likely to be clicked than non-relevant documents (Joachims, 2002). The biases and noise 
of users clicks are handled by online interventions (Jagerman et al., 2019), i.e., slightly 
perturbated result lists are displayed and preferences towards rankers are informed by 
users clicks. This is one of the key aspects of OLTR, but also one of its biggest disad-
vantages that limits OLTR’s uptake in practice: such online interventions carry the risk 
of displaying a “sub-optimal” ranking list directly to the user, thus hurting user experi-
ence (as measured by online evaluation metrics). Hence, it is a requirement for OLTR 
methods to efficiently leverage the click feedback so that a good ranker is learnt as fast 
as possible to avoid displaying low quality search results to a large number of users.

To move beyond the limitations of existing OLTR methods, in this article, we pro-
pose a novel OLTR algorithm called Reinforcement Online Learning to Rank (ROLTR), 
which exploits the reinforcement learning (RL) approach adapting it to OLTR. Our 
motivation for using RL in OLTR is based on the following observations: 

1. RL suits OLTR setting very well: RL is powerful for modeling interactive environments 
and maximizing the long-term rewards yield from the environment. In the OLTR set-
ting, the interactive environment is composed by the users and the search system, and 
the rewards are the users’ satisfaction.

2. RL with carefully designed reward functions allows OLTR algorithms to directly remove 
the biases present in the user clicks: this is currently hard for other OLTR algorithms to 
achieve.
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As we show in this article, our proposed ROLTR can directly remove position bias and 
thus effectively and, importantly, efficiently (i.e. within less impressions) update the ranker. 
To achieve this, we formalize OLTR as a Markov Decision Process (MDP) problem and 
use policy gradient with rewards assigned on clicked and unclicked documents to estimate 
the update gradients. In order to de-bias users’ clicks, we further introduce unbiased reward 
shaping functions that re-weight the rewards for both clicked and unclicked documents. We 
mathematically prove that the gradient estimation of ROLTR is unbiased with respect to 
position bias, and it can directly optimize IR metrics such as discounted cumulative gain 
(DCG). The idea of leveraging unclicked data has been recently explored in offline coun-
terfactual learning studies (Hu et al., 2019; Wang et al., 2021a), however, our method is 
currently the only OLTR approach that can gain unbiased learning signals from unclicked 
documents, thus speeding up convergence. Empirical results further show that ROLTR sig-
nificantly outperforms traditional OLTR methods and is at par with current state-of-the-art 
methods (offline performance), although requiring fewer user interactions. As a result, our 
method delivers considerably better user experience (online performance).

2  Related work

2.1  Counterfactual learning to rank

Unlike traditional LTR where rankers are learned from explicitly labelled datasets (Liu, 
2011), counterfactual LTR (Agarwal et  al., 2018; Ai et  al., 2018; Joachims et  al., 2017) 
uses historical interaction data, typically click logs, to learn a ranker. However, clicks are 
a biased signal. The most prominent bias in the click signal is the position bias: assuming 
that users examine search engine result pages (SERPs) from top to bottom, then the results 
that are ranked higher are more likely to be observed by the users (Joachims et al., 2017). 
Joachims et al. refer to the probability of a search result at a rank i to be observed as its 
propensity (Joachims et al., 2017). They then define the inverse propensity scoring (IPS) 
method to re-weight user clicks: when IPS is used, the estimated ranking score is unbiased 
with respect to position bias. One crucial requirement of IPS-based CLTR methods is the 
prior knowledge of user propensity. This is usually estimated by conducting online result 
randomization which can negatively affect the user experience. To address this issue, Ai 
et  al. (2018) proposed the Dual Learning Algorithm (DLA) to jointly learn an unbiased 
ranker and an unbiased propensity model, thus avoiding the preprocessing of propensity 
estimations. Unlike these CLTR works, our method also uses IPS but in the context of 
reinforcement learning for OLTR and we further propose a new IPS method for unclicked 
documents so as to gain an unbiased training signal from unclicked documents. This accel-
erates the learning process because both click and unclick information is used for train-
ing, thus increasing the number of implicit signals obtained from each search and used for 
training.

In addition to position bias, recent work in counterfactual LTR has considered cor-
recting the selection bias (Ovaisi et  al., 2020; Oosterhuis & de  Rijke, 2020a), in which 
some documents have zero probability of being observed by the users (thus never having 
a chance to be clicked and contribute a training signal). We note that the selection bias is 
fundamentally different from the position bias in terms of that this bias is introduced by the 
system itself: some documents will never be included by the system in the top SERPs. In 
contrast, the position bias instead comes from the users. This often occurs in web search 
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where SERPs only show a small subset of documents in the first page (e.g., 10) and users 
do not proceed beyond the first SERP. In this circumstance, documents ranked beyond the 
first SERP have no chance of being observed, hence never get identified as positive train-
ing examples. To debias the selection bias in the click signals, Oosterhuis and de  Rijke 
(2020a) proposed a policy-aware counterfactual estimator for CLTR to directly account 
for the selection bias introduced by a stochastic logging policy. On the other hand, Ovaisi 
et  al. (2020) adapted Heckman’s two-stage method to account for selection and position 
bias in LTR systems. In our work, we follow the standard OLTR and CLTR experimen-
tal setup and simulate typical, real-world circumstances; we also include selection bias in 
our experiments by only placing 10 documents in the SERPs. Although in this paper we 
directly focus on correcting position bias, selection bias is also partially corrected by the 
proposed method via online intervention. Nevertheless, recently proposed methods (Ovaisi 
et  al., 2020; Oosterhuis & de Rijke, 2020a) could be used to further modify our reward 
shaping functions: this would have the effect of further reducing the selection bias of the 
gradient estimations.

2.2  Online learning to rank

Similarly to CLTR, online LTR (OLTR) also considers implicit user feedback to learn 
a ranker. Unlike CLTR, however, this is done online, by directly interacting with users. 
This online training process allows to control data acquisition and handle biases and noise 
through online interventions with regards to which documents to display. Figure 1 provides 
a schematic representation of the OLTR process.

The Dueling Bandit Gradient Descent (DBGD) (Yue & Joachims, 2009) models OLTR 
as a dueling bandit problem and uses online evaluation with users’ clicks on interleaved or 
multileaved SERPs to indicate user preference among a pool of candidate rankers (Schuth 
et  al., 2015; Oosterhuis et  al., 2016; Hofmann et  al., 2011a, 2013; Schuth et  al., 2016; 
Hofmann et al., 2011b). More recent work has studied methods to reduce the variance of 
the gradients estimated by online evaluation (Wang et al., 2019, 2018a). However, because 
gradients are updated towards the winning rankers in the candidate pool, the quality of the 
gradient estimation is influenced by the number of candidate rankers. When the number of 
candidate rankers is large, the performance of DBGD is limited in terms of both effective-
ness and efficiency (Schuth et al., 2015; Li et al., 2020). The recently proposed Counterfac-
tual Online Learning to Rank (COLTR) (Zhuang & Zuccon, 2020) attempts to overcome 

Fig. 1  A schematic view of the online learning to rank process. Users pose queries to the ranking system. 
This uses a online LTR algorithm to identify the candidate documents to display to the user. Depending on 
the OLTR algorithm used, candidate documents will be used to form a displayed list. The user examines 
the displayed search results (SERP) and clicks on items of interest. The click feedback is used by the OLTR 
algorithm to perform ranker updates
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the issues associated with online evaluation. This is done by replacing online evaluation 
with counterfactual evaluation for DBGD. Instead of interleaving, COLTR uses clicks col-
lected by the current ranker to evaluate candidate rankers thus providing high efficiency. 
However, empirical results have shown COLTR requires more exploration, thus possibly 
hurting user experience (online evaluation metrics).

Unlike DBGD and COLTR, the Pairwise Differentiable Gradient Descent (PDGD) 
(Oosterhuis & de Rijke, 2018) does not require to sample candidate rankers for online eval-
uation. Instead, PDGD directly estimates gradients based on pairwise preferences between 
documents in the SERP, inferred by users’ clicks; then, stochastic gradient descent is used 
to update the ranker. The gradient estimation of PDGD is unbiased with respect to user 
document pair preferences (Oosterhuis & de  Rijke, 2018). PDGD is empirically found 
to be significantly better than DBGD in terms of final convergence, learning speed and 
user experience during optimization, making PDGD the current state-of-the-art method 
for OLTR (Jagerman et al., 2019; Zhuang & Zuccon, 2020; Oosterhuis & de Rijke, 2019; 
Wang et al., 2021c). PDGD has also been adapted to the federated OLTR context (Wang 
et  al., 2021b), exhibiting again state-of-the-art performance. However, both PDGD and 
DBGD based methods do not directly use IPS to handle position bias, which has been 
proven to be very important in previous CLTR results (Joachims et al., 2017).

As mentioned above, CLTR and OLTR differ from the setting considered for learning 
the ranker: use an historical log of implicit interactions for counterfactual, versus use direct 
observation and interaction with rankings in the case of online LTR. We note that Jager-
man et al. (2019) have specifically studied the similarity and differences between counter-
factual and online LTR. They suggested that, from a theoretical standpoint, counterfactual 
LTR exploits position bias better, however they also indicated that empirical results have 
shown that OLTR (and in particular PDGD) is more reliable. On the other hand, recent 
works have been focusing on adapting the offline counterfactual learning to the online set-
ting (Ai et al., 2021; Zhuang & Zuccon, 2020; Oosterhuis & de Rijke, 2020b, 2021). These 
works have suggested that OLTR algorithms can benefit from the counterfactual learning 
framework. Based on this context, our proposed method can also be thought of as embrac-
ing this direction.

2.3  Reinforcement learning to rank

Reinforcement learning (RL) has previously been applied to offline LTR problems, but 
not to online LTR. Wei et al. (2017) have formalized ranking as a Markov Decision Pro-
cess (MDP) problem and introduced the MDPRank algorithm to optimize a linear ranker. 
Specifically, the document ranking is modelled as a sequential decision making process 
where each time step corresponds to a position in the ranking and the action taken at each 
time step corresponds to the selection of a document for the corresponding position. The 
rewards given by the environment are generated according to the relevance label of the 
documents, and the classic policy gradient algorithm of REINFORCE (Sutton et al., 2000) 
is used to maximize the expectation of cumulative rewards received by the ranker. An 
attractive property of MDPRank is that it can use gradient descent to directly optimize 
non-differentiable ranking metrics such as DCG. However, Jun et al. (2020) have recently 
shown that the gradient estimation of the original MDPRank exhibits high variance, and 
thus this method requires more training episodes to learn an effective ranker. A similar 
reinforcement learning framework has also been used for search result diversification (Feng 
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et al., 2018; Xia et al., 2017), multi-page search (Zeng et al., 2018) and recommendation 
system (Zhao et al., 2018a, b, 2021).

In this paper, we also apply a MDPRank-like algorithm, although in the context of 
OLTR and with two important adaptions. First, the original MDPRank is designed for tra-
ditional offline LTR, i.e., the relevance labels of query-document pairs are provided. In 
the OLTR setting, however, only biased user interaction data such as clicks is available: 
thus the rewards given by the online environment are biased. In order to obtain unbiased 
rewards, we introduce unbiased reward shaping functions for MDPRank to discount posi-
tion bias. Secondly, the high variance of the gradient estimation of MDPRank makes it 
converge slowly. However, for OLTR to be viable, we need the algorithm to converge fast 
so that it does not hurt the user experience too much. To reduce variance, we simplify 
the objective function of the policy gradient used in the original MDPRank to achieve an 
objective function with much lower variance of gradient estimation, without changing its 
optimization target.

3  Method

3.1  Ranking as a markov decision process for online learning to rank

Ranking can be formalized as an MDP problem, where the search engine (agent) has to 
decide which document to place (action) at rank i, given the current candidate document 
set (state) (Wei et al., 2017). In the offline LTR setting, i.e., when relevance labels are pro-
vided, any IR evaluation measure can be used as a reward function for the ranking created 
by the search engine. In the online LTR setting, however, rewards are typically inferred via 
users’ implicit feedback, such as clicks. Following Wei et al. (2017), who have limited their 
attention to offline LTR only, we define each component of the MDP ranking for the OLTR 
as follows:

StatesS indicates the set of states that the agent (search engine) will observe from the 
environment. In the MDP ranking, at a time step t, a state st ∈ S is the candidate document 
set Dt which contains the documents that need to be ranked.

Actions A is the set of possible actions that the agent can take when at a state st . An 
action at a time step t, denoted as at ∈ A(st) , consists of selecting a document dm(at) ∈ Dt 
to place at rank i, where rank k = t + 1,1 m(at) is the function that maps the action to the 
document index, and dm(at) is represented by a feature vector. We note the feature elements 
in dm(at) are not only obtained based on the document but also on the query.

Transition T(s,a) is the function T(st, at) = st+1 , which maps a state st to its next state 
st+1 based on the action at , where st+1 is the candidate document set Dt without the selected 
document dm(at):

Policy �(a|s, �) is a probability distribution over all possible actions that the agent can take 
when in the state s, given the current model parameters � (where � is a vector contain-
ing the model’s parameters). We compute this distribution using the softmax function over 
document scores:

(1)st+1 = st ⧵ dm(at) = Dt ⧵ dm(at) = Dt+1

1 Note that the time step t starts from 0 and the rank position k starts from 1.
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f�(dm(at)) is the document relevance score estimated by the ranking model. In our experi-
ments, we use a linear ranking model, this means the dimensionality of � , i.e., the number 
of parameters in the ranking model, is equal to the dimensionality of the feature vector. 
However, we note that the ranking model can be extended to any dimensionality, e.g., a 
neural ranking model. For simplicity, we use at ∼ �(st) to denote the action at selected 
according to the policy � at state st.

Reward R(s,a) is the reward function that models the immediate reward given by the 
environment and its value represents the reward assigned to the action a that has been 
selected by the agent in state s.

When full information is provided (i.e., the true relevance labels are given), it is straight-
forward to define the reward function on the basis of IR evaluation measures such as DCG. 
However, in the OLTR setting, relevance labels are not provided – in place of these, the 
ranker observes implicit, noisy and biased user feedback such as clicks. Thus, in such a 
partial information setting, the reward function is defined based on the implicit feedback, 
e.g., on click labels. We define the value of the reward function next.

3.2  Unbiased reward shaping

In RL, reward shaping is used to reshape the original reward function to better guide the 
direction of the gradient update (Ng et al., 1999). Prior knowledge about the environment 
is needed to formalize a reliable reward shaping function to avoid otherwise to bias learn-
ing (Popov et al., 2017).

3.2.1  Naïve reward function

In the (offline) LTR approach by Wei et  al. (2017), DCG scores have been used as the 
original reward function to instruct the search engine to learn a ranker, when true relevance 
labels are supplied. This reward function RDCG(st, at) is defined as:

where �(t) = 1

log2(t+2)
 is the DCG weight term, and ym(at) ∈ {0, 1} is the binary relevance 

label of the document at rank t + 1 . This is a reasonable reward function, provided that rel-
evance labels are known. This reward function directly corresponds to the DCG evaluation 
metric (because of the DCG weight term), and thus the agent will attempt to learn a policy 
� that directly maximizes the cumulative rewards � (DCG scores) of the ranking episode, 
for any given initial state s0:

However, in the online LTR setting, relevance labels are unknown (i.e., this is a partial 
information setting); instead, users’ clicks are used as learning signal. A naïve reward func-
tion in this context is then to treat clicks as binary relevance labels and thus use the DCG 
reward function of equation 3:

(2)�(at�st, �) =
exp

�
f�(dm(at)

�
∑

a∈A(st)
exp

�
f�(dm(at)

�

(3)RDCG(st, at) = �(t) ⋅ ym(at)

(4)�RDCG
(s0, �, y) =

∑
t=0

RDCG(st,�(st)) =
∑

ym(at )=1

�(t)
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where cm(at) = 1 represents that a user has clicked on the document at rank t + 1 , while 
cm(at) = 0 represents no click on the document. If we assume that the probability of a docu-
ment dm(at) to be observed by a user (known as propensity) only depends on the rank posi-
tion t + 1 (note that t starts from 0) and no click noise is present, i.e., P(ot+1 = 1|t + 1) , then 
the expectation of the final ranking rewards is biased to the users’ propensity (Joachims 
et al., 2017; Jagerman et al., 2019):

This is the so-called position bias effect: top-ranked documents usually have a larger 
chance of being observed, and thus the rewards assigned to them are biasedly higher.

3.2.2  IPS reshaping

Recent work in CLTR has attempted to account for this position bias effect (Ai et al., 2018; 
Joachims et  al., 2017). One of the most commonly used approaches to mitigate position 
bias is Inverse Propensity Scoring (IPS). We follow this direction to unbias the click signal 
in our RL framework, and define the IPS reward shaping function as FIPS+ and the reshaped 
reward function as RIPS+:

It can be proven that the cumulative naïve rewards reshaped by FIPS+ are an unbi-
ased estimate of the ranking rewards with true relevance labels (Joachims et  al., 2017): 
�o[�RIPS+

(s0,�, c)] = �RDCG
(s0,�, y) . Thus, FIPS can be used to obtain unbiased cumulative 

rewards with respect to position bias, likely providing more reliable gradient estimations 
than the naïve reward function.

3.2.3  Negative rewards

The reward functions above only provide positive rewards to the clicked/relevant docu-
ments, while they assign a zero reward to the unclicked/irrelevant documents. However, in 
other RL problems, it is often found that negative rewards help the agent to avoid selecting 
poor actions (Sutton & Barto, 2018): for a ranker, negative rewards can help avoid select-
ing irrelevant documents from the document set, thus leading to better user experience. 
Based on this, we introduce a negative DCG reward function for online LTR (a similar one 
could be defined for offline LTR):

Hence, the negative cumulative ranking score is calculated by:

(5)RNAIVE+ (st, at) = �(t) ⋅ cm(at)

(6)

�o[�RNAIVE+
(s0,�, c)] =

∑
t=0

RNAIVE+ (st,�(st))

=
∑

ym(at )=1

P(ot+1 = 1|t + 1) ⋅ �(t)

(7)
RIPS+ (st, at) = FIPS(RNAIVE+ (st, at))

=
RNAIVE+ (st, at)

P(ot+1 = 1|t + 1)
=

�(t)

P(ot+1 = 1|t + 1)
⋅ cm(at)

(8)RNAIVE− (st, at) = �(t) ⋅ (cm(at) − 1)



394 Information Retrieval Journal (2022) 25:386–413

1 3

This means highly ranked unclicked documents will be penalised more and thus drag down 
the final ranking reward. It can be proven that this naïve negative reward function is a 
biased estimate of the negative DCG score of the ranking ( �RDCG−

(s0,�, y)):

That is, the naïve negative reward overestimates the true negative DCG reward by counting 
the relevant but not observed documents as irrelevant.

3.2.4  Negative IPS reward shaping function

In order to get unbiased negative DCG rewards, we propose the negative IPS reward shaping 
function FIPS− and denote the reshaped negative DCG reward as RIPS−:

We mathematically prove that �o[�RIPS−
(s0,�, c)] is an unbiased estimate of �RDCG−

(s0,�, y):

(9)�RNAIVE−
(s0,�, c) =

∑
t=0

RNAIVE− (st,�(st)) =
∑

cm(at )=0

−�(t)

(10)

�o[�RNAIVE−
(s0,�, c)]

= �o

��
t=0

RNAIVE− (st,�(st))

�
= �o

⎡⎢⎢⎣
�

cm(at )=0

−�(t)

⎤⎥⎥⎦

= �o

⎡⎢⎢⎣
�

ym(at )=0

−�(t)

⎤⎥⎥⎦
+ �o

⎡⎢⎢⎣
�

ot+1=0∧ym(at )=1

−�(t)

⎤⎥⎥⎦
=

�
ym(at )=0

−�(t) −
�

ym(at )=1

(1 − P(ot+1 = 1�t + 1)) ⋅ �(t)

= �RDCG−
(s0,�, y) −

�
ym(at )=1

(1 − P(ot+1 = 1�t + 1)) ⋅ �(t)

(11)

RIPS− (st, at) = FIPS− (RNAIVE− (st, at))

= �(t) ⋅ (cm(at) − 1) +

(
1 − P(ot+1 = 1|t + 1)

P(ot+1 = 1|t + 1)

)
�(t) ⋅ cm(at)
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This reward shaping function allows to assign unbiased negative rewards to unclicked doc-
uments so as to obtain an unbiased cumulative negative DCG ranking score.

3.2.5  Prior knowledge of propensity

All the unbiased reward shaping functions above require to know a priori the users’ pro-
pensities P(ot+1 = 1|t + 1) . Many recent works have considered estimating such propensi-
ties from historical click-logs (Agarwal et al., 2017; Fang et al., 2019; Agarwal et al., 2019) 
and during training (Ai et al., 2018; Wang et al., 2018b). We regard propensity estimation 
as being beyond the scope of this article and in our experiments we assume the propensi-
ties to be known. Nevertheless, for completeness, we also test how sensitive our method is 
to propensity mismatch (Sect. 5.5).

3.3  Learning with policy gradient

Following previous work (Wei et al., 2017; Yao et al., 2020), we learn the policy model 
parameters � with REINFORCE (Williams, 1992; Sutton & Barto, 2018; Sutton et  al., 
2000), a widely used policy gradient algorithm. In REINFORCE, the objective is to find an 
optimal policy that can maximize the expectation of cumulative reward from the beginning 
of each episode, J(�) = ��

[
Gt

]
 , where t = 0 . Here Gt is the discounted future cumulative 

reward starting from time step t, Gt =
∑M

m=t
�m−t ⋅ R(sm, am) , and M is the maximum depth 

of the ranking episode, and � ∈ [0, 1] is the discount factor. In previous offline LTR work 
(Wei et al., 2017; Jun et al., 2020), � has been set to 1 (maximum value), which results in 
G0 = �RDCG

 . This value results in the learning algorithm directly maximizing DCG. How-
ever, it is well known in RL that larger � values will lead the agent to care more about 

(12)

�o[�RIPS−
(s0,�, c)] = �o

��
t=0
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future rewards but at the same time to produce gradient estimations with significantly high 
variance, thus slowing down the learning speed (Jun et al., 2020; Sutton & Barto, 2018). 
In OLTR settings, however, learning speed is very important as it is highly entangled with 
user experience, as measured by the online performance of the ranker.

Hence, in order to reduce variance and speed up learning, we simplify MDP to Con-
textual Bandits (Jagerman et al., 2020; Adomavicius et al., 2005; Hofmann et al., 2011c) 
by setting � = 0 . This setting makes REINFORCE to choose at so as to maximize only the 
expectation of immediate reward R(st, at):

This setting actually does not change the fact that the objective is to optimize DCG. This is 
because maximizing the expected immediate reward at a time step t is equivalent to select-
ing the most likely relevant document from the candidate set Dt for the state st : this is 
guaranteed to have maximum expected cumulative reward for that ranking episode. Thus, 
it is safe to ignore future rewards in this case. In Sect. 5.1, we empirically show that � = 0 
enjoys a much faster learning speed than other settings, without any loss in final conver-
gence. It is important to note that the above is not true for tasks such as search result diver-
sification, since greedily choosing the most relevant document at each rank position may 
cause lower final ranking scores (Feng et al., 2018). Thus, we use the full MDP algorithm 
for this special situation.

Following the standard policy gradient practice (Wei et  al., 2017; Sutton & Barto, 
2018), we estimate gradients with Monte Carlo sampling and the gradient ∇�J(�) can be 
calculated as:

Intuitively, the gradients will update the ranker parameters towards the actions that yield 
the highest immediate reward R(st, at).

The complete procedure of ROLTR is described in Algorithm 1. At each ranking epi-
sode i, i.e., at each round of user interaction (line 2 for-loop), the search engine receives 
a query qi and the initial candidate document set D0 is generated (line 3). Then the algo-
rithm first draws an action (document) from the distribution created by the current policy 
(line 6). Then, the selected action, the state information, and the corresponding document 
are recorded (line 7) and the environment moves to the next state (line 8). The same proce-
dure is repeated for the next rank positions, until the algorithm reaches the maximum depth 
for the ranking (line 5 for-loop). After finishing ranking, the final result list is shown to the 
user, who provides feedback to the search engine in the form of click labels (line 10). Next, 
for each recorded state-action pair (line 11 for-loop), the gradient is calculated (line 13) 
and the current policy is updated at the end of each ranking episode (line 15).

(13)J(�) = ��

[
R(st, at)

]

(14)∇�J(�) = R(st, at)∇�log(�(at|st, �))
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3.4  Guarantee of Unbiasedness for ROLTR

ROLTR has two main parts: the learning part (Sect.  3.3), which uses the REINFORCE 
algorithm, and the unbiased reward shaping part (Sect.  3.2). The theoretical guarantees 
of REINFORCE are well studied in reinforcement learning, including the guarantee that 
the gradient estimate is unbiased with respect to maximizing the expected rewards (Sut-
ton & Barto, 2018). However, if the rewards are biased (which are when the naive reward 
function is used), then the learning algorithm is biased. This is where the second part of 
ROLTR comes into play: the unbiased rewards shaping functions guarantee the reward sig-
nals assigned to REINFORCE are unbiased with respect to position bias (mathematical 
proof in Eq. 12). Thus, the update gradients estimated by ROLTR are guaranteed to maxi-
mize unbiased expected rewards, and thus the gradient estimation is unbiased with respect 
to position bias.

4  Empirical evaluation

To study the effectiveness of ROLTR, we designed a number of empirical experiments 
aimed to answer the following research questions: 

RQ1  How does the reward discount factor in ROLTR affect gradient variance and final 
convergence (i.e., the offline nDCG score on the test dataset)?

RQ2  How do the unbiased reward shaping functions of ROLTR impact performance?
RQ3  How does ROLTR compare in terms of convergence and learning speed against 

current representative OLTR methods?
RQ4  Does ROLTR deliver better user experience than current OLTR methods, i.e., 

higher online nDCG?
RQ5  How sensitive is ROLTR to propensity mismatch?
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4.1  Datasets and synthetic data generation

We consider three benchmark datasets that are commonly used to evaluate OLTR (Zhuang & 
Zuccon, 2020; Schuth et al., 2015; Oosterhuis et al., 2016; Oosterhuis & de Rijke, 2018; Wang 
et al., 2019) and CLTR (Jagerman et al., 2019; Ai et al., 2018; Joachims et al., 2017): MSLR-
WEB10K (Qin & Liu, 2013), Yahoo! Webscope (Chapelle & Chang, 2011), and Istella (Dato 
et al., 2016). MSLR-WEB10K contains 10,000 queries and 125 retrieved documents on aver-
age; documents are represented by 136 features. Yahoo! is a bigger dataset, with 29,921 que-
ries and an average of 23.7 documents per query, represented using 700 features. Istella is 
the largest dataset we consider, with 33,118 queries and an average of 315 documents per 
query, represented by 220 features. Query-document pair relevance labels for all datasets are 
recorded on a five-point scale from not relevant (0) to perfectly relevant (4) and have been split 
into training, validation and test sets (according to the standard splits in the datasets). Queries 
in the three sets are disjoint. We use the training set to train the rankers, the validation set to 
tune the hyper-parameters, and the test set to evaluate the rankers’ performance.

To avoid hurting user experience, it is common for research in OLTR and CLTR to simu-
late users’ clicks by relying on the relevance labels recorded in the datasets (Zhuang & Zuc-
con, 2020; Schuth et al., 2015; Oosterhuis et al., 2016; Oosterhuis & de Rijke, 2018; Jagerman 
et  al., 2019; Joachims et  al., 2017; Vardasbi et  al., 2020). This also allows to fully control 
users’ biases and noise so that algorithms can be tested under different, controllable condi-
tions. Queries are uniformly sampled from the dataset (sampling query IDs). The candidate 
document set associated with the query ID is provided by each dataset. Then OLTR algo-
rithms generate a result list of documents to display. Clicks are simulated based on two fixed 
variables: the click probability and the position bias.

The click probability is the probability of a user clicking on a document after observing it. 
This probability is conditioned on the document’s relevance label. Following previous OLTR 
work (Oosterhuis & de Rijke, 2018; Zhuang & Zuccon, 2020; Hofmann et al., 2011a, 2013; 
Oosterhuis et al., 2016), we set two types of click behaviour: perfect and noisy. The click prob-
ability of the perfect click behaviour is proportional to the relevance level of the documents, 
and has 0 probability for non-relevant documents. This simulates an ideal user that is able to 
always determine the relevance of a document in the SERP. The noisy click behaviour mim-
ics instead a realist behaviour on SERPs by assigning a small click probability to non-rele-
vant documents and a small skip probability to relevant documents. Table 1 provides the click 
probabilities for the two user models.

Position bias is modelled by the document observation probabilities; we assume the obser-
vation probabilities only depend on the rank position of the document and set these probabili-
ties to:

(15)P(ok = 1|k) =
(
1

k

)�

Table 1  Click probabilities for 
different user behaviours

P(c = 1|o = 1, rel(d))

rel(d) 0 1 2 3 4

perfect 0.0 0.2 0.4 0.8 1.0
noisy 0.4 0.6 0.7 0.8 0.9



399Information Retrieval Journal (2022) 25:386–413 

1 3

where k is the rank position and � is a parameter that determines the level of position bias. 
Following Joachims et al. (2017) and Jagerman et al. (2019), we set � = 1 . Thus, the prob-
ability of a click occurring on a document at rank k in the result list is:

4.2  Evaluation measures

We measure effectiveness using standard OLTR evaluation practice, which considers two 
aspects: offline and online performance.

Offline performance is the final convergence of the learned ranker. We evaluate this 
using the average nDCG@10 of the ranker over the queries in the held-out test-set across 
100, 000 impressions, as all rankers would have reached convergence at this point.

Online performance measures user experience during training. This is quantified by the 
nDCG@10 obtained by the rank list Li that the user observes in the training episode i, 
times a discount rate 𝜏 < 1:

The discount rate assigns less weight to the later impressions to reward OLTR algorithms 
that learn an effective ranker fast, so to limit the amount of low-quality user experience. 
As in previous work (Oosterhuis & de Rijke, 2018; Wang et al., 2019; Zhuang & Zuccon, 
2020; Hofmann et  al., 2013), we set � = 0.9995 : this means that impressions that occur 
after 10, 000 iterations have less than a 1% impact. We further note that, while this online 
performance measure aims to quantify the user experience during training, it only does 
so partially: the relevance of the results in SERP is in fact only one of the many aspects 
influencing user experience (Al-Maskari & Sanderson, 2010; Maxwell et al., 2017). These 
other aspects however are not measurable in the context of the typical simulated experi-
ments performed in OLTR research.

4.3  Experimental runs

We compare ROLTR to four OLTR baselines. First, the Dual Bandit Gradient Descent 
(DBGD) (Yue & Joachims, 2009) method is used as it is one of the standard and most 
influential algorithms for OLTR. This method uses interleaving for online evaluation, 
where only one candidate rank is compared to the production ranker at each update step.

The second baseline we consider is the Probabilistic Multileaving Gradient Descent 
(PMGD) (Oosterhuis et al., 2016), which has been reported to be the best traditional OLTR 
method that uses online evaluation with multileaving comparison (Oosterhuis & de Rijke, 
2018; Zhuang & Zuccon, 2020). For this baseline, we use the same hyper-parameters set-
tings reported in previous work (Zhuang & Zuccon, 2020), where the number of candidate 
rankers is n = 49 , the step size is � = 1 and learning rate is � = 0.01.

The third baseline we consider is Counterfactual Online Learning to Rank (COLTR) 
(Zhuang & Zuccon, 2020), which uses DBGD to update candidate rankers but is com-
bined with counterfactual evaluation. This method has been reported to be more effective 
than online evaluation based methods in terms of final convergence, but it does present an 

(16)P(ck = 1) = P(ck = 1|ok = 1, rel(dk))P(ok = 1|k)

(17)online_performance =
∑
i

� i ⋅ NDCG(Li)



400 Information Retrieval Journal (2022) 25:386–413

1 3

overall deterioration of user experience during the learning cycle. For this baseline, we use 
the best hyper-parameters from the original paper (Zhuang & Zuccon, 2020).

The last baseline we consider is the Pairwise Differentiable Gradient Descent (PDGD) 
(Oosterhuis & de Rijke, 2018), which represents the current state-of-the-art in OLTR. This 
method does not require online evaluation; instead, it directly optimizes a ranker using 
gradient descent, and its gradient estimations are unbiased with respect to document pair 
preferences inferred from user clicks. The comparison between ROLTR and PDGD is 
interesting because both methods use gradient descent but they differ in the way the unbi-
ased gradient estimation is computed. Following the original PDGD paper (Oosterhuis & 
de Rijke, 2018), we set its learning rate to � = 0.1.

ROLTR has two hyper-parameters: the reward function and the learning rate � . We 
study six reward functions in total: RIPS+ , RIPS− , RIPS+ + RIPS− (i.e. using both clicked and 
unclicked signal) and their corresponding unshaped naive reward functions. We set the 
learning rate � = 0.01 for MSLR-WEB10K and Istella, and � = 0.005 for Yahoo! (values 
tuned based on validation set).

To simulate selection bias, we set M = 10 to only display 10 documents in the result 
lists for all experimental runs. For fair comparison, all methods are used to optimize a lin-
ear ranker. In order to measure statistically significant differences between methods, all 
runs are repeated 15 times spread evenly over the available dataset folds with different ran-
dom seeds. The results are reported and compared using averaged performance and the 
two-tailed t-test.

In addition to comparing ROLTR with the other OLTR baselines mentioned above, we 
also compare our method against the MDPRank trained using full information, i.e., the 
offline LTR settings with actual relevance labels. This is to be thought of as the skyline for 
ROLTR as this method is built on MDPRank but training in ROLTR occurs with partial, 
noisy information (user clicks). For MDPRank, we use the experiment settings from the 
original paper (Wei et al., 2017).

5  Results

5.1  RQ1: Impact of the reward discount factor

To answer RQ1, we study the reward discount factor � (set to 1 in previous work (Wei 
et al., 2017). As discussed in Sect. 3.3, we expect that setting � = 0 will lead to smaller var-
iance in gradient estimation and a consequent speed up of training, without loss in terms of 
final convergence.

To confirm this assumption, in this section we empirically investigate the convergence 
of the learned rankers with different values of � . In this study, we use the reward func-
tion RNAIVE+ and RIPS+ , and simulate the user propensity with � = 1 . We report results on 
MSLR10k. Figure 2 illustrates the offline nDCG@10 learning curves obtained throughout 
the training process. The plots clearly show that the learning curves obtained when � = 0 
(blue curves) is always above that associated with other � values, for both reward functions 
and both click settings. For naive reward and noisy click setting, rankers trained with lower 
value of � achieved higher offline nDCG@10 score at the point of 100,000 impressions. 
This indicates that ROLTR learns fastest when � = 0 . On the other hand, ROLTR con-
verges slower when � increases, and when � = 1 (red curves) the convergence speed is the 
slowest. Interestingly, unbiased reward function RIPS+ seems more sensitive to � than the 
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naive reward function RNAIVE+ . Although RIPS+ has faster learning speed than RNAIVE+ when 
� is small (e.g., � = 0, 0.3, 0.5 ), the learning speed decreases dramatically when � is large, 
and RIPS+ even fails to converge at 100,000 impressions under perfect clicks. We also stud-
ied the convergences of ROLTR with the RIPS+ reward function and � = 0, 0.5, 1 for long-
term impressions (1,000,000 impressions). These results are presented in Fig. 3. Similar to 
the trends in Fig. 2, larger � values exhibit slower convergence and fail to converge to the 
same nDCG value as when � = 0 , even after performing one million impressions. This is 
due to the IPS significantly enlarging the click signal at lower ranks and this effect being 
cumulated to the rewards assigned to the clicks at higher ranks with large � , thus resulting 
in considerably larger variance.

Following Jun et al. (2020), we also directly compare the variance of the estimated gra-
dients when � = 0 , � = 0.5 and � = 1 for both naive and unbiased reward functions. For 
this, we calculate the variance of the gradient vectors at each training episode using the 
trace of the covariance matrix. We report the results for all runs on the MSLR10K in Fig. 4 
(along to those for � = 0.5 to show the overall trend for varying values between the two 
extremes). The variance from the noisy click runs is higher than that from the perfect click 
runs for all values of � and both reward functions. This indicates that strong click noise 
causes high variance in gradient estimations. Moreover, the variance recorded for � = 0 is 
almost half that recorded for � = 1 , for both noisy and perfect clicks and both reward func-
tions. This finding agrees with the reinforcement learning practice: smaller discount factors 
always result in lower gradient variance. When comparing RNAIVE+ and RIPS+ , we notice that 
RIPS+ yields almost 10 times larger variance than that of the same setting for RNAIVE+ . This 
explains why RIPS+ is more sensitive to � and larger � significantly slows down the learning 
speed, as shown in Fig. 2.

In reinforcement learning, it is well known that � controls the trade-off between vari-
ance and final convergence. Larger values of � result in higher final convergence at the 
expense of higher variance (thus slower learning speed), and vice versa: smaller values 
result in lower variance (faster learning speed) but suboptimal convergence. However, in 
OLTR, our experiments show that optimizing the expected immediate reward (i.e. � = 0 ) 

Fig. 2  Offline nDCG@10 score of ROLTR with different reward discount factor � . (MSLR10K dataset)
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will not hurt the final convergence at least after 100,000 impressions: the optimal policy 
learned with � = 0 is equal to the optimal policy learned with � = 1 , which is maximizing 
the DCG score of the ranking. We further note that previous work that formalizing LTR as 
an MDP shows high variance in gradient estimation (Wei et al., 2017) and that recent work 

Fig. 3  Long-term offline nDCG@10 score of ROLTR with different reward discount factor � . (MSLR10K 
dataset, reward function: R

IPS+
)

Fig. 4  Average variance of the gradient vector for each sampled episode. Error bars correspond to the 95% 
confidence intervals. (MSLR10K dataset)
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has attempted to fix this issue for offline LTR (Jun et al., 2020): setting � = 0 can be con-
sidered a simpler way to fix this problem. We believe this insight may have positive uptake 
for offline LTR.

With respect to RQ1, then, setting � = 0 would not hurt the offline performance (con-
vergence) of the learnt ranker, while delivering lower gradient variance than when � = 1 . 
Hence, we set � = 0 in the remaining experiments.

5.2  RQ2: Impact of reward shaping functions

To answer RQ2, we consider the impact of different reward shaping in ROLTR. Figure 5 
reports the offline performance of ROLTR with different reward functions over 100, 000 
impressions on the MLSR-WEB10K dataset. For both noisy and perfect click settings, 
all IPS reward functions outperform their naive versions in terms of learning speed. This 
means that it is important to de-bias the otherwise biased reward shaping function. In addi-
tion, we observe that ROLTR with RIPS+ + RIPS− and RNAIVE+ + RNAIVE− converges faster 
than when only using positive or negative reward functions. This is under both click set-
tings, and it suggests that leveraging both clicked and unclicked signals is beneficial. This 
phenomenon is however less obvious with noisy clicks due to noisy clicks decreasing all 
the rankers’ performance, thus resulting in worse and closer nDCG@10 scores. On the 
other hand, when noisy clicks are considered, RIPS+ and RIPS− have a very similar learn-
ing curve; while, in the perfect click settings, RIPS+ converges much faster than RIPS− . We 
explain this difference of behaviour between perfect and noisy click settings as follows. 

Fig. 5  Offline nDCG for ROLTR when different reward shaping functions are used (MSLR10K dataset)
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In the perfect click setting, RIPS+ only uses signal from the clicked documents, which are 
relevant documents only in this click setting. RIPS− instead also exploits signal from not-
clicked documents (it down-weights this signal), which are non-relevant documents only in 
this click settings – this however is a worse signal than that from relevant documents only 
( RIPS+ ). Thus, it is logical to see RIPS+ performing better (faster learning curve) than RIPS− . 
In the noisy click setting, however, the signals exploited by RIPS+ and RIPS− are similar: 
while still RIPS+ only uses clicked documents (while RIPS− also uses not-clicked), in the 
noisy click setting both relevant and non-relevant documents are clicked. This therefore 
reduces the differences in performance observed between RIPS+ and RIPS−.

When studying the final convergence at 100,  000 impressions, we do not record sig-
nificant differences (i.e., p > 0.05 ) except for RNAIVE− . This exception can be explained as 
RNAIVE− only assigns biased negative rewards to unclicked documents and as result, in this 
case ROLTR just aims to avoid selecting documents that give low rewards, but it ignores 
valuable documents.

With respect to RQ2, then, we found that using unbiased reward shaping functions to 
reshape naive rewards make ROLTR converge faster (i.e. it requires less impressions). Spe-
cifically, the use of both unbiased positive and negative reward functions make ROLTR 
converge the fastest. Hence, in the remaining experiments, we set RIPS+ + RIPS− as reward 
function.

The fact that biased rewards do not change the final performance but slow down con-
vergence may seem counter-intuitive at first. In fact, in CLTR studies, the biased learning 
objective results in a local optimal for the final convergence (Joachims et al., 2017). How-
ever, this may not be the case for OLTR. This is because CLTR experiments use a logging 
ranker to collect clicks and then train a new ranker with the click log: thus the rank of a 
document is decided by the logging ranker and has been fixed in the log. In OLTR settings 
like those used here, instead, the deployed ranker is interactively updated after each ses-
sion: this means every document has a chance to be ranked at top of the displayed rankings 
hence be observed: these online interventions can eliminate position bias. However, this 
does not come for free, as it requires a large number of interactions to eventually obtain a 
good convergence. This is exactly what ROLTR attempts to solve: reduce the number of 
interactions to reach convergence. ROLTR in fact is the first OLTR algorithm that directly 
de-biases user position bias, with the results above showing that it can significantly speed 
up learning (this in turn will translate in better user experience, see Sect. 5.4).

5.3  RQ3: Final convergence (offline nDCG)

To answer RQ3, we compare the offline performance of the learned rankers over 100, 000 
impressions. Figure 6 reports the learning curves for different methods. COLTR is clearly 
better than PMGD and DBGD in terms of learning speed and final convergence across 
almost all datasets: this is similar to previous findings (Oosterhuis et  al., 2016; Zhuang 
& Zuccon, 2020). The gradient descent based methods (ROLTR and PDGD) significantly 
outperform candidate ranker sampling based methods (DBDG, PMGD and COLTR), ren-
dering DBGD based methods outdated.

On the other hand, ROLTR and PDGD have similar learning curves across all three 
datasets. This is especially the case when perfect clicks are used. The final convergence of 
the two methods across all datasets and click settings is not statistically significantly dif-
ferent ( p > 0.05 ). However, when noisy clicks are considered, we find that ROLTR has a 
faster learning speed at the beginning of training. Figure 7 considers the learning curves for 
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Fig. 6  Offline nDCG@10 for OLTR methods and MDPRank under noisy and perfect clicks
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the early impressions (first 10, 000) when noisy clicks are used. This figure clearly shows 
that the learning curves of ROLTR are almost always above other OLTR baselines at early 
impressions (except for the first 3,  000 impressions on MSLR10k, for which PMGD is 
best).

With respect to RQ3, then, we conclude that, when clicks are noisy, the learning speed 
of ROLTR is faster than PDGD in the early stage of training.

Finally, comparing the final convergence of ROLTR with the effectiveness of the offline 
MDPRank (trained with relevance labels and thus indicating skyline effectiveness), we can 

Fig. 7  Offline nDCG@10 for the first 10,000 impressions (noisy clicks)
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clearly observe that ROLTR’s effectiveness is at par to that of MDPRank, when the perfect 
click setting is used (Fig. 6). Recall that the perfect click setting still exhibits position bias. 
This findings empirically demonstrates the unbiasedness of ROLTR. However, when noisy 
clicks are used for ROLTR, then it’s performance is sensibly lower to that of the offline 
MDPRank, showing how much noise in the click signal hurts performance, compared to 
perfect relevance labels.

5.4  RQ4: User experience during training (online nDCG)

To answer RQ4, we consider the quality of the experience users withstand while rankers 
are trained (online nDCG). Table  2 reports the online performance of each method. As 
expected, online NDCG@10 scores obtained when learning from perfect clicks are higher 
than for noisy clicks, suggesting the latter hurt user experience. Although COLTR has 
better offline performance than online evaluation based methods, it does lead to a worse 
user experience during the learning phase. This indicates that using counterfactual evalu-
ation for candidate ranker comparison requires a lot more exploration. These findings are 
in agreement with our early findings (Zhuang & Zuccon, 2020). We also find that online 
evaluation based methods are significantly worse than ROLTR and PDGD ( p < 0.01 ) for 
both perfect and noisy clicks, agreeing with the offline nDCG learning curves (Fig. 6). This 
is because ROLTR and PDGD assemble result lists by sampling documents from a softmax 
probability distribution, while online evaluation based methods use interleaving or multi-
leaving to create these lists. This suggests that online evaluation based methods perform 
more exploration, thus hurting user experience more.

When comparing ROLTR and PDGD, we find that ROLTR obtains the best average 
online performance across all datasets under noisy clicks (agreeing with the learning 
curves in Fig. 7 for offline nDCG). Even for perfect clicks, for which the offline learning 
curves of ROLTR and PDGD are similar, ROLTR does statistically significantly outper-
form PDGD on MSLR10K and Istella ( p < 0.05, p < 0.01 respectively). There are no sta-
tistically significant differences between ROLTR and PDGD on Yahoo! ( p > 0.05 ). This 
may be because the average proportion of irrelevant documents for each query is small 

Table 2  Online nDCG@10. 
Bold values indicate the highest 
average performance.

Bold values represent the best value for each dataset/click setting
Significant gains and losses of ROLTR over PDGD are marked by ▵ 
( p < 0.05 ) and ▴ ( p < 0.01)

Clicks Algorithm MSLR10K Yahoo! Istella

Perfect DBGD 519.99 1165.11 510.34
PMGD 545.22 1191.26 564.58
COLTR 448.65 1121.92 348.15
PDGD 579.22 1310.99 741.45
ROLTR 587.46 ▵ 1302.11 808.66▴

Noisy DBGD 477.29 1116.89 408.09
PMGD 535.42 1137.39 426.77
COLTR 431.27 1105.05 238.30
PDGD 516.77 1227.28 481.85
ROLTR 543.28 ▴ 1238.10 654.04▴
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(21.92%), and thus it may be less likely the methods perform a ranking error, making them 
hard to distinguish. To conclude, with respect to RQ4, we found that ROLTR delivers the 
best user experience among the investigated methods.

5.5  RQ5: Sensitivity to propensity mismatch

To answer RQ5, we investigate the sensitivity of ROLTR to mismatched user propensity. 
Our previous experiments, in fact, assumed that the user propensity is known a priori and 
used the true propensity to obtain the unbiased rewards. However, this assumption does not 
always hold true in practice, as the user propensity could be overestimated or underesti-
mated for various reasons (Joachims et al., 2017).

Figure  8 shows the offline nDCG@10 of ROLTR under different propensity values � 
and for different click settings. When � = 0 , ROLTR assumes no user position bias and 
the unbiased reward function RIPS reduces to RNAIVE . On the other hand, � = 1 is the same 
propensity used to simulate clicks, and thus the propensity assumed by the ranker and that 
seen in the clicks are the same. Note that when simulating the user, we always assume the 
user has propensity � = 1 (while instead we change ROLTR’s propensity value).

From Fig. 8 we can observe that, in the noisy click setting, an underestimation of pro-
pensity ( 𝜂 < 1 ) leads to a similar final convergence as that obtained when the true propen-
sity is considered. In fact, when � = 0.5 we record a higher final convergence. However, 

Fig. 8  Offline nDCG@10 for ROLTR when different prior propensities are used (MSLR10K dataset)
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when the propensity is overestimated ( 𝜂 > 1 ), both learning speed and final convergence 
become much worse. A similar behaviour has been found in CLTR and relates to the large 
variance introduced by the extreme IPS weights (Jagerman & de Rijke, 2020): Because of 
the overestimated propensities, the IPS weights will be much bigger than those of the true 
propensity, resulting in a large amount of variance in the gradient estimation, thus hurting 
the final performance. There are many ways to prevent this from happening, e.g., ‘propen-
sity clipping’ which trades-off bias against variance.

On the other hand, under perfect clicks, the final convergence of all propensity priors is 
similar, except for the extremely overestimated propensity ( � = 2.0 ). In fact, in the perfect 
setting the main difference is with respect to the learning speed: overestimated propensities 
converge faster than underestimated propensities.

With respect to RQ5, then, we conclude that, when clicks are perfect, ROLTR is not 
sensitive to propensity mismatch in terms of final convergence; but when clicks are noisy, 
only underestimated propensities are not sensitive while overestimated propensities will 
hurt both the final convergence and learning speed.

6  Conclusion

We proposed a novel OLTR algorithm, ROLTR, which formalises OLTR as an MDP rank-
ing problem and uses reinforcement learning with unbiased reward shaping functions to 
directly optimize an IR metric. In contrast to traditional online evaluation based meth-
ods and the current state-of-the-art PDGD method, ROLTR does not fully rely on online 
interventions to overcome user position bias. Instead, ROLTR directly uses the IPS reward 
shaping functions to de-bias rewards given by the environment which can be further used 
to guide gradient estimation. As a result, the gradient calculated by ROLTR is unbiased 
with respect to position bias. In order to accelerate the learning speed and obtain better 
user experience, we first simplified the MDP ranking by setting the reward discount factor 
� to 0, which we empirically confirmed it provides a lower gradient variance without hurt-
ing final convergence. Furthermore, to fully leverage user click feedback in each training 
episode, we introduced a negative IPS reward shaping function for ROLTR which provides 
additional unbiased reward learning signal from unclicked documents. We have proven that 
the rewards reshaped by the negative IPS reward shaping function are also unbiased with 
respect to position bias. Our experimental results show that ROLTR achieves state-of-the-
art offline performance requiring less user interactions, which results in considerably better 
user experience (online performance) over other OLTR methods.

Future work will be directed towards considering estimating user observation propen-
sity during training since our method requires propensity to be known a priori. Further-
more, other biases such as selection bias and other type of user behaviour signals, such as 
dwell time, mouse move, etc, could be modelled within ROLTR, potentially improving its 
performance. This could be achieved by simply changing the reward function while main-
taining other parts of the method unchanged. This makes ROLTR flexible and with plenty 
of room for further extension.
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