
Vol:.(1234567890)

Information Retrieval Journal (2021) 24:114–136
https://doi.org/10.1007/s10791-020-09388-8

1 3

LSH kNN graph for diffusion on image retrieval

Federico Magliani1  · Andrea Prati1

Received: 7 November 2019 / Accepted: 29 December 2020 / Published online: 7 January 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract
Experimental results demonstrated the goodness of the diffusion mechanism for several
computer vision tasks: image retrieval, semi-supervised and supervised learning, image
classification. Diffusion requires the construction of a kNN graph in order to work. As
predictable, the quality of the created graph influences the final results. Unfortunately, the
larger the used dataset is, the more time the construction of the kNN graph takes, since the
number of edges between nodes grows exponentially. A common and effective solution
to deal with this problem is the brute-force method, but it requires a very long compu-
tation on large datasets. This paper proposes improvements on LSH kNN graph method
that efficiently create an approximate kNN graph which is demonstrated to be faster than
other state-of-the-art methods (18x faster than brute force on a dataset of more than 100k
images) for content-based image retrieval, while obtaining also comparable performance in
terms of accuracy. LSH kNN graph has been tested and compared with the state-of-the-art
approaches for image retrieval on several public datasets, such as Oxford5k, ROxford5k,
Paris6k, RParis6k and Oxford105k.

Keywords  Content-based image retrieval · Diffusion · kNN graph

1  Introduction

Content-Based Image Retrieval (CBIR) is a research topic related to computer vision
area. The problem focuses on the search for a query image in a dataset and rank the
results based on the similarity to it. This image can be chosen or photographed by a
mobile device. This problem seems simple to solve, but there are several challenges to
be faced. The most significant ones are the robustness to orientation, scale and occlu-
sion. With the recent advent of features extracted by means of Convolutional Neural
Networks (CNN), it has been possible to obtain remarkable results, mitigating the effect
of these problems. In parallel, several new embedding strategy were proposed (Gordo
et al. 2017; Magliani and Prati 2018; Tolias et al. 2016). The combination of the new
architecture for the feature extraction phase and the new method for the creation of

 *	 Federico Magliani
	 federico.magliani@studenti.unipr.it
	 http://implab.ce.unipr.it

1	 IMP lab - University of Parma, Parma, Italy

http://orcid.org/0000-0001-5526-0449
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-020-09388-8&domain=pdf

115Information Retrieval Journal (2021) 24:114–136	

1 3

global descriptors allowed to realise effective and efficient pipelines for CBIR problem,
making feasible CBIR solutions also in case of large-scale datasets with reasonable
retrieval time (Magliani et al. 2019).

A recent breakthrough on this topic was made possible thanks to an application of graph
theory, such as diffusion process, allowing to outperform the previous state of the art.
In particular, the diffusion mechanism can be applied for retrieval task with outstanding
results (Iscen et al. 2017), because instead of using distances in Euclidean space like in
case of brute-force, you can find actual query neighbours on the Reimannian manifold cre-
ate by diffusion. This process exploits the distribution of the data over the manifold through
the creation of a graph, that represents the connection between dataset elements. The graph
is mathematically represented by a pairwise affinity matrix (Zhou et al. 2004). Therefore,
as also previously stated, the diffusion process requires the creation of a kNN graph of
the embeddings used to represent the dataset images (Fig. 1). Of course, the quality of the
embeddings influences the results that can be achieved applying the diffusion process (1).

Once the kNN graph is created, the diffusion process works by finding (through ran-
dom walks), for each node, the best path to reach the query, exploiting the weights of
the traversed edges. The weights represent the similarity between the nodes connected
by the edge (the greater the weight, the more similar the two nodes are).

Unfortunately, this approach also bears with it some drawbacks: (i) the setting of dif-
fusion parameters is hard since they are dependent of the specific data distribution; and
(ii) the time necessary to create the kNN graph can be unbearable for large datasets.

In practice, in order to apply diffusion a kNN graph needs to be created and its number
of edges heavily influences the retrieval result. Moreover, it is hard to predict how much
connected the graph needs to be to achieve good results. Therefore, the straightforward
solution is to fully connect the nodes through the so-called brute-force strategy. This strat-
egy is very easy to implement, but it tends to be very slow in case of large datasets. Given a
dataset of N images, the brute-force graph will have N2 edges, meaning that for N = 100k ,
the number of edges of the brute-force graph will be equals to 10 billions.

Fig. 1   In these three figures, two data distributions (orange and blue) are shown. In figure a the two distri-
butions are depicted and the black point represents the query (which belongs to the blue class). In figure b,
the Euclidean distance is applied to rank the neighbours (green points) of the query, but several false posi-
tives are detected. On the other hand, in figure c the ideal ranking is shown. The diffusion can helps achiev-
ing this result, thanks to the propagation (diffusion) starting from the query image (Color figure online)

116	 Information Retrieval Journal (2021) 24:114–136

1 3

As a consequence, different methods were proposed to solve this task in an approximate
way, trying to create fastly a high quality approximate kNN graph (Chen et al. 2009; Dong
et al. 2011; Sieranoja and Fränti 2018; Zhang et al. 2013) (see Sect. 2 for further details).

This paper is based on our previous work on LSH kNN graph method (Magliani et al.
2019). Our proposed method called LSH kNN graph follows the principle that not all the
connections between nodes in the graph are necessary. It uses Locality Sensitive Hash-
ing (LSH) projections (Indyk and Motwani 1998) to subdivide the images contained in
the dataset in many subsamples that are related to the buckets created by the application
of LSH algorithm. Then, for each subsample, only the pair of images with a similarity
greater than a threshold will be maintained and connected in the final graph. This pro-
cess is repeated for each subsample and for different hash tables. The trade-off between
the quality of the graph and the creation time is an important parameter of this method. In
particular, the LSH kNN graph reaches the same or better retrieval results than many state-
of-the-art algorithms on several public image datasets, but in much shorter time compared
with the other methods.

The main contributions of this paper are:

–	 A complexity analysis is presented in order to support the goodness of the presented
method.

–	 Several code optimizations for the creation of the graph are showed in order to reduce
the computational time and the usage of memory.

–	 Experiments on several public image datasets and comparison with state-of-the-art
methods.

–	 Improvements on the quality of the graphs due to some refinement techniques based
on the neighbour propagation technique. Our proposed technique, called sorted neigh-
bour propagation allows to achieve better retrieval results with the diffusion application
respect to many other graph refinement strategies.

This paper is organised as follows. Section 2 introduces the general techniques used in
the state of the art, while Sect. 3 reports some background information about ranking with
diffusion. Next, Sect. 4 describes the proposed algorithm with a complete complexity anal-
ysis (Sect. 4.4) of the proposed method. Moreover, some refinement techniques (Sect. 4.5)
are described and tested in order to demonstrate how it is possible to improve the quality
of the graph with no extra effort. In Sect. 4.6 are reported the implementation details of the
presented method, instead Sect. 4.7 refers to the parameter tuning in the LSH kNN graph
approach. Then, Sect. 5 reports the experimental results on five public datasets: Oxford5k,
ROxford5k, Paris6k, RParis6k and Oxford105k. Finally, concluding remarks are reported.

2 � Related work

Recently, several graph applications in computer vision tasks have been proposed in the
literature: diffusion for retrieval (Iscen et al. 2017), unsupervised or semi-supervised train-
ing (Douze et al. 2018; Iscen et al. 2018), image classification (Li et al. 2016) and manifold
embedding (Xu et al. 2018).

Similarly to the work presented in this paper, k-Nearest Neighbour (kNN) techniques are
used to create the similarity graph used in retrieval. More formally, you can describe the
undirected graph G with G(V, E), where V represents the set of nodes V =

{
v1, v2,… , vn

}

117Information Retrieval Journal (2021) 24:114–136	

1 3

and E represents the set of edges E =
{
e1, e2,… , en

}
 . The nodes represent all the images

in the dataset and the edges represent the connections between nodes. The weight of each
edge determines how much the two images are similar: the higher the weight, the more
similar the two images are. The weights of the edges are set with the cosine similarity cal-
culated between the embeddings.

The problem of creating the kNN graph differs from the nearest neighbours search
task since it does not need to index all the dataset image in order to fastly retrieve the ele-
ments similar to the query image, but it needs to create the relations between all the similar
images in the dataset (Chen et al. 2009). For example, PQ (Jegou et al. 2011) and BoI
(Magliani et al. 2018) are nearest neighbours methods, but they are not suitable for this
task due to data structure adopted, not graph based. After the creation of the graph, the
application of some heuristic allows to extrapolate useful information through the graph for
improving the performance of the retrieval system or the image classifier.

Different solutions are available in the literature to efficiently create the kNN graph. The
most simple is the exact or brute-force method. The advantages of this methods are that
is simple to implement and that obtains usually the best results. Unfortunately, it requires
very long time to compute.

Alternatively, approximate kNN graph algorithms want to speed up the process, but
maintaining good performance after diffusion application. They can be subdivided in two
families of strategies: algorithms based on divide and conquer strategy and techniques
based on local search optimizations (e.g., NN-descent Dong et al. 2011). As the name
says, divide and conquer is composed by two steps: firstly, based on a certain heuristic, the
images in the dataset are divided in subsamples and then for each subsample a kNN graph
is created. In the end, all the created subgraphs are merged, obtaining the final kNN graph.
Naturally, the number of subdivisions influences the final performance and the computa-
tional time of the approximate kNN graph algorithm. Moreover, the heuristic used for the
subdivision task is crucial for the method and needs to be very effective and efficient. For
instance, the well-known K-means algorithm (Arthur and Vassilvitskii 2007), while being
widely and successfully used for clustering, is too slow for this task. To solve this problem,
the method proposed in this paper is faster than K-means.

An interesting work (Zhang et al. 2013) following the divide and conquer strategy
exploits LSH (Locality-sensitive hashing) to create the approximate kNN graph by using
spectral decomposition of a low-rank graph matrix. Instead, Chen et al. (2009) follow the
same strategy, but applying recursive Lanczos bisection. In this case, two divide steps are
proposed: the overlap and the glue method. The difference between the two proposed tech-
niques is on the subsets, overlapped for the former and disjointed for the latter. Another
interesting paper from Wang et al. (2012) proposes an algorithm for the creation of an
approximate kNN graph based on random collections of dataset elements. Repeating many
times this process allows to theoretically cover the entire dataset.

On the other hand, the methods based on local optimizations are based on the principle
that “a neighbour of my neighbour is my neighbour”, introduced by Dong et al.with NN-
descent (Dong et al. 2011). Starting from a random Nearest Neighbour (NN) list for each
node, the method iteratively tries to update these lists. The update process is very simple:
for a node a, the algorithm finds two neighbours (b and c) and then tries to update the NN
list of b with the distance d(a, b) and the NN list of c with the distance d(a, c). The process
is repeated until the number of updates executed on the NN lists is less than a threshold,
selected as parameter of the algorithm. A weakness of this method is the correct setting of
the initial dimension of the NN lists and the number of updates to execute on them. In fact,

118	 Information Retrieval Journal (2021) 24:114–136

1 3

if the dimension of the lists is large or the number of updates is very high, the method will
require very long time to compute the kNN graph. Different works tried to adapt the NN-
descent to their specific application domains (Debatty et al. 2014; Houle et al. 2014; Park
et al. 2013).

Finally, a mixed solution, called Random Pair Division, based on both divide-and-con-
quer strategy and NN-descent was proposed by Sieranoja et al.Sieranoja and Fränti (2018).
The first step is the subdivision of the dataset elements in order to speedup the subgraphs
creation. The heuristic adopted is very simple: starting from two random dataset elements,
all the elements will be assigned to one of the two sets based on the distance to the initial
random selected element. The process is repeated if the size of one set is greater than a
threshold. After that, the subgraphs are created on the elements contained in the subsam-
ples using the brute-force approach. In addition, the NN-descent is applied to improve the
quality of the graph and to connect also elements of different subgraphs.

3 � Ranking with diffusion

Diffusion is a mechanism that exploits the graph structure of the collection to find similar
images to the one submitted as the query (Donoser and Bischof 2013; Zhou et al. 2004). To
apply diffusion we need an affinity matrix that is defined as follows.

The affinity matrix A is the adjacency matrix of a weighted undirected graph G. It is
symmetric ( A = AT ), positive ( A > 0 ) and with zero self-similarities ( diag(A) = 0 ). In
order to apply diffusion, it is worth to calculate the Laplacian of the graph L = D − A ,
where D = diag(A1n) is the degree of the graph and A1n is the diagonal matrix with the
row-wise sum of A. Further typical step requires to normalize the affinity matrix to obtain
the transition matrix S = D−1∕2AD−1∕2 and the Laplacian L = In − S where In indicates the
identity matrix, that has size equals to n.

After the creation of the Laplacian and the relative normalization, Zhou et al. (2004)
proposed to apply diffusion for retrieval purposes starting from the query points. They cre-
ated a vector y = (yi) ∈ ℝ

n in this way:

The objective of ranking with diffusion is to find the neighbours of a query, therefore
a ranking function f = (fi) ∈ ℝ

n , that allows to generate a vector with the similarity score
of each image xi to the query, is created. It is worth to note that this process needs to be
repeated for each query. The diffusion mechanism can be represented in the following way
by the ranking function:

The ranking function defines the random walk process on the graph, while � indicates
the probability to jump on an adjacent vertex according to the distribution S and ( 1 − � )
indicates the probability to jump to a query point. At the beginning of this process the
ranking function is initialised with the value obtained from the application of the Euclidean
distance. Repeating many times this process allows for each point to spread their ranking
score to their neighbours in the graph. Exploiting this principle it is possible to better cap-
ture the manifold structure of the dataset than applying the Euclidean distance.

yi =

{
1 if xi is a query

0 otherwise

f t = �Sf t−1 + (1 − �)y

119Information Retrieval Journal (2021) 24:114–136	

1 3

4 � Proposed approach

LSH kNN graph adopts LSH to subdivide in subsets the global descriptors representing the
images of the dataset. The number of the subsets depends to the hash dimension used for
the projection phase and the size of each set usually depends to the dataset size because the
subdivision is pretty much similar in each bucket. In the following, first the hashing tech-
nique is introduced and then the entire algorithm is described.

4.1 � Notations and background of LSH

Locality-Sensitive Hashing (LSH) (Indyk and Motwani 1998) is a hashing technique based
on the principle that similar points will be close also in the projected space with high
probability.

The LSH function for Hamming space is a scalar projection:

where �� is the feature vector and � is a vector with the components randomly selected
from a Gaussian distribution N(0, 1) , called projection function.

This process can be repeated many times (L represents the number of hash tables used
in the LSH process) in order to improve the quality of the projections, using different
Gaussian distribution.

A common LSH application for retrieval purposes can be summarised with these three
steps:

1.	 project all the database descriptors using different Gaussian distributions;
2.	 for each query, project the image descriptor using the same Gaussian distributions

adopted for the database elements;
3.	 search and rank in the hash table buckets the database images.

Many other hashing techniques have been proposed and implemented. For example, the
multi-probe LSH (Lv et al. 2007) tries to reduce the number of hash tables used for the
projections, exploiting the fundamental principle of LSH that similar items will be pro-
jected in the same buckets or in near buckets with high probability. This idea is imple-
mented checking, during the search phase, also the buckets near the query bucket. Sadly,
the performance improvement determines, as a consequence, an increase of the computa-
tional time.

4.2 � LSH kNN graph

LSH kNN graph creates an undirected kNN graph G from a dataset S = {s1,… , s
N
}

of N images. To create the graph and connect the nodes through edges, a similarity
measure � ∶ S × S → ℝ is adopted. The connection between the nodes i and j in the
graph is calculated with the similarity measure �(si, sj) = �(sj, si) . There are different
techniques to calculate the similarity measure. For our purpose we adopted the cosine
similarity, that can be calculated with the dot product (scaled by magnitude) between
the global image descriptors of the dataset images. The proposed approach follows the

(1)h(��) = sign(�� ⋅ �)

120	 Information Retrieval Journal (2021) 24:114–136

1 3

divide-and-conquer strategy since the first step is the split of the dataset elements in
many subsets based on LSH projections, as showed in Fig. 2. As previously reported,
LSH allows to project similar elements in the same bucket in a projected space. Exploit-
ing this principle it is possible to create a set of buckets B = {B1,… ,Bm} from several
hash tables. In addition, the use of more or less bits ( � ) for the projection step influ-
ences the quality of the results and the final number of the buckets. Considering also
the number of the hash tables (L) adopted for the projection, the total number of buckets
will be N = 2� ⋅ L = |B| ⋅ L . We will indicate the n elements of the i-th bucket Bi as fol-
lows: Bi = {bi1,… , bin} . There are no guarantees that all the similar elements will be in
the same bucket because this approach represents an approximate solution. As a conse-
quence, a good idea is to try to find a trade-off between the number of the buckets for
each hash table ( 2� ), by tuning the bits used ( � ) for the projection step and the number
of hash tables (L). More experiments on the values of these two parameters are reported
in the Sect. 4.7. Usually, if the objective is to project more elements in the same bucket,
a good solution is to use a small number of buckets. It allows to reduce the time spent in
the divide phase, but, on the other hand, the conquer phase will require more time to be
executed. On the other hand, with more bits adopted for the projections, and thus more
buckets for hash tables, the divide step will be lightly slower, but the conquer one will
be faster.

The conquer step provides the connection among the elements in each bucket. Dur-
ing this phase, the pipeline connects the dataset elements and stores in memory the final
graph. In this case, the method adopted to solve this subtask is the brute-force approach,
so all the elements in the bucket are connected, creating a kNN graph G = (V ,E) , where
V =

(
bx1,… , bxn

)
 where x = 1,… ,m and E is the set of edges with weights computed

with the similarity � : E =
{
∀
(
bxi, bxj

)
∈ Bi ∶ �

(
bxi, bxj

)}
 where x = 1,… ,m . The key

point here is that applying brute-force several times but on smaller sets results at the
end to be faster than applying it once but on the entire, larger set of data. Morever, dif-
ferently from other methods based on the divide-and-conquer strategy, no final merge
between all the subgraphs is required, since in our case a single graph is created and
updated with new connections. For more details on the implementation, please check
Sect. 4.6.

Fig. 2   Pipeline of a basic algorithm for kNN graph construction based on LSH projections and following
the divide-and-conquer strategy

121Information Retrieval Journal (2021) 24:114–136	

1 3

4.3 � Multi‑probe LSH kNN graph

In addition to the basic LSH kNN graph described in the previous section, a multi-probe
version of it is also here proposed. This method exploits the principle of multi-probe
LSH with the objective of reducing the number of hash tables used.

Multi-probe LSH (Lv et al. 2007), during the query phase, checks also buckets near
the query bucket bquery because they probably contain similar elements to the ones con-
tained in it. For our purpose, this idea can be exploited during the projection step. It
means that each dataset elements, after the hashing phase, it will be projected also in
the neighbours buckets, as showed in Fig. 3. The process will be lightly slower due to
the greater number of projections to be performed. In order to maintain a good trade-
off between quality of the graph and computational time, the elements will be pro-
jected only in the 1-neighbourhood. It is worth to note that the buckets are constructed
using binary numbers, so the Hamming distance can be exploited. As a consequence,
1-neighbourhood represents the set of buckets with Hamming distance less or equal to 1
( Hd(bxi, bxj) ≤ 1).

More formally, the elements obtained with the application of the multi-probe LSH
are the followings:

Similarly to the basic LSH kNN graph, the growth of the bits used for the hashing
task directly influences the number of neighbours available in each bucket in this way: ∑n

i=0

�
log2 �

i

�
.

Although usually the final results are better than the ones obtained by the previ-
ous method, the total computational time needed by this approach is greater as well.
A possible solution for this problem is represented by using a percentage � that allows
to unsupervisely decide to project or not the elements also in the 1-neighbourhood.
For example, by setting � = 50% , only half of the elements will be projected also in

Bmulti−probe ={bx1,… , bxn} ∶

Hd(bquery, bxj) ≤ 1 ∧ bxj ∈ B;x = 1,… ,m, j = 1,… , n

Fig. 3   Pipeline of multi-probe LSH kNN graph. Best viewed in colour

122	 Information Retrieval Journal (2021) 24:114–136

1 3

the 1-neighbourhood buckets. Empirically, it has been found that the best trade-off is
reached using � = 50% , which will be the value used in in all our experiments.

4.4 � Complexity analysis

In this section, we will briefly analyse the complexity of the proposed methods.
For the projections phase when LSH is applied, the complexity will be O(� ⋅ � ⋅ L ⋅N) ,

where N is the number of images in the dataset, � is the number of bits used in each
projection, L is the number of hash tables and � represents the dimension of the embed-
ding used for the representation of the input image. In the case of multi-probe LSH,
the complexity will be greater because each image is projected in more buckets:
O(� ⋅ � ⋅ L ⋅ (N ⋅ � ⋅ L) ⋅N).

Then, the calculation of the similarity measure of all the possible pairs of elements con-
tained in a bucket has a complexity of O(n2 ⋅ 2� ⋅ L) , where n represents the number of ele-
ments found in the bucket. By hypothizing a uniform distribution of buckets, the value of n
can be approximated as: n ∼

N

2�
.

For supporting this hypothesis, Figs. 4 and 5 show the LSH distributions (for different
values of � ) on Oxford5k dataset (see Sect. 5). The values reported in each graph represent
the distribution of the database elements in the buckets.

Following (Pearson et al. 1977), we executed the Pearson test , that evaluates the null
hypothesis that a sample comes from a normal distribution. For the first distribution the
null hypothesis can be rejected due to the chi squared probability for the hypothesis test
that is lower than a threshold ( th = 0.001 ). The result of the test does not mean that it is
not a Gaussian function, but it is not possible to be sure that it is. Instead, for the second
distribution the null hypothesis cannot be rejected because the result obtained by the test is
greater than the threshold.

The complexity needed for the combination of the subgraphs (conquer phase) is negligi-
ble because all the subgrahps are directly appended on the final graph.

To conclude, the final complexity of the proposed approaches can be obtained by sum-
ming the single components:

Fig. 4   Distribution of dataset
images projected through LSH
on Oxford5k with � = 6 and
L = 20

123Information Retrieval Journal (2021) 24:114–136	

1 3

–	 for basic LSH kNN graph approach: O(� ⋅ � ⋅ L ⋅N) + O(n2 ⋅ 2� ⋅ L) which can
be further simplified (exploiting the approximation of n mentioned before) in
O(

L⋅N2

4
+ L ⋅N ⋅ � ⋅ �);

–	 for multi-probe LSH kNN graph approach: O
(
� ⋅ � ⋅ L ⋅ (N ⋅ � ⋅ L) ⋅N) + O(n2 ⋅ 2� ⋅ L

)

which can be further simplified as before and also removing lower order terms in
O(L2 ⋅N2

⋅ � ⋅ � ⋅ �).

Therefore, it is evident that while basic LSH kNN approach is bounded O
(
L ⋅N

2
)
 , multi-

probe version is, as expected, more computationally complex and bounded O
(
L2 ⋅N2

)
.

4.5 � Graph refinement

Graph refinement or neighbour propagation is an important step during the kNN graph cre-
ation task. It allows to refine the quality of the graph in order to improve the final results.
In general, the algorithm aims at adding more edges between nodes in the graph (as shown
in the Fig. 6) since, hopefully, these edges will improve the diffusion result. Unfortunately,
these improvements require an extra effort and the final computation time will be greater.

The most diffused graph refinement method is one-step neighbour propagation (Dong et al.
2011). It is an iterative process, in which the neighbours of neighbours are checked. In other

Fig. 5   Distribution of dataset
images projected through LSH
on Oxford5k with � = 7 and
L = 20

Fig. 6   Example of the working of the graph refinement techniques. Some extra edges are added in order to
improve the quality of the final kNN graph. The new connections are coloured with the same colour of the
relative nodes in order to make clear the working idea of the algorithm. Best viewed in colour (Color figure
online)

124	 Information Retrieval Journal (2021) 24:114–136

1 3

words, if a is a neighbour of b and b is a neighbours of c, then is likely that a is a neighbour
of c. This approach requires the maintenance of a kNN list of each node. For each node, two
neighbours are randomly picked and then connected if their similarity is greater than the worst
in the list, by also updating the other kNN lists accordingly. This process continue until the
number of updates on the kNN lists surpasses a threshold value.

In this paper we propose a novel method called sorted neighbour propagation, that repre-
sents an improvement to the previously presented technique. The kNN lists are sorted based
on the similarity obtained during the creation of the kNN graph and then only the topN ele-
ments are evaluated. All the possible pairs of neighbours found in these topN elements with a
similarity value greater than the threshold are added to the graph. Increasing this value allows
to improve the quality of the final graph, but the time needed for the creation of the graph
growths in a non linear way. Experiments in the next section will show the performance of the
proposed method on different public image datasets compared to other state-of-the-art tech-
niques, such as: kNN graph without graph refinement (as a baseline), random propagation
and one-step neighbour propagation. The baseline is an approximate kNN graph constructed
using the LSH kNN graph method previously explained, but with different parameters: � = 6
and L = 2 instead of � = 6 and L = 20 . This parameter choice allows to easily highlight the
improvements on the graph refinement techniques on small approximate graphs.

4.6 � Implementation details of LSH kNN graph approach

The projection algorithm works as follows. For each bit we executed the dot product
between the image descriptor and the corresponding projection vector. If the results is pos-
itive, the value of the projected bucket is increased by a power of two. For example, con-
sidering a hash table composed by 8 buckets ( � = 3 ) and the first dot product negative, the
second and the third positive, the element will be projected in the sixth bucket, because
6 = (20) ⋅ � + (21) ⋅ � + (22) ⋅ � . This process will be executed for each hash table and for all
the image descriptors.

Two implementation variants of our LSH kNN graph are proposed. From now, the kNN
graph will be represented by the affinity matrix A, that represents the weight edges between all
the nodes. This abstraction can help for the implementation of the algorithms.

Furthermore, not all the similarities are useful for the diffusion process, suggesting to
remove or avoid to insert edges with weight less than a threshold (th), without jeopardising the
final retrieval performance. From our experiments, this threshold can be set to 0.3.

A =

⎡
⎢⎢⎢⎣

a11 a12 a13 … a1N
a21 a22 a23 … a2N
⋮ ⋮ ⋮ ⋱ ⋮

aN1 aN2 aN3 … aNN

⎤⎥⎥⎥⎦

125Information Retrieval Journal (2021) 24:114–136	

1 3

The above algorithm summarizes the procedure for filling the A affinity matrix. At
the beginning each element of the matrix is set to 0.0 and then if the similarity measure
between the nodes is greater than a threshold, this measure becomes: aij = �(dj, di) , where
di and dj represent two images of the dataset, that are projected in the same bucket for
LSH kNN graph or in the same or 1-neighbour bucket for multi-probe LSH kNN graph
approach.

Unfortunately, it is impossible to apply this approach on large datasets, because pre-
allocating the entire dense matrix depends to the available RAM memory and it will hardly
possible to execute on datasets of size greater of 100k images. Therefore, for this case,
instead of working on a dense matrix, a sparse matrix is used.

Sparse matrices can be used to reduce the computational time and still obtain good
results also on large datasets, because the affinity matrices typically contain a lot of zeros.
For instance, on Oxford5k dataset the approximate kNN graph has only the 0.7% of the
edges of the brute-force kNN graph.

Moreover, considering that the matrix is symmetric, only the upper or lower values of
the matrix are needed. Therefore, the previous condition adopted in the procedure of LSH
kNN graph can be changed in this way:

If the column index is not greater than row index, the rows and the columns are swapped
due to the symmetric properties of the affinity matrix.

Two different types of sparse matrix has been tested: Compressed Row Storage (CRS)
format and Coordinate (COO) format (Golub and Van Loan 2012). The CRS sparse matrix
is composed by three vectors: values (containing the values of the dense matrix different
from zero); column indexes (containing the column indexes of the elements contained in
the values vector); and row pointers (containing the locations of the values vector that indi-
cate the beginning of a new row). Instead, the COO sparse matrix is composed by three

aij =

{
�(di, dj) if j ≥ i ∧ �(di, dj) ≥ th

0 otherwise

126	 Information Retrieval Journal (2021) 24:114–136

1 3

vectors: a vector representing the non-zero elements (the values), the row and the column
coordinate of each value contained in the values vector. The second solution is simpler
than the first to implement, but it requires more space on disk.

However, using hash tables, it happens that the same edge weight is inserted multiple times.
Therefore, every time a new value is inserted in a CRS matrix, checking whether the value is
already in the matrix might be a possible solution. Unfortunately, this tends to be a time con-
suming process. Conversely, using a COO matrix, all the values (including repeated ones) are
inserted, but a sorting is performed and duplicates are removed. Applying once the sorting and
removing the duplicates is faster than performing N ⋅ L times the search, given that sorting has
a O(N log2 N) complexity which is lower than the O(N) complexity of the search.

4.7 � Parameters of LSH kNN graph approach

The proposed method uses LSH projections for the creation of the approximate kNN
graph. The main advantages of LSH are the simplicity to use and the speed of the method.
For example, apply LSH on 100k images in C++ needs only 10 seconds. It is worth to note
that the variation of the values of the LSH parameters can change considerably the final
performance. For both the two parameters ( � and L), in order to find the best combination,
it is suggestable to execute several experiments.

Table 1 shows the mAP obtained on Oxford5k and the time needed to create the approx-
imate kNN graph, modifying the values of the LSH kNN graph parameters: L and � . The
values for the diffusion parameters adopted are the following: � = 0.94 , � = 1 , � = 3 ,
ks = 39 , k = 26 , iterations = 26 , truncation = 3382.

Similarly, Tables 2, 3, 4, 5 show the mAP obtained on Paris6k, ROxford5k, RParis6k
and Oxford105k, respectively, evaluating the different combination of L and � values. It is
worth noting that, in the case of ROxford5k and RParis6k, three results for each combina-
tion are reported, for easy, medium set and hard set.

Table 1   Diffusion parameter values adopted for the experiments on Oxford5k

Bold indicates the best retrieval result obtained in the presented experiments

L = 5 L = 10 L = 20 L = 40

� = 4 91.01% (0.84 s) 93.11% (2.19 s) 93.49% (3.54 s) 93.44% (6.47 s)
� = 5 89.62% (0.52 s) 92.75% (1.20 s) 92.24% (2.20 s) 93.62% (4.42 s)
� = 6 89.90% (0.47 s) 93.16% (0.71 s) 93.77% (0.76 s) 93.62% (1.23 s)
� = 7 87.88% (0.30 s) 89.89% (0.53 s) 91.82% (0.93 s) 93.50% (1.46 s)

Table 2   Diffusion parameter values adopted for the experiments on Paris6k

Bold indicates the best retrieval result obtained in the presented experiments

L = 5 L = 10 L = 20 L = 40

� = 4 96.98% (0.62 s) 97.22% (1.04 s) 97.26% (1.84 s) 97.27% (4.31 s)
� = 5 96.92% (0.47 s) 97.21% (0.71 s) 97.23% (1.34 s) 97.24% (2.71 s)
� = 6 96.53% (0.34 s) 96.84% (0.48 s) 97.30% (0.92 s) 97.26% (1.94 s)
� = 7 96.12% (0.21 s) 97.01% (0.39 s) 97.15% (0.74 s) 97.26% (1.52 s)

127Information Retrieval Journal (2021) 24:114–136	

1 3

5 � Experimental results

Previous works have evaluated the methods for creating approximate kNN graphs by
checking the number of common edges between the approximate and the exact kNN graph.
Instead, our aim is to evaluate the complete kNN graph pipelines after the diffusion and
retrieval modules. The rationale of this choice lies in our objective to evaluate how effec-
tive (and efficient) are our proposals for the approximate kNN graph creation in terms of
retrieval accuracy when diffusion is applied.

Table 3   Diffusion parameter values adopted for the experiments on ROxford5k

Bold indicates the best retrieval result obtained in the presented experiments

L = 5 L = 10

� = 4 81.60% 71.45% 44.57% 83.02% 74.11% 49.01%
� = 5 82.55% 68.91% 41.18% 89.05% 76.08% 51.54%
� = 6 78.55% 65.01% 32.49% 81.15% 69.66% 39.12%
� = 7 81.08% 64.33% 32.81% 80.20% 67.45% 36.78%

L = 20 L = 40

� = 4 82.95% 74.46% 49.41% 83.03% 74.49% 49.67%
� = 5 83.60% 74.94% 49.93% 83.03% 74.50% 49.78%
� = 6 89.82% 76.69% 55.27% 83.17% 74.48% 50.22%
� = 7 81.71% 72.89% 45.05% 80.73% 72.89% 46.65%

Table 4   Diffusion parameter values adopted for the experiments on RParis6k

Bold indicates the best retrieval result obtained in the presented experiments

L = 5 L = 10

� = 4 98.21% 89.06% 79.39% 98.37% 89.90% 80.86%
� = 5 97.57% 87.47% 76.34% 97.91% 89.45% 80.10%
� = 6 96.93% 86.34% 74.76% 98.04% 88.41% 78.34%
� = 7 96.48% 83.55% 69.69% 97.61% 87.44% 76.44%

L = 20 L = 40

� = 4 98.44% 90.29% 81.60% 98.43% 90.34% 81.72%
� = 5 98.35% 90.27% 81.71% 98.4% 90.33% 81.69%
� = 6 98.27% 89.34% 79.90% 98.43% 89.91% 80.89%
� = 7 98.07% 89.27% 79.69% 98.48% 90.13% 81.26%

Table 5   Diffusion parameter values adopted for the experiments on Oxford105k

Bold indicates the best retrieval result obtained in the presented experiments

L = 5 L = 10 L = 20 L = 40

� = 6 87.98% (32 s) 91.30% (63.58 s) 92.83% (129 s) 95.23% (250 s)
� = 7 84.89% (22 s) 90.24% (42.75 s) 93.45% (95 s) 95.40% (176 s)
� = 8 83.37% (18 s) 84.57% (33.49 s) 89.27% (57 s) 92.22% (114 s)
� = 9 77.09% (8 s) 85.20% (18 s) 89.06% (35 s) 92.86% (82 s)

128	 Information Retrieval Journal (2021) 24:114–136

1 3

The features used in all the experiments for the creation of the kNN graphs are R-MAC
descriptors (Iscen et al. 2017).

The hardware adopted for the experiments is the following: CPU Intel Core i7 @ 3.40
GHz x 8, 32Gb RAM DDR4.

5.1 � Datasets

There are many different image datasets for Content-Based Image Retrieval that are used in
order to evaluate the algorithms. The most used are the following:

–	 Oxford5k (Philbin et al. 2007) is composed by 5063 images representing the buildings
and the places of Oxford (UK), subdivided in 11 classes. All the images are used as
database images and the query images are 55, which are cropped for making the query-
ing phase more difficult;

–	 ROxford5k (Radenović et al. 2018) is composed by 4993 images. This dataset repre-
sents the revisited version of the previous one. It is composed by 70 queries, that are
new images added to the old dataset. All the images are labelled in order to test the
pipeline at 3 different retrieval difficulties: Easy, Medium and Hard;

–	 Paris6k (Philbin et al. 2008) is composed by 6412 images representing the buildings
and the places of Paris (France), subdivided in 12 classes. All the images are used as
database images and the query images are 55, which are cropped for making the query-
ing phase more difficult;

–	 RParis6k (Radenović et al. 2018) is composed by 6322 images. As before, this dataset
represents the revisited version of the previous one, with 70 additional queries and the
same three difficulties: Easy, Medium and Hard;

–	 Flickr1M (Huiskes and Lew 2008) contains 1 million Flickr images under the Creative
Commons license. It is used for large scale evaluation. The images are divided in multi-
ple classes and are not specifically selected for the image retrieval task.

Moreover, with the addition of 100k images of Flickr1M it is possible to create
Oxford105k datasets.

For each image dataset we split the query set in 1/5 as validation set and 4/5 as test set.
We executed the genetic algorithms to tune the diffusion parameters on the validation set
and then in the end we evaluate the method on the test set.

5.2 � Evaluation metrics

To evaluate the accuracy in the retrieval phase, mean Average Precision (mAP) is used
on all the image datasets used. The mAP is the mean of average precision that identifies
how many elements that finds are relevant to the query image. In order to compare a query
image with the database, L2 distance is employed.

5.3 � The importance of diffusion for retrieval

Before starting the evaluation of the approximate kNN graph pipelines, it is worth to better
motivate our choice of using diffusion on graphs and, therefore, the need for an efficient
creation of an approximate kNN graph.

129Information Retrieval Journal (2021) 24:114–136	

1 3

Figure 7 shows some experiments performed on both Oxford5k, Paris6k, ROxford5k
and RParis6k datasets. In each experiment the query expansion is executed using the top 5
elements of the query ranking, following the original approach (Chum et al. 2007).

The diffusion parameters are set after an optimization process based on genetic algo-
rithms (Magliani et al. 2019) in this way:

–	 � indicates the contributions to the ranking score from the neighbours.
–	 � indicates the exponentiation of the affinity matrix elements.
–	 � indicates the exponentiation of the query vector elements.
–	 iterations represents the maximum number of iterations necessary for the resolution of

the equation A ∗ f = y in the diffusion process through the application of the conjugate
gradient. A represents the affinity matrix of the dataset elements, instead y identifies the
query vector and f is the ranking vector.

–	 ks represents the maximum number of node to cross during the random walk process.
–	 k represents the number of neighbours to find.
–	 truncation represents the best number of rows to use for diffusion.

Table 6 illustrates the values of diffusion parameters for different image datasets:
Oxford5k, ROxford5k, Paris6k, RParis6k and Oxford105k.

Fig. 7   Comparison of results
obtained using R-MAC descrip-
tors (Iscen et al. 2017) tested
with different approaches on
Oxford5k, Paris6k, ROxford5k
and RParis6k

Table 6   Diffusion parameter values adopted for the experiments on each image dataset

Parameter Oxford5k ROxford5k Paris6k RParis6k Oxford105k

� 0.94 0.99 0.85 0.98 0.95
� 1 6 1 6 2
� 3 10 8 1 4
k
s

39 43 61 47 206
k 26 5 24 5 14
iterations 26 18 28 20 13
truncation 3382 3480 3172 5080 21677

130	 Information Retrieval Journal (2021) 24:114–136

1 3

Figure 7 demonstrates clearly that diffusion can bring significant improvements in the
retrieval accuracy.

5.4 � Results on Oxford5k

Table 7 reports the retrieval results obtained with the diffusion on different kNN graphs,
constructed adopting several algorithms. As a result, the different values for the LSH
parameters ( � and L) produces different final retrieval results. After the execution of sev-
eral experiments, for LSH kNN graph approach, the best combination is � = 6 and L = 20 ,
instead for multi-probe LSH kNN graph method is � = 6 and L = 2 . It is evident that LSH
kNN graph approach obtains the best trade-off between performance and computational
time needed (also considering the sum of LSH projection and graph creation) for the entire
process.

Conversely, NN-descent (Dong et al. 2011) achieves poor results. In this case, the num-
ber of neighbours evaluated in the NN-descent process is set to 100, meaning that each
kNN list is composed by 100 elements. In addition, this approach resulted to be the slowest
one with 115 secs needed to create the kNN graph. Increasing this value allows to create a
more accurate final kNN graph, but with an important extra time consumption.

Also RP-div (Sieranoja and Fränti 2018) obtains quite poor results, but in a fast way.
This is probably due to the nature of this method, based on the randomness of the points
used for the divide step, which speeds up the graph creation process, but does not allow to
have good retrieval accuracy. The maximum size of each set is 75, meaning that every set
larger than 75 elements is further split. As for NN-descent, also in this case, increasing the
maximum set size allows to improve the retrieval results obtained on the kNN graph with
the diffusion application. Unfortunately, this value change determines a growth in the time
needed for the graph creation.

The last compared approach is the method proposed by Wang et al. (2012), whose com-
putational time is not very high, probably because the elements are randomly chosen. It
also achieves good accuracy, although the final quality of the graph depends too much to
the random choice of the elements. In this case, the number of iterations are set to 200 and
the elements for each set are 500. To improve the quality of the results reported by the
Wang et al.method it should increase the values of the number of iterations and the ele-
ments for each set.

Table 7   Comparison of different approaches of kNN graph creation tested on Oxford5k using different type
of embeddings

Bold indicates the best retrieval result obtained in the presented experiments
* indicates that the method is a C++ re-implementation

Method LSH projection Graph creation mAP

LSH kNN graph 0.45 s 0.52 s 93.77%
multi-probe LSH kNN graph 0.29 s 1.54 s 93.25%
NN-descent Dong et al. (2011)* – 115 s 86.82%
RP-div Sieranoja and Fränti (2018)* – 1.16 s 82.56%
Wang et al. (2012)* – 1.5 s 92.50%
brute-force – 2.01 s 89.19%

131Information Retrieval Journal (2021) 24:114–136	

1 3

Lastly, the basic brute-force method resulted to have a good trade-off between accuracy
and efficiency.

Table 8 reports the results obtained after the application of some graph refinement tech-
niques adopted on the baseline LSH kNN graph. First row shows the baseline method with
no graph refinement. Random propagation (second and third rows) randomly adds some
new edges in the graph (100 and 500 new edges, respectively). This graph refinement tech-
niques improves significantly the mAP with a limited increase in time needed for graph
creation. Similar considerations can be done for one-step neighbour propagation, which
requires some more extra time to create the graph, while obtaining results comparable
with random propagation. Our proposed method (last row) obtains the best precision in
retrieval, but at a much higher cost in terms of computational time, that is related to the
sort operation executed in order to connect only interesting and useful nodes in the kNN
graph. Please note that in this case we used � = 6 and L = 2 (instead of � = 6 and L = 20
of the previous Table), resulting in different graph creation time for our approach.

5.5 � Results on ROxford5k

We made the same experiments also for ROxford5k dataset. Table 9 reports the retrieval
results and the computational time. The parameters of all the approaches are kept
unchanged wrt the previous dataset, except for Wang et al. (2012), in which the num-
ber of iterations is increased to 400 and the elements of each set are 200. As mentioned

Table 8   Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
for Oxford5k

Bold indicates the best retrieval result obtained in the presented experiments

Method TopN Graph creation mAP

LSH kNN graph – 0.11 s 82.68%
Random propagation 100 0.33 s 84.54%
Random propagation 500 1.10 s 88.13%
One-step neighbour propagation Dong et al. (2011) 100 0.45 s 85.90%
One-step neighbour propagation Dong et al. (2011) 500 1.78 s 88.19%
Sorted neighbour propagation 100 10.66 s 89.62%

Table 9   Comparison of different approaches of kNN graph creation tested on ROxford5k using different
type of embeddings

Bold indicates the best retrieval result obtained in the presented experiments
* indicates that the method is a C++ re-implementation

Method LSH proj. Graph creation Easy Medium Hard

LSH kNN graph 0.48 s 0.52 s 89.82% 76.69% 55.27%
multi-probe LSH kNN graph 0.27 s 0.73 s 89.92% 75.34% 53.24%
NN-descent Dong et al. (2011)* – 86 s 77.25% 64.37% 40.25%
RP-div Sieranoja and Fränti (2018)* – 1.13 s 84.76% 70.34% 43.25%
Wang et al. (2012)* – 1.13 s 88.18% 73.78% 49.13%
brute-force – 1.3 s 89.32% 76.43% 55.24%

132	 Information Retrieval Journal (2021) 24:114–136

1 3

before, in this case three different mAP values are shown accounting for the three different
difficulties.

The proposed approaches (first two rows) exhibit the best trade-off between accuracy
and efficiency for the all the three cases, with comparable (even slightly better) results wrt
brute-force. The other approaches confirm they generally-poor performance when both the
measures (time and accuracy) are considered.

Table 10 reports the results for graph refinement techniques. The quality of the graph
obtained with the proposed sorted neighbour propagation method outperforms the other
methods in all the three cases, but still suffers from a higher computational time. It is still
worth remembering (as for the previous dataset) that this experiment has been conducted
with � = 6 and L = 2.

5.6 � Results on Paris6k

Similar results and conclusions are obtained for Paris6k dataset. In fact, Table 11 shows
that the proposed methods (especially basic LSH kNN graph) achieved the best results
in terms of mAP in less time compared to the time needed by the brute-force approach.
The configurations of each algorithm are the same of the previous datasets. Moreover,
Table 12, comparing graph refinement techniques, also leads to similar considerations as
before, where the proposed method (last row) gets the best accuracy in all the cases, but
with higher computational cost.

Table 10   Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
for ROxford5k

Bold indicates the best retrieval result obtained in the presented experiments

Method TopN Graph creation Easy Medium Hard

LSH kNN graph – 0.09 s 80.79% 61.48% 35.85%
Random propagation 100 0.33 s 84.27% 65.21% 38.81%
Random propagation 500 1.06 s 86.71% 70.37% 45.90%
One-step neighbour propagation Dong et al. (2011) 100 0.42 s 84.71% 66.56% 40.95%
One-step neighbour propagation Dong et al. (2011) 500 1.71 s 88.40% 72.87% 50.08%
Sorted neighbour propagation 100 10.72 s 88.56% 72.50% 49.75%

Table 11   Comparison of different approaches of kNN graph creation tested on Paris6k

Bold indicates the best retrieval result obtained in the presented experiments
* indicates that the method is a C++ re-implementation

Method LSH projection Graph creation mAP

LSH kNN graph 1 s 0.80 s 97.30%
multi LSH kNN graph 0.35 s 2.28 s 96.94%
NN-descent Dong et al. (2011)* – 60.10 s 94.00%
RP-div Sieranoja and Fränti (2018)* – 3.63 s 96.32%
Wang et al. (2012)* – 1.95 s 96.53%
brute-force – 2.61 s 96.33%

133Information Retrieval Journal (2021) 24:114–136	

1 3

5.7 � Results on RParis6k

Table 13 presents the results obtained and the computational time on RParis6k dataset.
The performance are similar to the ones obtained on ROxford5k, with our approach out-
performing brute force. The proposed approach is slightly faster than brute-force.

Same conclusions of the previous datasets can be drawn for graph refinement techniques
for this dataset (Table 14).

Table 12   Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
for Paris6k

Bold indicates the best retrieval result obtained in the presented experiments

Method TopN Graph creation mAP

LSH kNN graph – 0.2 s 89.13%
Random propagation 100 0.45 s 92.82%
Random propagation 500 1.42 s 94.70%
One-step neighbour propagation Dong et al. (2011) 100 0.66 s 92.47%
One-step neighbour propagation Dong et al. (2011) 500 2.43 s 95.01%
Sorted neighbour propagation 100 13.38 s 96.62%

Table 13   Comparison of different approaches of kNN graph creation tested on RParis6k using different
type of embeddings

Bold indicates the best retrieval result obtained in the presented experiments
* indicates that the method is a C++ re-implementation

Method LSH proj. Graph creation Easy Medium Hard

LSH kNN graph 0.60 s 0.66 s 98.35% 90.27% 81.71%
multi LSH kNN graph 0.38 s 0.92 s 93.14% 87.61% 73.09%
NN-descent Dong et al. (2011)* – 104 s 93.01% 88.23% 79.08%
RP-div Sieranoja and Fränti (2018)* – 1.23 s 76.05% 66.56% 54.80%
Wang et al. (2012)* – 1.43 s 91.14% 83.65% 69.24%
brute-force – 1.56 s 92.87% 89.98% 81.83%

Table 14   Comparison of different techniques for graph refinement adopted on the baseline LSH kNN graph
for RParis6k

Bold indicates the best retrieval result obtained in the presented experiments

Method TopN Graph creation Easy Medium Hard

LSH kNN graph – 0.12 s 92.48% 83.68% 68.58%
Random propagation 100 0.37 s 94.46% 87.28% 74.19%
Random propagation 500 1.41 s 94.63% 89.58% 78.50%
One-step neighbour propagation Dong et al. (2011) 100 0.56 s 94.58% 86.86% 73.36%
One-step neighbour propagation Dong et al. (2011) 500 2.24 s 95.27% 89.47% 78.41%
Sorted neighbour propagation 100 10.72 s 95.43% 89.13% 79.12%

134	 Information Retrieval Journal (2021) 24:114–136

1 3

5.8 � Results on Oxford105k

Finally, this section reports the results on a larger dataset, Oxford105k. Unfortunately,
in this case graph refinement techniques can not be tested due to our limited hardware
resources. Moreover, we have conducted tests for RP-div (Sieranoja and Fränti 2018) and
NN-descent (Dong et al. 2011) since they already demonstrated their limited performance
on smaller datasets.

Therefore, Table 15 presents the result of the experiments executed on Oxford105k. The
growth of the dataset size influences the graph creation time, but it is worth noting how our
approaches scale better than brute-force, by keeping the total computational time at 176
seconds and still achieving better accuracy than brute force.

6 � Conclusions

In this paper we presented an algorithm called LSH kNN graph for the creation of an
approximate kNN graph, exploiting LSH projections, suited for the application of diffusion
in CBIR task. The proposed method follows the divide-and-conquer strategy: the dataset
elements are subdivided through the use of an unsupervised hashing function and then in
each subset a subgraph is created using the brute-force approach. The proposed approach
obtains the same or better results than other state-of-the-art methods, but in less time. The
approximation introduced in our graph, respect to the brute-force graph, reduces the noise
introduced by the creation of the kNN graph and therefore the diffusion process resulted to
be more robust to noisy edges. Regarding the memory footprint, the implementation with
sparse matrices combined with other code implementations have allowed to achieve very
good results with limited memory requirements.

Moreover, multi-probe LSH kNN graph algorithm is proposed based on the principle
of multi-probe LSH. In this case, the elements are projected also in the 1-neighbourhood
buckets, allowing to reduce the number of hash tables needed, while almost preserving the
overall accuracy.

To support the goodness of the proposed algorithms, a complexity analysis is also pre-
sented. Finally, a new graph refinement technique is introduced in order to boost the quality
of the final graph with the addition to the graph of new useful connections between nodes.
Compared with other graph refinement techniques, the proposed sorted neighbour propaga-
tion achieves the best result, but with an extra time effort.

Table 15   Comparison of different approaches of kNN graph creation tested on Oxford105k

Bold indicates the best retrieval result obtained in the presented experiments
* indicates that the method is a C++ re-implementation

Method LSH projection Graph creation mAP

LSH kNN graph 50 s 126 s 95.40%
multi-probe LSH kNN graph 5 s 420 s 92.49%
Wang et al. (2012)* – 150 s 89.91%
brute-force – 10560 s 87.83%

135Information Retrieval Journal (2021) 24:114–136	

1 3

As a future work, we are implementing a distribute version of these approaches with the
objective of executing them on large-scale datasets.

Acknowledgements  This is work is partially funded by Regione Emilia Romagna under the “Piano trien-
nale alte competenze per la ricerca, il trasferimento tecnologico e l’imprenditorialità”.

References

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the
18th annual ACM-SIAM symposium on Discrete algorithms, pp. 1027–1035. Society for Industrial and
Applied Mathematics.

Chen, J., Fang, Hr, & Saad, Y. (2009). Fast approximate kNN graph construction for high dimensional data
via recursive lanczos bisection. Journal of Machine Learning Research, 10(Sep), 1989–2012.

Chum, O., Philbin, J., Sivic, J., Isard, M., & Zisserman, A. (2007). Total recall: Automatic query expansion
with a generative feature model for object retrieval. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1–8. IEEE.

Debatty, T., Michiardi, P., Thonnard, O., & Mees, W. (2014). Building k-nn graphs from large text data. In
IEEE International Conference on Big Data, pp. 573–578. IEEE.

Dong, W., Moses, C., & Li, K. (2011). Efficient k-nearest neighbor graph construction for generic similar-
ity measures. In Proceedings of the 20th International Conference on World Wide Web, pp. 577–586.
ACM.

Donoser, M., & Bischof, H. (2013). Diffusion processes for retrieval revisited. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1320–1327.

Douze, M., Szlam, A., Hariharan, B., & Jégou, H. (2018). Low-shot learning with large-scale diffusion. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3349–3358.

Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 3). Baltimore: JHU press.
Gordo, A., Almazan, J., Revaud, J., & Larlus, D. (2017). End-to-end learning of deep visual representations

for image retrieval. International Journal of Computer Vision, 124(2), 237–254.
Houle, M. E., Ma, X., Oria, V., & Sun, J. (2014). Improving the quality of K-NN graphs for image databases

through vector sparsification. In Proceedings of International Conference on Multimedia Retrieval,
p. 89. ACM.

Huiskes, M. J., & Lew, M. S. (2008). The MIR flickr retrieval evaluation. In Proceedings of the 1st ACM
international conference on Multimedia Information Retrieval, pp. 39–43. ACM.

Indyk, P., & Motwani, R. (1998). Approximate nearest neighbors: towards removing the curse of dimension-
ality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp. 604–613.
ACM.

Iscen, A., Tolias, G., Avrithis, Y., & Chum, O. (2018). Mining on manifolds: Metric learning without labels.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7642–7651.

Iscen, A., Tolias, G., Avrithis, Y. S., Furon, T., & Chum, O. (2017). Efficient diffusion on region manifolds:
Recovering small objects with compact CNN representations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, vol. 1, p. 3.

Jegou, H., Douze, M., & Schmid, C. (2011). Product quantization for nearest neighbor search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 33(1), 117–128.

Li, D., Hung, W. C., Huang, J. B., Wang, S., Ahuja, N., & Yang, M. H. (2016). Unsupervised visual repre-
sentation learning by graph-based consistent constraints. In European Conference on Computer Vision,
pp. 678–694. Springer.

Lv, Q., Josephson, W., Wang, Z., Charikar, M., & Li, K. (2007). Multi-probe LSH: efficient indexing for
high-dimensional similarity search. In Proceedings of the 33rd international conference on Very Large
Data Bases, pp. 950–961. VLDB Endowment.

Magliani, F., Fontanini, T., & Prati, A. (2018). Efficient nearest neighbors search for large-scale landmark
recognition. International Symposium on Visual Computing.

Magliani, F., Fontanini, T., & Prati, A. (2019). Landmark recognition: From small-scale to large-scale
retrieval. In Recent Advances in Computer Vision, pp. 237–259. Springer.

Magliani, F., McGuiness, K., Mohedano, E., & Prati, A. (2019). An efficient approximate kNN graph
method for diffusion on image retrieval. Proceedings of the 20th International Conference on Image
Analysis and Processing.

136	 Information Retrieval Journal (2021) 24:114–136

1 3

Magliani, F., & Prati, A. (2018). An accurate retrieval through R-MAC+ descriptors for landmark recogni-
tion. In Proceedings of the 12th International Conference on Distributed Smart Cameras, p. 6. ACM.

Magliani, F., Sani, L., Cagnoni, S., & Prati, A. (2019). Genetic algorithms for the optimization of diffusion
parameters in content-based image retrieval. In Proceedings of the 13th International Conference on
Distributed Smart Cameras, p. 14. ACM.

Park, Y., Park, S., Lee, S. g., & Jung, W. (2013). Scalable k-nearest neighbor graph construction based
on greedy filtering. In Proceedings of the 22nd International Conference on World Wide Web, pp.
227–228. ACM.

Pearson, E. S., D “’Agostino, R. B., Bowman, K. O. (1977). Tests for departure from normality: Comparison
of powers. Biometrika 64(2), 231–246.

Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2007). Object retrieval with large vocabularies
and fast spatial matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2008). Lost in quantization: Improving particu-
lar object retrieval in large scale image databases. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1–8. IEEE.

Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., & Chum, O. (2018). Revisiting oxford and paris: Large-
scale image retrieval benchmarking. In CVPR.

Sieranoja, S., & Fränti, P. (2018). Fast random pair divisive construction of knn graph using generic dis-
tance measures. In Proceedings of the 2018 International Conference on Big Data and Computing, pp.
95–98. ACM.

Tolias, G., Sicre, R., & Jégou, H. (2016). Particular object retrieval with integral max-pooling of CNN acti-
vations. International Conference on Learning Representations.

Wang, J., Wang, J., Zeng, G., Tu, Z., Gan, R., & Li, S. (2012). Scalable k-nn graph construction for visual
descriptors. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1113.
IEEE.

Xu, J., Wang, C., Qi, C., Shi, C., & Xiao, B. (2018). Iterative manifold embedding layer learned by incom-
plete data for large-scale image retrieval. IEEE Transactions on Multimedia.

Zhang, Y. M., Huang, K., Geng, G., & Liu, C. L. (2013). Fast kNN graph construction with locality sensi-
tive hashing. Joint European Conference on Machine Learning and Knowledge Discovery in Data-
bases (pp. 660–674). Berlin: Springer.

Zhou, D., Weston, J., Gretton, A., Bousquet, O., & Schölkopf, B. (2004). Ranking on data manifolds. In
Advances in Neural Information Processing Systems, pp. 169–176.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	LSH kNN graph for diffusion on image retrieval
	Abstract
	1 Introduction
	2 Related work
	3 Ranking with diffusion
	4 Proposed approach
	4.1 Notations and background of LSH
	4.2 LSH kNN graph
	4.3 Multi-probe LSH kNN graph
	4.4 Complexity analysis
	4.5 Graph refinement
	4.6 Implementation details of LSH kNN graph approach
	4.7 Parameters of LSH kNN graph approach

	5 Experimental results
	5.1 Datasets
	5.2 Evaluation metrics
	5.3 The importance of diffusion for retrieval
	5.4 Results on Oxford5k
	5.5 Results on Oxford5k
	5.6 Results on Paris6k
	5.7 Results on Paris6k
	5.8 Results on Oxford105k

	6 Conclusions
	Acknowledgements
	References

