
Vol.:(0123456789)

Information Retrieval Journal (2021) 24:269–297
https://doi.org/10.1007/s10791-021-09393-5

1 3

Pseudo relevance feedback optimization

Avi Arampatzis1  · Georgios Peikos1 · Symeon Symeonidis1

Received: 4 November 2020 / Accepted: 16 April 2021 / Published online: 25 May 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We propose a method for automatic optimization of pseudo relevance feedback (PRF) in 
information retrieval. Based on the conjecture that the initial query’s contribution to the 
final query may not be necessary once a good model is built from pseudo relevant docu-
ments, we set out to optimize per query only the number of top-retrieved documents to be 
used for feedback. The optimization is based on several query performance predictors for 
the initial query, by building a linear regression model discovering the optimal machine 
learning pipeline via genetic programming. Even by using only 50–100 training queries, 
the method yields statistically-significant improvements in MAP of 18–35% over the ini-
tial query, 7–11% over the feedback model with the best fixed number of pseudo-relevant 
documents, and up to 10% (5.5% on median) over the standard method of optimizing both 
the balance coefficient and the number of feedback documents by grid-search in the train-
ing set. Compared to state-of-the-art PRF methods from the recent literature, our method 
outperforms by up to 21% with an average of 10%. Further analysis shows that we are still 
far from the method’s effectiveness ceiling (in contrast to the standard method), leaving 
amble room for further improvements.

Keywords Pseudo relevance feedback · Blind relevance feedback · Optimization · Query 
performance predictors · Query difficulty · Regression

1 Introduction

One of the major topics in the field of Information Retrieval is automated ways to optimize 
retrieval effectiveness. Nowadays, new commercial search applications are in high public 
demand, therefore, search engines should be equipped with techniques that can process 
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user queries extensively and yield good search results, such as Pseudo (or Blind) Relevance 
Feedback (PRF), among others.

PRF is an age-old method for improving retrieval effectiveness (Salton 1971; Croft and 
Harper 1979; Xu and Croft 1996). It is (commonly) a two-step process that enables us to 
utilize information about the initial query with respect to the collection, by using informa-
tion from documents retrieved by the initial query in order to formulate and issue a better 
query. The recent literature about PRF attempts to produce new linguistic models to select 
terms from the retrieved documents or other external sources, e.g. (Jaleel et al. 2004; Tao 
and Zhai 2006; Lv and Zhai 2009b, 2010, 2014), or uses mathematical models to re-weight 
the chosen terms and reformulate the final query, e.g.  (Singh et al. 2017; Valcarce et al. 
2018).

PRF, in its classic form, involves three parameters: the number of top-ranked docu-
ments by the initial query that will be considered relevant so as to build a positive feedback 
model, the relative weight of the feedback model against the initial query, and the number 
of terms to keep in the improved query. In this paper, we deal with the automated optimiza-
tion of such parameters. Based on the conjecture that the initial query’s contribution to the 
final query may not be necessary once a good model is built from pseudo relevant docu-
ments, we set out to optimize per query only the number of top-retrieved documents to be 
used for feedback.

The idea for the conjecture originates in (Arampatzis et  al. 2000; Arampatzis 2001), 
where in an adaptive filtering context the authors introduced and employed initial query 
elimination/degradation. Quoting Arampatzis (2001):  “The initial query is considered as 
carrying a worth of a certain number of relevant documents. As a result, the contribution 
of an initial query in training a classifier decreases with the number of relevant training 
documents.”  Thus, as more and more training documents were becoming available during 
adaptive filtering, the contribution of the initial filtering query was gradually diminishing 
in adapting the classifier. The technique was applied successfully in TREC-9 and TREC-10 
Filtering Tracks, assuming a worth of 10 and 2 relevant documents, respectively. We inves-
tigate this method at the far end of the spectrum by eliminating the initial query’s contribu-
tion altogether.

The contributions of the present study are the following. We explore the initial query 
elimination conjecture by arguing theoretically and investigating experimentally whether 
it holds some truth also in a PRF context. In this respect, we develop a PRF optimiza-
tion method which disregards the initial query but builds a better positive feedback model 
by optimizing, per query, the number K of top-retrieved documents to be used for feed-
back. The optimization is based on several query performance predictors (QPPs) for the 
initial query, used as inputs to a linear regression model for predicting the optimal K. The 
machine learning pipeline of the linear regression model itself is also optimized using 
genetic programming via a tool which it intelligently explores thousands of possible pipe-
lines to find the best one for the data at hand. The approach requires training data, and 
while it may be computationally-heavy in training, it is quite fast in query-time.

Despite this interesting perspective, to the best of our knowledge, only a small number 
of previous studies have tried to solve this or a similar optimization problem in the context 
of PRF, e.g. (Sakai et al. 2005; Lv and Zhai 2009a; Parapar et al. 2014), and none of them 
used QPPs except Amati et al. (2004) who employed QPPs only to decide whether to apply 
PRF to a query or not. Over the years, query performance prediction has become an impor-
tant research area, consisting of two primary methodologies, i.e. pre- and post-retrieval. 
The former studies the expected query performance before the retrieval takes place, i.e. 
using only the query and collection statistics. The latter takes also into consideration data 
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produced by the retrieval, such as the result list (Markovits et al. 2012; Shtok et al. 2012). 
Since in PRF the initial query is always run, the latter methodology seems more suitable 
and expected to be more beneficial.

The rest of the paper is organized as follows. Section 2 gives a brief overview of related 
works. Section 3 introduces and elaborates on the proposed method. Section 4 presents the 
experimental evaluation. Section 5 provides further discussion and insight, before conclu-
sions are drawn and several directions for further research are pointed out in Sect. 6.

2  Related work

Over the years, there has been a considerable interest in Query Expansion (QE). QE 
approaches are classified into two groups: global, which have as a primary goal the extrac-
tion of a set of terms from various data sources (external or internal, e.g. thesauri) to mean-
ingfully augment user’s original query, and local, which expand and re-weight user’s origi-
nal query with terms derived from the analysis of the result set. There is a large volume of 
studies describing the role of QE, focusing primarily on techniques to improve retrieval 
effectiveness, e.g. Mitra et al. (1998); Kekäläinen and Järvelin (1998); Crouch et al. (2002); 
Cronen-Townsend et  al. (2002); Ruthven and Lalmas (2003); Abdelmgeid Amin (2008); 
Azad and Deepak (2019).

There are two ways to expand and/or re-weight the user’s original query with local 
methods techniques, relevance feedback and pseudo relevance feedback (PRF). A well-
known method for relevance feedback is Rocchio’s (1971) which is based on the vector 
space model, and another primary study is that of Croft and Harper (1979) which is a prob-
abilistic approach.

Karisani et al. (2016) proposed a method to extract the most informative terms in a set of 
documents for PRF. A set of documents is retrieved using the user’s initial query and then 
a weight is assigned to each document describing the document’s closeness to the user’s 
information need. These weights are used to recalculate the final query’s term weights. The 
experimental results in standard English and Persian test collections increased MAP up to 
7%.

Another method, that achieved significant improvements in retrieval effectiveness, was 
proposed by Singh et al. (2017). They explored the possibility of using fuzzy logic-based 
QE approach to improve overall efficiency. The weights of each word were mixed using 
fuzzy rules to infer the weights of the additional query terms. At the end, after the fuzzy 
logic approach, they filter out semantically irrelevant terms to further improve their results.

Lv and Zhai (2010) proposed a novel positional relevance model to reward terms close 
to the initial query terms in the feedback documents and avoid including irrelevant terms 
in the feedback model. Their proposed method is an extension of relevance models so they 
set the parameters, such as feedback coefficient, number K of feedback documents, and 
number of expansion terms to fixed values. However, in order to check the robustness of 
the proposed method regarding the K value, the authors also tried K values varied from 
0 to 100. Their methods proved robust and effective compared to the standard relevance 
feedback models.

Parapar and Barreiro (2011) presented two different approaches for the Relevance 
Model (RM) (Lavrenko and Croft 2001), promoting terms under the Language Modelling 
framework to improve divergence in the PRF context. The first approach (KLD3) is built 
upon Kullback–Leibler Divergence based on query expansion in the language modelling 
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framework. The second approach (RM3DT) is based on the Relevance Model with the pro-
motion of Divergent Terms. The authors evaluated the performance of the proposed mod-
els on TREC collections, and the RM3DT method outperformed the baseline Language 
Modelling (LM) retrieval model by 11–31%, and the RM3 feedback model by 0.5–23%.

Valcarce et al. (2018) examined the use of linear methods for PRF. They proposed the 
Lime model, a novel formulation of the PRF task as a matrix decomposition problem. To 
expand the original query, they used a factorization that includes the computation of an 
inter-term similarity matrix. Also, for the proposed decomposition, they applied linear least 
squares regression with regularisation. The proposed LiMe-TF and LiMe-TF-IDF outper-
form the LM (12–34%) and RM3 (0.6–5.5%) baselines, on five TREC datasets. In both of 
the last-mentioned studies, the number K of feedback documents is tuned, per PRF model, 
based on training data, to the same fixed number (one of 5,10,25,50,75,100) for all queries.

An important limitation found in the aforementioned studies which use local QE tech-
niques to improve retrieval effectiveness lies in the fact that the number K of pseudo-rele-
vant documents is set to a specific fixed value for all queries (irrespective of whether it is 
optimized on some training set or not), with the most common being 5, 10, 20, 30, 50 (Rai-
ber and Kurland 2014). Only a few researchers attempted to optimize, per query, the bal-
ance � between initial query and feedback information (Lv and Zhai 2009a), or realized the 
importance of a good PRF document set (Sakai et al. 2005) or K with respect to the query 
(Parapar et al. 2014). These constitute the more related works, which we will see next.

Lv and Zhai (2009a) proposed three heuristics to adaptively predict the optimal balance 
between initial query and feedback information in PRF. To predict the balance coefficient 
� , several features were examined and combined by using a regression approach which led 
to robust and effective results compared with the regular fixed-coefficient feedback. In our 
study, we focus on the K parameter instead, eliminating �.

An attempt to adjust the number of pseudo-relevant documents per query was proposed 
by Sakai et al. (2005), called Selective Sampling. The method assumes that some of the 
initial top-ranked documents are not useful, so it skips those documents while it creates 
the set of pseudo-relevant documents S. Three parameters are introduced, Pmin,Pmax,Pscope , 
which are the minimum/maximum number of pseudo-relevant documents required and 
the total number of pseudo-relevant documents examined per query. The algorithm uses 
these three parameters as cutoffs, so that Pmin ≤ |S| ≤ Pmax ≤ Pscope , which were set via 
training with the NTCIR-3 Japanese test collection to 3, 10, and 50, respectively. They 
used 40 expansion terms which were down-weighted by a factor of 0.25 compared to the 
initial query terms. An evaluation on the NTCIR-4 Japanese/English test collection found 
that Selective Sampling outperforms traditional PRF methods almost as often as traditional 
PRF methods outperform Selective Sampling, which is rather a tie. Our work is quite dif-
ferent, since we do not skip documents or optimize K with a fixed value for all queries but 
optimize it per query, and it will be proven clearly effective (as will see in this paper).

A method (SDRM3) that tried to optimize the number of pseudo relevant documents per 
query was proposed by Parapar et al. (2014). The authors investigated the score distribution 
of the initial retrieval and tried to break it down to its relevant and non-relevant compo-
nents; they formulated the problem as a threshold optimization task (similarly to what was 
proposed before, e.g., in Arampatzis et al. 2009) and evaluated the model’s performance 
on TREC collections. Significant improvements were found compared to the baseline LM 
retrieval model (8–17%). Although there were also improvements over the baseline (RM3) 
feedback model (2.3%), these were not statistically significant.

Thus, the study of Parapar et al. (2014) is the most related, as it tries to solve the same 
problem using the score distribution of the initial retrieval; however, there are still major 
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differences. Firstly, in their approach, they use the training set to optimize the number of 
expansion terms and the balance coefficient (both with fixed values irrespective of the 
query), and the smoothing parameter; we eliminate the initial query and do not tune any 
other parameter. Secondly, while the mixture model of the relevant and non-relevant score 
distributions is tightly-coupled to the retrieval model employed (Arampatzis and Robert-
son 2011), our approach based on query performance predictors is—in principle—retrieval 
model invariant and certainly much faster in query-time (recovering the parameters of a 
mixture model iteratively is much more expensive than calculating our predictors). Finally, 
we achieve larger improvements over the initial retrieval and over the baseline feedback 
model, as will see later in our experiments.

Thus, the current study attempts to solve the optimization problem at hand by using a 
novel approach. To the best of our knowledge, this is the first time anyone explores query 
performance predictors (QPPs) to determine the optimal number of pseudo-relevant docu-
ments per query. Amati et al. (2004) who used QPPs only to determine whether or not to 
apply PRF in a query, used a fixed K = 10 when their method told them so; such a selective 
PRF is also included our method, since we detect queries for which it would not be benefi-
cial and switch it off. Moreover, our method can be used independently of the retrieval and 
PRF models, as QPPs can be calculated using the initial retrieval scores and a regression 
model can be built with a relatively few training queries.

3  Optimizing pseudo relevance feedback

Let Q0 be the initial user query, expressed for some information need. Traditionally, pseudo 
relevance feedback (PRF) involves three parameters: the number K of top-ranked docu-
ments retrieved by Q0 to be considered as pseudo-relevant, the Q0 ’s weight � against the 
positive feedback query/model Qr,K built from the K pseudo-relevant documents, and the 
number T of top-weighted feedback terms to be retained in the modified query Qm . Assum-
ing vector representations for Q0 , Qr,K , Qm , the modified query is calculated as:

Taking as an example Rocchio’s formula, it uses three weights: �, �, � . Since there is no 
negative feedback in PRF, � is set to zero or eliminated. Additionally, � = 1 − � , since 
what matters practically is the relative weight of the contributions of Q0 and Qr,K to Qm , i.e. 
there is a single free weight after all: � . Rocchio builds Qr,K as the average pseudo-relevant 
document vector or centroid.

Of the three parameters involved ( � , K, and T), the latter has been deemed as the least 
important after decades of experimentation. The number of terms used for query expansion 
with PRF is less significant than the quality of terms selected, as stated many times before 
in the literature (e.g. Sihvonen and Vakkari (2004)), so commonly T is set to 20. Since opti-
mization of T does not seem to worth the effort, we also set T = 20 and focus on the former 
two parameters.

Most previous research in PRF, pre-set K and � to fixed values independent of the Q0 at 
hand, such as � = 0.5 and K = 10 . These actual fixed values are usually determined experi-
mentally by selecting the � and K which maximize, on average, some effectiveness meas-
ure on a set of training queries on some benchmark corpus. We will refer to this optimiza-
tion method as standard throughout the paper. Note that there is no single �/K combination 

(1)Qm = �Q0 + (1 − �)Qr,K , 0 ≤ � ≤ 1 .
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that optimizes all evaluation measures, but the optimal values depend on the measure of 
interest.

The value of � denotes the degree of distrust we have in the feedback model Qr,K : the 
larger the � , the less the confidence we have in Qr,K with respect to its quality. For a given 
Q0 and its initial ranking, the quality of Qr,K depends solely on the choice of K, for which 
two factors come at play: 

1. The number R of documents relevant to the information need. Assuming Q0 yields a 
perfect ranking (i.e. all R relevant documents are ranked above all non-relevant ones), K 
should not be set greater than R, otherwise Qr,K (and consequently Qm ) may drift away 
from Q0 and achieve a worse ranking. Setting K less than R may also have an adverse 
effect due to a possible insufficient coverage of the topic in Qr,K . Accounting for imper-
fections in training Qr,K statistical anomalies and other effects, we can say that the best 
K is around R, when Q0 produces a perfect ranking.

2. The Q0 ’s effectiveness or quality of its ranking. For a less-than-perfect Q0 ranking, K 
should be set lower than R, since the density of relevant documents generally increases 
when going up the ranking and decreases when going down. In other words, from the 
two alternative sets of top-K documents, K = R − � or K = R + � (for a positive integer 
� ), the former is expected to have a larger fraction of relevant documents than the lat-
ter. Therefore, this strategy produces a ‘cleaner’ pseudo-relevant set with respect to the 
fraction of relevant documents it contains.1 In any case, when Q0 is imperfect, we pay 
for drift and coverage problems.

Based on the above, the optimal K can take a value up to around R. The more effective the 
Q0 , the nearer the optimal K is to R. The less effective the Q0 , the further the optimal K 
moves away from R to smaller values. Thus, positive correlations between the optimal K 
and both R and Q0 effectiveness are expected.

Since R is unknown and Q0 is imperfect in practice, it is difficult to achieve the delicate 
balance between drift and coverage in Qr,K . To alleviate these effects from spilling into Qm 
and keep focus to the user’s information need, � is usually set to a value > 0.5 , retaining a 
significant (safe) contribution of Q0 to Qm , more than Qr,K.2 In combination with using the 
same fixed � and K values for all incoming queries, PRF’s potential may not be squeezed 
out in its entirety.

Based on the above, we argue that once one has a method for optimizing K per query, the � 
parameter becomes much less important and could even be eliminated/set-to-zero discarding 
Q0 ’s contribution. A perfect Qr,K could potentially encapsulate all Q0 ’s information, deeming 
perhaps Q0 ’s contribution to Qm unnecessary.3 While Q0 ’s effectiveness cannot be controlled 
during PRF (it depends on the query issued, retrieval model, collection pre-processing/index-
ing, etc.), since PRF is always (at least) a two-stage process, Q0 ’s effectiveness and R could be 

1 Nevertheless, this may not be an effective strategy when the set of pseudo-relevant gets too small. When 
the amount of training data is not sufficient, perhaps a larger but ‘dirtier’ set is preferable to a smaller but 
‘cleaner’ one.
2 For example, PRF in the Terrier search engine defaults at � = 0.6 and K = 3.
3 Even though a perfect Qr,K could potentially encapsulate all Q0 ’s information, it may also contain addi-
tional information that is not necessary to the information need. This may also be the case for Q0 , depend-
ing on how well the user has expressed the information need, so a (large) contribution of Q0 may still not 
have a desirable effect.
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estimated, guiding the selection of a better than a pre-set fixed K. Ideally, in the extreme case, 
such an optimization method should even predict a K = 0 , meaning that no PRF would be 
beneficial and only the Q0 should be used.

Thus, the method we propose employs query performance predictors (also known as query 
difficulty) to determine/predict Q0 ’s effectiveness, and uses their values to predict an optimal 
K per query that maximizes a given effectiveness measure. In this study, we will not consider 
any R-predictors, although they constitute an obvious and perhaps effective extension.

3.1  Post‑retrieval query performance predictors

In the Query Performance Prediction (QPP) literature, there are several quantities correlated 
to retrieval effectiveness, usually to MAP (Hauff 2010), but also to other measures since many 
measures are correlated— in their turn—to MAP, e.g. Precision@R (Manning et al. 2008). 
There exist pre- and post-retrieval QPPs. Since in a PRF setting, the initial query will always 
run, it makes sense to focus on post-retrieval QPPs.

There are three main categories of post-retrieval QPP methods. The first one is clarity-
based methods that directly measure the ambiguity of the results list with respect to the corpus 
(Cronen-Townsend et al. 2002). The second is robustness-based methods, which evaluate how 
robust the results are to perturbations in the query, the result list, and the retrieval method 
(Zhou and Croft 2007; Yom-Tov et  al. 2005). Lastly, the score distribution-based methods 
analyze the score distribution of the results list.

According to Zhou and Croft (2007), the methods of the first two categories are time-con-
suming. Since PRF alone more than doubles the runtime, it is not desirable to burden it fur-
ther. For instance, to calculate robustness there is the need to generate a random collection by 
sampling from document models of the documents in the original collection, and then perform 
retrieval on both collections. The similarity between the two rankings is the robustness score. 
To calculate the clarity score one needs to estimate the query’s and the collection’s language 
model. Although the collection’s language model can be pre-computed during indexing, the 
query language model is estimated by sampling documents after the initial retrieval. For these 
reasons, we resort to QPPs which are based on the score distribution of the initial results list, 
which are easy and fast to calculate.

Consequently, we employ three post retrieval QPPs, namely, WIG, NQC, and SMV; all 
three have been widely used in recent studies (Zhou and Croft 2007; Shtok et al. 2012; Tao 
and Wu 2014).

3.1.1  Weighted information gain (WIG)

The Weighted Information Gain (WIG) predictor was introduced by Zhou and Croft (2007) as 
an approach to predict query performance in web search environments. It measures the diver-
gence between the mean retrieval score of some top documents in the result list and that of 
a random document in the whole corpus. Equation 2 is a simplified version of the WIG pre-
dictor formula which, according to Zhou (2008), is efficient and uses only the scores of the 
results:

(2)WIG(q,M) =
1

n

�

d∈D[n]
q

1
√
�q�

(Score(d) − Score(D)) ,
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where n is a free parameter equal to the number of top-ranked documents used for calculat-
ing the predictor, D[n]

q
 is the set of the top-n documents, and |q| is the query length. Score(d) 

is the score assigned to document d by the retrieval model M . Finally, Score(D) is the aver-
age score of all retrieved results.

This predictor has been used in previous studies (Tao and Wu 2014; Shtok et al. 2012). 
According to Markovits et al. (2012), the normalization of the WIG by the query length |q| 
harms the prediction quality on TREC benchmark collections, so we removed this normali-
zation in our experiments. Lastly, we set n = 5 , as in Zhou (2008).

3.1.2  Normalized query commitment (NQC)

The Normalized Query Commitment (NQC) predictor, proposed by Shtok et  al. (2012), 
estimates the amount of query drift in the list of top-retrieved documents using the stand-
ard deviation of their retrieval scores:

where �̂� is the average score of the top-n results in D[n]
q

 . We set n = 100 , as recommended 
by Shtok et al. (2012).

3.1.3  Score magnitude and variance (SMV)

According to Tao and Wu (2014), WIG and NQC tend to work in some situations and fail 
in others; as a result, they developed another post-retrieval predictor, namely, the Score 
Magnitude and Variance (SMV):

Once more, we set n = 100 , as recommended by Shtok et al. (2012).

3.2  Predicting K optimal

First, we investigated how the optimal K for MAP ( Kopt_MAP ) looks like on real data. In 
initial experiments with a benchmark dataset (which is described in detail in Sect. 4.1), we 
run a Q0 , built on its results all positive-only PRF queries Qm = Qr,K for K = 1… 200 with 
Rocchio, and evaluated them on the test corpus in order to find Kopt_MAP . We did that for 
150 different Q0 s. The min/med/avg/max Kopt_MAP found was 1/13/46.6/200. Two topics 
hit the 200 mark, suggesting that we should have searched also higher Ks; nevertheless, 
the distribution is quite skewed to the downside, so we are confident that these few topics 
which should have had Kopt_MAP > 200 will not affect our overall experimental results.

Figure  1 shows how MAP changes with K for four queries, and Table  1 gives some 
more quantitative information. As it can be seen in the figure, MAP as a function of K is 
neither smooth nor monotonic. These four queries were selected as representatives of four 
broad and rough categories of behaviour we saw in the data: multiple modals, rising-and-
falling, falling, rising.

(3)NQC(q,M) =

�
1

n

∑
d∈D[n]

q
(Score(d) − �̂�)2

Score(D)
,

(4)SMV(q,M) =

1

n

∑
d∈D[n]

q

�
Score(d)

���ln
Score(d)

�̂�

���
�

Score(D)
.
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In the table, we can see than 3 out of 4 topics have an improved MAP with Qr,Kopt_MAP
 

over Q0 ; for these, optimizing K produces a Qr,K better than Q0 , so such an optimization 
method is beneficial. However, queries similar to 423 cannot be improved with any posi-
tive-only PRF model disregarding the initial query. Of the 150 topics in our dataset, only 
19 (12.7%) fall in this category. In such cases, tuning of the parameter � may be needed, 
but instead, we decided to incorporate these cases into our prediction model in order to 
switch off PRF when they are detected (we will see how below). In any case, using the 
same fixed K for all queries seems rather naive, and it only works on average as long as a 
proper fixed K is selected.

We calculated the three QPPs (Sect. 3.1) on the result lists of the 150 Q0 s and measured 
their correlation to the MAP of Q0 , as shown in Table 2. There are statistically significant 
positive correlations everywhere, with a strength typical for QPPs. So, they are doing their 
intended job, but do they also predict Kopt_MAP?

Fig. 1  MAP as a function of using the top-K documents as pseudo-relevant for PRF (with a zero contribu-
tion of the initial query)

Table 1  Example topics/queries

topic R MAP@Q0 Kopt_MAP MAP@Qr,Kopt_MAP
WIG NQC SMV

339 10 .3389 8 .3585 16.274 1.696 1.371
423 21 .5685 13 .4251 14.694 0.622 0.509
365 35 .6955 27 .8457 11.900 0.716 0.570
301 474 .0280 185 .0360 6.960 0.147 0.123
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Table  3 shows the correlation of Kopt_MAP to QPPs. Unfortunately, individual QPPs 
seem to have almost no predictive power for Kopt_MAP.4 But it may be the case that their 
predictive power becomes significant when their values are scaled and/or non-linearly 
transformed and all three are combined into a single regression model.

To achieve this, we used TPOT5 in order to transform and scale the independent vari-
ables, and project them into a high dimensional feature space via a kernel-based method, 
so as to become more compatible with linear regression. TPOT is a tool that optimizes 
machine learning pipelines using genetic programming. It intelligently explores thou-
sands of possible pipelines to find the best one for the data at hand. Among the transfor-
mation methods explored by TPOT are those which handle multicollinearity. Multicollin-
earity occurs when independent variables in a regression model are correlated (Rosipal 
et al. 2001); in our case, NQC and SMV exhibit a strong, statistically significant Pearson 
correlation.

The approach requires training data, which in our case are the values of QPPs for a set 
of Q0 s together with their corresponding Kopt_MAP . If a Q0 ’s MAP is greater than the MAP 
of Qr,Kopt_MAP

 , then we set Kopt_MAP = 0 in order to enable prediction of cases where PRF 
would not be beneficial. TPOT iterates through different regression models paired with fea-
ture selectors and transformers, and each iteration produces a pipeline. When some pipe-
line is used for regression, it is bound to have some forecast error (loss) as measured by a 
specified loss function. As a loss function, we selected the mean absolute error (MAE) 
between Kopt_MAP and Kpred_MAP.6

Within the training set, the evaluation of each pipeline’s loss is performed in a 5-fold 
cross-validation fashion to avoid over-fitting. Finally, the pipelines are ranked in an increas-
ing order of their loss, and the best one is selected and re-trained on the entire set of 

Table 2  Correlation of MAP@Q0 
to QPPs (significance levels .05◦

and .001∙)

MAP@Q0 corr. WIG NQC SMV

Pearson 0.237◦ 0.198◦ 0.191◦

Spearman 0.361∙ 0.406∙ 0.387∙

Kendall 0.265∙ 0.291∙ 0.279∙

Table 3  Correlation of Kopt_MAP 
to QPPs (all statistically 
insignificant)

Kopt_MAP corr. WIG NQC SMV

Pearson −0.137- −0.040- −0.024-

Spearman −0.069- −0.051- −0.041-

Kendall −0.058- −0.051- −0.039-

6 From a theoretical point of view, the MAE is not the right forecast error to be measured/minimized here 
for the problem at hand. Nevertheless, in practice, MAE has worked better than alternatives. We will elabo-
rate on this in Section 5.2.

4 Although it is risky to draw conclusions on non-significant correlations, the widespread negative co-effi-
cients in Table 3 are worrisome. They seem to suggest a flaw in our argument at the beginning of Section 3 
(i.e. the better the Q0 ’s effectiveness, the larger the Kopt_MAP ), but there is no flaw. We will investigate and 
discuss this in Section 5.1.
5 http:// epist asisl ab. github. io/ tpot

http://epistasislab.github.io/tpot
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training samples. The selected pipeline is used to predict Kpred_MAP for an unknown query. 
If the pipeline predicts a Kpred_MAP <= 0 , then PRF does not take place and the Q0 is used.

4  Evaluation

First, in Sect.  4.1, we describe the experimental setup, i.e. the main benchmark corpus, 
train–test splits, evaluation measures, and search engine used along with parameter set-
tings. Then, we run two main experiments in Sect. 4.2. Finally, in Sect. 4.3, we provide 
results on additional corpora and/or splits as well as comparisons to state-of-the-art PRF 
methods.

4.1  Experimental setup

We evaluated on a TREC7 corpus, namely, TREC Volumes 4 and 5 minus the Congres-
sional Record (Voorhees and Harman 1999), which consists of newswire articles. We used 
TREC topics 301–450, in several different train/test splits as it will be described below, for 
training and testing our regression model. The min/median/average/max numbers of rel-
evant documents these topics have in the corpus are 3/67/93.4/474. Relevance feedback is 
more effective and recommended for short queries, so we used only the titles of the TREC 
topics.

As evaluation measures, we employed MAP, Precision@30, Precision@R, and 
Recall@1000, where R is the number of relevant documents of a query. While in our 
experiments we target to optimize only the first measure (MAP), the latter three serve as 
auxiliary measures in order to get more insight. We report the macro-averages of these 
measures across the queries of multiple test-sets. In the published literature of PRF meth-
ods, it is usual to report also the Robustness Index (RI), introduced by Sakai et al. (2005), 
which gives information about the reliability of the improvements. For a set Q of test que-
ries, it is defined as RI(Q) = (n+ − n−)∕|Q| ∈ [−1, 1] , where n+ and n− are the numbers 
of queries that are respectively helped or hurt by the feedback method according to some 
evaluation measure.

For indexing the collection, we used Terrier8 v4.2 with Porter Stemmer, without remov-
ing stop words. For retrieval, we used Terrier’s default language model, which is the inverse 
document frequency model for randomness (InL2) (Amati and van Rijsbergen 2002).

In initial test runs, we investigated the values produced by the post-retrieval QPPs 
(Equations 2, 3 and 4 ) for all initial queries Q0 . Table 4 shows some statistics for the topics 

Table 4  Statistics of Post 
Retrieval Query Performance 
Predictors

WIG NQC SMV

Average 9.3370 0.4946 0.3945
Median 9.2550 0.3710 0.2920
STD 3.5874 0.5013 0.4104

7 https:// trec. nist. gov
8 http:// terri er. org

https://trec.nist.gov
http://terrier.org
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301–450. One query appeared to be an outlier. Query 368 had WIG, NQC, and SMV val-
ues of 15.0, 12.8, and 10.5, respectively. Its NQC and SMV are both well above two stand-
ard deviations from the mean, while its WIG is also very large. While these do not seem 
like unreasonable values given that 368’s Q0 achieves a high MAP (0.4291) but not the 
highest in the dataset (according to Table 1), even one outlier can have adverse effects in 
regression; thus, we typically excluded topic 368 from all experiments when it occurred in 
a training set.

In order to investigate the sensitivity of our regression model to the selection of queries 
used for training, we generated three different training/test splits of the queries 301–450. 
Split 1 (SPLT1) consists of the 50 queries with numbers 301 + 3k, k = 0… 49 , for train-
ing, and the rest for testing. Similarly, the selection formulae for the training sets of SPLT2 
and SPLT3 are 302 + 3k and 303 + 3k , respectively; in all cases, the remaining 100 queries 
constitute the test set. Furthermore, in order to investigate the sensitivity of our regression 
model to the number of queries used for training, we generated three additional splits, this 
time with 100 training queries each. For SPLT4–6, we just reverse the training/test sets of 
SPLT1–3, respectively. Thus, we can train on double the amount of queries, however, we 
will test on only the 50 remaining instead of 100. As mentioned earlier in this section, we 
excluded query 368 wherever it occurred.

As explained in Sect. 3.2, we use the TPOT tool, developed by Olson et al. (2016), for 
determining the optimal pipeline for building our regression models on the training data. 
Table  5 lists the optimal settings produced by TPOT on the training set of each of the 
splits. Among the transformation methods obtained by the grid search are Power trans-
formation, L1 Normalization, Robust Scaling of the input data, and kernel-based methods 
such as PCA, FastICA, Nystroem, and RBFsampler.

For PRF, we adopted Rocchio’s formula, with an initial query Q0 weight � , a positive 
feedback weight � = 1 − � , and � = 0 (i.e. no negative feedback used in PRF). The number 
of query expansion terms T is set to 20 for all experiments. Next, we will name all our runs 
in an “ �∕K ” fashion, referring to the two parameters of Equation 1.

4.2  Experimental results

First, we investigate how our proposed model performs against the initial query and fixed-
K positive-only PRF disregarding the initial query. Then, we compare against the standard 
PRF optimization retaining the initial query.

4.2.1  Initial query elimination

Table 6 shows the results for optimizing K for MAP per query with our proposed method 
(i.e., the 0/pM run, meaning that Q0 is eliminated and K = Kpred_MAP ), for all six train/test 
splits. The second column (1/0) shows the effectiveness of the initial retrieval ( Q0 ), while 
the next five columns show the effectiveness of positive-only PRF (i.e. no initial query) for 
five fixed values of K. Finally, the last column (0/oM) shows the effectiveness when the 
optimal K for MAP ( Kopt_MAP ) per query is used (i.e. the Ks we set out to predict); these 
MAP numbers represent the ceiling of possible effectiveness or upper bound, when the 
initial query is eliminated.

We remind that whenever Kpred_MAP <= 0 , 0/pM drops back to 1/0 for that topic, 
i.e. only the initial query Q0 is used with no PRF. This happens 4, 8, 3, 5, 4, 8 times in 



281Information Retrieval Journal (2021) 24:269–297 

1 3

Ta
bl

e 
5 

 P
ip

el
in

es
 p

ro
du

ce
d 

by
 T

PO
T 

on
 th

e 
tra

in
in

g 
se

ts
 o

f t
he

 sp
lit

s

Pi
pe

lin
es

Pa
ra

m
et

er
s

SP
LT

1
Po

w
er

Tr
an

sf
or

m
er

(m
et

ho
d=

’b
ox

-c
ox

’, 
st

an
da

rd
iz

e=
Tr

ue
)

Ro
bu

stS
ca

le
r

(q
ua

nt
ile

_r
an

ge
=

(4
0,

45
),w

ith
_c

en
te

rin
g=

Fa
ls

e,
w

ith
_s

ca
lin

g=
Tr

ue
)

Li
ne

ar
SV

R
(C

=
10

0,
du

al
=

Tr
ue

,e
ps

ilo
n=

0.
01

,in
te

rc
ep

t_
sc

al
in

g=
85

, l
os

s=
’s

qu
ar

ed
_e

ps
ilo

n_
in

se
ns

iti
ve

’,r
an

do
m

_
st

at
e=

28
,to

l=
0.

00
01

)
SP

LT
2

Fa
stI

CA
(a

lg
or

ith
m

=
’p

ar
al

le
l’,

fu
n=

’lo
gc

os
h’

,n
_c

om
po

ne
nt

s=
23

, r
an

do
m

_s
ta

te
=

28
,to

l=
0.

00
01

,w
hi

te
n=

Tr
ue

)
Ro

bu
stS

ca
le

r
(q

ua
nt

ile
_r

an
ge

=
(8

0,
 8

5)
,w

ith
_c

en
te

rin
g=

Tr
ue

,w
ith

_s
ca

lin
g=

Tr
ue

)
Li

ne
ar

SV
R

(C
=

10
0,

du
al

=
Tr

ue
,e

ps
ilo

n=
0.

00
1,

in
te

rc
ep

t_
sc

al
in

g=
10

, l
os

s=
’e

ps
ilo

n_
in

se
ns

iti
ve

’,r
an

do
m

_
st

at
e=

28
,to

l=
0.

00
01

)
SP

LT
3

N
or

m
al

iz
er

(n
or

m
=

’l1
’)

Ro
bu

stS
ca

le
r

(q
ua

nt
ile

_r
an

ge
=

(7
0,

75
),w

ith
_c

en
te

rin
g=

Fa
ls

e,
w

ith
_s

ca
lin

g=
Tr

ue
)

Li
ne

ar
SV

R
(C

=
10

.0
,d

ua
l=

Tr
ue

,e
ps

ilo
n=

1.
0,

in
te

rc
ep

t_
sc

al
in

g=
35

, l
os

s=
’e

ps
ilo

n_
in

se
ns

iti
ve

’,r
an

do
m

_
st

at
e=

28
,to

l=
0.

01
)

SP
LT

4
Fa

stI
CA

(a
lg

or
ith

m
=

’p
ar

al
le

l’,
fu

n=
’lo

gc
os

h’
,n

_c
om

po
ne

nt
s=

27
, r

an
do

m
_s

ta
te

=
28

,to
l=

0.
00

01
,w

hi
te

n=
Tr

ue
)

Ro
bu

stS
ca

le
r

(q
ua

nt
ile

_r
an

ge
=

(5
0,

55
),w

ith
_c

en
te

rin
g=

Tr
ue

,w
ith

_s
ca

lin
g=

Tr
ue

)
Li

ne
ar

SV
R

(C
=

15
.0

,d
ua

l=
Tr

ue
,e

ps
ilo

n=
1.

0,
in

te
rc

ep
t_

sc
al

in
g=

10
, l

os
s=

’e
ps

ilo
n_

in
se

ns
iti

ve
’,r

an
do

m
_

st
at

e=
28

,to
l=

0.
00

01
)

SP
LT

5
R

B
FS

am
pl

er
(g

am
m

a=
8.

4,
 n

_c
om

po
ne

nt
s=

35
, r

an
do

m
_s

ta
te

=
28

)
N

ys
tro

em
(g

am
m

a=
2.

2,
ke

rn
el

=
’li

ne
ar

’,n
_c

om
po

ne
nt

s=
25

,ra
nd

om
_s

ta
te

=
28

)
Li

ne
ar

SV
R

(C
=

25
.0

,d
ua

l=
Tr

ue
,e

ps
ilo

n=
0.

00
01

,in
te

rc
ep

t_
sc

al
in

g=
20

, l
os

s=
’e

ps
ilo

n_
in

se
ns

iti
ve

’,r
an

do
m

_
st

at
e=

28
,to

l=
0.

00
1)

SP
LT

6
PC

A
(it

er
at

ed
_p

ow
er

=
5,

n_
co

m
po

ne
nt

s=
3,

ra
nd

om
_s

ta
te

=
28

, s
vd

_s
ol

ve
r=

’ra
nd

om
iz

ed
’,t

ol
=

0.
01

,w
hi

te
n=

Tr
ue

)
Ro

bu
stS

ca
le

r
(q

ua
nt

ile
_r

an
ge

=
(5

0,
55

),w
ith

_c
en

te
rin

g=
Fa

ls
e,

w
ith

_s
ca

lin
g=

Tr
ue

)
Li

ne
ar

SV
R

(C
=

20
.0

,d
ua

l=
Tr

ue
,e

ps
ilo

n=
0.

00
1,

in
te

rc
ep

t_
sc

al
in

g=
10

, l
os

s=
’e

ps
ilo

n_
in

se
ns

iti
ve

’,r
an

do
m

_
st

at
e=

28
,to

l=
0.

01
)



282 Information Retrieval Journal (2021) 24:269–297

1 3

SPLT1–6, respectively, i.e. 4–16% of the topics with a median of 7%.9 Similarly, whenever 
the MAP of Q0 is greater than the MAP of Qr,K for all K, 0/oM drops back to the effective-
ness of Q0 (1/0) for that topic. This happens 19 times in the 149 topics (12.7%), or 12, 13, 
13, 7, 6, 6 times in SPLT1–6, respectively; i.e. 12–14% of the topics.

The best result per measure, across the Q0-only (1/0) or fixed-K runs (0/5–0/50), is in 
boldface. Across these runs, MAP is maximized for K = 10 (0/10) in all experiments/
splits.10 The MAP improvements of 0/10 over 1/0 are between 10.6% and 17.9%.11 Thus, a 
positive-only PRF, disregarding the initial query, can result to large improvements in effec-
tiveness, even by using a fixed K for all queries as long as a proper K is selected; here, we 
confirm once more that the widely-used value of K = 10 gives the best MAP results.

A valuable K optimization method must outperform Q0 (1/0), as well as all fixed K runs 
(0/5–0/50). We see that our proposed method (0/pM) always outperforms the best fixed 

Table 6  Effectiveness of positive-only PRF (initial query eliminated)

9 These are approximate (but very close) numbers, not accounting for the excluded topic 368 whenever this 
is missing from a test set of a split.
10 We tried a higher resolution for K (see lines at � = 0 in Table 8 in Sect. 4.2.2), and K = 10 was still the 
best overall in MAP. While Table 8 seems like it shows MAP in the training sets of splits, we remind that 
SPLT1’s training set is SPLT4’s test set, and so on.
11 These percentage improvements are resulting from Table 6, but not shown in the table due to the limited 
space.
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K run (0/10) by 7.0% to 10.6% in MAP, depending on the split (but most-affected by the 
amount of training data). The Kpred_MAP results (0/pM) are significance-tested with a boot-
strap test, one-tailed, at significance levels 0.05 ( ◦ ), 0.01 ( ), and 0.001 ( ∙ ), against the 
fixed K = 10 run (0/10); ( - ) means non-significant. The MAP improvements achieved by 
Kpred_MAP (0/pM) over Q0 (1/0) are between 18.3% and 29.6%.

The auxiliary precision-oriented measures, Prec@R and Prec@30, also yield mostly 
statistically-significant improvements in tandem with MAP. In 0/pM vs. 0/10, Prec@R 
improves by 4.5% to 10.1% and Prec@30 by -0.2% to 11.5%, depending again on the 
split. These measures tend to get maximized at K = 5 in some splits, but we still get large 
improvements over these 0/5 runs. Rec@1000 does not show any significant differences 
and it tends to get maximized for larger fixed Ks (e.g. 0/30). These results were expected 
due to the fact that precision-oriented measures are correlated to MAP (MAP is also mostly 
sensitive to the top of the ranking), while Rec@1000 is a high-recall measure. Neverthe-
less, note that we still get large increases in Rec@1000 over Q0 , from 10.9 to 12.6%. In any 
case, all these are extra improvements, since our target has been MAP optimization where 
we achieve the largest and most significant improvements as we showed earlier.

Regarding the sensitivity of our method (0/pM) to the selection of training queries, 
we can see that SPLT1–3 show similar percentage improvements in MAP (7.0% to 7.5% 
over 0/10). The same goes for SPLT4–6 (9.8% to 10.6% over 0/10). Thus, our method is 
robust. We remind that SPLT1–3 use three different training sets of 50 queries each, while 
SPLT4–6, three different training sets of 100 queries each.12

Regarding the sensitivity of our method to the size of the training set of queries, we 
can see that SPLT4–6 perform better than SPLT1–3. Thus, more training queries lead to 
a better performance. Nevertheless, one could argue that even with just 100 training que-
ries, we may be already seeing some diminishing returns: the MAP achieved by the pro-
posed method is nearer to the ceiling of possible achievable effectiveness (0/oM) than to 
the effectiveness of Q0 (1/0) in SPLT5. All in all, if not 100, a few hundreds of training 
queries may be sufficient.

Table 7 reports the RI values for MAP. The proposed PRF method (0/pM) improves a 
significant amount of queries over the Q0-only run 1/0 (1st column) and the fixed K = 10 
run 0/10 (2nd column). The third column shows the RI of the fixed K = 10 run over 
the Q0-only run. Once again we confirm that using a fixed K value is not an effective 
approach as it hurts almost as many queries as it improves, while our proposed method 
is much more reliable.

Table 7  Robustness Index (RI) 
for MAP

0/pM vs. 1/0 0/pM vs. 0/10 0/10 vs. 1/0

SPLT1 .23 .31 .05
SPLT2 .17 .15 .05
SPLT3 .15 .05 .05
SPLT4 .16 .32 .04
SPLT5 .42 .38 .02
SPLT6 .30 .38 .02

12 Again, not accounting for the excluded topic 368, whenever this occurs in a training set.
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To conclude, our proposed PRF method, i.e. disregarding the contribution of the ini-
tial query and optimizing the number of pseudo relevant documents (K) per query, is a 
viable, robust, and effective method. It yields significant improvements both over the 
initial query and positive-only PRF with a fixed K for all queries.

Table 8  MAP on the train sets of 
splits for different combinations 
of �∕K

SPLT1–6 K

3 5 10 15 20 30 50

� 0 .2395 .2347 .2373 .2305 .2285 .2159 .2076
0.2 .2297 .2186 .2200 .2139 .2140 .2054 .2007
0.4 .2529 .2538 .2510 .2430 .2400 .2387 .2367
0.5 .2529 .2588 .2573 .2496 .2466 .2442 .2436
0.6 .2480 .2558 .2534 .2493 .2462 .2428 .2457
0.8 .2305 .2357 .2325 .2321 .2296 .2311 .2322

� 0 .2541 .2506 .2589 .2518 .2470 .2374 .2179
0.2 .2397 .2414 .2427 .2410 .2372 .2213 .2064
0.4 .2605 .2590 .2636 .2588 .2542 .2521 .2358
0.5 .2590 .2589 .2586 .2559 .2534 .2520 .2406
0.6 .2532 .2565 .2531 .2491 .2528 .2494 .2426
0.8 .2359 .2419 .2399 .2376 .2399 .2404 .2356

� 0 .2440 .2392 .2416 .2347 .2327 .2198 .2114
0.2 .2340 .2229 .2239 .2178 .2180 .2091 .2042
0.4 .2575 .2586 .2554 .2474 .2443 .2430 .2409
0.5 .2575 .2637 .2618 .2541 .2511 .2486 .2480
0.6 .2525 .2606 .2579 .2538 .2507 .2471 .2501
0.8 .2346 .2400 .2366 .2362 .2337 .2352 .2363

� 0 .2357 .2310 .2473 .2460 .2398 .2303 .2052
0.2 .2210 .2177 .2262 .2295 .2303 .2210 .1966
0.4 .2479 .2467 .2622 .2608 .2553 .2470 .2278
0.5 .2472 .2511 .2666 .2640 .2598 .2483 .2353
0.6 .2464 .2518 .2615 .2593 .2575 .2445 .2360
0.8 .2352 .2410 .2446 .2441 .2416 .2390 .2338

� 0 .2286 .2232 .2366 .2354 .2306 .2196 .2003
0.2 .2162 .2065 .2150 .2160 .2188 .2131 .1938
0.4 .2442 .2442 .2559 .2529 .2482 .2404 .2283
0.5 .2443 .2512 .2659 .2608 .2563 .2445 .2369
0.6 .2439 .2516 .2615 .2593 .2541 .2415 .2377
0.8 .2325 .2379 .2408 .2413 .2364 .2344 .2321

� 0 .2336 .2288 .2451 .2437 .2376 .2283 .2034
0.2 .2190 .2156 .2242 .2274 .2282 .2190 .1949
0.4 .2457 .2445 .2599 .2584 .2530 .2448 .2258
0.5 .2450 .2488 .2643 .2617 .2575 .2462 .2333
0.6 .2442 .2496 .2592 .2570 .2552 .2423 .2340
0.8 .2332 .2389 .2425 .2420 .2395 .2369 .2318
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4.2.2  Retaining initial query with fixed or predicted K

Table 8 shows the MAP on the training sets of splits for different combinations of �∕K ; 
the maximum MAP per split is in boldface. What we call the standard PRF optimization 
method for MAP (std-pM) would use in the test set the best combination of �∕K found in 
the training set, i.e. 0.5/5 for SPLT1, 0.4/10 for SPLT2, and so on. It can be seen that, in 
general across all splits, MAP is maximized between 0.4–0.5 for � and 5–10 for K, with 
0.5/10 being overall the best combination.

Table 9 shows the results achieved by the standard method (std-pM) on the test sets 
of the splits. The 0/pM column re-iterates the results from Table  6 of our proposed 
method, but this time they are compared and statistically-tested for significance against 
the standard method. It can be seen that, even by eliminating the initial query, our 
proposed method outperforms the standard method in 5 out of 6 splits (significantly 
in 3 of those 5) in MAP. The only decrease in MAP is in SPLT2, and there are some 
decreases in the auxiliary evaluation measures (which we do not try to optimize any-
way), but none of them is significant. Thus, the improvements in MAP range from 
-1.1% to +10.0% with a median/mean of +3.7%/+4.0%.

Table 9  Effectiveness of PRF with standard MAP optimization (std-pM), against the pure proposed method 
(0/pM) and when retaining a 50% contribution of the initial query (0.5/pM). The ceiling of std-pM is std-
oM, when the optimal fixed �∕K for a test set is found and used



286 Information Retrieval Journal (2021) 24:269–297

1 3

While we are satisfied with these improvements, we are also interested to see what 
happens if we also use some contribution of the initial query in our model. For this 
purpose, we did an extra run using the best overall � = 0.5 (according to Table 8) but 
with building the positive feedback component with our model/method; these results 
are shown in the .5/pM column and compared against the standard method (std-pM). 
This time, there are MAP improvements in all splits, ranging from +2.1% to +8.0% 
with a median and mean of +5.3%, significant in 5 out of 6 splits. The auxiliary meas-
ures also mostly improve, some significantly so.

To conclude, our proposed model outperforms the standard PRF optimization 
method. Nevertheless, there are still further improvements to be gained—albeit small 
ones—by using some contribution of the initial query. While our positive-only feed-
back model is built to be optimal without a contribution of the initial query, it still 
performs a bit better in 5 out of 6 splits (from +1.2% to +3.2% in MAP) when 50% of 
such a contribution is used. These small improvements are mostly statistically insig-
nificant, however, it seems that there is some robustness to be gained, as it can been 
seen in Table 10.

On a final note, the right-most column of Table  9 (std-oM) shows the potential 
effectiveness ceiling of the standard optimization method. For this, we grid-searched 
for the �∕K  combination that maximizes MAP, but this time directly in each test set. It 
can be seen that the results achieved by the standard method (std-pM) are very near to 
their ceiling (std-oM), thus there is not much potential left for improvements. In con-
trast, even our best runs so far (0/pM and 0.5/pM) are far from their potential ceiling 
(0/oM column in Table 6), leaving amble room for improvement.

4.3  Additional experiments

In this section, first we will confirm the effectiveness of our proposed method on an 
additional benchmark corpus, and then compare it to PRF methods from the recent 
literature on several other setups.

4.3.1  Experiments with web data

Table  11 presents our results on the WT10g test collection. We applied the same pre-
processing pipeline as in (Parapar and Barreiro 2011; Parapar et al. 2014; Valcarce et al. 
2018), i.e. stopword removal and Porter Stemmer, as well as used the same split, i.e. 

Table 10  Robustness Index (RI) 
for MAP

0/pM vs. std-pM .5/pM vs. std-pM

SPLT1 .22 .26
SPLT2 −.22 .14
SPLT3 .14 .14
SPLT4 .14 .34
SPLT5 .22 .36
SPLT6 .14 .20
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trained our model using TREC topics 451–500 and evaluated using topics 501–550. Again, 
we optimized for MAP.

The best fixed-K for MAP is 5 (0/5 run); against this run as a baseline, the proposed 
method (0/pM) yields statistically significant results for MAP and Prec@R. The MAP 
improvement (+7.1%) is in-line with what we reported earlier in Table  6 when training 
with 50 queries only. While the Prec@R improvement is much larger in the WT10g cor-
pus, this also has to do with the fact that each measure is maximized at a different fixed-K 
value. Against the initial query (1/0), the proposed PRF method yields a larger improve-
ment (+34.9%) than the best we saw before in Table 6 (+29.6%). These results confirm the 
effectiveness of our method, strengthening the evidence. However, the proposed method is 
quite far from its potential ceiling of effectiveness (0/oM column), leaving amble room for 
improvements.

We run the standard PRF optimization method for MAP (std-pM), as in Sect.  4.2.2, 
and found that MAP is maximized at .5/5; these results are shown in the 1st column of 
Table 12. Our proposed method (0/pM) significantly outperforms std-pM. Moreover, std-
pM is practically at its potential ceiling of performance (std-oM column) resulting when 
using the optimal parameters found in the test set (i.e. .6/5). Thus, these results so far con-
firm our findings in Sect. 4.2.2. But now, using a fixed 50% contribution of the initial query 
together with the variable Ks predicted by our proposed method (i.e. .5/pM run), is gener-
ally worse than the pure proposed method (0/pM). This is in contrast to the small insig-
nificant improvements we found in Sect. 4.2.2, supporting our conjecture of initial query 
elimination.

Table 13 provides the RIs of some run comparisons from Tables 11–12. All RIs confirm 
our commentary above, except a single surprise: despite the overall worse performance 
(-5.3% in MAP) of .5/pM compared to 0/pM, .5/pM yields a larger RI over the std-pM. 

Table 11  Effectiveness of positive-only PRF — WT10g corpus

WT10g blind feedback parameters �/K:

1/0 0/5 0/10 0/20 0/30 0/50 0/pM (vs. 0/5, vs. 1/0) 0/oM

MAP .1940 .2443 .2365 .2225 .2319 .2123 .2616◦(+7.1%, +34.9%) .3410
Prec@R .2444 .2521 .2649 .2509 .2547 .2417 .2896◦(+14.9%, +18.5%) .3734
Prec@30 .2820 .2961 .3027 .2893 .3047 .2963 .3060-(+3.3%, +8.5%) .3880
Rec@1000 .7233 .7997 .7926 .7816 .7876 .7810 .7900-(−1.2%, +9.2%) .8452

Table 12  Effectiveness of PRF with standard MAP optimization (std-pM), against the pure proposed 
method (0/pM) and when retaining a 50% contribution of the initial query (0.5/pM). The ceiling of std-pM 
is std-oM, when the optimal fixed �∕K for the test set is found and used

WT10g run name or blind feedback parameters �/K:

std-pM 0/pM (vs. std-pM) .5/pM (vs. std-pM, vs. 0/pM ) std-oM

MAP .2469 .2616◦(+5.9%) .2477-(+0.3%, −5.3%) .2492
Prec@R .2598 .2896◦(+11.5%) .2725◦(+4.9%, −5.9%) .2594
Prec@30 .2888 .3060◦(+5.9%) .3078-(+6.6%, +0.6%) .3007
Rec@1000 .7824 .7900-(+0.9%) .7876-(+0.7%, −0.3%) .7926
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This surprise is in line with Valcarce et al. (2018), who also found that while their pro-
posed method was the most effective it did not achieve the best RI value. They attributed 
this to the noisy nature of the WT10g collection. This suggests again, as in Sect. 4.2.2, that 
there may be at least some robustness to be gained when using some contribution of the 
initial query, but this time it comes at a cost of lower average effectiveness. On the other 
hand, rather weirdly, the RI is positive when comparing 0/pM to .5/pM.

4.3.2  Comparison to the state‑of‑the‑art

Let us now compare to other state-of-the-art PRF methods from the literature, specifically, 
the RM3 model which is one of the most effective PRF methods based on the language 
modeling framework (see e.g. Lv and Zhai (2009b, 2010)), and the methods of Parapar and 
Barreiro (2011); Parapar et al. (2014); Valcarce et al. (2018). We reproduce the experimen-
tal setups of these works on the TREC Volumes 4 and 5 (minus the Congressional Record) 
collection. While this is the same corpus we also used in the previous sections, other stud-
ies considered different training/testing splits, namely, TREC topics 301–350 for training 
and 351–400 or 351–450 for testing; we refer to these setups/splits as TS50 and TS100, 
respectively. On the WT10g corpus, the aforementioned works used the setup we described 
earlier in this section.

In Table 14, the first three columns present the MAP reported in the aforementioned 
works for LM, RM3, and the best-performing PRF method of the ones proposed in 
each of the studies. On TS50, SDRM3 is the best in Parapar et al. (2014), and LiMe-
TF-IDF is the best in Valcarce et al. (2018). On TS100, RM3DT is the best in Parapar 
and Barreiro (2011). On WT10g, RM3DT is the best in Parapar and Barreiro (2011), 
SDRM3 is the best in Parapar et al. (2014), and LiMe-TF is the best in Valcarce et al. 
(2018). As a retrieval model for the initial retrieval, the baseline Language Modelling 

Table 13  Robustness Index (RI) 
for MAP — WT10g corpus

RI

0/5 vs. 1/0 .12
0/pM vs. 1/0 .38
0/pM vs. 0/5 .32
0/pM vs. std-pM .22
.5/pM vs. std-pM .42
0/pM vs. .5/pM .26

Table 14  MAP-based comparisons to previous works on TS50, TS100, and WT10g testbeds
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(LM) with Dirichlet smoothing was used. The RM3 model was well-tuned; using top-
ics 301–350 for training, the optimal values of �, e, r, � reported in Parapar et al. (2014) 
were 500, 100, 10, 0.2, respectively. The � value suggests that the contribution of the 
initial query should be high (since � = 1 − � = 0.8 ) for the TS50 and TS100 bench-
mark datasets. For the WT10g dataset, the values reported for �, e, r, � were 500, 10, 5, 
0.6, respectively, suggesting a more balanced contribution.

Table 14 also presents our results of the initial query (1/0) as well as our proposed 
method (0/pM) on those three setups. Note that our initial query run underperforms 
LM in all three testbeds (we use Terrier’s default/untuned language model, i.e. the 
inverse document frequency model for randomness (InL2) (Amati and van Rijsbergen 
2002)). Nevertheless, starting even from such a worse initial retrieval, our proposed 
PRF method outperforms both RM3 and the best-performing PRF method from previ-
ous literature in all testbeds, in some cases by far. The outperformance over literature’s 
best runs ranges from 1.3% to 21.0% with an average of 10.2%. Table 15 shows the RI 
values of our method and of literature’s best-performing methods against the initial 
query runs (either 1/0 or LM). Our RIs are larger in 4 out of 6 cases, while they are 
overall high. Last, according to our method’s potential ceiling of effectiveness (0/oM), 
there is amble room for further improvements.

Once more, as explained in Section 3.2, we used the TPOT tool, developed by Olson 
et al. (2016), to determine the optimal machine learning pipelines for our method. For 
completeness, Table  16 lists the obtained parameters, which are similar and in-line 
with the previous experiments reported in Section  4.2. The transformation methods 
obtained by the grid search are L2 Normalization, StandardScaling, PolynomialFea-
tures of the input data, and kernel-based methods such as KernelPCA, FastICA, and 
RBFsampler.

5  Discussion

The empirical evaluation has shown that the proposed method is robust and effective. 
Here, we will look deeper into some data in order to gain more insight on why it works.

Table 15  Robustness Index (RI) for MAP
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5.1  Optimal K and query performance

In Table  3, we saw some worrying signs (i.e. although non-significant, all correlations 
are negative) that may indicate a flaw in half of our argument at the beginning of Sect. 3:  
positive correlations between the optimal K and both R and Q0 effectiveness are expected.  
Since Table 3 measures the correlation of Kopt_MAP to QPPs and not directly to the MAP of 
Q0 , we provide Table 17 in order to determine whether our argument holds or not. Table 17 
confirms the first part of the argument (i.e. the larger the R, the larger the optimal K), but 
shows an anti-correlation between Kopt_MAP and MAP@Q0 (and therefore good QPPs). 
Since, as we argued in Sect. 3, the effectiveness of Q0 comes to ‘correct’ the optimal K, 
moving it further away from R to lower values the more difficult the Q0 is, we investigate R 
further.

Table 18 shows the correlation of R to QPPs and Q0 ’s effectiveness. These are all nega-
tive correlations, mostly statistically significant. This appears to be counter-intuitive, 
since among the easiest topics there are many which possess a small number of relevant 
documents, and many difficult topics have many relevant documents. Amati et al. (2004) 
noticed this before, and attributed it to topic/query generality with respect to the collection. 
Specific queries have few relevant documents, their query terms have few occurrences in 
the collection, thus their relevant documents are easier to find/discriminate.

Consequently, what we think is happening with our argument/model is the following. 
We detect effective queries via QPPs (Table 2). These happen to have small R (Table 18), 
plausibly due to the argument of Amati et al. (2004) mentioned above, generating a nega-
tive correlation between QPPs and R. Since, as we argued, the optimal K should be smaller 
than R,13 the negative correlation is also transferred to between QPPs and optimal K, mak-
ing our argument look flawed while it is not. There is a positive correlation between QPPs 
and optimal K, which is almost totally overridden (Table 3) by the small R of easy queries 
and large R of the difficult ones—a much stronger correlation. Indeed, when we measure 
the correlation between Kopt_MAP and QPPs but only for queries with R in a tight range, it 
turns positive most often. Therefore, the latter half of our argument should be better re-for-
mulated as: a positive correlation between the optimal K and Q0 effectiveness is expected 
for topics with a similar R.

Table 17  Correlation of Kopt_MAP to MAP@Q0 , R, MAP@Qr,Kopt_MAP

Kopt MAP corr. MAP@Q0 R MAP@Qr,Kopt MAP

Pearson −0.220• 0.196◦ −0.225•◦

Spearman −0.160◦ 0.189◦ −0.108 -

Kendall −0.109◦ 0.127◦ −0.073 -

Table 18  Correlation of R to QPPs and Q0 ’s effectiveness
R corr. WIG NQC SMV MAP@Q0

Pearson -0.208◦ -0.142 - -0.132 - −0.183◦

Spearman -0.229◦ -0.321◦ -0.260◦ −0.112 -

Kendall -0.159◦ -0.222◦ -0.180◦ −0.080 -

13 There are 116 out of the 150 queries (77.3%) with Kopt_MAP ≤ R in our dataset. Also note that the Rs are 
not the real ones but under-estimated—in various degrees—by TREC’s pooling process.
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Although we decided to focus on Q0 ’s effectiveness in this study, R has turn out to be a 
very important variable too. Luckily, QPPs predict R also (Table 18) via the discussed anti-
correlation, which seems to have helped our regression model considerably.

5.2  Loss functions for model selection

In Section  3.2 it was stated that we use the mean absolute error (MAE) between the 
observed optimal K ( Kopt ) and our forecast ( Kpred ) as a loss function for model selection in 
training the regression model. Further experiments revealed that the choice of loss function 
is critical in our training method, determining its success or failure.

The absolute error (AE) is defined as AE(Kopt,Kpred ) = |Kopt − Kpred| . Theoretically, 
however, AE is not the right choice in the context of PRF. Its problem is that it penalizes 
equally a certain AE in forecast irrespective of the magnitude of the observed value, e.g. 
AE(100,105) = AE(10,15). In PRF, the former error is expected to have a less dramatic 
impact in PRF effectiveness than the latter. By treating those two cases equally, using MAE 
for model selection in PRF produces systematically larger-than-desirable forecasts.

An alternative is the mean absolute percentage error (MAPE). The absolute percentage 
error is defined as APE(Kopt,Kpred ) = |(Kopt − Kpred)∕Kopt| . APE normalizes AE’s unsuit-
able behaviour by measuring percentage differences. However, it puts a heavier penalty on 
negative errors, i.e. Kopt < Kpred , than on positive ones. For example, APE(5,10)=100%, 
but APE(10,5)=50%. As a consequence, when MAPE is used to compare the accuracy of 
prediction methods, it is biased in that it will systematically select a method whose fore-
casts are too low. While this is typically considered as a drawback in the literature, it is a 
desirable bias in our task since negative errors are expected to decrease the density of rel-
evant documents in the PRF set while positive errors are expected to increase it. Still, note 
that APE(10,5)=50% but APE(10,15)=50% also (i.e. APE is symmetric on the percentage 
scale), while, based again on our relevant document density argument, the former error is 
preferable.

Other error variants, such as the Adjusted/Symmetric MAPE (SMAPE), seem even 
more unsuitable. SMAPE is the mean of the symmetric APE (sAPE), which is defined as 
sAPE(Kopt,Kpred ) = |Kopt − Kpred|∕((|Kopt| + |Kpred|)∕2) . The sAPE is asymmetric (despite 
its name) on the percentage scale, e.g. sAPE(10,5)= 66.6% but sAPE(10,15)=40%, but 
its asymmetry is the opposite from the desirable: the former error is preferable. Moreo-
ver, it eliminates (as it is designed to do so) APE’s desirable bias, e.g. sAPE(5,10) and 
sAPE(10,5) are now equal. A measure proposed by Tofallis (2015) is the log of the accu-
racy ratio (LAR), which in our case it should be taken as an absolute value (ALAR). It 
is defined as ALAR(Kopt,Kpred) = | log(Kpred∕Kopt)| = | logKpred − logKopt| . The mean of 
ALAR (MALAR) can be used as a loss function. Inspecting its properties: ALAR(100,105) 
< ALAR(10,15) (desirable), ALAR(5,10) = ALAR(10,5) (undesirable), ALAR(10,5) > 
ALAR(10,15) (undesirable). Therefore, among the MAE, MAPE, SMAPE, and MALAR, 
qualitatively more suitable for our task (although still not the ideal) is the MAPE.

A drawback of MAPE (as well as SMAPE and MALAR) is that it cannot be used if 
there are observed values (and/or predicted values for SMAPE and MALAR) equal to zero 
because there would be a division by zero (or a log of zero); we have a few of such zeros in 
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our problem. Nevertheless, since we are not interested in (or going to interpret) the actual 
MAPE value but use MAPE as a loss function, all observed and predicted data could be 
shifted by adding a small positive value � without any material impact to our use. Thus, we 
shifted with � = 0.5.

In the discussion above, we have focused on how to best measure the error between 
optimal and predicted K. In PRF, however, we are ultimately interested in the impact this 
error has on retrieval effectiveness, not in the error itself. In this respect, the most suitable 
loss function for our problem is the mean of retrieval effectiveness error (MREE). For 
MAP, the retrieval effectiveness error is defined as REE(Kopt_MAP,Kpred_MAP) = 
MAP@Qr,Kopt_MAP

 − MAP@Qr,Kpred_MAP
 , with a drop-back to MAP@Q0 to any of the two 

MAPs if Kopt_MAP = 0 or Kpred_MAP ≤ 0 . Minimizing MREE minimizes the average dis-
tance from the potential ceiling of effectiveness, i.e. the effectiveness distance between the 
0/oM and 0/pM runs in Table 6.

We experimented with all the above loss functions. While the MREE is the theoretically 
correct one, it produces unstable fits across the splits leading to overall worse effectiveness. 
From the ones focusing on measuring the K-error, MAPE—which is the most suitable but 
still not perfect—has exactly the same problem as MREE. The rest, SMAPE, MALAR, and 
MAE, while they do not have the properties desired by the task, they are more forgiving, 
with the MAE being the most robust and performing the best.

This counter-intuitive behavior of loss functions can be attributed to the training data: 
the distribution of Kopt_MAP in our training sets is skewed to the downside (as resulting 
from the numbers in the first paragraph of Sect. 3.2). This skew is sufficient to produce 
the desirable under-forecasts, and when it is combined with the additional under-fore-
casting of MAPE it becomes too much, leading to an excessive number of forecasts with 
Kpred_MAP <= 0 which degenerate the method. A similar thing may be happening with 
MREE. Table 17 shows an anti-correlation between the optimal K and the effectiveness 
of the positive-only feedback query built at the optimal K, meaning that the most effective 
feedback happens at small Ks. Since there are many more small Kopt_MAP than large ones, 
TPOT focuses overly at low forecasts. However, at large MAPs, diminishing returns kick 
in: while one can achieve an absolute increase of +0.25 when MAP is e.g. at 0.05, he can 
only achieve at best +0.20 when MAP is already e.g. at 0.80; inversely, while one can loose 
-0.20 from 0.80, he can only loose at worst -0.05 from 0.05. The macro-averaged MAP we 
evaluate with is sensitive to these absolute differences.

As an indirect proof that we are right in our analysis above, Table 19 ranks the splits by 
their effectiveness in the test set as measured by the different loss functions. The right-most 
column (0/oM−0/pM) ranks the splits with the difference in the mean MAP between the 
ceiling and our method (minimizing this difference is the target). Obviously, this is exactly 
the same as the MREE, since the difference of means (0/oM−0/pM) equals the mean of the 

Table 19  Ranking of splits by 
their test-set loss

MAE MAPE SMAPE MALAR MREE 0/oM−0/pM

6 5 6 4 5 5
2 6 4 6 4 4
1 4 1 5 6 6
4 3 5 1 3 3
3 1 2 3 1 1
5 2 3 2 2 2
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differences (MREE); therefore, the MREE is optimal. The MAPE is the second best (or 
the best among the ones focusing on K-errors rather than MAP-errors), with only a single 
permutation of adjacent splits from the optimal ranking. Note that the good functions rank 
splits 4–6 above splits 1–3; since splits 4–6 have double the amount of training data than 
splits 1–3, smaller errors are achieved in the test sets of the former splits.

All in all, one should keep in mind that the theoretical optimal loss function for the task 
is the MREE, while the MAPE also has most of the desirable properties. Given a larger 
and more balanced training set of queries (i.e. with more uniformly distributed Kopt for the 
effectiveness measure of interest), the MREE or MAPE are the loss functions one should 
employ. For our few and unbalanced training data, the simplest option of MAE has been 
the most forgiving, robust, and effective.

6  Conclusions & directions for further research

We have proposed a method for automatic optimization of pseudo relevance feedback 
(PRF) in information retrieval. Based on the conjecture that the initial query’s contribu-
tion to the final/feedback query may not be necessary once a good model is built from 
pseudo relevant documents, we have set out to optimize—per query—only the number of 
top-retrieved documents to be used for feedback. The optimization has been based on sev-
eral post-retrieval query performance predictors for the initial query by building a linear 
regression model. The regression model itself has been optimized via genetic programming 
by intelligently exploring thousands of possible machine learning pipelines to find the best 
one for the data at hand.

The approach requires training data. Experiments on several train/test splits of standard 
TREC benchmark corpora have shown that even by using only 50–100 training queries, 
the method yields statistically-significant improvements in MAP of 18–35% over the initial 
query, 7–11% over the positive-only feedback model with the best fixed number of pseudo-
relevant documents, and up to 10% (5.5% on median) over the standard method of optimiz-
ing both most-important PRF parameters (i.e. the initial query’s contribution/weight and 
the number of feedback documents) by exhaustive/grid search in the training set. Com-
pared to state-of-the-art PRF methods from the recent literature, our method outperforms 
by up to 21.0% with an average of 10%. Moreover, the method does not seem very sensi-
tive to the selection of training queries, although it may benefit from an increased number 
of them. While the training phase may be computationally heavy, the prediction phase is 
quite fast and usable in query-time. This has to do with the choice of query performance 
predictors which are easy and fast to calculate.

A further analysis of the experimental results has shown that we are still far from the 
method’s effectiveness ceiling (in contrast to the standard method which seems to have 
reached its saturation point), leaving amble room for further improvements in several direc-
tions, notably: tuning of the query performance predictors’ parameters (we have merely 
used standard values recommended in the literature), more query performance predictors 
(potentially also pre-retrieval ones), more (and more balanced) training data. Additionally, 
based on our theoretical arguments, the method may benefit from using predictors for the 
number of relevant documents, but this is quite a problem on its own.

Additional improvements, which extend beyond the explored conjecture, could be to 
try to optimize both most-important PRF parameters, employing the proposed process. 
The experimental results have shown that there may still be some benefit from using some 
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contribution from the initial query, perhaps in terms of improvements in robustness rather 
than in average MAP; nevertheless, we believe that this is due to not yet utilizing the pro-
posed method’s potential in its entirety. In any case, optimizing two parameters is more 
difficult than optimizing just one, and may require super-linearly more training data. As a 
middle ground, one could assume a fixed contribution of the initial query, e.g. 20%, take it 
into account when training the regression model, and go for the other parameter with our 
proposed method.
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