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Abstract
When evaluating IR run effectiveness using a test collection, a key question is: What search 
topics should be used? We explore what happens to measurement accuracy when the num-
ber of topics in a test collection is reduced, using the Million Query 2007, TeraByte 2006, 
and Robust 2004 TREC collections, which all feature more than 50 topics, something that 
has not been examined in past work. Our analysis finds that a subset of topics can be found 
that is as accurate as the full topic set at ranking runs. Further, we show that the size of the 
subset, relative to the full topic set, can be substantially smaller than was shown in past 
work. We also study the topic subsets in the context of the power of statistical significance 
tests. We find that there is a trade off with using such sets in that significant results may be 
missed, but the loss of statistical significance is much smaller than when selecting random 
subsets. We also find topic subsets that can result in a low accuracy test collection, even 
when the number of queries in the subset is quite large. These negatively correlated sub-
sets suggest we still lack good methodologies which provide stability guarantees on topic 
selection in new collections. Finally, we examine whether clustering of topics is an appro-
priate strategy to find and characterize good topic subsets. Our results contribute to the 
understanding of information retrieval effectiveness evaluation, and offer insights for the 
construction of test collections.
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1 � Introduction and background

When evaluating the effectiveness of Information Retrieval (IR) systems, the design of the 
measurement process has been examined by researchers from many ‘angles’: e.g. the con-
sistency of relevance judgments; the means of minimizing judgments while maintaining 
measurement accuracy; and the best formula for measuring effectiveness. One aspect—the 
number and type of queries (topics in TREC terminology) needed in order to measure reli-
ably—has been discussed less often. In general, there has been a trend in test collection 
construction of increasing the number of topics, but without much consideration of the 
benefits of such an approach. In many areas of measurement via sampling, it is generally 
accepted that there are diminishing returns from increasing the sample size (Bartlett et al. 
2001). Beyond a certain point, improvements in measurement accuracy are small and the 
cost of creating the sample becomes prohibitive. We are not aware of work in IR that estab-
lishes if such an optimal sample size exists.

Other work has been conducted on whether smaller topic sets (subsets) could be used in 
a test collection, examining early TREC ad hoc collections (Guiver et al. 2009; Robertson 
2011; Berto et al. 2013), and the 2009 Million Query (MQ) Track (Carterette et al. 2009a, 
b). These approaches, in general, ask how similarly a set of retrieval runs are ranked when 
using such a subset versus a full set of topics. Note that in these experiments, the full set of 
topics is taken to be the ground truth. The similarity of the two rankings is measured using 
Kendall’s Tau (henceforth, � ). Figure  1 shows an example result from this work, taken 
from Guiver et  al. (2009). On the x-axis are topic subsets of increasing cardinality, the 
y-axis measures � . Three types of subset are shown for each cardinality:

•	 Best—the subset of a given cardinality that results in a ranking that is closes to the 
ranking of runs using the full topic set;

•	 Average—the average � of all the topic subsets examined;
•	 Worst—the topic subset that results in a ranking that is furthest from the ranking of 

runs from the full topic set.1

Fig. 1   Kendall’s � correlation 
curves for AH99, adapted from 
Guiver et al. (2009, Figure 2)

1  Guiver et al. (2009) use the terminology Best/Average/Worst, and we adopt it in this paper in order to be 
consistent with past work.
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The best correlation curve shows that even when using a topic subset of cardinality 6, a 
relatively high � ( > 0.8 ) can be found. The curve for the average topic set reaches a � of 0.8 
at cardinality 22. The generality of this basic result was questioned by Robertson (2011), 
and revisited again by Berto et al. (2013) with results that confirmed the original conclu-
sions.2 Carterette et al. (2009a) conducted similar experiments though only measuring the 
average. However, they also examined different topic types, which will be discussed later.

There are a number of limitations with these past studies:

1.	 Researchers have examined relatively small ground truth topic sets: n = 50 (Guiver et al. 
2009; Robertson 2011; Berto et al. 2013) and n = 87 (Carterette et al. 2009a). However, 
little is known about the generality of these results for larger n. Because the existing 
studies sampled from topic sets that are relatively small, as the cardinality of the subset 
becomes a substantial fraction of the ground truth set, the properties of the sample and 
the full set are guaranteed to become similar and the correlations between the rankings 
of runs will tend to 1. The observation in Fig. 1 that a topic subset of cardinality 22 has 
similar properties to the full set of 50 topics may not hold with a larger ground truth. 
This limitation is striking in the light of recent work by Sakai (2016b), who showed 
that for test collections to have reasonable statistical power, ground truth topic sets size 
should be at least around 200, if not higher. Therefore the results obtained on the basis 
of a ground truth of far fewer than 100 topics calls for further confirmation on higher 
cardinalities.

2.	 A limitation of past work (Guiver et al. 2009; Robertson 2011; Berto et al. 2013) is that 
the statistical significance of the differences between runs was not taken into account: � 
values do not explain if a different run ranking is due to minor fluctuations or to statisti-
cally significant differences in measurement values. This is a notable omission, in the 
light of recent work from Sakai (2014) that emphasizes the link between topic set size 
and statistical power.

3.	 Almost no characterization of the best topic sets has been attempted [apart some results 
on stability of such sets, see e.g. Figures 5 and 6 in Guiver et al. (2009)]. However, it 
seems intuitive that smaller topic sets should be obtained by removing redundancy, for 
example by clustering topics and selecting representatives from each cluster.

In this paper we address three research questions:

	RQ1.	What effect does a larger ground truth topic set have on correlation curves? Are the 
results obtained in past work (Guiver et al. 2009; Robertson 2011; Berto et al. 2013) 
confirmed when using a larger ground truth? How does the minimum cardinality of a 
topic subset, needed in order to achieve a high correlation, depend on the cardinality 
of the ground truth, when using data from test collections?

	RQ2.	Are the results on topic subset size, obtained in past work (Guiver et al. 2009; Robert-
son 2011; Berto et al. 2013), still valid when statistical significance is considered?

2  It is important to remark that this line of research focuses on an a posteriori, i.e., after-evaluation setting: 
it is not aimed at predicting in advance a good topic subset, but only at determining if such a subset exists.
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	RQ3.	Is clustering an effective strategy to potentially3 find and characterize the best topic 
sets? Does the choice of a specific clustering setting (features, algorithms, distance 
functions, etc.) make important differences? If so, what clustering settings are most 
effective in finding topic sets featuring high correlations?

In the rest of the paper, Sect. 2 frames the context of this research by analyzing related 
work. Section 3 describes the experimental setting. Section 4 discusses the results related 
to the first research question RQ1, highlighting the existence of even more extreme results 
when the number of topics increases. Section 5 focuses on RQ2 and addresses statistical 
significance, specifically discussing what kind of errors are more likely when using fewer 
topics. Section  6 examines RQ3, about clustering, and highlights how a rather natural 
approach turns out to be only slightly more effective than randomly chosen topics. Sec-
tion 7 summarizes the contribution of this paper and sketches future developments.

2 � Related work

In addition to the previously mentioned work examining topics (Guiver et al. 2009; Rob-
ertson 2011; Berto et al. 2013), a wide variety of studies analyze the components of test 
collections. Here, we focus on those that consider the number of topics needed and topic 
subsetting.

2.1 � Number of topics

Buckley and Voorhees (2000) examined the accuracy of common evaluation measures rel-
ative to the number of topics used. They suggested using at least 25 topics, though stated 
having more was better. The authors concluded that 50 topics produce reliable evaluations. 
The conclusion on the number of topics was broadly confirmed by Carterette et al. (2006) 
who considered a larger number of topics (200).

While the methods used in earlier work to determine the appropriate number of topics 
for a test collection involved a range of empirical approaches, Webber et al. (2008) pro-
posed the use of statistical power analysis when comparing the effectiveness of runs. The 
authors argued that a set of nearly 150 topics was necessary to distinguish runs. Building 
on suggestions by Sanderson and Zobel (2005), they also argued that using more topics 
with a shallow assessment pool was more reliable than using few topics with a deep assess-
ment pool. Carterette and Smucker (2007) used power analysis statistics to study both topic 
set size and judgment set size.

Using the approach of Test Theory, introduced by Bodoff and Li (2007) and Urbano 
et al. (2013) examined test collection reliability considering all aspects of the collection. 
The authors tabulated their measures of reliability across a large number of TREC col-
lections, and suggested that the number of topics used in most current test collections is 
insufficient.

3  Consistently with this line of research (see Footnote  2), we investigate clustering of topics using an a 
posteriori setting; thus, we study an after-evaluation characterization of Best topic subsets, but do not aim at 
providing a methodology to find such subsets in practice.
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More recently, Sakai (2014, 2016b) used power analysis to argue that more topics 
than are currently found in most test collections are required. He showed that many 
significant results may be missed due to the relatively small number of topics in current 
test collections. He concludes that potentially, hundreds of topics are required to achieve 
reasonable power in current test collections.

While the works here seem to draw contradictory conclusions of different minimum 
numbers, a common theme to the work is that the minimum number needed to separate 
the effectiveness of two runs depends on how similar the runs are. The earlier work 
examined runs more widely separated than more recent work.

2.2 � Topic subsets

Separate to the question of how many topics are required, researchers have asked if 
some form of targeted topic sample could achieve the same measurement effect.

Subsequent to the work of Mizzaro and Robertson (2007) on topic subsets, Hauff 
et al. (2009) presented three approaches to measure effectiveness estimation using topic 
subsets: greedy, median Average Precision (AP), and estimation accuracy. Hauff et al. 
(2010) then presented evidence showing that the accuracy of ranking the best runs 
depended on the degree of human intervention in any manual runs submitted, and went 
on to show that this problem can be somewhat alleviated by using a subset of “best” 
topics. Cattelan and Mizzaro (2009) also studied whether it is possible to evaluate dif-
ferent runs with different topics. Roitero et al. (2017) generalized the approach to other 
collections and metrics, further investigating the correlations between topic ease and its 
capability of predicting system effectiveness.

In contrast to the work conducted by Mizzaro and Robertson—which looked for best 
and worst subsets in a “bottom up” approach, finding any topics that would fit into each 
subset—Carterette et al. (2009a) took a “top down” approach. They manually split the 
topics of the MQ collections into subsets based on groups of categories from Rose and 
Levinson (2004). They found little difference examining the groups. They also looked 
at different combinations of hard, medium, and easy topics (determined by the average 
score that runs obtained on the topics) and found similar conclusions to earlier topic 
subset work.

In related work, Hosseini et al. (2011b) presented an approach to expand relevance 
judgments when new runs are evaluated. The cost of gathering additional judgments 
was offset by selecting a subset of topics that discriminated the runs best, determined 
using Least Angle Regression (LARS) and convex optimization, up to a maximum topic 
set cardinality of 70. Later, Hosseini et al. (2011a) used convex optimization to select 
topics that needed further relevance judgments when evaluating new runs. The algo-
rithm estimates the number of unjudged documents for a topic and identifies a set of 
query-document pairs that should be judged given a fixed budget.

Hosseini et  al. (2012) proposed a mathematical framework to select topic subsets 
based on modeling the evaluation metric’s uncertainty obtained when dealing with 
incomplete or missing relevance judgments for a set of topics. This work is particularly 
relevant as we will be able to compare some of our results with theirs.

Kutlu et al. (2018) developed a method for topic selection based on learning-to-rank; 
they took into account the effect of pool depth and focused on deep versus shallow 
judging.
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3 � Experimental setting and data

We describe the test collections, methods, and means of evaluation used in our experiments.

3.1 � Data and collections

Our experiments require test collections with more than 50 topics, and for which a suf-
ficient number of runs are available to be analyzed. The three instantiations of the Million 
Query track collections feature more than 1000 topics each year that are sampled from a 
query log. We use the data from the 2007 track. However, the Million Query datasets are 
not free from disadvantages: runs are evaluated using the statMAP and E[MAP] metrics, 
which are slightly different from classical Mean AP (MAP).4 In addition, not as many runs 
are available (25–35). We also employ the TREC 2004 Robust and 2006 TeraByte track 
collections, using automatic runs only. To enable a comparison with the results obtained 
in previous studies (Guiver et al. 2009; Robertson 2011; Berto et al. 2013), we also use the 
TREC 8 ad hoc (AH) track (1999). Table 1 summarizes the four test collections. For the 
analyses in this paper, when not otherwise noted, we work on a subset of the runs. As is 
usual for the analysis of TREC run data (see e.g. Voorhees and Buckley 2002), we remove 
the least effective runs, obtaining the number of runs in the last column. For AH99 we 
removed the 25% least effective runs to have the same situation as in prior work (Guiver 
et al. 2009; Robertson 2011; Berto et al. 2013); for R04 we did the same; for TB06 and 
especially MQ07, which feature a smaller number of runs, we removed fewer (20% and 
10%, respectively). The number removed was determined by manually examining the dis-
tribution of run effectiveness values, and pruning runs with a clear drop in effectiveness 
compared to others that are ranked higher.

3.2 � Software

For our analysis, we employed the BestSub software that was used in previous studies 
(Guiver et  al. 2009; Robertson 2011; Berto et  al. 2013). The number of all subsets of a 
topic set of cardinality n is 2n . The number of all possible topic subsets of cardinality c 
drawn from the larger set is 

(

n

c

)

=
n!

c!(n−c)!
 . Therefore, the software uses a heuristic to cope 

with the combinatorial explosion. The heuristic builds the best set of cardinality c + 1 on 
the basis of the best set of cardinality c by looking at those subsets of cardinality c + 1 that 
differ from the best set of cardinality c by at most k topics. In the previous studies, k = 3.

Table 1   Test collections used for 
all experiments

Acronym TREC collection Year Topics Total runs Used runs

AH99 Ad hoc 1999 50 129 96
R04 Robust 2004 249 110 82
TB06 TeraByte 2006 149 61 49
MQ07 Million query 2007 1153 29 26

4  The effect of statMAP, on which we focus in this paper, is discussed in more detail in Sect. 3.3.
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Since in our case n > 50 (i.e. 149, 249, and 1153), the complexity is higher. This would 
mean that using BestSub was impractical, with months if not years of computation time 
required, even by resorting to lower k values. We therefore re-implemented BestSub to 
incorporate an evolutionary algorithm (Roitero et  al. 2018a). This change has no effect 
when tested on small cardinalities: both versions of BestSub produce almost completely 
overlapping and graphically indistinguishable correlation curves. For higher cardinalities, 
the curves obtained are not distant from interpolating the curves from BestSub. We also 
needed stable results to work on the percentiles (as we discuss below). For this reason, 
the average correlation curves are obtained by averaging one million samples in place of 
50,000 that was used in past work. Again, this larger sample did not substantially affect the 
average curves.

Using such heuristic searches means that the best and worst curves are not optimal: 
there could be topic sets that are even better or worse. However, correlation values should 
not change significantly, as shown by Guiver et al. (2009, Section 5.1).

3.3 � Effectiveness metrics

The MQ07 collection differs from the other collections in that it uses statAP and statMAP 
(together with E[MAP], that we do not use in this paper), rather than AP and MAP, as its 
primary evaluation measure. The measure (Allan et al. 2007; Carterette et al. 2009a; Pavlu 
and Aslam 2007) is a version of MAP that is used to create a pool with a sampling strategy: 
each document is associated with an inclusion probability, used both to decide whether a 
document is in the pool, and to weight the importance of the document when computing 
the metric. Since the differences between statMAP and MAP may have implications for our 
analysis, we consider two approaches for comparing them.

The first is to produce scatter plots showing how the run ranks change when using the 
two metrics. This has been explored several times, and on different datasets, in previous 
work, e.g. over AH99 data by Pavlu and Aslam (2007, Figure 7), and over TB06 data by 
Allan et  al. (2007, Figure  5); both analyses showed that while variations exist, they are 
limited.

A second approach is to compare the correlation curves produced by BestSub when 
using statMAP and MAP. To do so, we re-evaluated AH99 using statMAP. We selected the 
57 runs in AH99 for which the statMAP sampling algorithm does not select any unjudged 
documents, and used statMAP software from MQ07,5 thereby implementing “stratified 
sampling” (Pavlu and Aslam 2007, Section 2.4), where each document has a probability 
of being sampled that is proportional to its rank in the run outputs. We ran BestSub using 
both statMAP and MAP. The (best, average, and worst) correlation curves that we obtained 
for statMAP and for MAP are shown in Fig. 2. The lines are similar, and often overlap or 
cross each other. In fact the differences are much larger when comparing them with the 
full AH99 dataset, such as in Fig. 1; this is likely due to the different (smaller) number of 
runs, and the range of metric values, which have a larger impact than using statMAP in 
place of MAP. We therefore conclude overall that, although statMAP does create some 
differences, these appear to be smaller than the differences introduced by other variables, 
and that using statMAP in place of MAP should not introduce any strong bias into our 

5  Note, several versions of statMAP exist, we used statAP_MQ_eval_v3.pl: http://trec.nist.gov/data/milli​
on.query​07.html.

http://trec.nist.gov/data/million.query07.html
http://trec.nist.gov/data/million.query07.html
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analysis. This confirms the results obtained by previous studies (Guiver et al. 2009; Robert-
son 2011; Berto et al. 2013), where the evaluation metric usually did not make any notice-
able difference.

4 � RQ1: larger ground truth

To address RQ1, we first present a simulation experiment on synthetic data in Sect. 4.1. 
We then focus on real data starting with an overview of the results in Sect. 4.2, followed 
by descriptions of best, average, and worst curves in Sect. 4.3. In Sect. 4.4 we compare our 
results with those by Hosseini et al. (2012) and, finally, the worst sets are analyzed in more 
detail in Sect. 4.5.

4.1 � A simulation experiment

Intuitively, given a larger initial topic set, it will be easier to find good (and bad) subsets, as 
the degrees of freedom increase. Analogously, when the number of runs in a test collection 
decreases, it should be easier to find good (and bad) topic subsets, as it is simpler to reorder 
fewer items in a given way since the size of the gaps between the runs becomes larger and 
the number of constraints is smaller. To have a first, less qualitative and more concrete, 
insight on what might happen when varying the number of topics and runs, we perform the 
following experiments. We randomly generate synthetic AP values for datasets having dif-
ferent sizes of topics (20, 50, 100, 1000) and runs (25, 50, and 100), using two strategies: 
(1) we generate random AP values normally distributed (  (�, �2) ), setting the � and �2 
parameters equal to the real � and �2 values of AH99; and (2) we randomly sample with 
replacement real AP values from AH99 thus obtaining the same distribution of AH99. We 
then run BestSub on the synthetic datasets to obtain the best, worst, and average correla-
tion values at each topic subset cardinality.

Figure 3 shows the results as correlation charts having the fraction of the full set of top-
ics cardinality on the x-axis and � on the y-axis. The four charts of the first two rows are 
obtained by using 50 runs and varying the number of topics. They clearly show that cor-
relation curves become more extreme as the number of topics in the ground truth increases. 

Fig. 2   Kendall’s � correlation 
curves for AH99, on a subset of 
runs, for both MAP and statMAP
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The effect on the average curves (not shown) is less clear but are much smaller as they are 
quite similar to each other.

When using a fixed ground truth of 100 topics and varying the number of runs, the results 
are similar. The four charts on the last two rows of Fig. 3 show the correlation curves when 

Fig. 3   Kendall’s � correlation curves for fractions of the full topic set, on synthetic data: best and worst 
curves on random data generated using � and � values of AH99 (left column), and on real AP scores sam-
pled from AH99 (right column). In the first four plots, 50 runs are used; in the last four, 100 topics are used
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varying the number of runs and using 100 topics; the best and worst correlation curves become 
more extreme as the number of runs decreases, as expected (and the correlation for the aver-
age series does not vary much). This is perhaps a less interesting result than the previous one, 
since the number of topics is related to test collection design and can be decided when build-
ing a test collection, whereas the number of runs depends on factors that are more difficult to 
control. Therefore in this paper we focus on the number of topics. Regardless, this confirms 
that the number of runs in a test collection can have an effect. Overall, comparing the two sam-
pling strategies (i.e., the left and right columns in Fig. 3) we see that their behaviour is similar, 
although not identical, when considering a fixed number of both runs and topics.

The results of this simulation experiment hint that the extreme nature of the curves 
found in previous studies (Guiver et al. 2009; Robertson 2011; Berto et al. 2013) not only 
is confirmed on datasets with a larger topic set ground truth, but it can even become more 
striking in some cases. For example, in the worst curve for 1000 topics, even 75% of the 
topics (i.e., 750) would rank the 50 runs in almost the opposite way to the full topic set. 
Note that this is a setting similar to MQ07 (see Table 1): if these results were confirmed in 
the real datasets, they might have important practical implications.

However, the simulation experiment has some limitations: it relies on assumptions that 
might be not true in a real-world scenario, as different collections have different distribu-
tions and parameters, and complex systems topics interactions exist, as shown for example 
by Urbano (2016) and Urbano and Nagler (2018). For example, the charts on the left in 
Fig.  3 need to be interpreted with care, as real AP values are usually not normally dis-
tributed in practice. When running the Anderson–Darling normality test on each of the 
four test collections that we use in this paper (see Table 1), the set of all AP (or statAP) 
values for all topic/run pairs is not normally distributed (neither with p < 0.05 nor with 
p < 0.01 ). When considering the AP values for each single run, the distribution of values is 
not normal, accordingly to the same test, for 186 ( p < 0.01 ) and 219 ( p < 0.05 ) cases out 
of the total 253. By using random AP values we are assuming that the AP values of one run 
across different topics and the AP values of one topic across different runs are independent, 
both of which are false as usually the performance of a system across topics is relatively 
stable, and each research group submits usually many runs, which are somehow related.

Summarising, real test collections include many more variables and interactions than 
what our simulations can capture: the number of runs, dependencies between runs, the sim-
ilarity and documents overlap of run variants, the topic system interactions (Urbano 2016; 
Urbano and Nagler 2018), etc. Moreover, it is of course interesting to see what happens in 
a real dataset, and in particular if there are particular “pathological” cases that might have 
occurred. For these reasons we turn to experiments on the real datasets.

4.2 � General results

Figures 4 and 5 show correlation charts for the three new datasets TB06, R04, MQ07, as 
well as AH99 (correlation values are obtained using statMAP for MQ07 and MAP for the 
other datasets). Correlation is measured using � . We plot best, average, and worst in sepa-
rate charts. We also plot the best and worst 1% topic subsets found. In the graphs on the 
left side of the figures, the x-axis shows subset size measured by cardinality; the graphs 
on the right, subset size is measured as the cardinal fraction of the ground truth set. The 
graphs on the left have 250 as maximum cardinality so that we can fully represent the 
curves for AH99, TB06, and R04. As a consequence, the MQ07 curves are truncated, but 
their complete trend can be seen in the graphs on the right. To avoid clutter, we do not plot 
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the markers for all cardinalities: on the left hand side markers are shown at multiples of 5, 
plus cardinality 1 and full set. On the right hand side, a marker is plotted at each multiple 
of 5% (or, when not available because of rounding, the closest value), plus the 1% marker. 
The lines in the charts are not interpolations, they follow the real values at each cardinality.

While there are similarities between the current charts and those previously published, 
the best and average curves seem higher when the ground truth cardinality increases (as 
predicted by the simulation experiment in Sect. 4.1). The worst curves are lower, particu-
larly for the MQ07 dataset. For example, for the MQ07_W6 curve, a � of 0 is reached at 

Fig. 4   Kendall’s � correlation curves for absolute cardinalities (left-side, cardinalities up to 250) and frac-
tion of full set (right-side). Black markers in the Worst curves are further analyzed in Fig. 6

6  We use the suffix B/A/W to indicate the correlation curve for the best/average/worst topic set.
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around 0.45 of the full cardinality set (around 500 topics) and a � of 0.5 is reached at 0.8 
(around 900 topics). In other words, it would appear that one can build a subset of around 
500 MQ topics that ranks the runs randomly, compared to the ground truth. A subset of 
900 topics can be found that ranks the runs in a still different way to the ground truth set. 
We analyze these curves in more detail in the following.

4.3 � Best, average, and worst curves

4.3.1 � Best correlation curves

From the best correlation curves we see that fewer topics can potentially be used on ground 
truth cardinalities of n ≫ 50 : the MQ07_B curve is highest, followed by R04_B and 
TB06_B, which are in turn both consistently higher than AH99_B. This answers the research 
question RQ1 by supporting, together with the experiment on synthetic data described in 
Sect. 4.1, the hypothesis that having a larger topic set as ground truth increases the possibil-
ity of finding a subset of good topics, thereby leading to higher correlation curves.

A further confirmation of that hypothesis comes from the fraction curves (right-side). 
Here, the two best curves R04_B and TB06_B are almost exactly overlapping, and they 
both stay well above the best curve AH99_B. The MQ07_B is even higher. Compared with 
the previous three studies (Guiver et al. 2009; Robertson 2011; Berto et al. 2013) we see 
that when using a higher cardinality ground truth (149, 249, or 1, 153 topics in place of 
only 50), run effectiveness can be predicted by using even fewer topics.

Fig. 5   Kendall’s � correlation curves for absolute cardinalities (left-side, cardinalities up to 250) and frac-
tion of full set (right-side)
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When comparing across the four test collections, it is prudent to examine other proper-
ties of the collections that might impact on the trend observed. One can see from Table 1 
that as well as a change in ground truth topic cardinality, there is also a change in the num-
ber of runs associated with each of the test collections and that this might impact on the � 
values.

Sanderson and Soboroff (2007) illustrated that the range of scores that a set of runs have 
has the greatest impact on � and other correlation measures. As will be seen in Fig. 6, the 
range of scores of the runs is similar across the four test collections. However, as discussed 
in Sect. 4.1, a decreasing number of runs is another factor leading to more extreme curves. 
In fact, if the goal is to find extreme topic sets, as the number of run increases, there are 
more runs that need to be re ordered, and the chances of finding extreme topic subsets is 
lower. Although we leave to future work a complete study of the interplay between the 
number of topics and of runs, we observe that the effect of the number of topics seems to 
dominate that of the number of runs, as it can be seen by comparing the worst curves of 
R04 and TB06 and observing that R04 is clearly the most extreme. The reason is that R04 
has more topics than TB06; even if R04 also has more runs (which leads to less extreme 
curves), this is less important.

4.3.2 � Average correlation curves

When examining the average � across topic subsets, we see that � for AH99_A is higher 
than R04_A, TB06_A, and MQ07_A: on average, by selecting a random subset of topics of 
a given cardinality, this appears to be a better predictor of run rankings in the AH99 dataset 
than in R04, TB06, and MQ07. Returning to the example in Fig. 1 an average topic subset 
of cardinality 22 drawn from the collections with larger ground truth has a lower � than on 
AH99.

The corresponding fraction curves tell a different story however: on average, by select-
ing a given fraction of the ground truth, the topic subset of AH99 turns out to be a worse 
predictor of run rankings than that of R04, TB06, and MQ07. Collections with larger 
ground truths appear to need a smaller fraction of topics to achieve high values of �.

A particular feature of the MQ07_A curve is that its trend seems more similar to the 
best than to the average curves of the other datasets. For this dataset, on average, a good 
prediction of run ranks can be obtained with a small fraction of topics (around 5–10%) 
and a very good prediction of run ranks can be obtained with 20% . This result needs to be 
examined on other test collections with similarly large topic sets.

The curves for R04 and TB06 on the fraction charts are almost exactly overlapping. This 
might be an indication that a ground truth of cardinality 50 is somewhat different from a 
larger ground truth. There might be some numerical/statistical effect that does not appear 
when using only 50 topics.

4.3.3 � Worst correlation curves

The most noticeable difference between AH99 and the larger datasets is in the worst 
curves: whereas best and average are broadly similar to past work, the worst curves are 
quite different.

The correlation values for the worst curves are strongly negative. This is a novel 
situation, not observed in the previous three studies (Guiver et  al. 2009; Robertson 
2011; Berto et  al. 2013) where � values were at worst negative with a low absolute 
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value (around − 0.2 ). Negative correlations show topic subsets that evaluate runs in 
broadly opposite ways. Also, the negative correlation values in R04_W persist for car-
dinalities much larger than 50, the usual number of topics used in evaluation exercises. 
The MQ07_W curve is even lower and stays below − 0.5 up to 250 (and, as can be seen 
from the fraction curve on the right, even up to 300).

Although this is something expected after the simulation experiment in Sect.  4.1, 
it is somehow striking that on MQ07, a subset of more than 250 topics can be found 
that negatively correlates with the ground truth topic set. As mentioned above, a set of 
around 45% of the MQ07 topics (around 500 topics) results in a � of zero.

Note, the reason three of the curves drop as the cardinality of the topic sets increase 
from 1 is due to the degrees of freedom there are when searching for topic subsets that 
are the worst: the value of 

(

n

c

)

 initially increases as c gets larger. Therefore, the range of 
possible topic sets that are searched to find the worst also gets larger.

4.3.4 � Best and worst first percentile curves

Given the extreme nature of the best and worst curves, we also computed the average 
� of the best and worst 1st percentile of topic subsets. Figure  5 shows the resulting 
charts.

The Best 1% curves emphasize that although the quest of finding the best topic sub-
sets is rather difficult since they are extremely rare, reasonably good results that can 
more easily be obtained in practical cases do exist. The Worst 1% curves are less wor-
rying than the Worst ones, since they do not feature the same extremely low, if not 
negative correlations. Although these curves look more like those from the Average, 
it is worth noting that when trying to find subsets of topics for an effective test col-
lection, a low positive correlation is not satisfying either. For example, the R04 1st 
percentile curve has low � ( < 0.6 ) even for cardinality 45, and the MQ07 1st percentile 
curve has a � of about 0.75 at cardinality 250. These are not extremely unlikely topic 
sets, and it is possible that some test collections have been created with topics that 
rank runs quite differently from what might be expected.

4.4 � Comparison with Hosseini et al. (2012)’s results

Hosseini et  al. (2012) report in their paper some numeric correlation values for the 
AH99 and R04 collections to which we can compare. Since Hosseini et al. use all the 
runs in a collection, for this comparison we performed again our experiments using all 
the runs instead of the top 75% (thus, 129 for AH99 and 29 for MQ07, see Table 1), and 
all the values reported in this section concern such a setting.

Table 2 shows the results of the comparison. The first five rows in the table report 
Kendall’s � correlation values obtained for best, best 1st percentile, average, worst first 
percentile, and worst subsets at the specified fractions (20%, 40%, and 60%) of the full 
set cardinality, for the two collections AH99 and R04. Since we are using all the runs 
in this computation, the results do not exactly match with those presented in previous 
Figs. 4 and 5 . The next three rows in the table are the values reported in Hosseini et al. 
(2012, Table 1): “Oracle” is their attempt to find the highest possible correlation, and so 
it somehow corresponds to our Best topic subsets; “Random” is a random selection of 



63Information Retrieval Journal (2020) 23:49–85	

1 3

topics, so it should correspond to our Average; and “Adaptive” values are those obtained 
by their topic selection algorithm. The values in the last row of the table will be dis-
cussed when focusing on RQ3 on clustering in the following.

We can draw several remarks.

•	 When comparing the correlation values in the first five rows of the table with those 
obtained on the top 75% runs (Figs. 4 and 5 ), it is clear that the correlation values 
obtained using all systems are higher. This is expected, as the bottom runs are usu-
ally consistently ineffective on all topics. In other terms, focusing on the top systems 
only as we are doing in this paper is a more difficult setting for our task than using 
all systems.

•	 When comparing our Best with Hosseini et al.’s Oracle, we note that Best values are 
always higher than Oracle. Indeed, Oracle is always closer to Best 1% than to Best, 
and for R04 it is even closer to Average than to Best.

•	 When comparing Average with Random, we expected no differences, but it turns out 
that some clear differences exist. Our Average values are clearly higher than their 
Random. Indeed, Random is always closer to, and often lower than, Worst 1%. We 
have not been able to obtain the original code used by Hosseini et  al. to replicate 
their experiment and although we tried, we could not obtain their values. We double 
checked and we are quite confident that Average values are correct, for several rea-
sons: they correspond to the values in previous work (Guiver et al. 2009; Robertson 
2011; Berto et al. 2013) obtained with the different implementation of BestSub (see 
Sect.  3.2); the new implementation of BestSub is publicly available (https​://githu​
b.com/Micci​ghel/NewBe​stSub​) and it has been flawlessly used in other experiments 
(Roitero et  al. 2018b, a), including some specifically aimed at reproducing previ-
ous results (Roitero et  al. 2018a,  Section  4.3). As a further check, we also repro-
duced the random series of the plots in (Kutlu et al. 2018, Figure 1) for two datasets 
(Robust 2003 and 2004 reduced to 149 topics): also in this case our average values 
correspond to Kutlu et al. random ones.

•	 When looking at the Adaptive values (that will be further analyzed in the last part of 
this paper), one can notice that Adaptive is clearly higher than Random (the baseline 
used by Hosseini et al.) but, as a consequence of the previous remark, it is very simi-

Table 2   Kendall’s � values for 
comparison with Hosseini et al. 
(2012)’s results. All runs used

AH99 R04

20% 40% 60% 20% 40% 60%

Best 0.92 0.96 0.97 0.97 0.98 0.99
Best 1% 0.86 0.91 0.94 0.91 0.95 0.97
Average 0.80 0.87 0.91 0.85 0.91 0.94
Worst 1% 0.70 0.81 0.87 0.76 0.86 0.90
Worst 0.48 0.64 0.77 0.17 0.43 0.63
Oracle 0.88 0.93 0.95 0.90 0.92 0.94
Adaptive 0.83 0.90 0.93 0.77 0.87 0.91
Random 0.72 0.77 0.87 0.68 0.80 0.85
Clustering 0.79 0.88 0.93 0.84 0.92 0.95

https://github.com/Miccighel/NewBestSub
https://github.com/Miccighel/NewBestSub
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lar to Average for AH99 and even always lower than Average for R04. Therefore, it 
turns out that Adaptive is not effective when compared to our, higher, baseline.

4.5 � Worst subset analysis

Although exceptionally rare, the very worst topic subsets feature extremely low corre-
lations. In this section we try to better understand how the subsets produce such low � 
correlations.

4.5.1 � Overlap

Examining intersections between the best and worst topic subsets, we find that there is a 
quite large overlap between them: at cardinality 100, R04 and MQ07 have a topic overlap 
of around 40% . This means that it is possible to select a set of 40 topics, then to add to it 
either a first or a second set of 60 (different) topics, and obtain completely different, even 
almost opposite, rankings of runs.7

A possible explanation for this overlap could be that there are two small subsets of top-
ics, one good and one bad, that are used to build the low cardinality best and worst sets; 
then a set of common “neutral” topics are added to both to obtain the higher cardinality 
sets. However, this needs further study, as this possibility is not consistent with the data, 
since the 40% overlap can be found from cardinality 50 up to 200.

4.5.2 � Comparing worst with best

It is also possible that some conceptual features of the topic subsets exist that could explain 
the low correlations. Therefore, some of the worst topic subsets are characterized here for 
analysis. We manually selected illustrative topic subsets that have low � correlations and 
high cardinalities:

•	 TB06: cardinalities 50, 75, 100, and 125.
•	 R04: cardinalities 50, 100, 150, and 200.
•	 MQ07: cardinalities 50, 100, 200, and 250.

These are the subsets represented by black markers in Fig. 4. Figure 6 shows scatter plots 
for these subsets. We see that the effectiveness measure computed on the worst subset 
(y-axis) usually has both a smaller range and lower values when compared to the measure 
computed on the ground truth set (x-axis). This is especially true for MQ07, but the same 
effect can also be found on the other datasets. To better understand this observation, the 
mean effectiveness over all topic subset cardinalities was computed for the best and worst 
topic subsets. The results are shown in the left part of Table 3. It can be seen that the best 
subsets contain topics that lead to higher effectiveness values than the worst subsets. The 
right part of the table shows the � between the average subset effectiveness and the ground 
truth effectiveness. As might be expected, in all cases the best subsets contain topics that 
lead to values more similar to ground truth effectiveness.

7  Note, the overlap that we find might be an effect of the heuristic used; we can say no more than it is pos-
sible to build a best and a worst set of topics with a high overlap.
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5 � RQ2: statistical significance

We now turn to RQ2. While the previous results demonstrate that it is possible to find 
topic subsets that lead to run rankings that are highly correlated with the rankings obtained 
when using a full (ground truth) set of topics, in order for one run to be considered more 
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Fig. 6   Scatter plots for some selected notable worst topic subsets. Each dot is a run, the x-axis shows MAP 
(statMAP for MQ07) computed on the ground truth full topic set, the y-axis shows effectiveness computed 
on the worst subset indicated. The � of the correlation along with the significance of the correlation (indi-
cated by a p value) is detailed on each plot

Table 3   Effectiveness measures 
(MAP, except statMAP for 
MQ07) over the best and worst 
subsets and between ground truth

Av. effectiveness of subset Subset � from ground truth

AH99 TB06 R04 MQ07 AH99 TB06 R04 MQ07

Best 0.298 0.277 0.264 0.148 0.017 0.036 0.025 0.092
Worst 0.201 0.263 0.224 0.049 0.080 0.050 0.066 0.191
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effective than another, a statistical significance test is usually carried out. The number of 
topics that are used to evaluate effectiveness has a direct impact on significance calcula-
tions. For example, for a paired t-test, the test statistic includes the sample size (Sheskin 
2007), and the larger the sample, the lower the p value. In IR experiments the sample size 
is the number of topics. Some analysis of statistical significance is therefore due in the 
fewer topics scenario. We present two different and somehow dual approaches to do such 
an analysis in the next two subsections: the first approach is based on the work by Sakai 
(2016b) that determines the number of topics needed when aiming at a given statistical 
power; the second is aimed at determining the amount of error that is introduced when 
using topic subsets, as well as at understanding what kind of errors are made.

5.1 � Power analysis

Sakai (2016b) recently proposed three methods to compute the cardinality of a topic set 
size to ensure that a test collection has enough statistical power to distinguish effectiveness 
of the systems/runs. The methods compute the estimated topic set size on the basis of three 
different tests:

•	 Method 1, based on t-test, and used when one wants to compare two system scores, 
or the score of one system against all the other systems.

•	 Method 2, based on one way ANOVA, and used when one wants to compare the 
scores of more than two systems, or to compare all systems against each other.

•	 Method 3, similar to Method 1, but it allows one to specify a confidence interval � to 
ensure that the outcome of this test is bounded with precision � . As Sakai points out: 
“a wide confidence interval that includes zero implies that we are very unsure as to 
whether systems X and Y actually differ”.

We computed and/or estimated the parameters required by Sakai’s methods and ran 
them on our four collections, using the software (Excel spreadsheets) provided by Sakai. 
Tables 4, 5, and 6 show the results.

The topic set size cardinalities in Table 4 are those required to find statistical sig-
nificance when comparing two systems, or a system against a set of other systems (e.g. 

Table 4   Number of estimated topics using the first method, based on t-test. The required �2
t
 parameter has 

values 0.096 (for AH99), 0.071 (TB06), 0.100 (R04), and 0.118 (MQ07). The values in bold represent the 
maximum and minimum estimated number of topics for the given parameters, for each collection

� � AH99 TB06 R04 MQ07

minD
t

minD
t

minD
t

minD
t

0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

0.01 0.1 575 147 40 426 109 30 599 153 41 706 179 48
0.2 452 116 32 336 87 25 471 121 33 554 142 38

0.05 0.1 406 103 28 301 77 21 422 106 29 498 126 33
0.2 304 78 21 225 58 16 315 81 22 373 95 26
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when trying to understand if system s1 is better than both systems s2 and s3 ). The three 
parameters are: � , which is the probability of Type I error (to find a difference that 
does not exist; that is, one concludes that s1 is more/less effective than s2 but this is 
not true); � , which is the probability of Type II error (not to find a difference that 
does exist; that is, one does not conclude that s1 is more effective than s2 when it is in 
fact better); and minDt , which is the minimum detectable difference in MAP values. 
We use the same values for these three parameters as adopted by Sakai in the exam-
ples in his paper. minDt is computed considering the estimated within-system variance 
from past collections, �2 . To compute �2 we used, as Sakai suggests, Formula (36) of 
Sakai (2016b), that is the residual variance from one-way ANOVA computed consid-
ering all the AP values for a given collection (i.e., all the systems and all the topics): 
we applied Formula (36) to our collections when using the AP (statMAP for MQ07) 
metric. As discussed by Sakai (2016b, Section 3.2), �2 represents the common system 
variance computed under the so called homoscedasticity assumption, which means that 
�2 is considered to be common for all the systems. Carterette (2012) shows that this 
assumption does not hold for IR evaluation, and discusses how this fact is not impor-
tant; indeed, as remarked by Sakai (2016b, Footnote 16), ANOVA is widely used in the 
IR field.

The values in the table (the estimated required number of topics) range from 16 to 
706. Besides the considerations that could be made on the values of the three param-
eters � , � , and minDt (probabilities of Type I and II errors, and the minimum detectable 
difference), what is important to note for our purposes is that quite often the required 
number of topics is even higher than the cardinality of the full topic set size for the cor-
responding collection.

Table 5   Number of estimated topics using the second method, based on ANOVA.The required �2 parameter 
has values 0.048 (for AH99), 0.036 (TB06), 0.050 (R04), and 0.59 (MQ07). The values in bold represent 
the maximum and minimum estimated number of topics for the given parameters, for each collection

� � AH99 TB06 R04 MQ07

minD minD minD minD

0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

0.01 0.1 2352 588 147 1341 336 84 2295 574 144 3446 862 216
0.2 2001 501 126 1131 283 71 1948 487 122 2879 720 180

0.05 0.1 1860 465 117 1050 263 66 1810 453 114 2669 668 167
0.2 1529 383 96 855 124 54 1485 372 93 2151 538 135

Table 6   Number of estimated 
topics using the third method, 
based on confidence intervals. 
The required �2

t
 parameter has 

values 0.096 (for AH99), 0.071 
(TB06), 0.100 (R04), and 0.118 
(MQ07)

� � AH99 TB06 R04 MQ07

0.01 0.05 1019 754 1061 1253
0.1 255 189 266 314
0.2 64 48 67 79

0.05 0.05 591 437 615 726
0.1 148 110 154 182
0.2 37 28 39 46
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This is even more true when using the second method (based on ANOVA), see Table 5: 
in this case values range from 54 to 3446. The parameters for this method have a similar 
meaning to the previous method based on the t-test, with some technical differences. It is 
important to notice that the estimates obtained with the second method are probably more 
related to the approach in this paper, since we generally compare all the systems together, 
rather than a single system to the other ones. The third method returns intermediate results 
(see Table 6).

This analysis led to reappraising the results on the best correlation curves: whereas it is 
true that small good topic sets exist, using them would, unsurprisingly, lead to less statisti-
cal power (which is defined according to Sakai as 1 − � , and represents the capability of 
finding a difference between system scores which is statistically significant), or in other 
words it is a move away from the number of topics required to have such statistical power.

We note that this approach (Sakai 2016b) does not directly quantify how much statisti-
cal power we are losing when using the smaller good topic sets. In future work we intend to 
further explore the relationship between the factors of (sub-)topic set size and quality, and 
statistical power. Moreover, this method does not consider what kind of errors are made: 
when using fewer topics, there are different possible specific outcomes besides the result 
of a statistical test: one might find significance for a sub-set while according to the full set 
of topics there is not, or vice versa one might not find significance for a sub-set while for 
the full there is; one might even find statistically significant disagreement; and so on. For 
these reasons, we conducted another, more general, experiment, described in the following 
subsection.

5.2 � Statistically significant agreement and disagreement

We conduct an empirical investigation into the relationship between the number of topics 
considered in an IR experiment and the observed outcomes of statistically significant dif-
ferences between runs. We first discuss some methodological issues and then describe our 
experimental results.

5.2.1 � Methodology

Consider a typical IR effectiveness experiment, where a researcher is seeking to demon-
strate that one retrieval approach is superior to another. The researcher chooses a test col-
lection consisting of (say) 50 topics, and generates two sets of 50 effectiveness scores (two 
runs). If the mean score for one run is higher than that for the other, it is standard to carry 
out a significance test such as a paired t-test. This will indicate whether the two scores are 
indeed likely to come from populations with different means, at some specified level of 
confidence.

We are interested in investigating the question: if the researcher had carried out the same 
experiment but with a subset of topics, would the same results have been observed? This 
is somehow related to a similar question that has been investigated by Sakai (2007), who 
studied the effect of collection incompleteness on the discriminative power using Sakai’s 
bootstrap sensitivity method; however, we focus on subsets of topics rather than subset of 
documents. More concretely, let us consider a test collection with a ground truth set, G, 
of topics of cardinality b. Let there also be a subset of topics, S, with cardinality a, where 
a < b . For a pair of runs X and Y, calculate their MAP using topic set S, and carry out a 
paired 2-tailed t-test to determine whether the difference is statistically significant. Repeat 
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the process for the same pair of runs, but using the topic set of full cardinality, G. There are 
five possible outcomes (Moffat et al. 2012):

•	 SSA: run X is significantly better than run Y on both topic sets, S and G.
•	 SSD: run X is significantly better than run Y on one topic set, but Y is significantly bet-

ter than X on the other topic set.
•	 SN: one run is significantly better than the other on topic set S, but there is no signifi-

cant difference on topic set G.
•	 NS: one run is significantly better than the other on topic set G, but there is no signifi-

cant difference on topic set S.
•	 NN: there is no significant difference between the runs on either topic set.

The first two letters of each label indicate the outcome of the experiment (Significant or 
Not significant) on topic set S and G, respectively, while A and D stand for Agreement 
and Disagreement, respectively. Note that only two of the five outcomes, SSA and NN, are 
cases where consistent conclusions would be drawn from the experiments regardless of 
which topic set is used. For the other three, a researcher who happened to use a topic subset 
S would reach a different conclusion about relative run effectiveness, than if they had used 
the ground truth G.

When considering topic subsets, it is desirable to maximize the number of SSA and NN 
cases (SSA if the researcher is looking for a publishable result), and to avoid SN and NS 
cases (where significant differences are found with one topic set but not with the other) and 
in particular SSD (where significant differences are found with both topic sets, but with 
different runs being indicated as being better).

5.2.2 � Results

The results of the simulated experiments are shown in Fig. 7 for the four collections (col-
umns), and for the best, random,8 and worst subsets (rows). For each sub-figure, the x-axis 
shows the cardinality of topic set S, which is being compared to the full cardinality ground 
truth, topic set G. The y-axis shows the proportion of occurrences for each of the five 
experimental outcomes: SSA (blue), NS (green), SN (yellow), SSD (red) and NN (orange). 
It can be observed that when the subsets reach their maximum cardinality (on the right of 
the plots), only two outcomes are possible, SSA and NN. This must be the case, since at 
full (ground truth) cardinality S and G are the same, and so the outcomes of the two experi-
ments are identical. (Recall that in the MQ07 collection, subsets do not reach full cardinal-
ity by 250.) When the full topic sets are used, SSA is dominant, accounting for around 
55–70% of cases. This is reassuring, since it shows that using the full collections, it is pos-
sible to statistically distinguish between the runs more often than not.

The figures also clearly confirm that the larger the cardinality, the higher the likelihood 
that the same significant evaluation results will be observed as when using the ground 
truth topic set. The NS class shows the cases where a significant difference would be 
found between two runs using G, but no corresponding difference is found when using S. 
For these cases, the reduction in topic set cardinality has compromised the ability of the 

8  Here, for speed of calculation reasons only a single random topic subset is drawn from the set of all topic 
subsets of a given cardinality. The histograms of random are consequently more “spiky” than if we aver-
aged several random subsets. However, the broad signal of the result is still visible in the plots.
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significance test to identify significant effects, a false negative. Moreover, when compar-
ing the charts “horizontally”, the NN orange areas decrease with the full cardinality of the 
dataset, in both best and random, while the SSA blue areas increase. As expected, results 
tend to be statistically significant more often when the full cardinality of the ground truth 
is higher.

Considering the best, random, and worst topic subsets, over all four collections, as car-
dinality increases, the best subsets lead to the most rapid maximizing of the SSA class (and 
quickest reduction of the NS class), though on the MQ07 collection, the best subset is only 
somewhat better than random. The best subsets, besides allowing to use fewer topics in 
evaluation, also lead to finding SSA results (both in agreement with the ground truth and 
statistically significant) more often than random topic subsets.

The worst subsets lead to experimental significance results that have the least corre-
spondence with the ground truth topic set. Perhaps unsurprisingly, the heuristic that 
selected the best and worst subsets, which was optimized to maximize and minimize � 
respectively, also maximized and minimized on significance.

The size of the SN category (false positive) is generally very small—there are few cases 
where significant differences are detected on S while no significance is found on G.

The most problematic case, SSD, where one run is significantly better than another on 
topic set S, while the other run is found to be significantly better on topic set G, is fortu-
nately rare, although it should be noted that it is possible, for all collections except AH99, 
to find a (worst) subset of topics of rather high cardinality that would lead to such con-
tradicting results. In particular, for the MQ07 collection, even by cardinality 250, for the 
worst subset, the proportion of SSD cases is substantially higher than SSA cases. In other 
words, the worst chart for MQ07 shows that we can not only generate a topic subset of 
cardinality 250 with strong, and statistically significant, negative correlation with the full 
set (as already shown by the MQ07 series in the worst plots in Fig. 4 and, more in detail, 
by the last plot of Fig.  6), but moreoever that the “aberrant” subset of MQ07 topics of 
cardinality 250 would also feature a very small amount of SSA and NN, and many NS and 
even SSD. Experiments using that subset would lead a researcher to derive a statistically 
significant result that is very different from the full set. Whether this is a temporary mani-
festation, or is maintained into higher cardinalities, needs to be investigated in future work. 
However, it must be noted that best, random, and worst charts for MQ07 are consistent 
with the other datasets (once the fact that we do not reach the full cardinality for MQ07 is 
taken into account).

By and large the NN cases stay constant over the best and random topic subsets and 
there is only some variation of these on the worst subset.

5.2.3 � Conclusions

Overall, this analysis demonstrates that while it is possible to find a subset of topics that 
lead to run effectiveness rankings that are highly correlated with rankings from a ground 
truth set, a side effect of doing so is that a researcher is sacrificing the ability to identify 
statistically significant differences between runs.

An experimenter using a topic subset in general does not risk having to deal with false 
positive significant results, however, they do risk having a number of false negatives in 
their experiments. As seen in the ratio of SSA to NS in the plots, the magnitude of the 
problem reduces as the subset cardinality increases. Indeed, many experimenters might 
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Fig. 7   The results of typical IR effectiveness experiments, showing the proportion of cases where statisti-
cally significant differences (two-tailed paired t-test, p < 0.05 ) are observed between two runs when com-
paring them using a reduced cardinality (shown on the x-axis) compared to the full topic set for a collection
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view a small amount of NS acceptable if it means they can build their test collection more 
quickly using fewer resources.

Perhaps more worryingly, it is difficult to state that the topics used in IR test collections 
are sampled randomly and independently from the population of all topics: TREC topics 
are created by analyzing the document collection and by selecting those topics that, for 
example, guarantee a minimal number of relevant documents. The bias introduced by such 
a process is far from being clearly measured. Therefore, one might question the general 
applicability, in IR evaluation, of statistical tests which usually require specific conditions, 
and how much confidence one should attach to such results in terms of estimating the gen-
eralizability of experiments to larger topic sets.

5.2.4 � Caveat

It should be noted that this simulation of typical IR experiments includes a large number 
of pairwise significance tests. One might therefore argue that corrections for multiple test-
ing, such as the Bonferroni correction (Feise 2002), should be applied. However, while 
individual researchers might use such corrections from time to time, the fact is that IR 
test collections are used again and again, often to compare against standard baselines, and 
there is no way of knowing what corrections should be made to account for all (reported as 
well as unreported) tests that are ever carried out by the population of IR researchers as a 
whole. Not applying multiple comparison corrections is therefore a more accurate simula-
tion of the typical IR experimental environment. This choice is also supported by Carter-
ette (2012), who argues that it is not clear how to properly correct values in a TREC-like 
setting, or whether it should be done at all. In this respect, it has to be remarked that in the 
second method of Sect. 5.1 the variance estimates are indeed computed applying the cor-
rection method for multiple comparisons.

Finally, we note that the t-test is the most widely used statistical test in IR experiments 
(Sakai 2016a); however, we also repeated the experiment using the Wilcoxon signed rank 
test instead of the t-test, and the trends were consistent.

6 � RQ3: topic clustering

We now turn to RQ3. As already stated in Sect. 1, it seems intuitive that by (1) clustering 
the topics, and (2) selecting representatives from each cluster, the topic set obtained should 
be more representative of the full ground truth than an average or random topic subset of 
the same cardinality. Furthermore, the selection of a subset of representative queries has 
been proven to be effective in a Learning to Rank scenario (Mehrotra and Yilmaz 2015), 
and indeed the clustering of topics approach follows the same principles as it is clearly 
based on the representativeness notion. Therefore, a topic clustering process should be an 
effective strategy to find good topic subsets. However, such a process could involve many 
different settings. We present several approaches, their results, and a discussion on cluster-
ing effectiveness.

We start by presenting in Sect. 6.1 the overall experimental setting. We then discuss two 
possible approaches: the first in Sect. 6.2, that will is not effective despite attempting many 
variants, and the second, in Sect. 6.3, which is slightly more effective than the first. Sec-
tion 6.4 discusses the clustering approach.
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6.1 � Experimental setting

We start by defining the experimental settings and notation that are common to the experi-
ments described below.

6.1.1 � The clustering process

We denote with n the number of topics and with c ∈ {1,… , n} the cardinality of the topic 
subset; also, m ∈ {2,… , n} is the number of clusters obtained when performing a cluster-
ing process. Our method is composed of the following three steps.

1.	 For each cardinality c, we build a set of m clusters.
2.	 Then a topic subset of cardinality c is formed by selecting random representatives from 

each cluster. In the following we refer to this selection method as one-for-cluster (note 
that one might devise different methods, e.g., selecting a number of topics proportional 
to cluster size, selecting from some clusters only, etc.)

3.	 Finally, we build the usual correlation curves, and we compare the one-for-cluster series 
with random topic selection, which is the average series (such as the ones represented 
in Fig. 4, left-side, second row).

We use a standard, effective clustering algorithm, hierarchical clustering with a com-
plete linkage method, and the cosine similarity as the distance function. We also try vari-
ants, as specified below. We conduct 10,000 repetitions to compute the one-for-cluster 
series, to avoid noise.9 Note that we are only considering clustering as the main analysis 
technique. We leave as future work more complex machine learning approaches, that could 
make use of multiple features such as for example the � and �2 parameters from Sect. 4.1.

6.1.2 � Feature space

We take as topic features the AP (or statAP) values over the run population, by cluster-
ing topics in a multi-dimensional space, where each dimension is the effectiveness on a 
specific run, and each topic is a vector of AP (statAP) values. The idea is that topics that 
have similar AP values for all runs are redundant: one topic should be as effective as all of 
the “similar” ones. Clustering should group together those topics that have similar scores, 
and by picking representatives from each cluster we should select a good topic subset. For 
each dataset, the number of dimensions is therefore the number of runs (the last column in 
Table 1). We also experiment with a variant of this approach, as detailed below.

6.1.3 � Number of clusters and topic cardinality

We can think of two possible overall settings, that affect Steps 1 and 2 above. For each car-
dinality c and number of clusters m:

–	 We can perform clustering with the constraint c = m ; we refer to this setting with the 
term cardinality-driven clustering;

9  We tried with up to 1 million repetitions, but the series are already stable with 1000 repetitions.
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–	 We can determine the number of clusters a priori, independently from c, and subse-
quently select the topic subset; we refer to this setting with the term cardinality-inde-
pendent clustering.

Both settings have pros and cons. The first approach forces the clustering algorithm to 
produce a clustering of exactly m = c clusters, which might be unnatural for certain c values: 
for example, if the topics are naturally form two clusters, forcing them into three will pro-
duce clusters that are less complete and more heterogeneous, thus potentially of lower quality. 
However, once the clusters are formed, the selection of topics is straightforward, since there 
is the guarantee that when c topics are to be represented, there are exactly c clusters. Further-
more, even if the c = m constraint might lead to unnatural clusters for certain c values, in 
general just decent clusters, even if not perfect, might be of a sufficient quality to guarantee 
higher correlation values for the one-for-cluster series than for random topic selection.

Conversely, with the second setting, the topics can be clustered in a more natural way, 
but then the selection process is slightly more complicated: there is no equivalence between 
the number of clusters and the number of topics to select, thus there is not a unique selec-
tion method, and the selection process has to take into account the empty clusters that 
might occur during the process. Finally, whereas with the first setting the choice of the 
number of clusters m is straightforward and determined, with the second setting m is a 
parameter to be chosen, and it is not clear which criteria should be used. In the following 
Sects. 6.2 and 6.3 we analyze both settings, starting with the first one.

6.2 � Cardinality‑driven clustering

6.2.1 � A first attempt

We compute the clustering as described above, with the constraint c = m ; then, we com-
pare the one-for-cluster with the average series. It is found, however, that this clustering of 
topics approach does not result in any topic subset having a � correlation higher than the 
average; indeed usually � is lower. There are multiple possible explanations for this behav-
ior. First is the choice of clustering algorithm. Therefore, we tried different variations of 
the clustering, for example, using a non hierarchical algorithm such as K-means (with the 
algorithm variations Hartigan-Wong, Lloyd, and MacQueen10), and/or using different dis-
tance functions (including as different kinds of proximity measures11 both linear metrics, 
e.g., Euclidean, Manhattan, Divergence, etc., and similarity-angular distances, e.g., Cosine, 
Correlation, Jaccard, Phi, etc.), or using different methods to join clusters (thus different 
linkage techniques including single, average, mean, median, Ward). However, � was never 
found to be higher than average for any of these clustering methods, and we can be confi-
dent that these negative results are not affected by a particular clustering setting.

A second possible explanation is related to the feature vector: our feature vectors are in a 
high-dimensional space, and therefore most of the distances tend to be similar, and vectors 

10  See the R function “kmeans” in the “stats” package (https​://stat.ethz.ch/R-manua​l/R-devel​/libra​ry/stats​
/html/kmean​s.html), and “k-means” of “scikit-learn” for Python 3 (http://sciki​t-learn​.org/stabl​e/modul​es/
gener​ated/sklea​rn.clust​er.KMean​s.html).
11  For an exhaustive list see the R package “proxy” (https​://cran.r-proje​ct.org/web/packa​ges/proxy​/proxy​
.pdf), and the “Distance computations” section of Python 3 (https​://docs.scipy​.org/doc/scipy​/refer​ence/spati​
al.dista​nce.html).

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://cran.r-project.org/web/packages/proxy/proxy.pdf
https://cran.r-project.org/web/packages/proxy/proxy.pdf
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
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tend to be orthogonal. To be more precise, as soon as the number of dimensions grows, the 
number of possible distance values drops. This is a well known phenomenon, referred to as 
“the curse of dimensionality” (Rajaraman and Ullman 2011, Chapter 7), and it occurs for 
both linear and angular distance values (Cosine, Euclidean, and Manhattan). This could of 
course harm the clustering process. To address this limitation we tried to combine cluster-
ing with dimensionality reduction, as described in Sect. 6.2.2. Finally, in this setting we 
have the constraint that the number of clusters m must be equal to the topic subset cardinal-
ity c, and that could lead to forming unnatural clusters, as already mentioned; we discuss 
this third possible explanation in Sect. 6.2.3.

6.2.2 � Dimensionality reduction

To deal with the curse of the dimensionality effect, a second attempt makes use of Princi-
pal Components Analysis (PCA). To express around 85–90% of the total variance of the 
data, three components/dimensions are needed for AH99, R04, and TB06, and five for 
MQ07. Each topic vector is then heavily reduced, to very few components: from the values 
in the last column of Table 1 to 3, 3, 3, and 5, respectively. We then repeat the clustering 
process with the same primary settings as above ( c = m , hierarchical algorithm, cosine dis-
tance, and complete linkage).

With PCA, the results are different to clustering. Figure  8 compares the correlation 
curves for average subsets, which are gray and thin in the figure, with the correlation curves 

Fig. 8   Kendall’s � correlation curves for the four datasets: averaged (thinner gray lines), and obtained using 
clustering (thicker darker lines)
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obtained with the one-for-cluster method: the latter are usually above the former. Moreo-
ver, the differences between one-for-cluster and average correlation values are statistically 
significant for most of the cardinalities: in around 90% of the 50 + 249 + 149 + 250 = 698 
total cases for the four collections, the difference is statistically significant according to the 
Wilcoxon signed rank test, p < 0.01 , and there are no noticeable differences across datasets 
(the number of statistically significant cases varies between 86% and 92%).

In summary, topic subsets found by clustering combined with dimensionality reduc-
tion show correlations with the ground truth that are statistically significantly higher than 
average/random subsets. However, the difference is rather small: although clustering helps, 
it helps just a little. Indeed, considering the results of Fig.  8, one might be tempted to 
conclude that clustering of topics is not an effective technique, at least with the constraint 
c = m . Also, the oscillations of the one-for-cluster correlation curves that can be seen in 
Fig. 8 call for an explanation. To address these issues, and to present a detailed analysis of 
clustering of topics with the constrain c = m , we perform another experiment, described in 
the next section.

6.2.3 � A simulation experiment

To further understand what is happening during the clustering process, and to further 
investigate the capabilities of the clustering process with the constraint c = m , as well as 
the limitations, we design the following simulation experiment. The aim of the simulation 
is to show what happens with clustering of topics in an ideal situation, where the data is 
distributed with a minimum and controlled amount of noise, and the topics are artificially 
clustered in a neat way. This represents the most favorable scenario for the topic cluster-
ing process. We will discuss the same experiment for cardinality-independent clustering in 
Sect. 6.3.

The experiment is as follows. We select s topics, called seeds. We experiment with 
choosing as seeds the topics from a collection in two ways: either randomly, or choosing 
a set of well separated topics after projecting the multidimensional topic space onto two 
dimensions. In the following, we report the results of the random selection only, as the 
other one provides a comparable result.

Given the seed topics, we form a set of new topics, placing in the neighborhood of each 
seed r fictitious topics in a hyper-sphere of radius � ; we call these topics the surround-
ing topics of the seed topics. Thus, we simulate an ideal scenario for clustering of top-
ics where we have s ideal clusters of r topics each; 2� is the maximum distance, in terms 
of AP (statAP), between two topics in the same ideal cluster. Note that, the higher � , the 
higher the probability that the ideal clusters overlap, and therefore that a topic, during an 
automatic clustering process, is placed in a cluster different from that of its seed, and of the 
other topics in the same ideal cluster.

We now perform clustering as we did in Sect. 6.2.2; we use the constraint c = m , PCA, 
hierarchical clustering with a complete linkage method, and the cosine similarity as the dis-
tance function. We vary the three parameters as follows: s ⋅ r = 150 , with s ∈ {15, 30, 50} , 
and thus r ∈ {10, 5, 3} , and � ∈ {0.01, 0.02, 0.05}.

Results of the experiment are shown in Fig. 9. In panel (a), the one-for-cluster series for 
the three topic seeds (15, 30, and 50) are represented with different colors, and the different 
line types (continuous, dashed, and dotted) identify the different � values (0.01, 0.02, and 
0.05). The figure also shows the average series as gray thin lines. Figure 9b shows the same 
data with a different representation. Each series is obtained subtracting the corresponding 
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average series from the one-for-cluster one. The horizontal gray line highlights the value 
of zero: if the series in the plot is above zero it means the one-for-cluster series has higher 
correlation values with the ground truth than the average one, if the series is below zero 
vice-versa the average series has higher correlation values.

We can draw several conclusions from these results. Looking at the highest peaks, one 
can see that they occur at cardinalities corresponding with the number of ideal clusters 
(equal to the number of seeds s): the clustering approach works well if the topics can be 
“naturally clustered” in a number of clusters corresponding to the cardinality of the subset 
of a few good topics; this is true when all the surrounding topics are placed in the same 
cluster as the corresponding seed topic. However, the further the cardinality is from this 
ideal number of clusters (the number of seeds), the more the correlation of the one-for-
cluster series decreases, and becomes comparable with the random selection of topics (the 
average series), or even worse.

Focusing on the “negative” peaks (e.g. for the series with 15 seeds, for � = 0.05 at the 
cardinalities around 20, and for all three � values at cardinalities around 90) we note that 
the negative peaks achieve lower values of correlation as � increases, as expected. These 
negative peaks confirm that, if a natural clustering of topics is not possible, clustering of 
topics worsens the selection of a few good topics with respect to random selection. This 
effect can be explained by looking at the composition of the clusters produced during the 
cluster process, where we notice that surrounding topics of different seeds indeed tend to 
be clustered together even when � is small. This is likely caused by the constraint c = m , 
that forces the number of clusters. Furthermore, the desired behavior would be that when 
increasing cardinalities, the clusters split into balanced sub-clusters; for example, with 
s = 15 , at cardinality 30 each cluster containing the seed should split into 2 balanced clus-
ters, at cardinality 45 into 3 balanced clusters, and so on. However, in practice this is not 
the case: on the contrary, there are always few clusters split into smaller clusters, while 
other larger clusters remain intact. This results in a “bad” clustering of topics: in the one-
for-cluster series the majority of topics come from more fragmented clusters. We can say 
that the more fragmented weight more than the other in the evaluation; on the contrary, the 
average series chooses topics uniformly.

(b)(a)

Fig. 9   On the left, Kendall’s � correlation values for the average and the one-for-cluster series. On the right, 
the series obtained subtracting the average series to the one-for-cluster one. The three series represent the 
three number of topic seeds: 15, 30, and 50, represented with different colors. The different colors and line 
types of the series represents different epsilon values. The series are smoothed using a mobile mean with a 
window of three elements. The gray lines represent the average series
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Finally, we note that there are some lower positive peaks in the series. For example, see 
in the chart on the right the series with 30 seeds with � = 0.02 , for the cardinalities around 
the values of 18, 22, 39, and 41. These lower peaks suggest that it is not always the case 
that the data can be explained with only one number of clusters, but multiple numbers of 
clusters are possible to obtain a natural clustering of topics.

Summarizing, it seems reasonable to conclude that the c = m constraint makes cluster-
ing ineffective for most of the cardinalities, even in the most favorable scenario. Moreover, 
considering real data, � will be quite high, since in general it is unlikely that our vectors 
(topics) have similar values, with just a small � difference. Thus cardinality-driven cluster-
ing does not seem to be a feasible technique to be applied on real data. For this reason, in 
the following we study cardinality-independent clustering, starting by repeating the simula-
tion experiment of this section.

6.3 � Cardinality‑independent clustering

In our previous experiments, the number of clusters is equal to the number of selected topics. 
Now, we perform clustering of topics with a number of clusters m independent from the topic 
subset cardinality c and hopefully matching the number of clusters in a natural clustering.

6.3.1 � The clustering process

In the case of cardinality-independent clustering, differently from cardinality-driven clus-
tering, m is a parameter to be chosen. There are several ways of selecting such a parameter. 
The first alternative is to try all possible values from 2 to the number of topics. A second 
approach could be to rely on some index of goodness of the obtained clusters. Another 
possibility is to look at the results of cardinality-driven clustering: in cardinality-driven 
clustering, due to the constraint c = m , the positive peaks in the one-for-cluster series (see 
Figs. 8 and 9) correspond to m values leading to an effective clustering of topics; this fact 
can be exploited to choose the value of m for the cardinality-independent clustering: we 
can focus on the cardinalities corresponding to the positive peaks of the one-for-cluster 
series in cardinality-driven clustering. In the following we investigate the latter approach; 
we also tried various indexes on clustering goodness (e.g Connectivity, Dunn, and Silhou-
ette) with no positive result, and we leave for future work the study of other feasible a 
priori approaches to find m.

Once the m clusters are formed, the probably most natural algorithm for selecting the 
topics from the clusters is as follows. Considering the one-for-cluster series, there exist 
three possibilities for each cardinality c ∈ {1,… , n}:

•	 Case c < m : we select randomly c clusters, and then we select c elements, one for each 
cluster.

•	 Case c = m : we select one topic per cluster, as we did in the case of cardinality-driven 
clustering (Sect. 6.2).

•	 Case c > m : we select m topics as in the previous c = m case; we then repeat for the 
remaining c − m , until we fall in the first c < m case. When a cluster becomes empty 
during the process, we skip it in the following iterations.
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Note that cardinality-driven and cardinality-independent clustering coincide only when 
c = m.

6.3.2 � Cardinality‑independent clustering on the simulated example

Figure 10 shows the results for cardinality-independent clustering for the same simulated 
experiment. The figure shows that in general, we obtain topic subsets that always have 
higher � values than the average; this holds for almost all the s, r, and � values.

Also, there are several positive peaks in the series. These occur at cardinalities corre-
sponding to multiples of the number of topic seeds s; e.g. considering s = 15 , the positive 
peaks are around cardinalities 15, 30, 45, and so on. This is an indication that multiple 
effective m values exist. Indeed, clustering is effective not only for m corresponding exactly 
to the cardinalities of the peaks, but also for near values, and this fact can be exploited for 
m selections.

Finally, the lower negative peaks of Fig. 9 almost disappear, even for the largest � value 
of 0.05: even if the topics are difficult to cluster, the clustering process is still effective.

6.3.3 � Cardinality‑independent clustering on real data

Figure 11 shows the results of cardinality-independent clustering for the real-data experi-
ment, for some selected m values, corresponding to the cardinalities of the positive peaks 
of the series of Fig. 8: 9 clusters for AH99, 5 clusters for TB06, 31 clusters for R04, and 24 
clusters for MQ07. We choose to report the results corresponding to the highest peak at the 
lowest possible cardinality: for AH99 a similar behavior is found for cardinalities 16, and 
31, for TB06 for cardinalities 22, 43, 45, and 75, for R04 for cardinalities 16, 25, 31, 45, 
60, and 75, and finally for MQ07 for cardinality 64.

The figure shows that the one-for-cluster series always has higher � values than the aver-
age series, for all the collections, with a single exception for R04. Cardinality-independent 
clustering is effective. As we have seen in Sect. 6.2, in the cardinality-driven clustering, 
even with PCA, the one-for-cluster series is often significantly lower than the average in the 
simulation experiment (see Fig. 9) and sometimes lower in the real datasets (see Fig. 8). In 
cardinality-independent clustering, this never happens: in the least favorable case, the one-
for-cluster and average series are equivalent (the series overlap).

(b)(a)

Fig. 10   Results of the cardinality-independent clustering for the artificial experiment. Compare with Fig. 9
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We also verified that the series oscillations do not depend on noise, as they still occur 
with 1M repetitions, as noted previously (see Footnote 9): the one-for-cluster series always 
fluctuates a little, but these oscillations are small and do not affect the results.

Another final result is that, in cardinality-independent clustering, the choice of the num-
ber of clusters m can be critical. A detailed analysis of our data shows that good m values 
can be found by looking at the positive peaks on the one-for-cluster series of the cardinal-
ity-driven clustering. For the m values corresponding to the cardinalities of such peaks, as 
well as the nearest cardinalities, the one-for-cluster series of the cardinality-independent 
clustering tend to have higher � values than the average series, for almost any cardinality. It 
has to be noted that these are not all the good m values, as there exist other m values such 
that for the cardinality-independent clustering the one-for-cluster series is always above the 
average, but there is not a corresponding peak in the cardinality-driven clustering. How-
ever, this provides a general criterion for the choice of m. For example, considering our 
datasets, to obtains one-for-cluster series that are better than random topic selection: for 
AH99 any m value can be used (but cardinalities around 8, 15, and 30 are better), for TB06 
the best values are around 10, for R04 the best values are 25, 75, and 110; and, finally, for 
MQ07 the best values are around 25, 45, and 60.

Fig. 11   Kendall’s � correlation curves for the four datasets: averaged (thinner gray lines), and obtained 
using clustering (thicker darker lines)
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6.4 � Discussion

The above results show that cardinality-independent clustering of topics is an a posteri-
ori topic selection strategy that is more effective than the random selection of topics. The 
effectiveness increase is still not large but it is consistent across all cardinalities and col-
lections. As all the other results of this line of research, this is an a posteriori strategy that 
is only potentially useful and cannot be applied in practice. However, it can give useful 
insights for a priori strategies, like suggesting the number of clusters to be used.

Note that although the setting is still a posteriori, clustering of topics shows only a lim-
ited effectiveness as a strategy to find good topic subsets. That is, even if we focused on a 
context where we expected clustering to be clearly effective, this was not the case. This is 
perhaps surprising and might even cast some doubts on the effectiveness of clustering also 
for an a priori approach; however, in that case the features used would be very different, 
and therefore this claim needs to be verified with further experiments, that we leave as 
future work.

Also, note that comparing the clustering curves with the average series, as we have 
done, might even be unfair, since the clustering approach needs the whole topic set to 
produce the topic subset at a given cardinality c, whereas the average series are produced 
using just c topics at cardinality c. In this respect, the clustering is even less effective. For 
instance, focusing on cardinality 50 for MQ07 (fourth chart in Fig. 11), we can indeed say 
that clustering has a higher correlation than average (0.85 vs. 0.79), but that a clustering-
based topic subset is generated using all 1153 topics, whereas by using around 100 random 
topics, one would get the same correlation.

We can also compare clustering correlations with Hosseini et  al. (2012)’s “Adaptive” 
ones. As in Sect.  4.4, we need to change again our setting to perform clustering on the 
dataset with all the runs (instead of the top 75% only); the obtained correlation values are 
shown in the last row of Table 2. Incidentally, by doing so, we are not able to obtain corre-
lation values higher than the average as those on the top 75% runs; indeed, as it can be seen 
in Table 2, when using all the runs the correlation values obtained by our clustering are 
hardy distinguishable from Average values. This is consistent with the remark in Sect. 4.4: 
when using all the runs in a collection, the Average curves achieve higher values of � , and 
therefore it is more difficult to do better than the Average baseline in such a case.

Focusing on the comparison between Adaptive and clustering, we see from Table 2 that 
Adaptive is more effective than clustering on the smaller (having a lower number of topics) 
AH99 dataset, and conversely clustering is more effective than Adaptive on the larger R04 
dataset. This result will need to be confirmed by further experiments, but it suggests that 
the two approaches could be fruitfully combined.

As a final remark, we conjecture that one general reason for the less than satisfactory 
effectiveness obtained with a posteriori clustering could simply be a “tyranny of majority” 
effect. If there is a large subset of topics that can be “naturally clustered” together, and that 
cluster is indeed recognized by the clustering algorithm (as is quite likely), then the one-
for-cluster selection method will be forced to pick up just one topic from that largest clus-
ter. However, the topics in that large natural cluster are driving the evaluation in a specific 
direction – these topics “weigh more” than the other topics. This will result in penalizing 
the one-for-cluster selection method, that is forced to not recognize this majority. This con-
jecture is true at least to some extent in our datasets: in our experiments the largest cluster 
usually contained around 75–90% of the topics.
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To analyse this conjecture, we performed a last experiment. Given a clustering of top-
ics, and the topic subset obtained from it, we computed not only the MAP by averaging the 
AP values, but also a Weighted MAP (WMAP) in which the AP values are averaged with 
a weight corresponding to the size of the cluster the topic belongs to. Note that both MAP 
and WMAP make sense: the WMAP approach somehow assumes that the full topic set 
is a representative sample of the whole topic population, and therefore if some topics are 
clustered together, that happens because the whole topic population contains many topics 
like those; conversely, the MAP approach is based on the assumption that since some top-
ics are very similar, picking just one of them avoids a biased sampling, in which the topics 
of larger clusters are over represented. Therefore, the two approaches differ on the weight 
given to each sampled topic; MAP assumes all topics to be of the same importance, con-
versely WMAP assumes topics that are sampled from a larger population are more repre-
sentative, and thus more important. We also remark that by using WMAP we are not guar-
anteed that by using the full topic population we reach correlation 1 with MAP. Results 
are clearly negative: all correlation values obtained when using WMAP are not only lower 
than those obtained when using MAP, but also always lower than Average.

7 � Conclusions and future work

Compared to previous work on using fewer topics in the evaluation of IR systems, our 
contributions are threefold. Addressing RQ1, we show that examining subsets of a larger 
ground truth topic set results in average and best subsets that are more highly correlated 
with the ground truth topic set than found in previous work (Guiver et al. 2009; Robert-
son 2011; Berto et  al. 2013). It would appear that as the cardinality of the ground truth 
increases, the size of the subset (relative to ground truth) required to obtain a high correla-
tion also decreases.

We also find that under large cardinalities, worst topic subsets are notably worse than 
shown in past work. Although finding a few bad topics was perhaps to be expected, when a 
larger pool of topics could be drawn from the large size of worst topic subsets that still had 
very low correlations was striking. Examination of the effectiveness of worst subsets shows 
that they were mainly composed of topics with poor effectiveness scores.

Addressing RQ2, we analyze the role of statistically significant differences between runs 
for different topics subsets. The ability to distinguish statistically between the effectiveness 
of two runs is impaired when topic cardinality is lowered. The main problem is an increase 
in false negatives (type II errors) when making comparisons. This issue has not been shown 
before in this area of topic subsetting research, although it has been addressed in conjunc-
tion with incomplete relevance judgments: see for example Carterette and Smucker (2007, 
Table 2), which agree with our findings. Some subsets were shown to be better than others 
at minimizing type I and II errors. The analysis showed that the level of error reduced rela-
tively quickly as subset cardinality increased. Nevertheless, because all of our experiments 
still use relatively small populations of topics when compared to “the set of all topics in 
the world”, it is not clear if the level of type II error will reduce sufficiently. The collec-
tions still don’t give us a sense of what the “true” population of possible topics is like, and 
we have no way to be sure that the full cardinality is the truth. In a way, the results in this 
paper suggest that all test collections are suspect, since their very small subset of topics 
might be completely un-correlated with the “true” population of all possible topics.
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Our findings on the overlap of best and worst topics sets confirm that being a good topic 
largely depends on the other topics in the subset. In general, the previously established 
terminology of best/worst topic sets is perhaps misleading since it can be argued that the 
worst topics are actually the most interesting ones (they rank runs in ways contrary to the 
majority of topics), whereas the best topics feature a high degree of redundancy that might 
lead to a waste of resources. Indeed, the high degree of redundancy is manifested in the 
best correlation curves, that have high correlation values also for low cardinalities.

Addressing RQ3, our analysis showed that clustering is effective in finding topic subsets 
that are more representative than simply taking average or random subsets, as long as the 
clustering is combined with dimensionality reduction. However, the topic subsets obtained 
by clustering are only slightly more effective than random topic subsets, and are far from 
featuring correlations that are as high as the best topic sets. A comparison with, and an 
analysis of, related work shows that we are in good company, though: good topics subsets 
exists but finding them seems a rather daunting task. While the work here is a first step in 
finding representative and effective topic subsets, there is still much work to be done to 
improve topic subset selection.

In future work, we plan to consider the correlation between topic subsets (rather than 
between a topic subset and the full topic set) as well as top-heavy measures of association 
such as Rank Biased Overlap or �AP , to give more importance to the most effective sys-
tems. We have only started to analyze how best and worst topic sets are formed. Consider-
ing the extreme nature of Best and Worst series, extreme value theory might be useful to 
better understand and model the stochastic behavior of Best / Worst series and topic subset 
distributions. We also plan to deepen the analysis by finding more semantic features that 
characterize a good/bad topic set. Indeed, as in previous research, we have not attempted 
to devise methods to find good topic subsets before the evaluation exercise is performed, 
or while it is ongoing; the focus of our research so far has been on working to understand 
how different topic sets interact. Future work studying more semantic topic features, com-
bined with many runs, will hopefully help to provide a set of guidelines for sound topic set 
engineering.
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