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Abstract
Clustering of the contents of a document corpus is used to create sub-corpora with the 
intention that they are expected to consist of documents that are related to each other. 
However, while clustering is used in a variety of ways in document applications such as 
information retrieval, and a range of methods have been applied to the task, there has 
been relatively little exploration of how well it works in practice. Indeed, given the high 
dimensionality of the data it is possible that clustering may not always produce meaning-
ful outcomes. In this paper we use a well-known clustering method to explore a variety of 
techniques, existing and novel, to measure clustering effectiveness. Results with our new, 
extrinsic techniques based on relevance judgements or retrieved documents demonstrate 
that retrieval-based information can be used to assess the quality of clustering, and also 
show that clustering can succeed to some extent at gathering together similar material. Fur-
ther, they show that intrinsic clustering techniques that have been shown to be informative 
in other domains do not work for information retrieval. Whether clustering is sufficiently 
effective to have a significant impact on practical retrieval is unclear, but as the results 
show our measurement techniques can effectively distinguish between clustering methods.

Keywords  Evaluation of clustering · Effectiveness measures · Document clustering

1  Introduction

Clustering methods are used to partition sets of data items such that similar items will 
tend to be together. The use of clustering has a long history in computing, with the first 
applications in the 1950s (Bock 2007; MacQueen 1967; Forgy 1965), but the charac-
teristics of the problem have remained fairly consistent. In particular, in the forms of 
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clustering of interest in this paper the resulting sets of items (or clusters) are disjoint, 
and the items are described by high-dimensional vectors.

The best-known clustering methods were developed for a range of applications in 
different fields but have been applied in information retrieval (IR) over many decades. 
Early in the history of IR, in the context of less powerful computers with limited online 
storage capacity, some researchers argued that clusters could form the basis of search 
methods (Voorhees 1986). This work followed principles encapsulated in the cluster 
hypothesis, namely that ‘closely associated documents tend to be relevant to the same 
requests’ (Jardine and van Rijsbergen 1971; van Rijsbergen 1979).

While these approaches were not adopted in practical systems, use of clustering in IR 
has continued. Note that some work in the field considers clustering of a corpus, while 
other work considers clustering of search results; our interest in this paper is in the for-
mer, and in particular where the number of items is large, as a means of pre-processing 
a corpus prior to retrieval. The clustering methods used for collections are primarily 
based on k-means (Liu and Croft 2004; Kulkarni and Callan 2010; Xu and Croft 1999; 
Broder et al. 2014; Cleuziou 2008) but use is also made of hierarchical clustering (Liu 
and Croft 2004; Kulkarni et al. 2012; Pfeifer and Leidner 2019; Jardine and van Rijsber-
gen 1971; Voorhees 1986).

In this paper, we explore how the effectiveness of clustering of text collections might 
be measured. Despite the uses made of clustering, to our knowledge there has been no 
previous examination of extrinsic measures of clustering quality in the context of  IR, 
other than methods based on high-level manual topic labels, whose relationship to the 
needs of querying are arguable. Many measures have been proposed for clustering in 
general (Arbelaitz et al. 2013), but whether they are successful for text documents has 
not been tested, while there have been just a couple of methods for smaller collections 
or that rely on manual labelling (De Vries et al. 2012; Fuhr et al. 2012).

Key prior methods for measurement of clustering in general are intrinsic, that is, 
they rely on information within the clustered items. They include Dunn’s index (Dunn 
1973), the Davies–Bouldin score (Davies and Bouldin 1979), and the Silhouette meas-
ure (Rousseeuw 1987). These contrast within-cluster and between-cluster distances, 
between centroids and between items in the clusters. We also propose and make use of a 
new, simple intrinsic technique, stability; if clustering is genuinely reflective of seman-
tic properties then independent clusterings—via different random seeds, or different 
methods—would be expected to be reasonably similar. All of these concern the internal 
structure of clusters, on the assumption that they will tend to be cohesive and have clear 
boundaries (Abraham et al. 2006).

Our first main contribution is to examine use of extrinsic techniques that are pertinent 
to IR: how the relevant documents for a query are distributed across clusters, and like-
wise the distribution across clusters of the documents retrieved in response to a query 
by a collection of systems. These measures are similar to those used as a benchmark for 
ranking of subcollections in distributed retrieval (Callan et al. 1995), but the purpose is 
different, namely to contrast the distribution of documents rather than the distribution 
of the clusters. A key additional factor is that we measure gain by comparison with an 
expected distribution given by random partitionings, as clustering into a small number 
of subcollections can give some degree of success by chance.

Stated concisely, then, our hypothesis is that relevance judgements from ad-hoc 
retrieval evaluation can be used as the basis of extrinsic measures of clustering qual-
ity. We do not claim that these measures are startling or profound, but they are the first 
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proposed basis for extrinsic assessment of the quality of clustering of large and unla-
belled document collections.

In our experiments, we use several existing and new measures to examine clusterings. 
By deliberately degrading the clustering algorithm we create a tool for seeing whether the 
loss of performance is reflected in the measures. The results show that two well-regarded 
intrinsic measures for clustering in general do not yield meaningful results for  IR; the 
scores they report depend far more on the fidelity of the clustering to the item representa-
tion than they do to the quality of the clustering. Pleasingly, however, the results show that 
our proposed extrinsic measures do reflect the cluster quality. The richer the representation 
used to inform the clustering method, the better the score of the final result.

A secondary contribution of our work is examination of the extent to which standard 
clustering is indeed effective for IR tasks. The results show that clustering is somewhat 
effective: compared to the baseline or natural floor estimated by a random partitioning, 
there can be a significant reduction in the number of clusters that need to be inspected to 
access documents that are pertinent (relevant or retrieved) to a query. The extent of the 
reduction is dependent on collection- and task-specific parameters, but for some settings 
it is significant; in contrast to a plausible worst-case hypothesis, clustering does produce 
meaningful results.

2 � Background on Clustering

Clustering has been used in many tasks in computer science and other disciplines; early 
studies involving clustering were mainly in bioinformatics and astronomy (Johnson 1967; 
Everitt et al. 2009). Three computing research fields where clustering is widely used are 
computer vision, for border and object detection tasks (Ester et al. 1996); machine learn-
ing, as an unsupervised approach to classification (Erman et al. 2006; Evans et al. 2011); 
and natural language processing, where for example it can be used to solve lexical ambigu-
ity (Schütze 1992). Such work has been a driver of innovation in clustering.

There has been interest in clustering in IR for a range of applications. Early investigation 
of clustering in IR was encapsulated by the significance accorded to the cluster hypothesis, 
which was a central argument in a highly influential textbook (van Rijsbergen 1979).

However, there are counter-arguments to the cluster hypothesis. First, it does not neces-
sarily follow that co-membership in a cluster means that the items are more similar than 
they are to items in general. As dimensionality increases proximity can become increas-
ingly uninformative: an item can readily be similar to one neighbour in one set of dimen-
sions and similar to another on other dimensions. That is, two items in separate clusters 
might each have good similarity to their respective centroids, but nonetheless be more sim-
ilar to each other than they are to other items elsewhere in their clusters or indeed than they 
are to the centroids themselves; cluster boundaries are of necessity binary, but they may be 
arbitrary divisions through areas of ambiguity.

That is, it is possible that clustering of text is essentially spurious. In a space where the 
number of dimensions is so high that all objects might be at near-identical distances from 
each other, the outcome of clustering could primarily be dependent on marginal factors in 
weighting formulae and so on, and would not represent a semantically meaningful result. 
Our experiments explore this possibility.

Second, the proposal that the cluster hypothesis can form the basis of retrieval tends 
to imply that search topics also fall into a relatively small number of groups. If there are 
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many more groupings of search topics than there are of documents, then only some search 
topics—perhaps only an insignificant fraction—will be well supported by any given clus-
tering. (Our experiments illustrate that there is some level of misalignment between clus-
ters and queries, as in every query we examined the pertinent documents are spread across 
multiple clusters.) However, the cluster hypothesis does offer an aim for clustering: to co-
locate items that will be retrieved together and are of similar topic. Our discussion of meas-
ures of clustering is based on this aim.

The concept of using clustering as the sole basis of search has not been pursued in prac-
tice. However, it is cognate to the problem of distributed retrieval, in which search is across 
a collection of disjoint corpora (Callan et  al. 1995). It is also related to the concept of 
shards, which in some works are formed by clustering (Xu and Croft 1999; Kulkarni et al. 
2012).

Clustering continues to be applied in information retrieval and for Web information 
analysis. An example is hot-event identification in social media (Becker et al. 2010; Abdel-
haq et al. 2013; Li et al. 2012). This work aims at identifying the popular topics and shared 
interests over a platform by clustering texts and related contextual features. Li et al. pro-
pose a method to identify hot events on Twitter by applying Jarvis-Patrick clustering on 
tweet segments related to events; Abdelhaq et al. use keywords clustering followed by a 
scoring process; while Becker et al. create a feature space based on elements such as tags 
and location to learn a similarity metric for document clustering. In contrast to the early 
literature on clustering for IR, these methods are not limited to document retrieval.

Another application of clustering in IR is public opinion detection (Pal and Counts 
2011; Yang and Miao 2018). Pal and Counts apply probabilistic clustering over features 
representing authors extracted from both nodal and topical metrics, and retrieve a list of 
authors who are active in a given topic; Yang and Miao use expectation maximisation to 
cluster synonyms for the same feature of a product in users’ reviews and retrieve the gen-
eral opinion on different facets of a product. Spam detection likewise makes use of cluster-
ing in both content-based and link-based approaches (Spirin and Han 2012).

2.1 � Clustering Methods

A wide range of methods have been proposed for clustering of sets of data with high 
dimensionality, but only one is practical for large document corpora, k-means clustering, 
while hierarchical clustering can be used on smaller collections such as the set of docu-
ments that are relevant to a query. We introduce these below, and then discuss clustering 
methods for information retrieval.

K-means clustering. The clustering method most often used in IR is k-means clustering 
(Jain 2010). In this iterative approach, parameter k is the number of clusters. The initial 
step is a random choice of k items as seeds of k clusters. All other items are then assigned 
to the cluster based on least distance to the seed. In subsequent iterations, a centroid is 
computed for each cluster to be used as the reference point, and all items are then assigned 
to a cluster as before. The process stops when the centroids become stable at successive 
iterations, or when an iteration limit is reached.

Clustering methods such as k-means that use holistic properties are sometimes called 
top-down clustering. Refinements to k-means include k-value optimisation and succes-
sive partitioning of clusters (Kummamuru et  al. 2003; Lydia et  al. 2018; Modha and 
Spangler 2003). K-value optimisation is essential to tasks such as document grouping 
and document retrieval, because it should reflect the topical structure of the collection 
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and will influence perceptions of whether clusters reflect meaningful aggregations of 
material. There are many methods described in the literature for choosing an optimal 
value of k from the point of view of effectiveness (Larsen and Aone 1999). However, it 
is agreed that there is no generalised way to predict an optimal value for k prior to clus-
tering, since the document collections are usually unlabelled.

In the IR uses of clustering of which we are aware, the value of k in general seems to 
be predetermined, without explicit discussion of optimisation or consideration of alter-
natives, other than as an informal note that the value can be altered. The value chosen is 
generally in the range 10 to 100.

Elbow method. In this paper, we use the Elbow method (Thorndike 1953) for optimi-
sation of k. The aim of the Elbow method is to maximise k while keeping overfitting to a 
minimum. In the Elbow method, there needs to be a scoring function for evaluating the 
clustering result and a range of k values.

A variety of scoring functions are used in the Elbow method. We use within-clus-
ter sum of squared-error, here denoted W, a measure of the diversity of a set of items. 
For any clustering, as k increases, the average number of documents within clusters 
decreases. Considering the extremes, when k reaches the size of the whole corpus, over-
fitting exists in that cluster sparsity is at a minimum—there is only one document per 
cluster. On the other hand, if k is set to 1, then cluster sparsity is at a maximum and the 
clustering is not meaningful. Ideally, as k increases W decreases. At a certain point, 
the rate of decrease should slow down because the improvement in W contributed by 
increasing the number of clusters reaches a limit.

This turning point of the curve is the ‘elbow’. The value of k at the elbow is chosen. 
For clustering a collection of items D, the clustering is denoted as C, the clusters are 
denoted as ci , the centroid of ci as �� , and the Euclidean distance function as E. The 
value W for cluster ci is calculated as follows.

The W of a clustering C with k clusters is then W =
1

k

∑
ci∈C

Wci
.

Hierarchical clustering. The alternative to top-down is bottom-up, or agglomerative, clus-
tering; hierarchical clustering is arguably the best known in this family (Fung et al. 2003). 
The method does not assume a fixed number of clusters, but instead, initially each item is 
assumed to be in its own cluster; these are then progressively merged, forming a tree struc-
ture (Johnson 1967). At each step the two closest clusters are merged. The algorithm stops 
when the number of clusters is sufficiently small.

Hierarchical clustering has been proposed as a method for supporting browsing 
(Tombros et al. 2002), by locating documents that are related to a query and visualising 
the relationship between the documents retrieved and the query, providing an alterna-
tive to the usual mechanism of listing all relevant documents as a one-dimensional array 
(Abualigah 2019; Bharti and Singh 2015; Cutting et  al. 1992; Shafiei et  al. 2007). In 
effect this approach treats the query as a root of a taxonomy, where the leaves are groups 
of documents related to the query in different dimensions.

For a large collection in a high-dimensional space, hierarchical clustering is infea-
sibly expensive. Its sensitivity and lack of need for prior parameterisation make it an 
attractive choice for tasks such as clustering the results returned in response to a query, 

Wci
=

∑

��∈ci

E(��, ��)
2
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but for our task, where we anticipate at a minimum hundreds of thousands of docu-
ments, it cannot be readily used.

Clustering for IR. Much prior research on clustering for IR, even including recent work, 
only makes use of small sets of documents, without evidence that the methods could gener-
ate meaningful clusters from retrieval-scale corpora. Whether they can scale algorithmi-
cally is in some cases also open to question.

In early work, Jardine and van Rijsbergen (1971) discussed the feasibility of applying 
hierarchical clustering for retrieval on the Cranfield Aeronautics collection of 200 docu-
ments; more ambitiously, Voorhees (1986) studied hierarchical clustering using single 
linkage and complete linkage on a collection of 12,000 documents. More recent work 
such as that of Avrachenkov et al. (2008) uses clustering on collections of up to 12,300 
documents. While this work is designed to explore the effectiveness of the clustering 
methods for retrieval, they do not examine the challenges for scaling up to larger collec-
tions. A theme in such work is that the effectiveness of clustering is measured by how 
well the system works as a retrieval engine. For example, Jardine and van Rijsbergen 
(1971) use hierarchical clustering on a collection with 200 documents and 42 queries. 
For each query, a cluster is selected according to the search strategy, and precision and 
recall are calculated based on the documents in the cluster.

We note these works to illustrate the point that early research on cluster-based 
retrieval used small collections and the evaluation of clustering is different to ours; we 
study the feasibility of clustering rather than of retrieval. However, our extrinsic meas-
ures, being based on information associated with retrieval, can be seen as an adaptation 
and extension of these approaches.

Work on Web documents tends to use much larger collections (Kulkarni and Callan 
2010; Liu and Croft 2004; Leuski 2001). There are no proposed clustering algorithms 
in these papers, but the way they use clustering varies. Liu and Croft (2004) build lan-
guage models for documents in clusters generated by k-means and retrieval involves 
ranking of clusters. Kulkarni and Callan (2010) use a similar k-means method to that of 
Liu and Croft , except that they reduce computational costs by only clustering a sample 
of documents and projecting the rest of the collection to the clusters. Leuski (2001) uses 
hierarchical clustering and partition based on a threshold of cluster distance instead of 
the number of clusters. Again, these works do not make use of any measures specific to 
clustering, but rely on traditional measures of retrieval systems such as precision and 
recall.

An exception is Fuhr et al. (2012), which uses both k-means and hierarchical (agglom-
erative) clustering. They report that the latter is preferred, but restrict their attention to col-
lections of under 10,000 documents each; the question of scaling is not considered.

It is not evident from first principles that clustering techniques that are effective in gen-
eral will be successful for documents. Clustering rests on assumptions of proportionality 
and information density. For document collections, neither of these two assumptions may 
be valid. First, for any collection of substantive documents, the documents vary in length 
and type of content; information density does not have a simple relationship with document 
length. Clustering of such a vectorized document collection does not guarantee that docu-
ments with similar semantic meanings are in the same cluster and it cannot be assumed that 
the similarity of clusters’ structure is a reliable measure of the effectiveness of document 
clustering. Second, as discussed above documents that are in the same cluster may (in vec-
tor space) be further from each other than they are from documents in other clusters, and 
document clusters are not necessarily cleanly separated.
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Clustering was tested as a technique to increase the effectiveness of the SMART 
retrieval system (Salton 1971), where it was used to maximise term matching between que-
ries and documents. As discussed above, clustering was regarded as a core component of 
retrieval by van Rijsbergen (1979). However, other researchers later concluded that the per-
formance of document clustering was unreliable and mostly query-dependent (an outcome 
that we, in effect, re-examine in this paper). As noted by Willett (1988), the original clus-
tering procedures did not adapt well to document collections and sometimes even reduced 
the performance of document retrieval when using clustering.

In recent decades, when clustering is applied to document corpora, documents and cen-
troids are usually represented by feature vectors in which the features are normalised with 
standard TF-IDF weightings. Distance can then be computed using the Cosine measure 
(Croft et al. 2015), which is appropriate to this task because, in contrast to most current 
query similarity schemes, the two items whose distance is being estimated are treated 
symmetrically.

Kummamuru et al. (2003) proposed ‘fuzzy’ co-clustering of a document collection and 
keywords from the collection. In this work, there are several clusters as usual, but a docu-
ment may be assigned to multiple clusters with different priority. This is a transition from 
the traditional single cluster assumption to a ‘combination of topics’ assumption. How the 
effectiveness of such clustering might be measured is beyond the scope of this paper, but 
we note that assessment of it has challenges that are not present in standard, disjoint clus-
tering. Likewise, in light of the kinds of document description enabled by topic model-
ling (Wei and Croft 2006; Blei 2012; Ramage et  al. 2009), methods were proposed that 
combine traditional clustering with topic modelling to enable multiple cluster assignment 
for documents; see Pfeifer and Leidner (2019) for a discussion of single versus multiple 
class membership (Pfeifer and Leidner 2019). Another approach is to distinguish degree 
of membership in soft or fuzzy clustering (Dunn 1973; Bezdek et al. 1984) from multiple 
class membership.

In agreement with most of the authors of the above, it is our view that it is naïve to 
assume that documents can be easily assigned to a single cluster such that the cluster will 
contain documents of the same topic. Obviously, a document may contain paragraphs that 
belong to different topics, and it is plausible that humans will often disagree on what a 
document label from a fixed, small set should be. Also, while measurement of clustering 
can make use of human labels, it is not obvious from first principles that it is feasible to 
attach labels to documents that are likely to reflect their topic for retrieval purposes. Stud-
ies have shown that full text provides a much better basis for retrieval than does metadata 
(Hawking and Zobel 2007); it seems implausible that a simple one-dimensional labelling 
could reflect the richness of the ways in which documents are accessed.

Nonetheless, clustering continues to be used, and for that reason it is valuable to con-
sider how its effectiveness might be evaluated.

Pre-processing The clustering methods used for IR are adaptations of those developed for 
other domains, with modifications such as use of specific weightings and, as we now dis-
cuss, different approaches to pre-processing.

A key cost factor in clustering is the dimensionality of the data, which also influences 
effectiveness, as the boundaries of clusters can in principle become less distinct in high-
dimensional space. Dimensionality reduction can be valuable when some dimensions 
are highly correlated or very sparse, because in this context doing so will clarify collec-
tion structure (Weber et al. 1998); both correlation and sparsity are evident in document 
corpora.
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Options for dimensionality reduction in IR include feature selection, feature prun-
ing, and orthogonalisation methods such as use of word embeddings (Modha and Span-
gler 2003; Abualigah 2019; Liu et  al. 2015). Researchers have explored dimensionality 
reduction in order to speed up the clustering process for large data collections (Blott and 
Weber 2008; Cai et al. 2010; Shafiei et al. 2007; Weber et al. 1998; Xu et al. 2003). The 
approaches to dimensionality reduction can be summarised into two classes: feature selec-
tion and feature extraction (Liu et  al. 2005). Feature selection focuses on selecting from 
a range of existing features in a dataset, such as the words in a document collection. In 
contrast, feature extraction creates secondary features from original data and these features 
may not be interpretable by humans; examples include word2vec (Mikolov et al. 2013) and 
Hidden Markov Models (Panuccio et al. 2002).

In this work, both feature selection and extraction methods are used. For feature selec-
tion, we use a bag-of-words approach with only the commonest features retained, then 
assign either binary weights or weights based on a standard TF-IDF formulation. For fea-
ture extraction, we use word-embedding method doc2vec (Le and Mikolov 2014), which 
is an extension of word2vec that supports embedding of paragraphs. We also apply feature 
pruning to the chosen methods to control the number of features used in clustering.

3 � Background on Measurement of Cluster Quality

Our focus in this paper is on measurement of the effectiveness of clustering for information 
retrieval. We now introduce existing methods for measurement of clustering in general and 
on cluster measurement for IR.

As noted by Tomasini et al. (2016), ‘there is no unifying protocol for clustering evalua-
tion, so it is often unclear which quality index to use in which case’. Arbelaitz et al. (2013) 
compare 30 measures of clustering, some of which are close variants of each other. A simi-
lar study, on synthetic data and a smaller number of measures, was undertaken by Tomašev 
and Radovanović (2016). The experiments by Arbelaitz et  al. include results on 20 real, 
labelled datasets of up to 166 features and up to 2310 items—much smaller in both dimen-
sions than is the case for document collections, but in the absence of larger-scale evalua-
tions this work provides the best independent reference of which we are aware. These are 
intrinsic measures, that is, they rely only on properties of the items being clustered and do 
not make use of human labelling; they examine how cohesive clusters are and how well 
they are separated. In contrast, extrinsic measures use labels to consider properties such as 
cluster homogeneity or completeness.

To summarize the properties of intrinsic measures, Ben-David and Ackerman proposed 
four axioms for clustering measurements: isomorphism invariance, scale invariance, con-
sistency, and richness. Although these features are labelled as ‘axioms’, they note that the 
term is not being used formally, due to the incomplete definition of clustering. Here we 
consider only the families of intrinsic measures that Arbelaitz et  al. (2013) found to be 
superior in their experiments; it is unrealistic to expect ground truth of this kind to be avail-
able for large document collections. Specifically, we consider the Davies–Bouldin (DB) 
index (Davies and Bouldin 1979) and the Silhouette index (Rousseeuw 1987); these are 
explained below.

Following Arbelaitz et  al. (2013), we define a collection D as a set of N documents 
where each document d is denoted as a vector with F dimensions. A clustering in D is a set 
of k disjoint sets (clusters) that partitions D into k groups: C = {c1, c2,… , ck} where 
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∪c∈Cc = D and ci
⋂

cj = �,∀i ≠ j, 1 ≤ i, j ≤ k . The centroid of cluster c is the mean vector, 
� =

1

�c�
∑

d∈c � . Here, � is a vector representation of document d, and similarly for clusters. 
We denote the Euclidean distance between centroids of cluster ci and cj as E(��, ��) , and 
likewise between documents.

Abraham et al. (2006) proposed measurement of document clustering by the cohesion 
and separation of a clustering result; although the measurement technique is not novel 
to this work, it notes the need to evaluate the measurement of clustering for  IR. Their 
approach does not rely on labelling of documents. Instead, it measures the quality of clus-
tering by its internal structure. This evaluation metric rests on two assumptions. First, 
clusters should have a similar internal pattern to each other. That is, clusters should have 
similar size (within an order of magnitude), being neither dominant nor miniscule. Second, 
clusters should be well separated.

These are general principles for measurement of cluster quality. In general, cohesion can 
be defined in a variety of ways, including compactness (or equivalently density), the mean 
or median of within-cluster pairwise distances, or the maximum intra-cluster distance (or 
equivalently cluster diameter). The contrasting value separation is the distance between 
cluster centres.

The Silhouette index was found to be effective by Arbelaitz et al. (2013), and is reported 
in our experiments. First, two values ai and bi are required, where di ∈ cluster c. The value 
ai is the average intra-cluster distance from document di and bi is the smallest average dis-
tance to the documents in any other cluster c′.

The Silhouette value si for a document di can then be calculated as follows.

Then the Silhouette index, sc, is the average of the Silhouette value for all documents.

For the Silhouette index, a score close to 1 is a good result; negative scores occur when the 
clustering is highly disordered. A score close to 0 means that the measure has not found 
overall structure.

Arbelaitz et al. (2013) similarly found that the Davies–Bouldin (DB) index was strong. 
It is defined as a ratio between the cluster scatter and the cluster’s separation; a lower value 
will mean that the clustering is better. Under a formulation based on Euclidean distance, 
Si is a measure of scatter within the cluster; it is the distance between documents and the 
centroid of the cluster.

ai =
1

|c| − 1

∑

dj∈c,j≠i

E(��, ��)

bi =min
c�≠c

1

|c�|
∑

dj∈c
�

E(��, ��)

si =

{
1 − ai∕bi if ai ≤ bi
bi∕ai − 1 if ai > bi

sc =
1

N

N∑

i=1

si

Si =
1

|ci|
∑

dj∈ci

E(��, ��)
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Let Ri,j be

This is a measure of the amount of scatter within two clusters normalised by the distance 
between their centroids, and thus is a measure of the extent to which the clusters are sepa-
rated. Then the Davies–Bouldin index is

Smaller values for the DB index indicate better clustering quality. We report results with 
both the DB index and the Silhouette index in our experiments.

As discussed by Abualigah (2019), some measures lack robustness for clusters of vary-
ing density and sizes. It is more robust to use external measurements to evaluate the cor-
rectness of clustering results based on ground truth, but as noted above the ground truth is 
not always available for document collections and labelling is subjective.

Another approach to examination of cluster quality is to use stability, that is, the extent 
to which the same clusters emerge regardless of method (Hennig 2007). In this work a 
variety of perspectives on stability are suggested, including that subsets of the collection 
should—if the clusters are meaningful—yield the same cluster structure as the full collec-
tion. However, the paper notes that stability by itself does not imply that the clusters are 
meaningful. The methods proposed by Hennig are not scaleable to our data; we explore a 
simpler approach to stability, as discussed later.

To our knowledge there has been only limited use of these measures for clustering effec-
tiveness in IR or on text in general. Song and Park (2006) report use of the DB index as 
an optimisation target on a collection of 100 documents, but investigated how quickly the 
target was reached rather than how meaningful the clusters were.

Measurement of cluster quality on text (though not necessarily for IR) can be based on 
how well clusters match extrinsic, exhaustively curated high-level topic labels on the docu-
ments. As discussed earlier, we regard such labels as of questionable value; manual label-
ling of documents is not necessarily reflective of relevant to search (Hawking and Zobel 
2007). However, it is an application of text clustering, as illustrated for example by Inga-
ramo et al. (2008) and Ingarmo et al. (2009), who seek to validate the reliability of several 
measures including the DB and Silhouette indexes on labelled text. On the assumption that 
the F-measure of the labels is a robust extrinsic assessment, they find a weak correlation, 
with wide spread, with these measures. In a similar vein, Zhang et al. (2015) use an intrin-
sic measure of clustering to generate labels for new text, again finding weak correlations. 
The implications of this work for IR are unclear.

Similar work that is more directly related to ours is reported by De Vries et al. (2012). 
The focus of their work is to show how divergence from a random baseline (which we call 
a natural floor or ceiling) on labelled text data can be assessed via labels; in this case as in 
the others discussed above these labels are topics, but here the labels are somewhat richer 
as multiple labels are allowed on each document. However, also as in other work reviewed 
above, the task for which the clusters are to be used in unspecified.

A richer investigation of measures of clustering for IR was undertaken by Fuhr et al. 
(2012), who proposed approaches based on queries and corresponding sets of documents, 
and reported results both for instantiations of these measures and for the intrinsic measures 

Ri,j =
Si + Sj

E(��, ��)

DB =
1

k

k∑

i=1

max
i≠j

Ri,j
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reported above. To our knowledge this is the only prior work comparing measures for IR. 
They note the possibility of using a query log and relevance judgements (amongst sev-
eral other  options), foreshadowing our approach but without consideration of how these 
approaches might differ in terms of validity.

Fuhr et al.’s experiments report what is in effect an intrinsic measure: the sets of doc-
uments are those that match ‘keyphrases’ extracted from the collection (which they call 
queries although they are not queries in the usual sense). This is equivalent to using one 
document representation for clustering and another for measuring the clustering. As only a 
single representation is used, and thus a single result for each measure on each collection, 
the results do not indicate whether the measures are robust; Fuhr et al. report that the Dunn 
index works well, for example, but this conclusion is based on high-level topic labels, in 
the same way as the work above, and thus has the same potential drawbacks. Another issue 
in this work is that the proposed measure requires a calculation that is quadratic in the size 
of the collection.

4 � Clustering Measurement for IR

We now present our proposals for measurement of clustering quality in IR. In some appli-
cations of clustering, such as face recognition and genome sequencing, the quality of clus-
tering can be validated by direct evidence because the datasets are quantitative and inter-
pretable. However, document clustering in general does not have a direct measurement, and 
as discussed above labelling is neither feasible nor, necessarily, sufficiently meaningful—a 
cluster could easily be semantically plausible to a user but inconsistent with a fixed, ‘uni-
versal’ labelling. We therefore propose a collection of approaches to measurement, to offer 
a multi-faceted evaluation of clustering effectiveness.

After discussing cohesion and separation, we propose a new general measure of cluster-
ing behaviour, stability. We then describe our main contributions, measures catering to IR, 
based on relevant and retrieved documents. While such approaches have previously been 
speculatively noted as an option, to our knowledge, this is the first practical exploration and 
the first on a large collection.

4.1 � Cohesion and Separation

Cohesion and separation were discussed in the previous section; the DB and Silhouette 
indexes are based on these properties. These are measures of intra-cluster and inter-cluster 
similarity. For clustering of documents with k-means, an obvious confound in using these 
measures is that separation of intra-cluster and inter-cluster similarity is the optimisation 
target for the clustering method, and a ‘good’ result could mean only that the algorithm 
had converged. Since k-means clustering depends on minimisation of Euclidean distances 
around centroids, if it is working it is expected to lead to clusters of (broadly) spherical 
shape and of similar size.

A degree of independence can be obtained by relying on different vectorisations of the 
data being clustered; for example, the distances used for measurement of cohesion and sep-
aration could rely on richer document vectorisations, while, for in-practice feasibility, the 
clustering might make use of some form of reduced dimensionality. Clearly, however, there 
will be correlation that undermines their value as measures.
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They are not useless, however. It is possible that as collection size increases the 
quality of clustering will degrade, as the space becomes more dense; such degrada-
tion should be visible in measurements of cohesion and separation, or in convergence 
between measurement on a clustering and measurement on a random partition of 
the data, as discussed further in Section  4.5. Also, we have observed that the high 
dimensionality of clustering means that it is plausible that the results are essentially 
meaningless. If clustering acts as a completely random process, there should be no 
difference between the distribution of intra-distance and inter-distance values for any 
clustering configurations.

4.2 � Stability

If a document collection consisted of k discrete, well-distinguished groups of themat-
ically consistent documents, then it seems plausible that each run of a suitable and 
correctly parameterised algorithm would produce near-identical results. If instead the 
collection was homogeneous, each run—assuming that the clustering algorithm is not 
completely deterministic—would produce a completely different outcome; and like-
wise a poor algorithm would produce different outcomes. It is this variation in out-
come that we seek to measure as stability.

Stability, an intrinsic measure (Hennig 2007), has not to our knowledge previ-
ously been proposed as a mechanism for assessing the reliability or value of cluster-
ing of documents. We propose a simple measure of stability as an further perspective 
on clustering of document collections, but note that Hennig and others explore richer 
definitions.

Considering a clustering as a set of subsets, and assuming the number of clusters 
k to be the same in each case, this is a measure of overlap between the subsets. There 
are several different approaches to such a calculation, with different justifications. We 
measure stability S as follows: 

1.	 The two clusterings are C1 = c1
1
,… , c1

k
 and C2 = c2

1
,… , c2
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.
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|
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i
∪c2

j
| , over all 1 ≤ i, j ≤ k.

3.	 Repeating k times, choose the largest value of oi,j such that neither i nor j has previously 
been selected; the average S of these k values is the stability.

The k repetitions are required here to ensure that all clusters are considered.
This measure aligns the clusters according to their overlap, and has a high score (in 

the range 0.0–1.0) when many of the clusters are similar. It is a micro-average, though, 
with the limitation that small similar clusters can conceal poor overlap in large clus-
ters. An alternative is a macro-average, where the measure is 

∑
�c1

i
∩ c2

j
�∕N  , the total 

number of documents in aligned clusters divided by the total in the collection; this can 
show good overall overlap but a single large, well-overlapped cluster can conceal poor 
performance in the smaller clusters.

Note that k-means clustering is sensitive to outliers and results in local, not global, 
convergence. This means that in principle it can be unstable. Whether this is the case 
in practice is assessed in our experiments.
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4.3 � Relevant Documents

The set of documents that have been judged relevant to a query are a form of extrinsic 
labelling. In a broad sense they constitute a subset of documents that are on a related 
topic. Critically, for our purposes, the topic is not derived from the collection but is 
conceived externally by a user, and judgements are made against those external criteria.

Given that the purpose of clustering in IR is to guide retrieval, a clustering where the 
relevant documents for queries were indeed together would be a successful and desir-
able outcome; that is, the extent to which the known relevant documents are gathered 
together is a strong indicator of the quality of the clustering.

A potential shortcoming is that the labelling is highly incomplete, with, in typical 
experiments, only a tiny fraction of the collection assessed for relevance. However, the 
judgements can be used as a sampling of the clusters; if the samples are sufficiently 
large, such as the hundred or so positive judgements per query across 50 or more que-
ries observed in typical TREC experiments, then they can be reliably taken as indicative 
of cluster quality. Moreover, a document can be relevant to multiple queries, thus avoid-
ing the naïvety of a simplistic labelling, and with a large set of queries a plural view of 
the clustering is provided.

A simple relevance-based measure would be to count the number of clusters that 
must be accessed to observe all of the known relevant documents, but such a meas-
ure would be sensitive to outliers—where just a few of many relevant documents had 
become widely spread.

For example, suppose that k-means had produced 20 clusters, and that for a particular 
query there were 50 relevant documents, 40 of them in 2 clusters and the remaining 10 
across a further 8 clusters. (We have observed such distributions to commonly arise, as 
is illustrated later in our experimental results.) Measuring ‘the number of clusters that 
must be accessed to observe all of the known relevant documents’ would yield ‘10 of 
20’, which suggests that the clustering was not particularly effective. However, a more 
nuanced reading of this result is that ‘2 of 20’ clusters provides 80% of the relevant 
documents, suggesting that the clustering is of good quality.

We therefore propose as a measure clusters per query by relevance to achieve a cer-
tain level, p%, of coverage of the relevant documents, or

where p is a proportion such as 50% or 80%.
However, RC@p does not account for cluster size. Consider a clustering of 10,000 

documents where the two largest clusters are 2500 documents each and the remaining 
18 clusters are about 275 documents each. Continuing the example above, if the two 
clusters with 80% of the documents were the two largest, this would imply that half of 
the collection would have to be inspected to find the 40 relevant documents—better than 
random but not particularly impressive. On the other hand, if the two clusters with 80% 
of the documents were only 550 documents altogether, this would suggest that only a 
twentieth of the collection needed to be inspected to find the 40 relevant documents—an 
outcome that would reflect excellent clustering.

We therefore propose that the size of the clusters should also be considered, in the 
alternative measure coverage per query by relevance, or

RC@p =
minimum number of clusters to cover p% of the relevant documents

total number of clusters
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where p is again a proportion. We estimate RV by sorting the clusters by decreasing density 
of relevant documents, then adding their sizes until the desired number of relevant docu-
ments has been observed. This is not the true minimum, because the correct computation 
is a bin-packing problem and thus NP-hard, but will be a close approximation when the 
numbers of clusters and relevant documents are small, as is the case in our experiments, 
and will be correct when the clusters are similarly sized.

As noted earlier, there is a correspondence between these measures and the approaches 
taken to measure techniques for collection selection (Xu and Croft 1999; Kulkarni et al. 
2012). However, it is not a general assumption of collection selection that the subcollec-
tions should be gathered by topic, and the purpose of the measurement in our work is to 
compare divisions of material, not to compare retrieval methods.

Several works have argued against use of recall in IR measurements (Zobel 1998; Zobel 
et  al. 2009). However, the point of clustering is, in some sense, to achieve recall after 
examination of a complete collection. The use here of a recall-like measure reflects the 
desire to show that material on a topic is indeed collected together, not to claim that all 
relevant documents have been found.

4.4 � Retrieved Documents

An alternative to using documents that have been judged relevant is to use those that are 
retrieved by a system, or by a collection of systems, for a given query, up to some specified 
retrieval depth. In this approach no human judgement is required, but in our view the fact 
that the query is human-generated is critical; use of a query generated from the collection 
is effectively intrinsic, whereas an independent query reflects an extrinsic view of potential 
document content.

A measure based on retrieved material evaluates how much inspection of clusters is 
required to undertake the retrieval process. For instance, if the retrieved documents of 
a query are found in only two clusters, we can say that this clustering run describes the 
retrieval results of this query well; if all queries can be described by only a few clusters, 
the run has been effective at grouping documents. In contrast to intrinsic measures, use of 
retrieved documents from a system can verify whether a clustering run is useful independ-
ent of clustering methods or feature extraction approaches. A high score does not directly 
imply that clusters are truly thematic, but does imply that they have been successfully 
formed according to similarity to queries that reflect a human need.

By analogy with above, then, we propose clusters per query by retrieval (or fetching), 
or FC@p , and coverage per query by retrieval, or FV@p , as follows.

The use of retrieved documents has similarities to the approach of Fuhr et al. (2012), but 
the calculation is much cheaper, as it is based on cluster cardinalities rather than properties 
of the individual documents.

RV@p =
minimum total size of clusters to cover p% of the relevant documents

total number of documents in those clusters

FC@p =
minimum number of clusters to cover p% of the retrieved documents

total number of clusters

FV@p =
minimum total size of clusters to cover p% of the retrieved documents

total number of documents in those clusters
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A design decision in use of FC and FV is of what system, or systems, does the retriev-
ing that produces the lists of documents. One approach is to have a single system, perhaps 
with some simple variations in similarity formulation, and run large numbers of queries 
(extracted from a query log, perhaps). However, this approach may tend to favour cluster-
ing methods that rely on the same forms of document representation as are used in the 
retrieval system, rather than reflect the semantics of the underlying data.

Our view is that diversity in the retrieval systems is required to give a reasonable level 
of confidence that the measures of clustering are reflective of the semantics of the data. In 
our experiments, computation of FV and FC used the runs from all systems to depth 10 to 
generate a per-query pool of retrieved documents. The reported values of FV and FC are 
thus averages over the same number of queries as RV and RC.

These experimental parameters could have been varied in a range of ways: a random 
subset of systems; the systems that were placed in the top 50% or 10% by a measure such 
as average precision; greater depth in runs; taking each system-query pair separately, rather 
than pooling; and so on. With our initial choices, as the results show the rankings of clus-
terings were reasonably similar with both R and F. Our expectation is that reducing the 
number of systems will have only limited effect, given the high overlap between runs, but 
deepening the pools could be a confound as it would increase the difficulty of gathering a 
large fraction of the documents into a small number of clusters.

4.5 � Range and Gain

A key question with all of these measures is of what constitutes ‘good’ and ‘bad’ cluster-
ing. That is, for example, it may not be obvious for a given RC@80 score whether it repre-
sents a meaningful outcome. To help make results comparable, we make use of estimates 
of the natural floor or ceiling in which, for a given clustering into clusters of certain sizes, 
we calculate the likely behaviour if the assignment of documents to clusters was random 
while preserving the cluster sizes.

By identifying a plausible minimum (or maximum) performance in this way, we iden-
tify the true range of values from which a score is drawn. Thus, for example if there are 20 
clusters and 10 relevant documents, a good clustering might put all the relevant documents 
in 2 clusters while a random partitioning would put them in about  8. The performance 
of the clustering would then be to have achieved a reduction from 8 to 2, not, as might 
naïvely be assumed, from 20 to 2. The natural range of scores is from 1 to 8, not 0 to 20. 
(A score of 0 is unachievable, because the documents need to be in at least one cluster.) A 
similar approach was pursued by De Vries et al. (2012), who describe the natural value as 
a baseline.

Use of such a natural floor allows examination of the improvement or gain observed by 
a clustering, relative to the random partitioning. For example, suppose we are considering 
RC@p at p = 80% . Here, gain is defined by g(⋅) = 1 −

a(⋅)−1

e(⋅)−1
 . We wish to find g(RC@80) , 

where a(RC@80) is the minimum number of clusters required to attain 80% retrieval and 
e(RC@80) is the natural ceiling, with the ‘ −1 ’ adjustment needed because at least one clus-
ter must be involved, thus allowing gain to reach 1.0. Gain is assumed to be 0.0 if a(⋅) > e(⋅) 
or if e(⋅) = 1.

Note that it is uninformative to measure performance on random partitioning using the 
DB or Silhouette indexes. Even for a collection of items of unbalanced distribution, the 
observed value of the Silhouette index will tend towards zero as the collection grows ( ai 
and bi should be increasingly similar), while for the DB index the distance E(��, ��) between 
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centroids will tend towards zero, so the value of the index will be unbounded. We thus do 
not report an equivalent to gain for these intrinsic measures.

Gain could plausibly used to tune k, in a similar way to the Elbow method. Considering 
the extremes, if there is only one cluster the gain is always 0. If each document is in a clus-
ter by itself, likewise the gain is always 0. Gain (for a particular measure, of course) will be 
maximised at some intervening value of k. We leave such exploration for future work.

5 � Experimental Design

In our experiments we apply clustering to multiple data sets, using a range of clustering 
techniques that are chosen to create results that are by construction of varying quality. The 
measures of clustering, if they are reliable, should then reflect this variation. We now intro-
duce these elements of the experimental design.

Data sets. We use four data sets in our work. 

disks45	� TREC disks 4 and 5 (Voorhees and Harman 2005), comprising 556,077 docu-
ments. For this data, there are 150 topics (301–450), comprising three subsets of 
50 queries each, for each of which there is over 100 runs from the systems that 
participated in the TREC events. Per query, there is an average of 93 documents 
judged relevant and pool sizes (to depth 10) average around 298.

Note that we developed our methods on a 1% random subset of disks45. In our view this 
does not undermine the independence of results that are reported on the full collection.

Most of our reported results are on disks45, for ease of comparison across different 
measurement methods, but results were consistent on all of the data sets. 

small45.	� A 10% subset of disks45 that is drawn at random. The same queries are used. 
This data set is used to explore how the measures are affected by collection 
scale.

wt2g.	� The TREC-8 Web track, comprising 247,491 documents and 50 queries, with 
44 contributing systems.

wt2g-c.	� In our experiments with wt2g we found that the clustering always tended to 
produce a single large cluster, with over half of the documents. Many of the 
documents in the large cluster were extremely short; around 70,000 had fewer 
than 10 tokens, all in the largest cluster. When we re-clustered without these 
short documents, roughly the same clusters were formed, except for the large 
cluster which was somewhat reduced. We report results on both the original 
wt2g and the reduced version without the short documents, wt2g-c.

Clustering methods. In all of our experiments we use k-means clustering.1 As discussed, 
other approaches are not always practical, but in any case our goal here is not to establish 
the best possible clustering method, but to explore how variation in how documents are 

1  Specifically, from the sklearn package in Python with initiation mode k-means++ to speed up con-
vergence.
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clustered is susceptible to measurement. We set the maximum number of iterations to 300 
as k-means clustering does not always converge.

Our approach is to first use the Elbow method, with polynomial regression with an order 
of 10,2 to establish a reasonable choice of k, which is then fixed for the remainder of our 
experiments.

To vary the quality of clustering, we use three different vectorisations of the documents. 

binary	� The m most common words in the collection are identified; the representation 
of a document is a vector with a 1 if the word is present or 0 if the word is 
absent. We use m of 50 and 500, with the former value in particular chosen to 
ensure that the clustering is likely to poor.

tfidf	� The m most common words in the collection are identified, after removal of 
stopwords and words occurring in more than 5% of the collection; the repre-
sentation of a document is a vector with a TF-IDF weight of each the word (0 if 
the word is absent). We use m of 500 and 8000. The formulation of TF-IDF is 
as in Zobel and Moffat (2006). tfidf and binary are examples of bag-of-word 
vectorisations.

doc2vec	� We generate doc2vec vectors representing each document (Le and Mikolov 
2014) using gensim,3 of length 100 and  500. Our expectation is that 
doc2vec 500 should be similar or superior to tfidf of the same length, as it is a 
richer representation.

We do not report results with multiple values of k, though we note that in clusterings of 
different kinds comparison across k is also of value. This is because we already have a rich 
landscape of parameters to explore. The decision to use 8000 as the upper limit for tfidf 
and 500 for doc2vec was determined by consideration of processing costs, over the large 
numbers of iterations required to build these results; k-means grows in computational cost 
as dimensionality is increased.

An alternative to use of binary as a poor representation would be to cluster with a relia-
ble representation and then degrade by randomly swapping a controlled percentage of doc-
uments between clusters. This would have the advantage of showing whether the measures 
could smoothly track cluster quality, but would not illustrate whether the measures could 
detect a genuinely poor approach; as this was our primary aim we chose to use binary, but 
if results had been unclear would have also explored random degradation.

In each experiment, we ran k-means clustering 10 times with different initial seeds, and 
report averages over the 10 runs. For each clustering, there is a set of cluster sizes; the ran-
dom partitioning used to estimate the natural floors or ceilings were generated to have the 
same set of sizes.

Clustering measurements. For each clustering, we compute the DB and Silhouette 
indexes, and RC@p , RV@p , FC@p , and FV@p for proportions p of 50%, 80%, and 100%. 
We report gain for each of these, which we regard as more informative than the absolute 
measurements as they account for the natural range of possible scores.

2  The implementation of regression is from https://​seabo​rn.​pydata.​org.
3  https://​radim​rehur​ek.​com/​gensim/.

https://seaborn.pydata.org
https://radimrehurek.com/gensim/
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6 � Results

We now present our results. We first use the Elbow method and stability to explore the 
broad behaviour of k-means clustering on this data, then use visualisation to explore 
the behaviour of our proposed external measures. These measures are then compared to 
each other and to intrinsic measures to examine whether they are of value.

6.1 � Elbow Method

To estimate how many innate clusters there are in the corpus, we apply the Elbow 
method for a range of k values from 10 to 500. Results are shown in Fig. 1 for tfidf 500 
on disks45; we observed similar patterns, and a similar turning point, for other docu-
ment vectorisations. The shadow is the confidence interval of the regression. In the mid-
dle part of the curve, values are fitted more precisely than at the ends, hence the (small) 
area of shadow around the curve at k = 10 and k = 500 . On close inspection, it can be 
seen that data points at these positions are off the curve.

These results show that a wide range of k values would be suitable; we chose k = 50 
as it was the turning point, if only by a small margin. Many uses of clustering in previ-
ous IR work happen to use this value, though the basis of the choice is not always indi-
cated. Our results do suggest, however, that the smaller values of k used in some work 
(such as 10) may not be appropriate.

Fig. 1   Use of the Elbow method to find an appropriate k value for tfidf  500 clustering on disks45. The 
figure shows average within-cluster sum of error W for a range of values of k. The ‘elbow’ of the curve is 
the best trade-off between optimisation over k and overfitting. The shadow around the curve represents a 
confidence interval. Since the values are discrete, we fit the data using regression with order of 10 to obtain 
the curve. Here, the best value of k is 50



257Information Retrieval Journal (2022) 25:239–268	

1 3

6.2 � Stability

A fundamental question is whether clustering produces results that are meaningful at 
all, as discussed in the opening section of this paper. If R and F show significant gain 
(as discussed later), then arguably clustering is producing clusters that semantically dis-
tinct. If, however, every iteration produces unrelated results then the statistical validity 
of claims about gain would be questionable.

We use stability to explore whether clustering runs are reasonably consistent with each 
other. For disks45 and tfidf 8000, we clustered 10 times (with k of 50, as in the remainder 
of our experiments).

The results are shown in Fig. 2 as a heatmap, where clusterings are compared on a pair-
wise basis between runs, as explained earlier. We used the micro-averaged form of S as the 
clusters were of broadly similar size, meaning that the potential confound we noted would 
not arise.

The results are clear. The median set overlap is over 70%, with a worst case of 66%; 
with 50 similarly sized clusters, a random overlap would be expected to be less than 5%. It 
can be concluded that the clustering is reasonably stable and is distant from random, while 
also noting that the clusters are not identical and thus the starting point does introduce 
some variation. We can therefore assume that observed measurements of cluster quality in 
our experiments arise from the clusters representing underlying (extrinsic) properties of the 
data—noting that this does not by itself imply that the clusters are semantically distinct in 
ways that are valuable for IR.

6.3 � Intrinsic measurements

We now examine the behaviour of intrinsic measurements for different vectorisations. For 
the DB index, a lower value represents better clustering quality; for the Silhouette index, a 
value close to 1 represents better clustering quality, whereas a negative value means that 
documents are distributed rather than gathered.

Results are shown in Table 1, for each of the four collections and six vectorisations. As 
can be seen, the scores are chaotic. The DB index and Silhouette score are not consistent 
with each other, and implausibly the binary 50 clustering is often amongst the best. As can 
be seen, for the newswire collections the Silhouette score is always close to 0 and thus is 

Fig. 2   Clustering stability 
of k-means on disks45 for 
tfidf 8000 for k of 50. Ten runs 
of tfidf 8000 clustering results 
are generated and their set over-
lap S is shown as a heat map. As 
shown in the figure, the cluster-
ing is stable, since the median set 
difference between two runs is 
over 70%
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not informative. Comparing wt2g and wt2g-c, the DB index is only somewhat altered by 
removal of the tiny documents, but the Silhouette score is drastically changed; these two 
indexes are not consistent with each other.

Note that the indexes yield very similar values for disks45 and small45. We discuss this 
further below in the context of results on the extrinsic measures.

In the measurements reported above, the vectorisation used to calculate the DB index 
was the same as that used to generate the clustering. In Table 2, we explore how the DB 
index behaves on disks45 when one vectorisation is used for clustering (one per row) and 
is then measured with the other vectorisations (one per column). For example, the value 
10.31 at the intersection of row binary 50 and column T500 is the DB index of a clustering 
using binary vectorisation with the top 50 terms, as evaluated with calculations based on 
use of tfidfwith the top 500 terms.

As can be seen, the clustering vectorisation is always the best or second-best with 
respect to the evaluation vectorisation—thus demonstrating that this intrinsic measure 
is giving no indication of whether documents have in any external sense been usefully 
gathered together. Indeed, these results suggest that the second-best representation 
overall is binary 50 and the worst is tfidf 8000—showing that these measures are not 
semantically meaningful. That is, the intrinsic measures are only measuring the extent to 
which the clustering was performed with the same representation as that underpinning 

Table 1   Results for the six clusterings on the four collections as reported by intrinsic measures, the DB 
index and the Silhouette index

Bold results are the best score in that column

Clustering DB index Silhouette

vectorisation disks45 small45 wt2g wt2g-c disks45 small45 wt2g wt2g-c

binary 50 3.64 3.68 3.30 4.10 −0.01 −0.01 0.41 0.05
binary 500 6.05 6.00 5.07 5.04 −0.08 −0.08 0.24 −0.01

tfidf 500 4.01 3.91 3.50 3.43 0.07 0.07 0.26 0.07
tfidf 8000 6.40 6.14 3.03 4.99 0.03 0.03 0.18 0.05
doc2vec 100 3.42 2.88 2.58 2.59 −0.08 −0.03 0.25 0.09
doc2vec 500 4.33 2.94 2.97 2.97 −0.10 −0.05 0.30 0.08

Table 2   DB index computed 
by each vectorisation for each 
clustering on disks45 

In the top row, B, T, and D are shorthand for binary, tfidf, and 
doc2vec respectively. Bold results are the best score for that measure 
in that column

Clustering Evaluation vectorisation

vectorisation B50 B500 T500 T8000 D100 D500

binary 50 3.64 8.23 10.31 9.48 8.97 9.42
binary 500 7.17 6.05 9.01 9.03 8.88 9.37
tfidf 500 9.86 8.46 4.01 4.92 8.74 8.53
tfidf 8000 16.26 12.78 7.41 6.40 11.26 10.67
doc2vec 100 10.67 8.80 7.13 6.42 3.42 3.47
doc2vec 500 12.58 10.78 8.28 7.61 4.61 4.33
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the measure; they are not reflecting fundamental properties of the data. We note that 
these results somewhat contradict those reported by Fuhr et al. (2012), again suggesting 
that topic labels do not necessarily align well with the needs of retrieval.

(a) (b)

(c) (d)

(e) (f)

Fig. 3   Collection coverage R
V
@80 for relevant documents on disks45. Each point represents a topic with 

the given number of documents relevant to a topic from TREC topics 301–450. A random document parti-
tion is generated with respect to the corresponding real clustering result to give the natural ceiling. For each 
topic, we determine the minimum total size of the clusters needed to cover 80% of the relevant documents 
appear and report collection coverage as fraction of the total corpus size. There is only a partial corre-
spondence between number of relevant documents and coverage, but the richer vectorisations allow a much 
smaller coverage.
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6.4 � Collection Coverage

We now examine the behaviour of our external measures based on coverage per query 
topic. As shown in Sect. 6.1, clustering performance only slowly changes with k, but math-
ematically there is an elbow at 50 and thus we choose k = 50 for all clustering methods.

First, we compare the coverage per topic for clustering and its corresponding natural 
ceiling (as given by random partitioning) with respect to TREC relevance judgements. 
Results for RV with p = 80 are shown in Fig. 3. In each of the six graphs, a different 
vectorisation is used to generate a clustering, giving 50 clusters of a range of sizes, 
which are then mimicked to give the random partitioning, that is, of the same distribu-
tion of sizes. Each query has a different number of documents that have been judged 
relevant, giving the spread along the x-axis.

The orange points show, per query, the value of RV needed to achieve 80% coverage 
of the relevant documents on the random partitionings; as can be seen, unsurprisingly 
these are consistent across all the vectorisations, because the assignment of documents 
to clusters is random, but is not quite identical because there is some change in the dis-
tribution of the sizes of the clusters. (Note that the reported values are averages across 
10 different partitionings and 10 different clusterings, with different random seeds.) 
More surprisingly, perhaps, even when there are over 100 relevant documents these val-
ues are much lower than 1.0—in this range only 50%–70% of the collection needs to 
be accessed to find 80% of the relevant documents even under a random partitioning. 
For smaller numbers of relevant documents, even with random partitioning only a small 
number of clusters is needed, that is, the natural ceiling is low.

The blue points show, per query, the corresponding values of RV for the actual clus-
ters (again, these are averages across 10 different clusterings). Lower values reflect 
better clustering and thus the results show that the relevant documents are being dis-
tributed into clusters in a way that is clearly biased—which is the goal of clustering. 
Comparing the left column with the right, the trend is that increasing the number of 
features reduces RV , showing the value of a richer representation. Comparing the rows, 
the designed-to-be-poor binary vectorisation does indeed give worse performance than 
the others, confirming that RV reflects cluster quality. The distribution of points makes 
comparison of tfidf and doc2vec less clear, though overall tfidf appears superior; we 
revisit this question below. As the plot for tfidf 8000 shows, typically only around 10% 
of the collection needs to be accessed regardless of the number of relevant documents.

Corresponding results for retrieved documents, that is FV , are shown in Fig. 4, again 
with p = 80 . As noted, the top 10 documents are selected from each run to create a pool 
of retrieved documents. As the smallest pool is around 100 documents in Fig.  4, the 
appearance is somewhat different to that of Fig. 3, but in fact, account for the range, the 
patterns are of the same shape. Visually, while binary is weaker than the alternatives 
and tfidf  8000 is the best performing, the trends here are less pronounced; however, 
they are clarified in the gain results reported below.

Continuing with disks45, the average gain of each vectorisation is shown in Table 3, 
for p of 50, 80, and 100. Interpreting these results, as an example a gain of 0.75 for RV 
at p = 80 means that, compared to a random partitioning, on average only a quarter 
of the volume of documents needs to be accessed. As shown in Fig. 3, even a random 
partitioning often means that only 50%–70% of the volume of documents needs to be 
accessed even for large numbers of documents, so a gain of 0.75 implies that this vol-
ume is reduced to well below 20% of the collection.
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Either tfidf 8000 or doc2vec 500 has the best performance under each measure, with 
doc2vec slightly weaker, in a few cases being indistinguishable from doc2vec 100 and in 
other cases being weaker than tfidf 500; when tfidf is superior to doc2vec, the margin is 
usually substantial, which is not the case in reverse. These results also show that values for 
R and F are consistent with each other, in terms of ordering of representations.

(a) (b)

(c) (d)

(e) (f)

Fig. 4   Collection coverage F
V
@80 for fetched documents on disks45. As for Fig. 3, random document sets 

are generated per clustering result, but the collection coverage is based on fetching retrieved documents in 
the top 10 positions in submitted runs, creating a pool. The smallest pool is around 100 items, hence the 
gap at the left of each plot. The binary vectorisations are the weakest.
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Because the natural range is different for the different choices of p, what is not evident 
here is how small the fraction of the collection becomes for p = 50 , but it is well below 
10% for the better representations. In contrast, locating 100% of the pertinent documents 
means that all outliers must be found, leading to low gain in most cases. Our intuition was 
that p = 100 might be unreliable, because it is heavily dependent on outliers (hence our 
focus on p = 80 in the results reported above), but we reported it here for completeness. 
The results show that it is indeed less distinguishing than with the other choices of p.

We complete our analysis of the extrinsic measures on disks45 with the results shown 
in Figure 5. These show gain on all measures at p = 80 , binned by the number of pertinent 
documents per query, for binary 50 and tfidf 8000—respectively our worst and best vec-
torisations as reported above. These results show the consistent increase in gain across all 
of our measures between the two vectorisations. With around 150 individual values in each 
of these graphs, in every instance tfidf is superior to binary.

Finally, Table 4 shows gain values for p = 80 on all four collections. In these results 
tfidf 8000 is consistently best or second-best, and tfidf is always better than binary; while 
the doc2vec results are highly inconsistent.

We make several observations based on these results.
First, they show the value of gain as a measure, with consistent good performance by 

a particular representation. We hypothesised that either tfidf 8000 or doc2vec 500 would 
yield the best clustering, and this has proven to be reflected in the measures.

Second, however, Table  4 does show that FV and RV , and FC and RC , are behav-
ing somewhat differently from each other – as can be seen by comparing disks45 with 
small45. The likely explanation is that the latter collection has only a tenth of the 
relevance judgements (influencing  R), while the number retrieved (influencing  F) 
stays the same. Taking the F values as more directly comparable than are the R values 
between the two collections, the results suggest that the quality of clustering degrades 
with collection size. If so, there are significant implications for prior work based on 

Table 3   Gains using the four measures and six clusterings, for each of three proportions, for disks45 

Bold results are the best score for that measure and proportion

Clustering Gain on measure

vectorisation R
V
@50 R

V
@80 R

V
@100 R

C
@50 R

C
@80 R

C
@100

binary 50 0.56 0.48 0.32 0.58 0.44 0.28
binary 500 0.69 0.64 0.50 0.60 0.50 0.37
tfidf 500 0.77 0.74 0.56 0.79 0.66 0.46
tfidf 8000 0.84 0.81 0.65 0.72 0.72 0.56
doc2vec 100 0.83 0.77 0.52 0.80 0.68 0.49
doc2vec 500 0.86 0.83 0.59 0.83 0.67 0.46

F
V
@50 F

V
@80 F

V
@100 F

C
@50 F

C
@80 F

C
@100

binary 50 0.56 0.42 0.11 0.52 0.33 0.10
binary 500 0.71 0.56 0.21 0.49 0.32 0.17
tfidf 500 0.78 0.64 0.24 0.72 0.48 0.21
tfidf 8000 0.84 0.73 0.31 0.79 0.56 0.27
doc2vec 100 0.80 0.64 0.18 0.68 0.35 0.18
doc2vec 500 0.87 0.75 0.18 0.73 0.42 0.17
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small collections, typically of only a few thousand documents, because these promis-
ing results may not scale to realistic collections. (Noting that many of these methods 
are too computationally costly for collections of the scale that we are considering.)

Third, the imbalance in the cluster sizes in wt2g and wt2g-c amplifies the difference 
between the ‘C’ and the ‘V’ measures; the contrasts in score are because the methods 
access many clusters but the are small. Nonetheless, both kinds of measure remain 
informative. The fact that many of the clusters few contentful documents allows the 
best representations to achieve very high gain, and shows that  document quality as 
much as document topic is likely to be influential in the success of tfidf 8000.

(a)

(b)

Fig. 5   Comparison of gain with all measurements on the binary  50 and tfidf  8000 vectorisations of 
disks45. The topics are partitioned into bins based on the number of relevant (respectively, retrieved) docu-
ments available. Note the dramatically better gain with the better vectorisation, and how the gain only drops 
slightly as the task becomes more challenging, that is, when there are more documents to fetch.
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7 � Conclusions

We have shown that retrieval-based information can be used to measure the quality of 
document clustering. Documents judged as relevant to a set of queries provide a form of 
extrinsic evaluation that separates clustering based on simplistic document representations 
from clustering that makes use of richer information.

These results correlate closely with those based on documents retrieved by systems. 
Since document retrieval has similarities with the clustering mechanisms, there is potential 
for this to be a circular result (the measure and the clustering have properties in common). 
However, the close alignment with the relevance-based results, and the wide diversity of 
retrieval mechanisms in the systems that contributed to the test collections used, strongly 
suggests that the results are well founded. This means that no human assessment is needed 
in measurement of cluster quality, but only access to retrieval systems and a collection of 
queries.

This is the first work of which we are aware to measure the quality of document cluster-
ing for large corpora. Most techniques for measurement of clustering are intrinsic, but our 
results with such techniques show that they are indeed circular, and do not correspond to 
the underlying quality of the clustering.

Happily, our results show that there is strong skew in the gathering of documents during 
clustering, thus not confirming the hypothesis that the volume of material and high dimen-
sionality might lead to meaningless results. They also show that the clustering is similar 
between runs with different random seeds, suggesting that the clustering is grouping docu-
ments in a way that is consistent with their contents.

However, care does need to be taken with use of clustering. We used k-means and chose 
k based on the Elbow method, which is at least independent of the use of the clusters, but 
no principles for choice of k in IR have been articulated, and most previous work assumes 

Table 4   Measurements of gain for each of the four collections at p = 80

Bold results are the best score for that measure and collection

Clustering disks45 small45 wt2g wt2g-c

vectorisation R
V
@80 R

C
@80 R

V
@80 R

C
@80 R

V
@80 R

C
@80 R

V
@80 R

C
@80

binary 50 0.48 0.44 0.35 0.28 0.89 0.33 0.63 0.30
binary 500 0.64 0.50 0.43 0.30 0.90 0.31 0.82 0.31
tfidf 500 0.74 0.66 0.58 0.49 0.79 0.46 0.87 0.65
tfidf 8000 0.81 0.72 0.65 0.48 0.99 0.67 0.89 0.75
doc2vec 100 0.77 0.68 0.48 0.15 0.93 0.32 0.89 0.43
doc2vec 500 0.83 0.67 0.57 0.20 0.94 0.34 0.88 0.47

disks45 small45 wt2g wt2g-c

F
V
@80 F

C
@80 F

V
@80 F

C
@80 F

V
@80 F

C
@80 F

V
@80 F

C
@80

binary 50 0.42 0.33 0.58 0.55 0.80 0.24 0.63 0.17
binary 500 0.56 0.32 0.66 0.51 0.89 0.23 0.82 0.17
tfidf 500 0.64 0.48 0.77 0.71 0.76 0.45 0.80 0.56
tfidf 8000 0.73 0.56 0.86 0.74 0.99 0.78 0.89 0.62
doc2vec 100 0.64 0.35 0.48 0.17 0.97 0.32 0.91 0.30
doc2vec 500 0.75 0.42 0.65 0.27 0.96 0.33 0.90 0.32
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k without exploration; further work could experiment with other values of k and with other 
clustering algorithms. Also, there is only a degree of alignment between querying and clus-
tering – our results show that the documents that are pertinent to a query are almost always 
spread across multiple clusters – and it is possible that clustering quality degrades with 
scale. The value of clustering of collections for general retrieval tasks thus remains an open 
question.

Overall, though, in this first systematic work on measuring clustering of document col-
lections we have shown that it is feasible and informative. While further work is needed 
to explore their limits and sensitivity, our results and measures already provide a practical 
foundation for robust use and measurement of clustering in information retrieval.
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