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Abstract
There is a growing need to explore attributed graphs such as social networks, expert net-
works, and biological networks. A well-known mechanism for non-technical users to 
explore such graphs is keyword search, which receives a set of query keywords and returns 
a connected subgraph that contains the keywords. However, existing approaches, such as 
methods based on shortest paths between nodes containing the query keywords, may gen-
erate weakly-connected answers as they ignore the structure of the whole graph. To address 
this issue, we formulate and solve the robust keyword search problem for attributed graphs 
to find strongly-connected answers. We prove that the problem is NP-hard and we propose 
a solution based on a random walk with restart (RWR). To improve the efficiency and scal-
ability of RWR, we use Monte Carlo approximation and we also propose a distributed ver-
sion, which we implement in Apache Spark. Finally, we provide experimental evidence of 
the efficiency and effectiveness of our approach on real-world graphs.

Keywords Attributed graphs · Social networks · Keyword search

1 Introduction

Increasingly, organizations and communities are focusing on graph analysis to make 
faster and better decisions leading to business and societal impact. Attributed graphs, i.e., 
those with attributes or labels attached to their nodes and/or edges, are especially com-
mon. Examples include social networks (e.g., Facebook and Twitter, whose nodes may be 
labelled with user information) and biological networks (e.g., protein-protein interaction 
networks whose nodes are labeled with protein properties). Moreover, other data models 
can also be naturally represented as attributed graphs. For example, a relational database 
instance corresponds to a graph whose nodes are tuples (labelled with the attributes of the 
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tuples) and whose edges denote foreign key relationships. Given the wealth of information 
contained in attributed graphs, exploring and mining them is of critical importance (Kargar 
et al. 2014; Wang et al. 2010; Markowetz et al. 2007).

Over the last decade, keyword search over graphs has been used to explore and analyze 
graph databases. An important advantage of keyword search over other graph analytics 
platforms is that it does not require the knowledge of the graph database schema or a query 
language such as SQL or SPARQL (Prud’hommeaux 2008). Given an attributed graph and 
a query composed of a set of keywords, the answer is a connected subgraph that contains 
all the query keywords. To motivate the need to return a connected subgraph, we present a 
keyword search example over the TPC-E benchmark database.

Figure  1 shows a fragment of the TPC-E1 benchmark database, which models and 
stores on-line transaction processing (OLTP) data of a brokerage firm. The database con-
tains financial information such as broker fees, traded companies, and customer accounts. 
By converting foreign keys into edges, the associated graph is shown below the tables in 
Fig. 1. Consider the query “Jackson Adept” over the TPC-E database. The goal is to find 

C_ID C_Name Email
10 David Jackson d@gm.ca
20 Sarah Jackson s@ce.us

Customer Customer_Account

Trade

S_SYMB S_CO_ID S_Name
ADTK 84 COMMON of ADTK

Security Company
CO_ID CO_Name
84 Adept Inc.

T_ID Date Price Quantity T_CA_ID
52 2019-05-05 $40.25 100 22

CA_ID CA_C_ID CA_Name
22 10 Saving Account

Customer
David Jackson

Company
Adept Inc.

Security
COMMON of ADTK

Customer_Account
Saving Account 

Trade
Date: 2019-05-05

Price: $40.25
Quantity: 100

Customer
Sarah Jackson

Fig. 1  A portion of the TPC-E database and its associated attributed graph

1 http://www.tpc.org/tpce/.

http://www.tpc.org/tpce/
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the relationship between a customer “Jackson” and a company “Adept Inc.”. If we take 
into account the connections among nodes (i.e., edges of the graph), a possible answer is 
the subgraph that connects customer “David Jackson” and “Adept Inc.”. This subgraph is 
shown inside the dotted box in Fig. 1, and indicates that the stock of Adept Inc. was traded 
by “David Jackson” in May 2019. This is an interesting and strong relationship between 
a company and a customer. On the other hand, if connections between nodes are ignored, 
and the only goal is to return a set of nodes that cover the input keywords, customer “Sarah 
Jackson” and company “Adept Inc.” is a possible answer. This answer is shown in the 
dashed box in Fig. 1. However, this disconnected subgraph is not an informative answer as 
it does not reveal any relationship between a customer and a company. Without the connec-
tivity constraint, this problem becomes the classical set cover problem.

A technical challenge in this context is to rank the qualifying subgraphs and select the 
best one. To do so, recent work (e.g., Yang et al. 2019; Kargar et al. 2016) uses the notion 
of shortest paths. For example, potential answers may be scored based on the diameter of 
the subgraph or the sum of the shortest paths between all pairs of nodes containing the 
query keywords. However, the shortest path approach lacks robustness since it may not 
reflect the overall structure of the answer subgraph. In this work, we propose an alterna-
tive approach to measure the distance between nodes containing the query keywords, with 
the goal of capturing the graph structure and thus improving the quality of the answers. To 
motivate our approach, we illustrate the shortcomings of existing work based on shortest 
paths in two different applications:

Application 1: Academic collaborations Figure 2 illustrates a fragment of the DBLP co-
authorship network,2 whose nodes correspond to authors and node attributes correspond to 
the expertise of the authors (similar to Lappas et al. 2009, the expertise of each author con-
sists of terms that appear in at least two titles of papers that they co-authored). Edges rep-
resent collaborations, i.e., co-authoring a paper. Suppose we are seeking experts in Social 
Networks (SN)  and Text Mining (TM) for a project. To do so, we issue the corresponding 
keyword query to find a subgraph of the DBLP network containing experts in these two 

Fig. 2  A portion of the DBLP expert network. The numbers on each node are the RWR scores when the 
restart node is Xiang Ren

2 http://www.infor matik .uni-trier .de/~ley/db/.

http://www.informatik.uni-trier.de/%7eley/db/
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areas. As illustrated in Fig. 2, there are two teams (e.g., subgraphs) that cover the required 
skills: T1 ∶ {Jialu Liu, Jiawei Han,Xiang Ren} and T2 ∶ {Liang Hong, Jingbo Shang , 
Xiang Ren} . Both T1 and T2 cover the two query keywords, (SN) and (TM), and may include 
additional nodes, called middle nodes, that connect the nodes containing the query key-
words. The shortest path from Liu to Ren passes through Jiawei Han, the shortest path 
from Hong to Ren goes through Jingbo Shang, and both have length 2. Thus, a shortest 
path approach gives the same score to these two teams. However, Ren is connected to Liu 
through multiple paths (e.g., via Jiawei Han who is a senior researcher and himself has 
many connections to other researchers). Hence, we argue that Ren forms a more robust 
team with Liu than with Hong. Moreover, Liu has more connections than Hong. Our solu-
tion takes these properties, and the overall structure of the answer subgraph, into account 
when scoring the answers. As we will describe later, we do so by measuring the proximity 
between nodes containing the query keywords using a random walk rather than the length 
of the shortest paths. In particular, random walk assigns weights to each node during our 
answer ranking process, as shown in Fig. 2. We select T1 over T2 because the assigned node 
weights are higher. Note that this application of keyword search in attributed graphs cor-
responds to the team formation problem introduced in Lappas et al. (2009). A solution for 
one can be used to solve the other one and vice versa (see the related work in the next sec-
tion for details).

Application 2: Protein–protein interaction networks Proteins are important parts 
of every cell and their interactions affect various biological mechanisms (Gonzalez and 
Kann 2012). In a protein-protein interaction network (PPI), nodes are proteins and an edge 
between two proteins denotes their interaction. Furthermore, each protein has a level of 
expression: the higher the level, the higher the chance of formation (Duret and Mouchir-
oud 1999). Thus, proteins with higher expression levels are candidates for drug discovery 
and enzyme analysis (Duret and Mouchiroud 1999). The length and structure of a protein 
is related to its expression level (Duret and Mouchiroud 1999; Ingvarsson 2007a). In this 
example, we use IntAct PPI3 to build a PPI and calculate each protein’s expression level, 
which becomes the corresponding node weight. Each protein is encoded by a set of dif-
ferent genes. Thus, genes are attributes (i.e., keywords) of proteins. It is known that some 
diseases are controlled by some genes (Pinero 2017). In order to control a disease that is 
caused by a set of particular genes, we aim to find a set of proteins in the PPI graph that 
are encoded by these genes and form a subgraph. From the drug discovery perspective, we 
want to study the effect of silencing these proteins on the advancement of a disease (Jay 
2019). Thus, genes are the query keywords in our framework, and the output is a subgraph 
of interacting proteins from a PPI network.

Figure 3 shows a portion of a PPI network. Suppose we want to find a subgraph of 
this PPI network that encodes two genes: N and HLAB. Two possible answers in Fig. 3 
are: A1 , which includes {P30480,Q8JPQ9} , and A2 , which includes {P30480,P03418} ; 
here, protein P30480 encodes gene HLAB, and proteins Q8JPQ9 and P03418 encode 
gene N. In terms of the shortest path distance, both A1 and A2 have the same cost—of 
two—which is the shortest path between the nodes holding the keywords N and HLAB.4 
However, answer A1 has stronger connectivity: there are two shortest paths of length 
two between its content nodes, versus only one in A2 . We also show the cost of each 

3 https ://www.ebi.ac.uk/intac t.
4 We call these nodes (that contain the query keywords) content nodes or keyword holders, in contrast to 
middle nodes that serve as connections between the content nodes.

https://www.ebi.ac.uk/intact
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protein in Fig.  3 as node weights. The lower the cost, the higher the expression level 
(and higher expression is preferred). The cost of protein Q8JPQ9 in A1 is lower than 
the cost of protein P03418 in A2 . Thus, A1 has a higher expression level and therefore is 
more desirable for biological studies. However, without taking the entire graph structure 
into account, A1 would not be chosen over A2.

Motivated by the above examples, we propose a new method, based on a random 
walk with restart, to rank the results (subgraphs) of keyword queries over attributed 
graphs. Our method takes the structure of the entire graph into account to identify robust 
answers. Using real-world graphs, we experimentally show that our approach produces 
higher-quality results than the previous state of the art. Our contributions are as follows: 

1. We define the problem of robust keyword search in large attributed graphs and show that 
considering the entire graph structure during the search process results in higher-quality 
answers. Our approach assigns specific query-dependent scores to nodes, in contrast to 
prior graph mining work that computes PageRank scores corresponding to the overall 
importance of nodes.

2. We prove that the problem is NP-hard and propose an approach to find answers using a 
random walk with restart (RWR).

3. We propose a distributed framework to discover answers from large networks using 
RWR by developing efficient partitioning and load-balancing techniques. The frame-
work is general enough that it can support any RWR algorithm (e.g., the power iteration 
method and the approximate Monte Carlo method).

4. We provide extensive experiments on real-world graph datasets (i.e., DBLP and PPI 
networks) to demonstrate that our approach scales well to large graphs and returns more 
relevant answers than previous approaches.

The remainder of this paper is organized as follows. Related work is discussed in the 
next section. We discuss preliminaries and the problem statement in Sect. 3. We present 
the RWR method to solve the problem of robust keyword search over graphs in Sect. 4. 
Experiments are presented in Sects. 5 and 6 concludes the paper.

Fig. 3  A portion of a PPI network to answer query {N,HLAB} . The expression levels of proteins are shown 
as node weights in brackets. Note that lower node weights correspond to higher expression levels
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2  Related work

2.1  Keyword search in graphs

Graph keyword search takes a set of keywords as input and returns a subgraph that contains 
the input keywords. Connectivity of the answer subgraph is of critical importance as it 
shows the underlying relation among the keyword holders. A number of works addressed 
this problem in the past and they can be categorized based on the types of answers they 
produce: (1) tree-based and (2) graph-based. Tree-based methods return two types of trees: 
Steiner trees and distinct root trees. A dynamic programming algorithm for finding Steiner 
trees was introduced in Ding et al. (2007). It has exponential runtime complexity in terms 
of the the number of input keywords. However, it is polynomial in terms of the number 
of nodes in the graph. A bidirectional search algorithm was proposed in Kacholia et  al. 
(2005) and improved in BLINKS (He et al. 2007) for finding trees with distinct roots. Part 
of the scoring function that was proposed by BLINKS assigns PageRank scores to content 
nodes (called matches in BLINKS). However, unlike our work, the PageRank scores in 
BLINKS are static and independent of the query keywords. We capture the relative impor-
tance of nodes with respect to other nodes, depending on the query keywords, using the 
RWR process.

For graph based methods, the work of Li et al. (2008) produces r-radius Steiner graphs 
and the work of Qin et al. (2009) returns multi-centered subgraphs. Each answer subgraph 
is built around a set of center nodes. In Qin et al. (2009), two algorithms are proposed to 
find communities in a graph: 1) an algorithm that generates all communities in arbitrary 
order, and 2) an algorithm that generates top-k communities. In  Kargar and An (2011), 
the authors produce r-cliques as answers to keyword search over graphs. An r-clique is 
a subgraph in which all content nodes are guaranteed to be close to each other. Generat-
ing duplication-free and minimal answers for graph keyword search is proposed in Kargar 
et al. (2014). Authors of Kargar et al. (2016) propose a greedy algorithm to search over 
heterogeneous graphs that took node costs into account. The authors of Termehchy and 
Winslett (2011) propose to rank answers to keyword search over XML documents based on 
the structural information of sub-trees and the degree of relatedness between keywords and 
sub-trees.

Random walk and PageRank have been used to rank Web pages and in other search 
problems. ObjectRank ranks answers based on the importance and authority of keyword 
holders by extending the PageRank method (Balmin et al. 2004). Unlike our work, the out-
put of ObjectRank is a ranked list of nodes (our output is a ranked list of subgraphs). A 
more efficient version of ObjectRank was proposed by Chakrabarti (2007). The authors 
of Lao and Cohen (2010) solve the problem of relational retrieval using an efficient algo-
rithm that calculates path-constrained random walks. The input to this search problem is 
a weighted set of graph nodes (unlike our problem, in which the input consists of a set of 
query keywords), and the output is a ranked set of answer nodes that are ordered by prox-
imity to the query nodes.

Keyword search has been used to explore Resource Description Framework (RDF) 
data. The work on keyword search over RDF data can be divided into three categories. 
In the first category, the RDF data is converted into a graph, on which graph keyword 
search techniques are directly applied (Kasneci et al. 2009). The second approach is based 
on summarization (Le et al. 2014). In the first step, the hierarchy of RDF class nodes is 
employed to produce a summary graph. In the next step, a graph algorithm is used on the 



508 Information Retrieval Journal (2020) 23:502–524

1 3

summary graph to generate relevant answers. The third category has recently been pro-
posed in Han et al. (2017). In the first step, and based on the input keywords, the algorithm 
finds elementary query graph building blocks. In the next step, keyword search over RDF 
data is formulated as a query graph assembly problem. However, none of these approaches 
consider robust measures that take into account the entire graph structure when finding 
relevant answers.

2.2  Team formation in social networks

The problem of keyword search in attributed graphs is related to the problem of team for-
mation in expert networks, introduced by Lappas et. al. (2009). Each expert possesses a set 
of skills (e.g., Java or SQL), and experts are connected to each other based on their past 
experience (e.g., working on the same project). Given a network of experts, and a set of 
required skills to complete a project, the goal is to find a subgraph of this network in which 
members of the subgraph (i.e., team) collectively cover all the required skills. Qualifying 
subgraphs are ranked according to some objective function that favours connectedness and 
minimizes communication cost. One objective function discussed by Lappas et. al., was the 
diameter of the subgraph (Lappas et al. 2009). Recently, the authors of Yin et al. (2019) 
proposed a new objective function inspired by the objective function of classical Group 
Steiner Tree problems. They also proposed a greedy algorithm to optimize this objective.

The original team formation problem is similar to the graph keyword search problem, 
meaning that our solution to the latter problem is directly applicable to the former problem 
(as we discuss in our first motivating example in the Introduction). Due to the nature of 
expert networks and special circumstances, a variety of methods were proposed over the 
last decade to address different requirements.

Given a capacity for each expert, the authors of Majumder et  al. (2012) propose a 
method that guarantees no user is assigned a task beyond their capacity. As stated by the 
authors, their work is different from the original team formation problem as Lappas et. 
al. do not consider the capacity constraints of experts (Majumder et al. 2012). The authors 
of Kargar et al. (2013) find a team of experts that minimizes the communication cost as 
well as the personnel cost. The idea is that each expert requests a salary to participate in a 
project. Since each project has a limited budget, we do not want to hire experts beyond the 
project’s budget. Adding the personnel cost makes this a bi-objective optimization problem 
that is different than the original team formation problem.

The authors of Wang et  al. (2019) study the problem of forming a truthful team of 
experts. In addition of forming teams with maximal social welfare, the proposed mecha-
nism in Wang et al. (2019) ensures that all team members truthfully report their participa-
tion and skills. The problem of employee training was introduced in Zhang et al. (2017). In 
this problem, employees are assigned to various projects. As stated by the authors of Zhang 
et al. (2017), this problem is different from the original team formation problem as it parti-
tions employees into different teams for several projects. All employees (i.e., experts) will 
be assigned to at least one project. On the other hand, in the original team formation prob-
lem by Lappas et. al., one team (with few experts) is selected to cover only one project.

Recently, the authors of Jeong et al. (2019) proposed a distributed framework over Apache 
Spark to find teams of experts. The proposed method has three main phases. In the first phase, 
the graph is distributed among nodes in a cluster. In each node of the cluster, the experts who 
have at least one of the required skills are found. The results are represented as subgraphs. In 
the second phase, the subgraphs are merged to form potential teams. In the last phase, each 
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merged graph is evaluated if it contains at least one required skill. This approach is different 
from our distributed method. First, the graph partitioning in Jeong et  al. (2019) is random 
while we use custom graph partitioning. Second, the work in Jeong et  al. (2019) produces 
many subgraphs in each worker, many of which may not cover all the required skills. This 
may severely affect the performance of the algorithm. In contrast, our approach starts from the 
rarest-skill holders and therefore the number of generated teams is significantly lower than in 
Jeong et al. (2019). Third, we optimize the RWR based proximity function while the work in 
Jeong et al. (2019) optimizes the shortest path based method proposed by Lappas et al. (2009).

In addition to optimizing the communication cost, recent work on team formation adds 
new objectives. In this work, we focus on the keyword search problem (and the original team 
formation problem) and propose a new metric (that is fundamentally different than the short-
est path-based methods) to define the proximity between nodes in the network (based on the 
concept of random walk with restart). In future work, we plan to incorporate these additional 
requirements into our proximity measure.

2.3  Community search in attributed graphs

A community is defined as a densely connected subgraph in an input graph (Bai et al. 2018) 
and may contain thousands of nodes (Hajiabadi et  al. 2017). The problem of community 
detection is to find all such subgraphs. Recently, the problem of community search has been 
proposed. The aim of the community search is to find specific communities that are formed 
around a specific query node (Li et al. 2015). Therefore, unlike classical community detec-
tion, the problem of community search receives an input node and builds communities around 
the input node (also called query node). A variety of density-based metrics (e.g., minimum 
degree) is used to determine the density of communities. For example, the works in Sozio and 
Gionis (2010); Cui et al. (2014) return k-cores around the query node (in a k-core subgraph, 
each node has a degree of at least k).

Recently, Fang et  al. (2016) proposed the problem of community search in attributed 
graphs. The input is a set of query keywords, a query node, and the minimum degree of nodes 
in a community. The result is a set of communities (i.e., k-cores) around the query node, in 
which the minimum degree requirements are satisfied and nodes contain the input keywords. 
Following the work of Fang et al. (2016), Huang and Lakshmanan (2017) proposed another 
community search algorithm over attributed graphs that receives a group of query nodes 
instead of a singe node. Also, in Huang and Lakshmanan (2017), the returned community is 
a k-truss. In a k-truss subgraph, each edge is part of at least ( k − 2 ) triangles. The problem of 
keyword search in attributed graphs is different than community search in attributed graphs. 
First, we search the entire graph, while community search receives a query node (or a set of 
query nodes) and builds the community around that node(s). Second, the size of our returned 
subgraph is small, while a community might have thousands of nodes. Note that in our work, 
the number of content nodes is at most equal to the number of input keywords. Third, in our 
work, usually one node covers one query keyword. However, in community search, many 
nodes usually contain each query keyword.
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3  Preliminaries and problem statement

Let G = (V ,E,K) be an attributed graph,5 where the set of n nodes (i.e., vertices) is speci-
fied by V = {v1, v2,… , vn} , the set of p edges is specified by E = {e1, e2,… ep} and the 
set of m keywords (i.e., node labels) is specified as K = {k1, k2,… , km} . For simplicity of 
presentation, we assume G is unweighted and undirected, but our proposed algorithms can 
handle weighted and directed graphs as well. Each node vi is associated with a set of key-
words K(vi) ⊆ K . A subset of nodes V ′ ⊆ V  contains keyword kj if at least one of the nodes 
in V ′ contains kj . For each keyword kj , the set of all nodes that contain kj is denoted as 
V(kj) = {vi|kj ∈ K(vi)} . A query Q is a set of keywords: Q ⊂ K . Finally, a subset of nodes 
V ′ ⊆ V  covers a query Q if ∀ kj ∈ Q, ∃ vi ∈ V � ∶ kj ∈ K(vi).

Definition 1 (Candidate Answer) Given a graph G and a query Q containing a set of q 
keywords Q = {k1, k2,… , kq} , a candidate answer C is a subgraph of G whose nodes cover 
Q.

In other words, given a query Q, a candidate answer C is represented by a set of q key-
word-node pairs: C = {vk1 , vk2 ,… , vkq} , where vkj is a node in C that contains keyword kj . 
Note that the same node may contain multiple keywords, i.e., the vkj s are not necessarily 
distinct.

A candidate answer contains all the query keywords, but some candidates may be more 
closely connected than others. To rank the candidate answers, we define a connection 
score function sc(vi, vj) that assigns a score to each pair of nodes vi and vj . The higher the 
score sc(vi, vj) , the stronger the relationship between nodes vi and vj in graph G. Existing 
approaches define this function as the shortest path between vi and vj in G (Anagnosto-
poulos et al. 2012; Lappas et al. 2009; Kargar et al. 2013). In other words, the smaller the 
shortest distance between vi and vj , the higher the score sc(vi, vj) . In this work, we design 
a score function that takes the entire graph structure into account (to be discussed in next 
sections). For now, assuming that such a function exist, we define the connection score of a 
candidate answer C as follows.

Definition 2 (Connection Score of a Candidate Answer) Given a candidate answer C that 
covers query Q = {k1, k2,… , kq} , the connection score of C is defined as:

The connection score sums up the scores between all pairs of content nodes. Thus, each 
keyword and each content node contributes equally to the connection score function. On 
the other hand, other commonly used functions (such as the diameter of the answer sub-
graph) might be biased towards a small fraction of the content nodes (only two nodes con-
tribute to the calculation of the diameter).

(1)ConSc(C) =

q∑

i=1

q∑

j=i+1

sc(vki , vkj )

5 We assume G is connected. If G is not connected, we use the strongly connected component, as in Lappas 
et al. (2009). Having a connected graph guarantees that the returned answers are always connected. Note 
that in our applications, returning disconnected subgraphs is meaningless.
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Recall that the content nodes vki need not be unique since the same node may contain 
multiple query keywords. Thus, the number of content nodes in an answer can range from 
one to q, where q is the number of query keywords. While maximizing ConSc does not 
explicitly minimize the number of content nodes, it does ensure that the selected content 
nodes are robustly connected—a requirement illustrated by our motivating examples. Fur-
thermore, maximizing ConSc does not imply the need to use q unique content nodes. If the 
same node is a content node for w keywords, its sc() scores will appear w times in the sum-
mation in Eq. 1.

Below, we define the problem of robust keyword search over attributed graphs.

Problem  1 (Robust Keyword Search over a Graph) Given a graph G, a query Q and 
the score function sc, find a candidate answer C for Q with a maximal connection score 
ConSc(C).

Theorem 1 Problem 1 is NP-hard.

Proof We prove that the decision version of Problem  1 is NP-hard. Therefore, and as a 
direct result, Problem 1 is also NP-hard. The decision version asks whether there exists a 
candidate answer with the minimum connection score of b for some constant b. Clearly, the 
problem is in NP. We prove this theorem by a reduction from 3-SAT. Consider a set of m 
clauses Fk = xk ∨ yk ∨ zk (k = 1,… ,m) and {xk, yk, zk} ⊂ {u1, u1,… , un, un} . The score 
between each variable and its negation (i.e. ui and ui ) is set to � where � = b

[(n+m
2
)]2

 . The 
score between other variables is set to b+1

(n+m
2
)
 . An instance of Problem 1 is defined next. Two 

nodes are created for each pair of variables ui and ui . Thus, there exist 2 × n nodes. For 
each pair of variables ui and ui , one keyword KWi (i = 1,… , n) is generated. Therefore, ui 
and ui contain keyword KWi . Note that ui and ui are the only holders of KWi . Furthermore, 
for each clause Fk , one keyword KWn+k (k = 1,… ,m) is generated. The holders of KWn+k 
are the triples of nodes that are related to xk , yk and zk . Thus, the total number of required 
keywords is n + m . One feasible solution to the problem we described with the minimum 
connection score of b is as follows. From each pair of nodes associated to ui and ui , one of 
them is chosen. Also, from each triple of nodes associated to xk , yk and zk , one is chosen. 
Therefore, the existence of a subset of nodes with the minimum connection score of b is 
equivalent to the existence of a satisfying assignment for F1 ∧ F2 ∧⋯ ∧ Fm . Also, a satis-
fying assignment guarantees the existence of a set of nodes with the minimum connection 
score of b. This completes the proof.   ◻

As we proved in Theorem 1, regardless of how we define the score function (i.e., sc), 
Problem 1 is NP-hard. Various methods for the problem of keyword search over graphs 
have been studied in the past (see, for example, Bhalotia et  al. 2002; Ding et  al. 2007; 
Kargar and An 2011; Kargar et al. 2014; Lappas et al. 2009). However, to the best of our 
knowledge, existing approaches do not use a robust scoring function that considers the 
entire graph structure. As a result, the connection score is also limited to a small portion of 
the graph. In contrast, we leverage the structural properties of the entire graph in defining a 
score function (and the connection score), and we design an efficient algorithm to discover 
the best candidate answer. While using robust score functions is desirable (recall our moti-
vating examples), it introduces new technical challenges. In the next section, we propose 
a new scoring measure and we present our solution to address the complexity issues in 
employing this measure in keyword search over graphs.
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4  Robust keyword search using random walk with restart (RWR)

Random walk with restart is a robust method to assign a connection score to each node 
relative to other nodes (i.e., resSet) in the entire graph. A random walker (i.e., surfer) starts 
from a node in resSet and “surfs” the nodes by randomly choosing which edges to follow. 
Moreover, the random walker might teleport to a random node in resSet with probability � . 
When the process reaches a stationary condition, the score vector � is as follows:

where � = [pj] , pj is a relevance score of node vj w.r.t. the node(s) in resSet, W = [wij] is the 
transition probability matrix ( wij is the probability of transitioning from node vi to node vj ), 
and � = [ri] is the starting vector, where ri = 1 if i ∈ resSet and 0 otherwise. We define the 
RWR-based score function between two nodes vi and vj as follows:

Next, we present an algorithm that uses the RWR score function to solve Problem 1. As we 
discussed, Problem 1 is NP-hard. Therefore, we propose an efficient and effective heuristic 
to solve it in polynomial time.

The idea is as follows. For a given query Q, take each node containing the rarest key-
word6 (i.e., each node in V(krare) ) and form a subgraph (candidate answer) around that 
node. The answer’s score is initialized to 0. Then, in each iteration, we cover one of the 
uncovered keywords. In order to do that, we run the RWR and set the restart nodes to 
the current nodes of the subgraph. At the beginning, the only node in the subgraph is the 
one with the rarest keyword. When the RWR process is finished, the node with the high-
est score that also covers the current required keyword is selected as the best node of the 
subgraph. Among all the candidate subgraphs that are formed around the node containing 
the rarest keywords, the one with the highest sum of RWR scores is selected as the best 
subgraph.

Algorithm 1, represents this process in detail. The input is the graph G, the query Q, 
and the keyword holders of (i.e., the nodes that contain) each keyword. The output is a 
subgraph (i.e., the most robust candidate answer) that covers the required keywords. The 
complexity of Algorithm 1 is O(|V(krare)| × q × RWRtime) , where |V(krare)| is the number of 
rarest keyword holders, q is the number of query keywords, and RWRtime is the runtime of 
RWR. Note that RWRtime is linear when using Monte Carlo approximation and is sub-linear 
in a distributed environment (as we will explain shortly).

To find the top-k best answers, we additionally initialize a list L of size k for the output. 
The list L is updated after each iteration of the for-loop and the new candidate answer is 
added to L if its connection score is lower than the connection score of the highest-score 
answer in L. The runtime complexity remains the same as we only need an extra pass over 
L in each iteration and the size of L is limited by k.

Recall the example in Fig.  2 in which we need to cover two keywords, Text Mining 
(TM) and Social Network (SN). Since TM is the rarest keyword as it is only held by one 

(2)� = (1 − �) ∗ W� + � ∗ �,

(3)scRWR(vi, vj) = pj, where rj = 1(rk = 0 for all k ≠ i)

6 Note that choosing any set of nodes that contain one of the input keywords in the first step guarantees the 
coverage of all keywords at the end. However, starting with the rarest keyword holder is a greedy strategy 
that improves performance significantly as it prunes the search space without significantly sacrificing presi-
cion in practice.
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node (i.e., Ren), we form a subgraph around Ren. We run a RWR process, setting Ren as 
the restart node and setting � to 0.15. The score of each node after the RWR process is also 
shown in Fig. 2. Between the two nodes containing keyword SN, Liu is selected since his 
RWR score is higher than Hong (the other holder of SN). The robustness of our team is 
evident: shortest path approaches cannot distinguish between Hong and Liu; however, by 
evaluating the entire graph using RWR, Liu is considered to be a more effective collabora-
tor to work with Ren.

4.1  Monte carlo approximation of RWR 

The main computational bottleneck in Algorithm 1 is line 10, where RWR scores for the 
experts need to be calculated. RWR is traditionally computed via power iteration, which 
is prohibitively expensive for large graphs. However, there exists a Monte Carlo method 
that provides an accurate estimate to RWR with significantly lower runtime (Bahmani et al. 
2010). The Monte Carlo method simulates “surfers” traversing the graph at random, and 
does not require the entire graph as a n × n matrix in each iteration, where n is the number 
of nodes.

To estimate RWR for a single node, we create Nrw random walkers as (source, cur-
rentPosition) tuples, where the source and currentPosition are initialized at the node in 
G that corresponds to the node(s) we are starting the walk from. The walkers follow the 
same parameters as the standard approach, i.e. each walker takes n steps (or iterations), 
and at each step the walker has a probability, � , to restart on the source node or a (1 − �) 
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probability to continue walking, where it moves to a random node adjacent to currentPosi-
tion. The random walkers will continue to walk until termination when all steps are taken. 
The final distribution of walkers represent an accurate estimate of RWR for nodes. If a 
node is too far or receives no walkers, it is assigned a score of 0. As this is a Monte Carlo 
method, we can increase the accuracy of the approximation by increasing the number of 
random samples we perform. This is analogous to increasing the number of random walk-
ers we start on each member of V(krare).

4.2  Distributed algorithm for RWR 

In this section, we design a distributed version of Algorithm 1. Technically, each walker in 
our approach is independent and each walk can be parallelized. Figure 4 shows the over-
view of the proposed distributed framework, implemented in Apache Spark.

Resilient distributed datasets (RDD) variables First, we describe variables related to 
Resilient Distributed Datasets7 (RDD). We create three variables: GraphRDD, WalkerRDD 
and AnswerRDD. GraphRDD is the input graph, which is divided into into h random 
partitions. Later, GraphRDD holds the partitions created by our proposed custom par-
titioning strategy. WalkerRDD contains the walkers with the same number of partitions 
as GraphRDD. Since these were created using the same partitioner, the partitions within 
WalkerRDD and GraphRDD correspond one-to-one and as a result become co-located. 
This helps us obtain iterators over both the WalkerRDD and GraphRDD partitions. Thus, 
we can iterate over the WalkerRDD partition and select the neighbors of a walker from the 
GraphRDD partition iterator. The last variable is AnswerRDD, which keeps track of candi-
date answer subgraphs found by the algorithm.

Custom partitioning A challenge in parallelizing the subgraph discovery algorithm is 
that random partitioning is inefficient (as will be illustrated in Sect. 5.5). This is due to the 
fact that to run random walkers over partitions, a random walker needs to have access to the 
data in another partition to take further steps. To avoid this, our proposed partitioner first 
distributes rarest keyword holders across h partitions. Then, using a Breadth First Search 
(BFS) strategy, all the neighbors of the rarest keyword holder, and so on (up to a predefined 

Fig. 4  The conceptual distributed framework for robust keyword search in large graphs

7 RDD is a fundamental data structure in Spark. RDD provides an an immutable, partitioned collection of 
elements in which they can be operated on in parallel.
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threshold), are assigned to the same partition. Note that the threshold is a stopping point to 
avoid covering the entire graph for each rarest keyword holder. This increases the probabil-
ity of visiting the next node of the walker in the same partition and avoids data shuffling.

Load balancing We use two strategies for load balancing. Using our custom partitioner, 
to avoid overlap among partitions, we assign the neighbour node to one of the desired par-
titions by selecting the one with the lowest cardinality (i.e., fewest nodes). In this way, 
each partition traces a similar search space size. Moreover, we limit the number of steps a 
random walker can take (as described in Sect. 4.1). Using these two strategies, the breadth 
of the search space is similar for different executors, and also the depth of the search space 
is monitored.

For each query keyword, excluding the rare keyword, a WalkerRDD is created and the 
existing subgraph members (initially the rarest keyword holder) become the restart set for 
the walker. Each walker retrieves the list of neighbours from its GraphRDD and moves to 
one at random. If the walker has not reached the maximum steps it can take, and the cur-
rent GraphRDD partition contains the data for its new position, the walker keeps walking. 
Otherwise, the walker waits to be shuffled. Once all walkers have been terminated, the ones 
corresponding to a specific subgraph are located in the same partition. Then, the existing 
subgraphs are updated and the process is repeated for the rest of the uncovered keywords. 
At the end, subgraphs in AnswerRDD are sorted based on their scores and the best sub-
graphs are discovered.

4.3  Answer presentation

Aside from computational complexity, another challenge in robust keyword search is how 
to display the results. In addition to identifying the content nodes, we want to show how 
they are connected in the underlying graph, especially when the chosen content nodes are 
indirectly connected through middle nodes. We discuss the following two visualization 
options.

• BFS We traverse the graph in a breadth-first fashion, starting at each content node. We 
stop when we find the first middle node that is connected to all the content nodes. Then, 
all the nodes and edges that have been visited so far are presented to the user.

• Pruned BFS This is similar to BFS. However, we only show the nodes with high RWR 
scores. Note that this visualization method cannot be used with previous approaches 
that do not compute RWR scores.

Note that the first approach (BFS) returns more nodes to the user. For fewer input key-
words, this might be the preferred choice as it reveals more connections among nodes. 
However, for more than three or four keywords, BFS might return many nodes, making it 
difficult to view the results. Therefore, for larger numbers of input keywords, Pruned BFS 
may be a better choice.

4.4  Relevance of answers

In this work, we use a random walk with restart (RWR) to calculate the relative impor-
tance of nodes in the entire graph. In some cases, nodes with higher degrees have higher 
importance scores that nodes with lower degrees. However, nodes with high degrees are 
not the only nodes that may have high importance according to RWR. In some situations, 
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a node a might obtain a significant amount of importance from its neighbour node b if b 
has many connections in the graph (even if a does not have many connections). This is how 
RWR captures the importance of nodes in the graph (Leskovec et al. 2014). For example, 
in co-authorship networks, an author x with many publications and co-authors has a high 
importance. However, a co-author of x (y) also has a high importance because they pub-
lished with x, even if y does not have many co-authors. Therefore, the use of RWR provides 
a meaningful way of ranking nodes in the graph that takes into account recursively the 
entire graph structure. The same scenario happens during PageRank (which is based on a 
random walk process) to rank Web pages: pages that are referenced by an important page 
also become important (Leskovec et al. 2014).

In another scenario, researcher a publishes few important papers with few other 
researchers and those researchers also collaborate with few other researchers. In this case, 
although a is an important researcher, she might not be highly-ranked in the RWR process. 
This situation might also happen with the use of shortest paths: a may not appear on many 
shortest paths since she and her neighbors have few neighbours. One way to alleviate this 
issue is to assign node weights based on their importance (e.g., significance of research), 
and then distribute this weight onto the edges before running the RWR process. In this 
case, the graph becomes weighted, and the chance of the RWR surfer following an edge 
with a high value (which is connected to an important node) is higher. We plan to examine 
this approach in future work.

5  Experiments

5.1  Datasets and settings

We use the DBLP8 and IntAct PPI9 graphs to evaluate our algorithms against existing 
approaches. The DBLP dataset contains information about authors and their publications. 
We form a network of authors that contains 1.3M nodes (two authors are connected if they 
published together in the past) and 3.95M edges. In the DBLP dataset, the maximum node 
degree is 473 and the average node degree is 6.1. We also compute the h-index of each 
author using ArnetMiner (Tang et al. 2008). In DBLP, if a keyword appears at least twice 
in the titles of an author’s publications, it is considered as a keyword (or expertise) of that 
author. The PPI network has 70k nodes and 425k edges. In the PPI network, the maximum 
degree of a node is 4,019 and the average node degree is 12.1. The nodes are proteins and 
the edges indicates biological interactions between them. We treat genes that are associated 
with each protein as the keywords of the protein. We calculate the expression level of each 
protein based on the length and structure of the protein given in UniProt.10 In the Monte 
Carlo approximation, we set the number of samples to 20.

8 http://dblp.uni-trier .de/xml/.
9 https ://www.ebi.ac.uk/intac t.
10 http://www.disge net.org/.

http://dblp.uni-trier.de/xml/
https://www.ebi.ac.uk/intact
http://www.disgenet.org/
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5.2  Comparison methods

We test the performance of our algorithm against the state of the art. All algorithms are 
implemented in Java.11 In the remainder of this section, RKS-RW denotes our algorithm 
(random walk with restart). We compare it with the following methods:

• S-DP a shortest path-based algorithm proposed in Kargar et  al. (2014). This method 
minimizes the sum of distances between all pairs of content nodes. The idea of this 
algorithm is to form a subgraph around each content node and then cover the rest of the 
keywords.

• S-DM a shortest-based algorithm proposed in Lappas et al. (2009), which introduced 
the problem of team formation in social networks. The objective is to minimize the 
diameter of the answer subgraph. In order to do this, the algorithm first selects the rar-
est keyword holders. Then, an answer is formed around each of these nodes and the one 
with the smallest diameter is selected as the best answer.

• S-ST a recent method published in Yin et al. (2019) that also addresses the team forma-
tion problem based on the notion of the shortest path. The objective function is inspired 
by the objective function of the classical Group Steiner Tree problem and a greedy 
algorithm is proposed to optimize this objective.

• EMB an embedding-based method that transforms the graph into a vector space through 
node2vec (Grover and Leskovec 2016). The distance between a pair of nodes is equal 
to the Euclidean distance between their respective vectors. To form answers, we use the 
algorithm from Lappas et al. (2009). Embeddings were recently used in Cavallari et al. 
(2017) to address the problem of community search.

• BLINKS a shortest-path based algorithm proposed in He et al. (2007), which minimizes 
the distances among nodes.

• BLINKS-PR the algorithm proposed in He et al. (2007), which optimizes the distances 
as well as the static PageRank scores of content nodes. The tradeoff parameter that 
incorporates the distances and the static PageRank scores is set to 0.5.

Fig. 5  Average node cost of 
answer subgraphs over the PPI 
network. Lower node cost corre-
sponds to higher expression level

11 The code is available at: https ://peopl e.ryers on.ca/karga r/robus tsear ch.zip.

https://people.ryerson.ca/kargar/robustsearch.zip
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5.3  Quality of answers

5.3.1  Expression level of answers over the PPI network

In this section, we calculate the protein expression levels of subgraph answers discov-
ered by different algorithms. The expression level of each protein is determined using 
the method proposed in Duret and Mouchiroud (1999); Ingvarsson (2007b). A cost value 
is assigned to each protein; the lower the cost, the higher the expression level. A higher 
expression level increases the chance of interaction among proteins. The average cost of 
each protein in the answer determines the answer’s cost. We randomly generate 100 queries 
with 2 to 6 genes responsible for different diseases. Figure 5 shows the cost (i.e., expression 
level) of answer subgraphs for different algorithms. The average cost of answers produced 
by our algorithm, RKS-RW, is lower than that of previous approaches. The difference is 
significant according to the t-test with a p value of 0.05. Figure 6 illustrates the cost of the 
answer subgraphs for different number of required genes (i.e., different numbers of key-
words in a query). Our approach consistently performs better than previous approaches for 
different numbers of genes (with p-values smaller than 0.05). Note that all the shortest-path 
based methods (S-DP, S-DM, S-ST, and BLINKS) achieve similar results. Furthermore, 
the results of EMB and BLINKS-PR are close. This is because in order to transform the 
graph into the vector space, node2vec runs multiple random walks (Grover and Leskovec 
2016). Therefore, the vector space models the output of a static PageRank, which is part of 
the scoring function of BLINKS-PR.

Fig. 6  Average node cost over the PPI network for different numbers of keywords (genes) in the query

Fig. 7  Average h-index of team 
members over the DBLP graph
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5.3.2  H‑index of teams over the DBLP dataset

We now evaluate the quality of teams over the DBLP dataset in terms of the h-index of the 
authors. First, we randomly generate 100 skill sets (each skill set contains 2 to 6 skills). 
Then, we calculate the h-index of each discovered team, which is the average h-index of its 
members (nodes that contain at least one keyword). Figure 7 illustrates the average h-index 
of the teams discovered by different algorithms. RKS-RW outperforms all other methods. 
The difference is significant according to the t-test with a p-value of 0.05. Figure 8 shows 
the h-index of each algorithm for different number of required skills. Again, RKS-RW con-
sistently generates teams with higher h-indices (with p-values smaller than 0.05).

5.4  Sensitivity analysis

Next, we analyze the sensitivity of RKS-RW with respect to the number of samples in the 
Monte Carlo approach. We change the number of samples from 10 to 30 and observe how 
the node cost (for the PPI network) and the h-index (for the DBLP graph) change. Figure 9 
illustrates the effect of the number of samples on the performance of RKS-RW. The aver-
age h-index of the answer subgraph is not sensitive to the number of samples. Moreover, by 
increasing the number of samples, we do not observe significant changes in the PPI node 

Fig. 8  Average h-index of team members over the DBLP graph vs. the number of skills (keywords) in the 
query

Fig. 9  Average author h-index 
over the DBLP graph and the 
average of node cost over the 
PPI network for different sample 
numbers (i.e., the number of 
random walks per source node) 
in the Monte Carlo approach
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cost (i.e., protein expression level). This suggests that we do not need a large number of 
samples for estimating the exact random walk scores in the Monte Carlo approach.

5.5  Scalability of distributed RWR 

Finally, we evaluate the scalability of the proposed distributed random walk algorithm on 
the DBLP dataset as it contains a large number of nodes. The experimental environment 
consists of one Spark master node and five Spark worker nodes. Each node has 4 cores 
and 16 GB of main memory. We use Spark 2.3.0 as our cluster computing framework. To 
test how well the proposed algorithms scale, we divide the DBLP graph into four graphs 
of varying sizes. To preserve the structure of the graph, the smaller graphs are created by 
applying a breadth-first search on an arbitrary node in the graph, and by increasing the 
depth level from 1 to 4. This process creates four graphs of increasing sizes. The smallest 
graph has 1K nodes, and the largest one has 1.3M nodes.

Table  1 shows the runtime improvement of the RWR algorithm on four graphs with 
different sizes. The algorithm we refer to as naive does not include any optimization for 
computing the RWR scores (line 10 of Algorithm 1). Note that the naive algorithm per-
forms poorly on large graphs and does not terminate after one hour on graphs with more 
than 0.5M nodes. The Monte Carlo algorithm scales linearly as the number of nodes in the 
graph increases. Furthermore, the distributed version of the RWR algorithm significantly 
decrease the runtime for large graphs. For small graphs, the distributed version suffers 
from the distribution overhead and its runtime is longer than both naive and Monte Carlo 
for graphs with 1K nodes.

Table 1  Runtime improvement 
of RWR-based algorithms on the 
DBLP dataset

Faster run times are shown in bold

1K nodes 46K nodes 569K nodes 1.3M nodes

Monte Carlo vs. 6 times 215 times NA NA
Naive faster faster
Distributed vs. 10 times 43 times NA NA
Naive slower faster
Distributed vs. 60 times 5 times 2.5 times 3.8 times
Monte Carlo slower slower faster faster

Fig. 10  Scalability analysis 
of the distributed RKS-RW 
algorithm



521Information Retrieval Journal (2020) 23:502–524 

1 3

Distributed RKS-RW shows an almost linear scalability as the number of available 
machines increases over the DBLP dataset. We report the results in Fig. 10. Here, we pre-
sent the ratio of the runtime of the distributed algorithm when using 2 machines versus 
4 machines, and also 2 machines versus 6 machines. This ratio is over 1.5 when using 4 
machines, over 2.0 when using 6 machines, and slightly over 3.0 when using 8 machines; 
this suggests linear scalability of our distributed algorithm.

5.6  Query discussion

We observed that for rare query keywords (i.e., keywords that appear in only few nodes 
in the graph), the results of our RWR-based method are closer to the results of shortest 
path based methods. However, by increasing keyword frequency (e.g., from 20 nodes to 
100 nodes in the DBLP dataset), the results of our approach improve while the results of 
shortest path-based methods stay the same. The reason is that when the input keywords 
appear in more nodes in the graph, RWR is more likely to select candidates that have many 
paths to the nodes that are already selected. Furthermore, these nodes are more likely to 
have a higher score (e.g., higher h-index). However, for the shortest path-based methods, 
even with fewer keyword holders, it is still possible to form a subgraph with few nodes 
and edges. The embedding approach shows similar behaviour to RWR. It produces better 
results with keywords with higher frequency since it models the entire graph in a vector 
space and avoids the limitations of shortest path based methods. This observation was valid 
for all tested numbers of input keywords (from two to six). We also observe that queries 
with fewer input keywords produce slightly better results than queries with more keywords.

6  Conclusions

We formulated and studied the problem of robust keyword search in attributed graphs. We 
proved that the problem is NP-hard and proposed a solution based on the notion of random 
walk with restart (RWR). To improve the efficiency of the RWR approach, we proposed 
to use Monte Carlo approximation. We also developed a distributed version of our RWR 
approach to scale well for large graphs. Experiments on large real-life graphs verified the 
effectiveness of our approach compared to the previous state or the art. In future work, 
we plan to extend our framework to discover multi-objective optimal answers. In addition 
to ensuring close connections between content nodes, we will consider objectives such as 
node cost, or expert productivity and workload in the special case of expert networks. We 
also plan to extend this work to dynamic graphs.
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