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Abstract
Although document filtering is simple to define, there is a wide range of different evalua-
tion measures that have been proposed in the literature, all of which have been subject to 
criticism. Our goal is to compare metrics from a formal point of view, in order to under-
stand whether each metric is appropriate, why and when, in order to achieve a better under-
standing of the similarities and differences between metrics. Our formal study leads to 
a typology of measures for document filtering which is based on (1) a formal constraint 
that must be satisfied by any suitable evaluation measure, and (2) a set of three (mutually 
exclusive) formal properties which help to understand the fundamental differences between 
measures and determining which ones are more appropriate depending on the application 
scenario. As far as we know, this is the first in-depth study on how filtering metrics can be 
categorized according to their appropriateness for different scenarios. Two main findings 
derive from our study. First, not every measure satisfies the basic constraint; but problem-
atic measures can be adapted using smoothing techniques that and makes them compli-
ant with the basic constraint while preserving their original properties. Our second finding 
is that all metrics (except one) can be grouped in three families, each satisfying one out 
of three formal properties which are mutually exclusive. In cases where the application 
scenario is clearly defined, this classification of metrics should help choosing an adequate 
evaluation measure. The exception is the Reliability/Sensitivity metric pair, which does not 
fit into any of the three families, but has two valuable empirical properties: it is strict (i.e. 
a good result according to reliability/sensitivity ensures a good result according to all other 
metrics) and has more robustness that all other measures considered in our study.
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1  Introduction

Document Filtering is a generic problem involved in a wide set of tasks such as spam 
detection (Cormack and Lynam 2005), Information Retrieval over user profiles (Hoashi 
et  al. 2000), post retrieval selection for on-line reputation management (Amigó et  al. 
2012), etc. In essence, document filtering is a binary classification task with priority 
(one is the class of interest, the other is meant to be discarded). It consists of discerning 
relevant from irrelevant documents from an input document stream. In spam filtering, 
for instance, the system must keep relevant e-mails and discard unwanted mails.

Although document filtering is simple to define, there is a wide range of different 
evaluation measures that have been proposed in the literature, all of which have been 
subject to criticism. Just as an illustration, TREC (the Text Retrieval Evaluation Con-
ference) has organized at least three filtering tasks, all of them using different evalua-
tion metrics: the Filtering track used utility (Hull 1998), the Spam track chose Lam% 
(Cormack and Lynam 2005), and the legal track employed a variation of F (Hedin et al. 
2009). In fact, the choice of an appropriate, flawless evaluation measure seems to be still 
controversial in many filtering scenarios.

Our goal is to provide a systematic, formal comparison of existing evaluation met-
rics that helps us determine when they are appropriate and why. Previous comparisons 
between metrics have focused on issues such as stability of measures across datasets, 
ability to discriminate systems with statistical significance, or sensitivity to small 
changes in the input. We take a different approach: we focus on establishing a set of 
formal constraints (Amigó et al. 2009; Fang et al. 2004) that define properties of filter-
ing metrics. Some formal constraints must be satisfied by any suitable metric, and other 
constraints help understanding and comparing metrics according to their properties. A 
key novelty of our analysis is that it is grounded on a probabilistic interpretation of 
measures that facilitates formal reasoning.

First, we assume one basic constraint that should be satisfied by any evaluation metric, 
for any filtering scenario. Our analysis shows that many criticisms to existing metrics can 
be explained in terms of the (lack of) satisfaction of this constraint. In particular, some of 
the most popular measures (such as the F measure of Precision and Recall for the posi-
tive class and Lam%) fail to satisfy them. However, we also show that redefining measures 
in probabilistic terms and applying smoothing techniques lead to alternative definitions of 
Lam% and F measure that—when the smoothing technique is chosen with care—have a 
similar behavior but comply with our basic constraints.

Even measures that satisfy the basic constraint, however, can say different things about 
the comparative performance of systems. Our starting point to understand their differences 
is a key empirical observation: in a filtering dataset (Amigó et  al. 2010), measures dif-
fer substantially, and the sharpest differences reside in how they evaluate non-informative 
outputs (systems whose output is independent from the input, such as a system that always 
returns the same label for every item). This serves as inspiration to define three mutually-
exclusive properties that depend on how measures handle non-informative outputs. The 
three properties, then, define three families of metrics, and provide a clear-cut criterion to 
choose the most adequate measure (or family of measures) for a given application scenario.

In addition to our formal analysis—and its practical outcomes—we also report empiri-
cal results on (1) the practical effects of our proposed smoothed measures, (2) the relative 
strictness of metrics, and (3) metric robustness with respect to variations in the set of test 
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cases. This empirical analysis complements our formal study and provides deeper insights 
into the differences of behavior between metrics.

This paper is structured as follows: in Sect. 2, we begin with a preliminary experiment 
on how measures disagree and why. Then in Sect.  3, we present our formal analysis of 
measures. In Sect. 4 we introduce the smoothed versions of measures that do not comply 
with our basic constraints. Finally, Sect. 5 presents our empirical analysis, Sect. 6 discusses 
related work and Sect. 7 summarizes our conclusions.

2 � A preliminary experiment on how measures disagree and why

In this section we perform a preliminary experiment on how measures disagree that 
motivates our study, showing how different the veredict of measures can be on the same 
dataset. And, more importantly, it partly suggest how to differentiate measures and clas-
sify them in families, because it shows that measure disagreement concentrates mainly 
on non-informative outputs (those that do not depend on the input).

2.1 � Measure disagreement

Our initial experiment consists of comparing the most popular measures used in 
the TREC filtering evaluation campaigns over the WePS-3 dataset (see Sect.  4 for a 

Fig. 1   Correspondence between popular measures in the WEPS-3 evaluation campaign. Each dot corre-
sponds to a system output for one test case
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description of each measure, and Sect.  6.1 for a detailed description of the WePS-3 
task and the dataset). Figure 1 shows the correspondence between measures for systems 
participating in the WePS-3 evaluation campaign. Each graph compares two standard 
measures, and each dot corresponds with a system output for one test case in the collec-
tion. In order to illustrate the behavior of measures under different system outputs for 
the same topic, the grey squares represent the outputs for one (randomly selected) topic.

The graphs clearly illustrate with four examples that, in general, the correlation 
between measures is lower than expected:

•	 F measure versus Accuracy. The F measure (harmonic mean of Precision and Recall 
for the positive class) seems to be a lower bound on the value of Accuracy, which can 
take values arbitrarily larger than the F measure, but not smaller.

•	 F measure versus Utility. This is the only metric pair that has a high correlation in our 
experiments, and only for values above 0.5. Below 0.5, both metrics can say radically 
different things about the quality of a system.

•	 Utility versus accuracy. Utility also seems to be a lower bound on the value of accu-
racy, but beyond that there is little correlation between both metrics.

•	 F measure versus Lam%. The patterns in the graph F-measure versus Lam% are very 
particular. As we explain in the next section, the reason is that Lam% is a measure 
based on information gain, and it considers the probabilistic dependence between the 
system output and the gold standard signals. As a consequence, Lam% assigns a score 
of 0.5 to any random output. This explains the vertical line at Lam% 0.5. Also, as we 
explain in Sect. 4, it is possible to achieve a maximal Lam% score without predicting 
the correct class in most cases, which explains the vertical line at Lam%=1. Overall, 
the plot shows little correlation between both measures.

This lack of correlation implies that system ranking can be severely affected by the metric 
choice. Also, it means that a system development cycle—where the system is repeatedly 
tested and improved with respect to a certain evaluation measure—can be easily biased by 
the measure selected. Therefore, it is crucial to understand how and why measures differ, in 
order to prevent the use of inadequate measures for a given task and application scenario.

2.2 � The role of non‑informative outputs

We now select, from the WePS-3 dataset, all the non-informative outputs. We use non-
informative output to refer to those cases where the automatic classification is statistically 
independent of the real document classification. In other words, when there is no correla-
tion between the system output and the gold standard. For instance, returning the same 
label for all documents (the system accepts everything or discards everything) would be 
a non-informative output. Also, a system that always picks up a random selection of the 
input documents as relevant is also non-informative. The set of WePS-3 systems includes 
the baseline systems provided by the organization.

Figure 2 illustrates how the correspondence between measures looks like when we only 
display results for non-informative outputs. Comparing both Figs. 1 and 2 we see that the 
scores of non-informative outputs tend to draw the limits of the dotted areas in Fig. 1. In 
general, this means that the non-informative outputs include most of the extreme cases of 
measure disagreement. Our conclusion is that a key factor of disagreement between metrics 
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is how non-informative outputs are scored by measures. In other words, the treatment of 
non-informative outputs is a strong defining characteristic of a filtering evaluation measure.

Note that purely non-informative systems are artificial (i.e. simply used as baselines for 
comparison purposes). One could argue that it is not crucial how measures evaluate arti-
ficial systems, but only how they evaluate real systems. And this would be a reasonable 
objection. However, many real systems may have a near non-informative behavior. In fact, 
in the WePS-3 dataset there are many system outputs which have low informativeness.

The empirical observation that metrics differ most in how they evaluate non-informative 
outputs has served as inspiration for our formal analysis, and has led to the definition of 
three mutually exclusive properties of metrics which produce a classification of measures 
in three families. Given an application scenario, choosing which property is adequate leads 
to one of the metric families, thus guiding the metric selection process.

3 � Theoretical framework

In this section, we formulate the basic constraints (which must be satisfied by any metric) 
and properties (which further characterize metrics) that help assessing filtering evaluation 
measures. In order to enable our formal analysis, we first introduce a probabilistic notation 
to describe measures and measure properties.

Fig. 2   Correspondence between measure scores for non-informative systems in the WEPS-3 evaluation 
campaign. Each dot corresponds to a system output for one test case
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Note that our study focuses only on measures that assess the overall quality of systems, 
rather than measures that cover partial quality aspects (such as False Positive Rate, False 
Negative Rate, Recall, True Negative Rate, Precision, Negative Predictive Value, Predic-
tion-conditioned Fallout, Prediction-conditioned Miss, Rate of Positive Predictions or Rate 
of Negative Predictions). For instance, Precision and Recall are partial and complementary 
quality aspects, and they can be used to assess the overall quality of a system if they are 
combined. In this case, the most popular way of combining them is via a weighted har-
monic mean (the F measure).

We also restrict our study to measures that work on binary decisions (relevant vs. irrel-
evant), rather than on a ranked list of documents. Typically, a filtering system—as any 
binary classifier—outputs a probability of relevance for every item,1 and the final clas-
sification implies choosing a threshold for this probability. Then, items above/below the 
threshold are classified as relevant/irrelevant. One way of evaluating document filtering is 
by inspecting the rank of documents (ordered by decreasing probability of relevance) and 
then measuring precision and recall at certain points in the rank. The advantage of this type 
of evaluation is that the classification algorithm can be evaluated independently from how 
the threshold is finally set. Some examples of this type of evaluation are ROC (Receiver 
Operating Characteristic) (Provost and Fawcett 1997) and AUC (Area Under the Curve) 
(Ling et al. 2003), which compare the classification performance across decreasing classifi-
cation threshold values. For document filtering tasks, some researchers also evaluate Preci-
sion at a certain number of retrieved documents (Robertson and Hull 2001; Callan 1996) or 
average across recall levels (Persin 1994). Other related measures are Mean Cross-entropy 
(Good 1952), Root-mean-squared error, Calibration Error (Fawcett and Niculescu-Mizil 
2007), SAR and Expected Cost (all of them available and described, for instance, in the R 
package called ROCR.2) These metrics, however, do not consider the ability of systems to 
predict the ratio of relevant documents in the input document stream, which is, in practice, 
a crucial aspect of system quality (Schapire et al. 1998); a good ranking may turn into a 
poor classification if the cutoff point is not chosen adequately. In order to consider this 
aspect, metrics have to work on the binary output of the filtering system, rather than on the 
intermediate internal rank. Therefore, we restrict ourselves to these kind of metrics.

3.1 � The filtering task: a probabilistic notation

We understand the filtering task as follows. A filtering input consists of a document3 set   
which contains relevant (subset  ) and irrelevant documents (subset ¬).4  is the subset of 
documents manually assessed as relevant, and its complementary ¬ is the subset of docu-
ments manually assessed as irrelevant.

The system output is represented with a subset S containing all documents labeled as 
positive by the system. Its complementary set ¬represents documents labeled as negative 
by the system. Given an input test set  =  ∪ ¬ , a metric returns a certain quality score 
Q() for the system with output set .

1  Or, more precisely, a quantity which can be mapped into a probability of relevance using some growing 
monotonic function.
2  http://cran.r-proje​ct.org/web/packa​ges/ROCR/ROCR.pdf.
3  For the sake of readability, we will speak of documents. However, our conclusions can be applied to any 
kind of items.
4  Letter G is chosen for Gold standard.

http://cran.r-project.org/web/packages/ROCR/ROCR.pdf
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We will use the simplified notation P() to denote the probability P(e ∈ ) measured 
over the space of samples   . We use the same notation for any subset of   . Using this 
notation we can express quality metrics; for instance, Precision (fraction of relevant docu-
ments in the subset labeled as positive by the system) is P(|) , and can be computed as 
|∩|
||  . Figure 3 illustrates an example where  contains four documents and  contains three 

documents with the following values for Precision and Recall.
The traditional representation is the contingency matrix, which uses four subsets: true posi-

tives (TP) are items labeled as positive and relevant; false positives (FN) are items labeled as 
negative but relevant; true negatives (TN) are items labeled as negative and irrelevant; and 
false negatives (FN) are labeled as negative and irrelevant. Table 1 illustrates the correspond-
ence between our notation and the contingency matrix.

Our notation is not standard, and it does not seem simpler at first sight; but it is crucial for 
us to provide formal proofs in the remainder of the paper, and to propose smoothing mecha-
nisms for the metrics that require it.

Note that neither the contingency matrix nor our probabilistic notation allow to consider a 
notion of document redundancy: for instance, the penalty for discarding a redundant relevant 
document is the same as the penalty for discarding a unique relevant document. In this work 
(as in many other approaches to the subject) we assume that filtering is a process preliminary 
to redundancy removal and is, therefore, evaluated independently.

The evaluation process requires to estimate some probabilities over observable data. Some 
of these probabilities are:

•	 the ratio of relevant documents in the input stream: ( P() ∼ ||
|T|)

•	 the system output size ( P() ∼ ||
|T|)

Fig. 3   Interpretation and notation for the filtering task

Table 1   Relationship between the traditional contingency matrix and our probabilistic notation

TP = | ∩ | ∼ P(|)P() FP = | ∩ ¬| ∼ P(¬|)P()
FN = |¬ ∩ | ∼ P(|¬)P(¬) TN = |¬ ∩ ¬| ∼ P(¬|¬)P(¬)
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•	 several conditional probabilities such as Precision ( P(|) ∼ |∩|
||  ) or Recall 

( P(|) ∼ |∩|
|| ).

The probabilistic representation allows to define non-informative outputs ¬i as those whose 
output set  is chosen independently from their relevance :

The non-informativeness property can be also expressed as:

For the discussions to follow, it is interesting to think of two particular non-informative 
outputs. The first one classifies all documents as relevant, returning the original document 
set without modifications. We will refer to this system as the Placebo baseline ( T = T).5 
The second one is the Zero system, which returns an empty output: � = �.

Table 2 summarizes some useful expressions in our notation.

3.2 � The strict monotonicity axiom

Sebastiani (2015) proposed a basic axiom as a formal constraint that must be satisfied by 
any classification evaluation measure. It states that any relabeling of an item into its correct 
category must produce an increase in any appropriate measure score. Using our notation:

This axiom also implies that the maximum score is achieved only when every item is cor-
rectly classified.

Assuming that  and  are two sets, this constraint is closely related to Tversky’s Mono-
tonicity Axiom for similarity between sets (Tversky 1977). As Sebastiani proved, although 

P(¬i ∩ ) = P(¬i)P()

P(¬i|) = P(¬i) ∨ P(|¬i) = P()

 = � ∪ {e} ∧ e ∈  ⇒ Q() > Q( �)

¬ =¬ � ∪ {e} ∧ e ∈ ¬ ⇒ Q() > Q( �)

Table 2   Summary of our notation

 Set of documents
 Documents manually assessed as relevant (positive)
¬ Documents manually assessed as irrelevant (negative)
 Documents labeled relevant by the system
¬ Documents labeled as irrelevant by the system
P() Probability for a document e ∈   of belonging to the relevant set 
P(|) Precision ( |∩||| )
P(|) Recall ( |∩||| )
¬i Non-informative systems: P(¬i ∩ ) = P(¬i)P()


T
= T Placebo baseline system (everything is labeled positive)

� = � Zero baseline system (everything is labeled negative)

5  What our definition of the placebo baseline implies is that document filtering is an asymmetric process in 
terms of the positive/negative labels. This is implicit in most literature on the subject: for instance, precision 
and recall are assumed by default to be computed on the relevant class.
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this intuitive axiom seems obvious, it is not satisfied by some popular measures, as we 
discuss in Sect. 4.

3.3 � Measure properties and use cases

The previous axiom is a constraint that must be satisfied by any suitable metric. We now focus 
on properties, which are structurally similar but are intented to characterize how some metrics 
work (rather than prescribing how they should work), and help distinguishing measures. Note 
that the properties we are about to introduce are mutually exclusive: any metric can satisfy at 
most one of them.

In the previous section we have showed how the evaluation of non-informative outputs is 
what makes measures different. Therefore, we focus on establishing properties that describe 
different ways of handling non-informative outputs. We exemplify how these properties are 
useful with a single task in the context of Online Reputation Monitoring: name ambiguity 
resolution. Given all the online posts that contain the name of an entity (e.g. a company) to be 
monitored, we want to select the texts that do refer to the company, and discard the texts that 
refer to something else. For instance, if the entity is the telecom company Orange, we want to 
filter out appearances of orange that refer to the colour, the fruit, etc.

Scenario 1: Absolute gain for single documents classifications. Sometimes, the qual-
ity of a non-informative output ¬i depends on the absolute gain/loss associated with 
correctly/incorrectly classified elements.
In the name ambiguity task, the system has to assign a positive label to the items that 
refer to, for instance, the Orange company. Let us suppose that the output of the system 
is used by a competitor that wants to advertise the advantages of its services to people 
that are talking about Orange. For every False Positive, there is a quantifiable loss (in 
time or money), as well as for every True Positive there is a quantifiable average gain, 
etc. Depending on the relative cost/profit of every incorrect/correct label, a system that 
assigns positive labels to all items (what we call a placebo output T ) can be better or 
worse than assuming that nothing is about the company (zero output ( ∅).
According to this, we define the Absolute Weighting property as the ability of measures 
to assign an absolute weight to relevant (versus non relevant) documents in the output 
regardless of the output size. A measure satisfies the absolute weighting property if it 
has a parameter that determines the relative profit of selecting a relevant document with 
respect to the cost of selecting an irrelevant document. Depending on the value of the 
parameter, adding together a relevant and an irrelevant document to the positive class 
may have an overall positive effect on the measure (the profit is higher than the cost), 
or a negative overall effect (the cost of selecting the irrelevant document is higher than 
the benefit of adding the relevant one). We formalize this property by saying that there 
exists a threshold value for the parameter which determines if adding one relevant and 
one irrelevant documents to the positive output set  improves the system output or not. 
Formally, being6: 

 then there exists a parameter c and a threshold � such that: 
 � ≡  ∪ {e ∈ } ∪ {e¬ ∈ ¬}

6  The formula assumes that both e and e¬ did not already belong to .
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 When increasing the size of a non-informative output ( |¬i| ), both the amount of rel-
evant and irrelevant documents labeled as positive grow. Given that the system is non-
informative, the relative growth of relevant versus irrelevant documents in the output is 
fixed, and only depends on the ratio of relevant documents in the input stream. There-
fore, we can express this property in terms of non-informative output scores: If ¬i and 
 �
¬i

 are two different non-informative outputs, the property requests that there exists 
a certain parameter that determines if one non-informative output is better (when the 
parameter is above a certain threshold) or worse (when it is below the threshold) than 
other: 

Scenario 2: Any non-informative output is equally useless. Let us now consider a 
use case in which the system output is used to estimate how frequently online texts that 
contain the word Orange refer to the telecom company and, subsequently, to estimate 
the online presence of the company.
In this case, any non-informative output is equally useless, because it will predict a 
ratio of relevant documents which is independent from the actual data. This leads to a 
Non-Informativeness Fixed Quality property that we formulate as follows: for any non-
informative output ¬i its quality is constant Q(¬i).7 That is: 

 We will refer to measures satisfying this property as Informativeness-based measures.
Scenario 3: Doing nothing is better than doing random. Finally, let us consider a 
third scenario in which items labeled as positive are examined by experts in Public Rela-
tions in order to identify and handle potential reputation alerts. In this scenario, recall is 
crucial, because the risk of failing to detect a reputation alert is much worse than having 
to examine an irrelevant post.
In these conditions, discarding all documents is catastrophical: the reputation experts 
simply cannot do their job. Returning all documents (placebo baseline), on the other 
hand, implies a lot of extra work, but it is not nearly as harmful than the zero baseline. 
In general, the more the system removes texts randomly, the more harmful the classifier 
is.
For these cases we establish a Non-Informativeness Growing Quality property: The 
quality of a non-informative output grows with the size of its positive class: 

 Obviously, this property is not compatible with the previous ones.

Note that our three usage scenarios exemplify that a task specification (name ambigu-
ity resolution in our case) is not enough to select appropriate evaluation measures; we also 
need to specify how the output of the system is going to be used to determine how it should 
be evaluated.

c > 𝜃 ⇔ Qc() > Qc(
�)

c > 𝜃 ⇔ Qc(¬i) > Qc(
�
¬i
)

Q(¬i) = k

Q(¬i) ∼ |¬i|

7  Note that if the measure also satisfies the monotonicity axiom, this constant will be low.
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We now turn to the formal analysis of the most popular filtering metrics in terms of 
the monotonicity constraint and the three mutually exclusive properties.

4 � Formal analysis of measures

In this section we present an analytical study of several Filtering evaluation measures, 
in terms of how they satisfy the monotonicity axiom and the three mutually-exclusive 
properties. The outcome of the formal analysis is summarized in Table 3, and the main 
points are:

•	 All metrics in the study, except one (Reliability/Sensitivity), belong to one of the three 
families defined by our proposed properties. Therefore, in order to select an appropriate 
measure for a given scenario, a crucial step is to decide how non-informative outputs 
should be assessed. More specifically, what is the quality of the zero output (discarding 
all) with respect to the placebo output (accepting all). If they are equivalent, we must 
employ an informativeness-based measure. If accepting everything is better than dis-
carding randomly, the best option is employing Precision/Recall on the positive class. 
If the answer depends on the relative profit/cost of each combination in the contingency 
matriz, then we should use a Utility-based measure.

•	 Some popular measures like Precision and Recall or Lam% fail to satisfy the basic 
Strict Monotonocity axiom. We will propose smoothing techniques to fix these prob-
lems in Sect. 5.

We now discuss the formal properties of each of the metrics analyzed, grouped accord-
ing to the properties defined earlier.

Table 3   Basic constraints, properties and measures

Axiom Properties

Strict monotonocity Absolute 
weighting

Non-inf. fixed 
quality

Non-inf 
growing 
quality

Utility measures
Acc (weighted) ✔ ✔ ✗ ✗
Utility ✔ ✔ ✗ ✗
Informativeness measures
Lam% ✗ ✗ ✔ ✗
Odds ✗ ✗ ✔ ✗
Phi, MAAC, KapS, Chi, MI ✔ ✗ ✔ ✗
Class-oriented measures
F measure ✗ ✗ ✗ ✔
Reliability and sensitivity
F(R,S) ✔ ✗ ✗ ✗
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4.1 � Utility‑based measures

Utility-based measures are those that can be expressed as a linear combination of the four 
components in the contingency matrix (Hull 1998):

In other words, there is an absolute reward for each type of correct labeling, and an abso-
lute penalty for each type of error. The resulting score can be scaled according to the size 
of the positive and negative classes in the input stream ( P() and P(¬) ). In our notation, 
scaled true positives correspond to P(|)P() , true negatives to P(¬|¬)P(¬) , false 
positives to P(|¬)P(¬) and false negatives to P(¬|)P().

The Accuracy measure (proportion of correctly classified documents) and the Error 
Rate (1-Accuracy) are two particular cases of Utility measures which reward equally true 
positives and true negatives. The result is scaled over the input stream size. Implicitly, 
accuracy penalizes also the false positive and false negatives. The Accuracy measure can 
be expressed in terms of conditional probabilities:

In Androutsopoulos et al. (2000), a weighted version of Accuracy is proposed:

Basically, Weighted Accuracy is a Utility measure which assigns a relative weight to true 
positives and normalizes the score according to the ratio of relevant documents in the input 
stream.

The most common Utility version assigns a relative � weight between true positives and 
false positives:

A drawback of Utility is that the range of possible scores varies depending on the size of 
the dataset. Several normalization methods have been proposed (Hull 1998; Hoashi et al. 
2000). In general, they consider the maximum score that can be achieved in each input 
stream. We do not tackle this issue here.

4.1.1 � Axioms and properties

With respect to the Strict Monotonocity Axiom, adding an irrelevant document to the output 
 reduces true negatives, and adding a relevant document increases true positives. There-
fore, accuracy satisfies this constraint. A similar reasoning can be applied to the traditional 
Utility measure.

The characteristic of Utility-based metrics is that it is possible to assign an absolute 
weight to relevant (versus non relevant) documents in the output regardless of the output 
size. Thus, they satisfy the Absolute Weighting property (see proof in the “Appendix”). 
But note that, although Accuracy can be considered a Utility-based measure, it does not 
directly satisfy the Absolute Weighting property, given that its definition does not include 
any parameter. However, the weighted accuracy proposed in Androutsopoulos et  al. 
(2000) does satisfy this property, and it is a generalization of Accuracy (see proof in the 

Utility
�1,�2,�3,�4

≡ �1TP + �2TN − �3FP − �4FN

Acc() =
TP + TN

T
≃ P(|)P() + P(¬|¬)P(¬)

WAcc() =
�TP + TN

�(TP + FN) + TN + FP
≃

�P(|)P() + P(¬|¬)P(¬)
�P() + P(¬)

Utility() = �TP − FP ≃ �P(|)P() − P(|¬)P(¬)
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“Appendix”). In summary, utility-based measures assign growing or decreasing scores to 
non-informative outputs depending on the measure parameterization and the ratio of rel-
evant documents in input stream (see details in the Proofs appendix).

4.2 � Informativeness‑based measures

This family of measures satisfies the Non-Informativeness Fixed Quality property. That is, 
they score equally any non-informative solution. We first focus on Lam%, which is pos-
sibly the most popular metric in this family in document filtering scenarios. Then we also 
analyze other metrics in this family.

Lam% (Logistic average misclassification rate) was defined for the problem of spam 
detection as the geometric mean of the odds ratio of misclassified ham, ( P(¬|) ) and 
ratio of misclassified spam ( P(|¬) ). Maximum Lam% represents minimum quality:

With respect to the Strict Monotonocity Axiom, a well-known problem of Lam% is that 
when either P(¬|) or P(|¬) are zero, lam% is minimal (i.e. maximal quality) regard-
less of the other measure component (Qi et al. 2010). This behavior implies that the Strict 
Monotonocity Axiom is not satisfied by Lam%.

This is a problem that could be fixed with smoothing methods. Consider, for example, 
an output with ten positive labels ( || = 10 ) that all correspond to true relevant documents. 
This can easily be reached in practice by establishing a very high classification threshold; 
then the system will retrieve very few documents, but most likely they will all be relevant, 
and therefore spam misclassification ( P(|¬) ) will be zero. But having zero misclassified 
spam documents in our data does not imply that the true probability of misclassification 
is zero when we provide a different set of documents to the classifier; it only means that it 
is very low. Therefore, a possible solution is to apply some smoothing mechanism for the 
estimation of P(|¬) . We will tackle this issue in Sect. 5.

From the point of view of measure properties, Lam% assigns a fixed score to every non-
informative system output ( Lam%(¬i) = 0.5),and therefore satisfies the Non-Informative-
ness Fixed Quality property. The Lam% score for non-informative outputs is always 0.5 
(see Lam% results for non-informative outputs in Fig. 2)—see proof in the “Appendix”.

We have used Lam%, as a representative masure of its family, in the empirical study 
reported in Sect. 6. But let us review the formal properties of other common measures that 
also assign a fixed value to all non-informative system outputs.

The Phi correlation coefficient is expressed in terms of false and true positives and neg-
atives (TP,FP,TN and FN)8:

lam% =logit−1
(
logit(P(¬|)) + logit(P(|¬))

2

)

logit(x) =log
(

x

1 − x

)
logit−1(x) =

ex

1 + ex

Phi =
TP × TN − FP × FN

√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

8  For the sake of readability, we use here the traditional notation for the contingency matrix components.
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Phi is always zero if ¬i is non informative (see proof in the “Appendix”).
Something similar happens with the odds ratio (Karon and Alexander 1958):

which is 1 for every non-informative system output (see proof in the “Appendix”). As well 
as the original Lam% measure, the Odds ratio does not satisfy the Growing Quality con-
straint: if TN = 0 , then the measure is not sensitive to TP.

The Macro Average Accuracy (Mitchell 1997) is a modified Accuracy measure (MAAc) 
that also gives the same results for any non-informativeness measure. It is defined as the 
arithmetic average of the partial accuracies of each class:

Its value is always 1
2
 if the output is non-informative (see proof in the “Appendix”). Note 

that, in spite of its name, MAAc is not a utility measure, as it is not a linear combination of 
the components of the contingency matrix.

The Kappa statistic (Cohen 1960) is another example of informativeness-based meas-
ure. Kappa is defined as:

where the Random Accuracy represents the Accuracy obtained randomly by an output 
with size || . This measure returns zero for any non-informative output (see proof in the 
“Appendix”).

Another metric in this family is the Chi square test statistic:

which returns 1
2
 for any non-informative output (see proof in the “Appendix”).

Finally, Mutual Information (MI):

can be applied to the evaluation of binary classifiers as follows:

If an output ¬i is non-informative, every component in the sum is zero (e.g. 
P(¬i)P() = P(¬i ∧  ), and then the log of the fraction is zero)). Therefore, MI(¬i) is 
zero.

Odds(¬i) =
TP × TN

FN × FP

MAAc(¬i) =

TP

TP+FN
+

TN

TN+FP

2
=

P(|) + P(¬|¬)
2

KapS() =
Accuracy − Random Accuracy

1 − Random Accuracy

Chi() =
(| ∩ | × |¬ ∩ ¬| − | ∩ ¬| × |¬ ∩ |) + |T|

|| + || + |¬| + |¬|

=
(P(|) × P(¬|¬) − P(|¬) × P(¬|)) + 1

2

MI(X;Y) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)

MI() =P( ∧ )log
P( ∧ )

P()P()
+ P(¬ ∧ )log

P(¬ ∧ )

P(¬)P()

+ P( ∧ ¬)log
P( ∧ ¬)

P()P(¬)
+ P(¬ ∧ ¬)log

P(¬ ∧ ¬)

P(¬)P(¬)
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4.3 � Class‑oriented measures: precision and recall

The third measure family includes those that assume some asymmetry between classes. 
These measures are suitable for applications where one class is of more interest than the 
other, as is the case of Information Retrieval (Sokolova et al. 2006) and Information Filter-
ing tasks.

The most representative measure in this family is the combination of Precision and 
Recall for the relevant class. We will focus here on their combination via F measure (Van 
Rijsbergen 1974), which is a weighted harmonic mean of Precision and Recall, although 
the same conclusions are valid for the product (Hull 1997). The F measure is computed as:

where P(|) and P(|) are Precision and Recall respectively, in our probabilistic nota-
tion. � is a parameter that sets their relative weight, with � = 0.5 giving the same weight to 
both.

4.3.1 � Axioms and properties

As Sebastiani proved (Sebastiani 2015), the F measure does not satisfy the Strict Monoto-
nocity Axiom. The reason is that Precision is not able to distinguish between outputs that 
contain only irrelevant documents: it is zero for any output without relevant documents. 
If we take an output without true positives and we correctly move an item from the set of 
false positives to the set of true negatives, F does not improve, because Precision remains 
zero. In Sect. 5 we discuss and propose smoothing methods to address this problem.

The F score is the only measure in our analysis that satisfies the Non-Informativeness 
Growing Quality: for any non-informative output, its F score is higher if it returns a larger 
set of positive labels (see proof in the “Appendix”).

As we showed in Sect. 3, this property is not compatible with the other two properties 
(Non Informativeness Fixed Quality and Absolute Weighting).

4.4 � Reliability and sensitivity

Reliability and Sensitivity (R and S) (Amigó et al. 2013) is a precision/recall measure pair 
which can be used for filtering, ranking and clustering, and also for general document 
organization problems that combine these three tasks. It is a generalization of the BCubed 
Precision and Recall metrics (used to evaluate Clustering systems) (Amigó et  al. 2009). 
Reliability measures to what extent, for a given item, its relationships with other items pre-
dicted by the system do exist in the gold standard. Reversely, Sensitivity computes to what 
extent, for a given item, its true relationships with other items are predicted by the system 
output. An average over all items d in the dataset gives BCubed Precision and Recall over-
all scores.

For every document d, R and S are computed as:

F
�
() =

1
�

P(|) +
1−�

P(|)

Reliability (d) ≡ Pd� (rg(d, d
�)|rs(d, d�))

Sensitivity (d) ≡ Pd� (rs(d, d
�)|rg(d, d�))
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where rg(d, d�) and rs(d, d�) are relationships between d and d′ in the gold-standard and in 
the system output, respectively. Pd stands for the Probability measured on the sample space 
of all possible documents d.

Two types of binary relationships are considered in the original formulation: priority 
(item 1 is more relevant than item 2) and relatedness (item 1 and item 2 are related). The 
projection of Reliability and Sensitivity to Clustering uses only relatedness relationships, 
and is equivalent to BCubed Precision and Recall. The projections to Ranking and Filtering 
tasks use only priority relationships: Ranking obtains priority relationships from (graded) 
relevance assessments, and Filtering from the binary classes: items in the positive class are 
more relevant than items in the negative class.

In the case of filtering tasks, any positive document has more priority than any negative 
document. Therefore Reliability is computed as the probability of true positives ( P( ∧ ) ) 
multiplied by their ratio of correct relationships (i.e. the probability of irrelevant documents 
within the discarded set, P(¬|¬) ) plus the probability of true negatives ( P(¬ ∧ ¬) ) 
multiplied by their correct relationships (the probability of relevant documents within the 
accepted documents, P(|)):

which is the product of precisions over both the positive and the negative classes:

Replacing  with  , we obtain an analogous result for Sensitivity, which corresponds to the 
product of both recalls:

In the literature, Reliability and Sensitivity are usually combined via the F measure or 
weighted harmonic mean F(R,S). F(R,S) has been used in the context of Online Reputation 
Management evaluation campaigns (Amigó et al. 2012) to evaluate filtering tasks where 
texts containing the (ambiguous) name of an entity of interest have to be classified as refer-
ring to the entity or not. Remarkably, it is the only metric in our study that do not belong to 
any of the three metric families induced by our proposed mutually-exclusive properties. In 
Sect. 6 we will see that, on the other hand, F(R,S) has empirical advantages over the rest of 
metrics in our study.

4.4.1 � Axioms and properties

The Strict Monotonicity Axiom is not satisfied by F(R,S), because Reliability is zero in all 
cases without true positives. If we move a document from the false positives to the true 
negatives, the axiom requires that F(R,S) should increase. In fact, Precision on the negative 
class (which is a component of Reliability) increases; but precision on the positive class 
remains zero and dominates the product (Reliability is zero) and the harmonic mean with 
Sensitivity is also zero, as is also the case of F(P,R).

Reliability and Sensitivity (combined via F measure) are the only metric pair that does 
not satisfy any of our mutually-exclusive properties, and therefore does not fit into any of 
our metric families:

Reliability() =P( ∧ )P(¬|¬) + P(¬ ∧ ¬)P(|)
=P(|)P()P(¬|¬) + P(¬|¬)P(¬)P(|)
= (P() + P(¬))P(|)P(¬|¬) = P(|)P(¬|¬)

Reliability() = Precision × Precision¬

Sensitivity() = P(|)P(¬|¬) = Recall × Recall¬
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•	 Both the zero (everything negative) and placebo (everything positive) outputs, which 
are non-informative, receive the minimal score, because they are not able to identify 
any priority relationship. Therefore, F(R,S) does not satisfy the Non-Informativeness 
Growing Quality of class-oriented metrics.

•	 On the other hand, not every non-informative output receives the same score. Any ran-
dom distribution of documents into  and ¬ produces some correct relationships by 
chance. Therefore, F(R,S) does not belong to the class of informativeness-based met-
rics.

•	 There is no parameter to define the relative weight of classification decisions, and there-
fore the metric does not belong to the utility-based family of measures.

Analytically, we can nevertheless say a couple of things about how F(R,S) handles non-
informative outputs:

•	 Assigning all input documents to the same class (what we call zero and placebo non-
informative baselines) produces a minimum score, given that at least one of the preci-
sion or recall for one of the classes is zero.

•	 Every non-informative output receives a score below 0.25 (see proof in the “Appendix”).

Figure 4 illustrates the behavior of F(R,S) for non-informative outputs. The horizontal axis 
represents the amount of randomly selected documents returned (labeled positive) by the sys-
tem output. The vertical axis represent the F(R,S) score. Each curve corresponds to a system 
output which returns a given ratio of positive labels. As the figure shows, the highest possible 
value of F(R,S) is 0.25, when the random assignment gives half of the items to the positive 
class.

5 � Smoothing measures

As we have seen in the previous section, F-measure and Lam% fail to satisfy the Strict Mono-
tonicity axiom. According to our probabilistic interpretation, the reason why F-measure 
and Lam% fail to satisfy the basic constraints is related to how conditional probabilities are 
estimated over just a few samples. For instance, if a system output  contains 10 positive 

Fig. 4   F(R,S) scores for non-
informative outputs. The hori-
zontal axis represents the amount 
of randomly selected documents 
returned by the system output 
(i.e. labeled as positive). The ver-
tical axis represents the F(R,S) 
score. Each curve represents a 
certain ratio of relevant docu-
ments in the input stream
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documents ( || = 10 ) and they are all irrelevant ( | ∩ | = 0 ), then the true probability of 
finding a relevant document in the output ( P(|) ) should be some unknown value, lower 
than 1

10
 , but not necessarily zero. Actually, zero is the less reliable estimation, because, over 

a large enough dataset, we will likely find, purely by chance, at least one relevant document. 
This reasoning can be applied to other conditional probabilities implicit in measures such as 
recall P(|) or precision P(|).

In general, we assume that the implicit estimation of conditional probabilities in all meas-
ures should be revised when the ratio of relevant documents ( |||T| ) or positive system outputs 
( |||T| ) is extremely low or high.

We now turn to discuss which is the best way of smoothing F-measure and Lam% to make 
them compliant with our formal constraints.

5.1 � Laplace’s correction

A popular smoothing mechanism to is Laplace’s correction. Assuming that all the compo-
nents in the contingency matrix are equally likely (prior knowledge), this method simply adds 
one unit per component. Table 4 shows how Laplace’s correction is applied to the contingency 
matrix.

This correction ensures that all matrix components are always larger than zero. The result-
ing estimation for Precision ( P(|) ) is:

This smoothed F-measure satisfies the Strict Monotonicity Axiom. Unlike the original, non-
smoothed version, now Precision is never zero, and therefore F can always decrease when 
adding irrelevant documents to the output.

All metrics considered in our analysis can be smoothed in a similar way. The smoothed 
Lam% measure also satisfies the axiom, given that the misclassified relevant P(¬|) and 
the misclassified irrelevant documents P(|¬) are never zero. Therefore, it is necessary to 
reduce both in order to optimize the Lam% score. Returning a reduced set of relevant docu-
ments is no longer enough to maximize the score.

A problem of Laplace’s correction is that assuming that all the components in the con-
tingency matrix are equiprobable may not be a good prior. For instance, suppose that rel-
evant documents are extremely unfrequent (e.g. || = 1 and |T| = 100,000 ). Then Laplace’s 
correction assumes that the system is able to capture the unique relevant document by add-
ing one unit in | ∩ | ≡ TP . This assumption leads to an artificial effect of system infor-
mativeness: a smoothed non-informative output becomes an informative output. Therefore, 
the properties which are grounded on the behavior of measures over non-informative out-
puts are not preserved.

Let us consider the zero output ∅ , which is non-informative, to further illustrate this 
problem. Its smoothed version P(|�) does not preserve non-informativeness:

P(|) = | ∩ | + 1

|| + 2

Table 4   Laplace’s correction 
applied to the contingency matrix

Relevant docs. Irrelevant docs.

Returned docs | ∩ | + 1 | ∩ ¬| + 1

Returned docs |¬ ∩ | + 1 |¬ ∩ ¬| + 1
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Recall that non-informative outputs are those for which P(|¬i) = P().
Let us analyze the consequences of applying this smoothing method to the F measure. 

In principle, a class-oriented measure such as F(P,R) prefers non-informative outputs that 
discard less documents, and therefore the F score for T (Placebo) is always higher than the 
score for the Zero system ∅ . But the smoothed Precision and Recall for the non-informa-
tive outputs T (Placebo) and Zero system are:

Therefore, the smoothed Recall is still higher in the Placebo output (   ) than in the Zero 
output:

However, if || < |T|
2

 then the precision for the Zero output is higher:

Therefore, depending on the relative weight of Precision in F ( � value), the zero system 
∅ can outperform the Placebo system T and the Non-Informativeness Growing Quality 
property is not preserved.

A similar problem occurs when we apply Laplace’s correction over the Lam% measure. 
Adding one element to each component in the contingency matrix may transform a non-
informative output into an informative output, achieving a Lam% score different than the con-
stant value that any non-informative output should achieve (0.5). Therefore, the non-informa-
tiveness fixed quality property that characterizes Lam% is not preserved.

5.2 � Non‑informative smoothing

In order to comply with the strict monotonicity axiom while preserving the other properties of 
metrics, we propose to assume non-informativeness as prior knowledge. We will use it here to 

P(|�) =
|� ∩ | + 1

|�| + 2
=

1

2
≠ P()

RecallSmooth(�) =
TP + 1

TP + 1 + FN + 1
=

|� ∩ | + 1

|� ∩ | + 1 + |¬� ∩ | + 1

=
|� ∩ | + 1

|� ∩ | + 1 + | ∩ | + 1
=

1

|| + 2

RecallSmooth( ) =
TP + 1

TP + 1 + FN + 1
=

| ∩ | + 1

| ∩ | + 1 + |� ∩ | + 1
=

|| + 1

|| + 2

PrecisionSmooth(�) =
TP + 1

TP + 1 + FP + 1
=

|� ∩ | + 1

|� ∩ | + 1 + |� ∩ ¬| + 1
=

1

2

PrecisionSmooth( ) =
TP + 1

TP + 1 + FP + 1
=

| ∩ | + 1

| ∩ | + 1 + | ∩ ¬| + 1
=

|| + 1

|T| + 2

|| + 1

|| + 2
>

1

|| + 2

|| < |T|
2

⟹ || < |T| + 2

2
− 1 ⟹

|| + 1

|T| + 2
<

1

2
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modify Laplace’s correction, but the same reasoning can be applied to other smoothing tech-
niques (Agresti and Hitchcock 2005).

Non-informativeness implies that the discrete variables (or sets)  and  are independent of 
each other. Therefore we can add the joint probability to each matrix component in this way:

Relevant docs. Irrelevant docs.

Returned docs | ∩ | + P()P() | ∩ ¬| + P(¬)P()

Returned docs |¬ ∩ | + P()P(¬) |¬ ∩ ¬| + P(¬)P(¬)

The resulting computation for Precision P(|) is:

P() represents the prior knowledge about P(|) . That is, a priori, the system is non-
informative and the ratio of relevant documents in the output corresponds to the ratio of 
relevant documents in the input stream. On the other hand, P() represents the weight 
assigned to the prior knowledge. Assigning the same weight to the prior knowledge as 
Laplace’s correction, we obtain:

Note that this value is equivalent to Laplace’s correction when P() = 1

2
 , slightly larger if 

P() grows, an slightly lower if P() is lower than 1
2
.

Now, given a non-informative system ¬i , we have the following smoothed conditional 
probability estimation, which preserves the nature of a non-informative output:

Therefore, the condition P(|¬i) = P() is preserved and the measure properties are not 
affected.

We apply the same procedure to all the conditional probabilities:

The non-informative smoothed versions (i.e. Fsm¬i
 or Lam%sm¬i

 ) are computed in the same 
way as the original measures, but using the informativeness-based smoothing procedure 
when estimating the previous conditional probabilities.

P(|) = | ∩ | + P()P()

|| + P()

P(|) = | ∩ | + 2P()

|| + 2

P(|¬i) =
|¬i ∩ | + 2P()

|¬i| + 2
=

|T|P(¬i)P() + 2P()

|¬i| + 2

=
P()(|T|P(¬i) + 2)

|¬i| + 2
=

P()(|¬i| + 2)

|¬i| + 2
= P()

P(|) = | ∩ | + 2P()

|| + 2
= 1 − P(¬|)

P(|¬) = | ∩ ¬| + 2P()

|¬| + 2
= 1 − P(¬|¬)

P(|) = | ∩ | + 2P()

|| + 2
= 1 − P(¬|)

P(|¬) = |¬ ∩ | + 2P()

|¬| + 2
= 1 − P(¬|¬)
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Table  5 shows the properties and constraints satisfied by measures and their 
smoothed versions. The Laplace smoothed version is represented by the subindex XsmL . 
The subindex XsmN represents the informativeness-based smoothing. As the table shows, 
Laplace’s smoothing fixes compliance with the basic axiom, but at the cost of breaking 
the natural properties of measures. Informativeness-based smoothing also makes meas-
ures compliant with monotonicity, but also preserves the way they handle non-informa-
tive outputs.

In conclusion, if we expect very large or very small sets of positive documents in the 
system output, or a very large fraction of relevant documents in the dataset, we need to 
apply a smoothing method to preserve strict monotonicity, and we can apply our informa-
tiveness-based smoothing in order to preserve the original properties of metrics.

6 � Experiments

In addition to the formal analysis, which is the primary contribution of our work, we want 
to further characterize and compare the behavior of metrics empirically. First of all, we 
want to study the empirical behavior of the smoothed versions of the F-measure and Lam% 
that we have proposed purely on formal arguments. Then we will compare measures in 
terms of their strictness, their robustness across data sets, and in terms of how they rank 
systems.

Table 5   Basic constraints, properties and measures

Axiom Properties

Strict monotonicity Absolute 
weighting

Non-inf. fixed 
quality

Non-inf. 
growing 
quality

Utility measures
Weighted Accuracy ✔ ✔ ✗ ✗
Utility ✔ ✔ ✗ ✗
Informativeness measures
Lam% ✗ ✗ ✔ ✗
Odds ✗ ✗ ✔ ✗
Lam%

smL
✔ ✗ ✗ ✗

Odds
smL

✔ ✗ ✗ ✗
Lam%

smN
✔ ✗ ✔ ✗

Odds
smN

✔ ✗ ✔ ✗
Phi, MAAC, KapS, Chi, MI ✔ ✗ ✔ ✗
Class-oriented measures
F measure ✗ ✗ ✗ ✔
F
smL

✔ ✗ ✗ ✗
F
smN

✔ ✗ ✗ ✔
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6.1 � Experimental setting

For our experiments, we have employed the evaluation corpus and system results from 
the second task in the WePS3 competition, Online Reputation Management (Amigó et al. 
2010). Given a company name and a stream of tweets containing the name, the task con-
sisted of classifying Twitter entries (Krishnamurthy et al. 2008) as relevant (related) when 
they refer to a certain company and irrelevant (unrelated) otherwise.

The test set includes tweets for 47 companies and the training set comprises 52 com-
pany names. For each company, around 400 tweets were retrieved using the company 
name as query. The training and test corpora were crowdsourced using Mechanical Turk 
(Le et al. 2010) using five annotations per tweet with reasonable inter-annotator agreement 
rates. The ratio of related tweets per company name varies widely across companies, which 
suits our purposes well. The statistics are described in Amigó et al. (2010). We will refer 
to each test case (tweets for a company) as an input stream or topic. Five research teams 
participated in the competition, and sixteen runs were evaluated. The organizers included 
two naive baseline systems: the placebo system (all tweets are about the company) and its 
opposite (no tweet is about the company).

6.2 � The effect of smoothing

We want to investigate empirically what is the effect of applying non-informative smooth-
ing to the evaluation measures, and how it compares to the standard Laplace’s correction.

Fig. 5   The effect of smoothing Accuracy, Utility, F measure and Lam% using the informativeness-based 
correction. Each dot corresponds to a system output for one test case (one company name)
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Figure  5 shows the relationship between smoothed and non-smoothed measures. We 
have inverted the Lam% values (i.e. we use 1-Lam%) for an easier interpretation of the 
graph. In the case of Utility, we have used its normalized version (Hull 1998; Hoashi et al. 
2000) in order to have comparable results across test cases. Each dot represents a single 
system output for a single test case (a company name). The horizontal axis represents the 
original measures and the vertical axis represent the smoothed versions using the Laplace’s 
technique. Note that we can apply the smoothing procedure to any measure which is com-
puted from the contingency matrix, including Accuracy or Utility.

in the case of Utility-based metrics (Accuracy and Utility in the figure), the smooth-
ing has little practical impact. Accuracy, in fact, does not change for any system output. 
In the case of Utility, there are only a few cases where smoothed utility gives a slightly 
lower score. The reason is that the probabilities are not computed over single classes, and 
therefore the imbalances in the data do not have a significant effect on the probability 
computation.

With respect to the F measure, the overall effect is similar to Utility: in just a few cases, 
the smoothed version gives a slightly lower score. The only exception is the dot marked as 
C, where the smoothed version is around 10% lower than the original F score.

The sharpest difference occurs in the case of Lam%. In general, the correlation is 
almost perfect; but in the extreme values of Lam% the situation changes drastically. When 
Lam%=1 (region B in the figure), its smoothed version can be anywhere from 1 to near 
0.5 (which is the score for non-informative outputs). Recall that Lam% overscores system 
outputs without misclassified irrelevant documents P(|¬) = 0 even if not all relevant 
documents appear in the output. The smoothed version solves this, and therefore some out-
puts that receive a high Lam% score are penalized by the smoothed version. Reversely, 
when Lam%=0 (region A in the figure) the smoothed version can be anywhere from 0.1 to 
almost 0.5.

Figure  6 shows that Reliability and Sensitivity also modify their behavior when 
smoothed. Although the correlation is in general almost perfect, outputs with a perfect 
F(R,S) score can now receive values from 1 to almost 0.3.

Figure 7 compares the use of Laplace’s correction with our informativeness-based cor-
rection. In the case of F measure, the overall correlation between both methods is high, but 
some outputs are penalized by the informativeness-based correction (for instance dots A 
and B in the figure). In these cases, the system returns only a few documents ( || << |T| ), 
and there are only a few relevant documents in the dataset ( || << |T| ). Therefore, 
Laplace’s correction overscores the output by adding one element in the true positive 

Fig. 6   The effect of smooth-
ing Reliability and Sensitivity 
(F(R,S)) using the informative-
ness based correction. Each dot 
corresponds to a system output 
for one test case (one company 
name)
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component of the contingency matrix. The informativeness-based correction takes into 
account the ratio of relevant documents in the input stream, and prevents such overscoring.

The sharpest differences between both corrections appear in the case of Lam%. In some 
cases, the informativeness-based correction rewards systems: for instance, if there is a 
large amount of relevant documents in the input stream ( || T  ) and the output size is low 
( || << |T| ), the informativeness-based correction assumes less misclassifications than 
Laplace’s correction (e.g. dot C in the figure). On the other hand, if there are no relevant 
documents in the small positive output and the ratio of relevant documents is low, then 
the informativeness-based correction assumes more misclassifications than the original 
Laplace correction (dots D in the figure). In this cases, the informativeness-based correc-
tion penalizes more than the Laplace correction.

Overall, our recommendation is to use non-informative smoothing in cases where the 
classes in the test cases are highly imbalanced, to prevent the few cases where metrics can 
overestimate or understimate errors.

6.3 � Strictness

In this section we follow the definition and estimation of strictness given by Amigó et al. 
(2013). Given a set of measures, one of them is stricter if it is a lower bound on the qual-
ity assessments of the other measures; in other words, if it penalizes systems for all flaws 
detected by the other measures. Consider, for instance, Accuracy and Lam%. Depending 
on the dataset, sometimes a high Accuracy score can be achieved just by assigning every 
sample to the most frequent class. Informativeness-oriented measures such as Lam%, on 
the other hand, penalize such strategy. Reversely, high Lam% scores can be achieved by 
minimizing the false negative or the false positive sets; for instance, returning only a few 
high-confidence samples as positive (see Sect. 4.2). With respect to this strategy, Accuracy 
would be stricter, as it penalizes such behavior. A measure is stricter than Accuracy and 
Lam% if it penalizes both types of wrong system behavior.

Within our set of measures, we say that a measure is strict if it penalizes anything that at 
least other (reasonable) metric penalizes. The effect is that a high score with a strict meas-
ure implies a high score according to the rest of measures is achieved.

Fig. 7   Laplace’s correction versus informativeness-based correction for F measure and Lam%
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Strictness means that a highly ranked output according to the metric is highly ranked 
according to any other measure. Following (Amigó et al. 2013), in order to compute the 
strictness of the metric m with respect to another metric m′ , we (1) rank all outputs from all 
topics according to m and m′ . (2) Then, we select the top outputs according to the measure 
m. (3)  We consider the lowest ranking position according to the other metric m′ within 
these outputs. (4)  The global strictness of each measure is the minimum strictness with 
respect to all the other of metrics. Formally, being  the set of outputs in all topics and 
being rank(m, o) the ranking position of the output o regarding the measure m:

That is, the top, middle and bottom ranks are 1, 0.5 and 0 respectively. The set of top 
ranked outputs according to m is:

The strictness of m with respect to other metric m′ is:

and the overall strictness of m given a metric set  is:

Figure 8 shows the results. Each curve represents the strictness of a metric computed 
using the top n% values of each system output. We have considered informativeness-based 
smoothing variants. As the figure shows, R and S are substantially stricter than other met-
rics above 80% of the top ranked outputs. This means that the minimum ranking position 
for these outputs according to other metrics is higher than in the case of the other metrics. 
The second strictest metric is Lam%, which belongs to the informativeness-based measure 
family. Note that when the input stream is not well balanced, then the F measure and utility 
based metrics overscore non-informative outputs, which makes them less strict than R, S 
and Lam%.

In order to better understand the strictness of R, S with respect to the other metric, in 
Fig. 9 we have compared Reliability and Sensitivity values (combined with the F measure) 

rank(m, o) = Po�∈(m(o) ≥ m(o�))

top(m, th) = {o ∈ O|rank(m, o) ≥ th}

Strictnessth(m,m
�) = mino∈top(m,th)(rank(m

�, o)))

Strictness(m) = minm�∈(Strictness(m,m�))

Fig. 8   Strictness of measures 
computed using the top n% 
system outputs in the ranking 
produced by each measure
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with the values of other salient measures. Each dot represents a system output, and all 
outputs from all systems in the dataset have been considered.9 Note that F(R,S) is strictly 
lower than smoothed Lam%, accuracy and F(P,R) for virtually every system and every test 
case in the dataset. Only in the case of utility there is an exception in the area of low F(R,S) 
values (0-0.4), where there seems to be little correlation between both metrics.

We can provide an analytical explanation for the behavior of F(R, S) with respect to the 
other metrics. First, a low precision or recall in the positive class directly implies a low R 
and S:

If the output is non-informative (and then Lam% is low, as well as any other measure in its 
family), then we cannot have a high precision and recall of discriminative relationships. 
For instance, Lam% is grounded on the ratio of misclassified documents P(|¬) and 
P(¬|) . Then:

And finally, if most documents are false positives or false negatives (which implies a low 
Accuracy or Utility) then the ratio of correct relationships from all documents necessarily 
decreases:

P(|) << 1 ⟹ P(|)P(¬|¬) << 1 ⟹ F(R, S) << 1

P(¬|) >> 0 ⟹ P(|) << 1 ⟹ F(R, S) << 1

Fig. 9   F(R,S) values for every (topic,system) pair compared to other metrics

9  For easier comparison, the lam% scale has been reversed from 0 to 1.
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Given the low correlation between filtering measures, strictness can sometimes be a highly 
desirable property. If a task / test collection does not prescribe how the output of the filter-
ing system is going to be used, obtaining a high value with a strict metric guarantees that 
the system can be used in different usage scenarios.

6.4 � Robustness across data sets

The robustness of a metric is its ability to return consistent results across different data sets. 
In combination with other metric properties, it can be a valuable property, because it con-
tributes to the predictive power of an experimental outcome.

Our last experiment is an empirical assessment of the robustness of measures across 
datasets/test cases. As we discuss in Sect. 7, there are many ways to meta-evaluate meas-
ures according to its robustness: for instance, robustness to noise, analysis of variance 
(ANOVA), consistency or discriminacy. Here we follow the meta-evaluation criterion of 
Amigó et al. (2013), which consists of measuring the correlation of measure system rank-
ings across topics.

For this, we compute the Spearman correlation10 between system rankings obtained 
over 1000 pairs of randomly selected topics. Being Qm(o, t) the score according to the 
measure m for the output o in the topic t:

The results are shown in Fig. 10. The most remarkable result is the large difference between 
the robustness of F(R,S) (Reliability/Sensitivity) with respect to the rest of measures. 

TP + TN << T ⟹ P(|)P() + P(¬|¬)P(¬) << 1

⟹ (P() << 1 ∧ P(¬|¬) << 1) ∨ (P(¬) << 1 ∧ P(|) << 1)

⟹ P(|) << 1 ∨ P(¬|¬) << 1 ⟹ F(R, S) << 1

Robustness(m) = corro∈(Qm(o, t),Qm(o, t
�))

Fig. 10   Robustness of measures

10  Initially we applied the Pearson coefficient. However, the results were not consistent, due to scaling 
issues (non-linear correlations).
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Utility-based measures have low robustness, because they are very sensitive to the charac-
teristics of the dataset (in particular, to the ratio of relevant documents in the input). And 
class-oriented measures (F measure) tend to be more robust than the informativeness-based 
measure Lam%.

With respect to the effect of the smoothing techniques, there seems to be no consistent 
improvement with respect to the original measures.

6.5 � Ranking systems

Finally, we compare the system scores for each of the metrics,in order to illustrate how a 
set of systems can be ranked in an evaluation campaign. Table 6 shows all the runs in the 
WEPS-3 evaluation campaign ranked by Reliability and Sensitivity. Measures from other 
families are also included in the table. We have included a Random baseline system which 
assigns randomly half of the documents to the positive class.

All measures agree on which is the best system (LSIR.EPFL 1). Beyond that, the cor-
respondence between rankings is lower than would be expected for metrics which have 
the same purpose. For instance, the Pearson correlation between the F measure and the 
Accuracy rankings is 0.5. The reason is that, by definition, class-oriented metrics penalize 
systems that are close to the zero output. For instance, SINAI 1 achieves a high accuracy 
but a low F measure.

An interesting question is which systems are better than a non-informative output. For 
each metric (column), figures in boldface are the scores that improve all non-informative 
baselines for that metric. According to the F measure over Precision and Recall, there is 
only one system that improves the upper bound of non-informative outputs. In other words, 
if we consider that the quality of a non-informative output is correlated with its size (Non-
informativeness growing property) then most systems do not improve the Placebo baseline. 
According to Lam%, most systems improve the fixed score for non-informative outputs 
(0.5). Therefore, if we consider that any non-informative output is equally useless, then 
all systems represent an improvement over non-informative baselines. According to Accu-
racy, some systems improve the non-informative outputs and some systems do not. There-
fore, if we consider that any correct classification decision is equally important (Accuracy) 
some approaches are better than non-informative outputs. Our conclusion is that measures 
are complementary, and that understanding the assumptions of each measure is crucial to 
interpret their results.

6.6 � Wrap up

The outcome of our experiments provides two practical consequences on the use of filter-
ing evaluation measures: (1) although smoothed versions are highly correlated with the 
original measures, using them avoids potential over and underestimations of the quality of 
systems in cases where the classes are highly imbalanced; and (2) Reliability and Sensitiv-
ity is the metric pair with the highest strictness and robustness of all measures considered. 
Therefore, if a use case does not clearly point to one of the three measure families (or if the 
output of the filtering system is going to be used in multiple scenarios), Reliability/Sensi-
tivity should be the preferred metric. In any case, studying the results of different metrics 
provides additional insights into the behavior of systems.
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7 � Related work

In this section, we first review related work on meta-evaluating classification measures, and 
then we also briefly review related work on meta-evaluation based on formal constraints 
for other tasks.

7.1 � Measure analysis for binary classification problems

7.1.1 � Sebastiani’s axioms

Possibly, Sebastiani’s work (2015) is the closest in spirit to our analysis. The author pro-
posed a set of basic axioms to be satisfied by measures. The first one is the Strict Mono-
tonicity axiom, which is considered in our work as the main basic constraint for measures. 
Sebastiani proved that the traditional F measure (on Precision and Recall) does not satisfy 
this. In this case, our contribution builds on this analysis, and proposes a technique that 
leads to a smoothed version of the F measure that satisfies the monotonicity axiom and, at 
the same time, preserves its other analytical properties.

His second axiom, (Continuous Differentiability), states that the evaluation measure 
must be continuous and differentiable over the true positive and true negative. We did not 
consider this aspect in our study. However, according to the author, measures fail to satisfy 
it for the case of zero values in the contingency matrix. Something similar happens with 

Table 6   Systems in WEPS-3 evaluation campaign ranked by smoothed F(R,S)

For each column, figures in boldface are results that improve all non-informative baselines (random, pla-
cebo, zero output)

System Accuracy Utility Lam% smoothed lam% F Smoothed F Smoothed 
F(R,S)

LSIR.EPFL 1 0.83 0.64 0.71 0.72 0.63 0.63 0.25
ITC-UT 1 0.75 0.52  0.63 0.64 0.49 0.49 0.2
ITC-UT 3 0.67 0.41 0.6 0.61 0.41 0.4 0.18
UVA 1 0.56 0.22 0.54 0.53 0.36 0.36 0.17
Random 0.5 0.21 0.46 0.49 0.38 0.38 0.15
KALMAR 4 0.46 0.34 0.57 0.56 0.46 0.46 0.15
ITC-UT 2 0.73 0.53 0.64 0.63 0.51 0.51 0.15
ITC-UT 4 0.64 0.42 0.61 0.6 0.43 0.42 0.14
KALMAR 5 0.44 0.35 0.58 0.56 0.47 0.47 0.13
KALMAR 2 0.44 0.29 0.55 0.54 0.43 0.43 0.13
KALMAR 3 0.4 0.26 0.56 0.55 0.39 0.39 0.12
SINAI 1 0.63 0.37 0.64 0.64 0.29 0.29 0.11
KALMAR 1 0.48 0.31 0.56 0.52 0.42 0.42 0.1
SINAI 3 0.46 0.31 0.5 0.5 0.36 0.36 0
SINAI 5 0.51 0.32 0.5 0.5 0.28 0.28 0
SINAI 4 0.61 0.3 0.5 0.5 0.17 0.17 0
SINAI 2 0.56 0.19 0.5 0.5 0 0 0
Zero output 0.57 0.19 0.5 0.5 0 0 0
Placebo 0.43 0.4 0.5 0.5 0.53 0.53 0
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the third and fourth axioms Strong Definiteness and Weak Definiteness, which state that the 
measures must be defined for any gold standard or system output. The four axioms are sat-
isfied by the F measure when interpreting it in probabilistic terms and applying smoothing 
techniques. Apart from this, we can consider that the third and four constraints are inferred 
from the Strict Monotonicity axiom. Notice that the axiom states a comparison of scores 
which must be definable for every system output and gold standard.

The fifth axiom sets a restriction about the measure value range. We did not cover this 
aspect of measures in our work, given that we focus on the intrinsic measure properties 
rather than on scale aspects. Interestingly, the sixth and seventh axioms proposed by Sebas-
tiani are equivalent to our Non-Informativeness Fixed Quality property. That is, a random 
or trivial classifier must achieve the same score regardless the gold standard. As we have 
argumented, we do not think this is a basic axiom (something that all filtering metrics 
should hold), but a property that helps characterizing a family of metrics. For instance, 
in the case where the positive class is going to be inspected by online reputation experts, 
the (non-informative) option of labeling everything as positive is much harmless than the 
(equally non-informative) option of labeling everything as negative: in the first case, the 
result is a substantial increase in the manpower needed to examine the positive class; but, 
in the second case, performing the reputation analysis simply becomes impossible.

7.1.2 � Sensitivity and robustness

One criterion to compare evaluation measures is sensitivity in Analysis of Variance (Brad-
ley 1997). Along this line, Ling presented a rigorous definition of consistency and dis-
criminacy (Ling et al. 2003). These meta-evaluation criteria focus on the ability to capture 
slight differences between classifiers. In Ferri et al. (2009), measures are meta-evaluated in 
terms of robustness with respect to noise in system outputs (which is introduced artificially 
in their experimentation). In general, all these meta-evaluation criteria are oriented to the 
statistical consistence of evaluation measures. In contrast, our approach focuses on clarify-
ing their analytical behavior and their underlying assumptions.

7.1.3 � Grouping measures by correlation to each other

Other studies categorize measures empirically by computing their mutual correlation (Ferri 
et al. 2009; Caruana and Niculescu-Mizil 2005). An interesting result is that, in general, 
measures tend to be less correlated to each other in imbalanced data sets. This observation 
highlights the importance of selecting an appropriate measure when the ratio of relevant 
documents ( P() in our notation) varies across test cases.

7.1.4 � Ferri’s measure categorization

Ferri et al. (2009) grouped classification evaluation measures in three categories. First, 
some measures are based on how well the system ranks the samples (e.g ROC or AUC). 
We have excluded them from our study, as we focused on the evaluation of binary, dis-
crete classification outputs, where the system must predict the optimal classification 
threshold. Ferri et al. distinguish between probabilistic measures and measures based on 
a qualitative understanding of errors. The probabilistic measures consider the deviation 
from the true probability of errors. These measures are closely related to our family of 
informativeness-based measures. The qualitative measures include both Utility based 
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metrics and class-oriented measures. Unlike in our study, Ferri et al. do not provide a 
formal distinction between measure families.

7.1.5 � Caruana’s measure categorization

In Caruana and Niculescu-Mizil (2005) another measure categorization is proposed. 
One family is ”threshold measures”, which groups all our three measure families, and 
the other two sets compare the system versus the reference ranking and therefore, they 
are excluded from our study. Therefore, our work can be seen as a formal investigation 
of the subfamilies in the first group proposed by Caruana and Niculescu-Mizil (2005).

7.1.6 � Solokova’s invariance properties

Solokova proposed a formal categorization of threshold measures (Sokolova 2006). She 
focused on the invariance of measures under a change in the contingency matrix (true 
positive, false positive, etc.). These properties are:

•	 Invariance under the exchange of true positive (TP) with true negative (TN) and 
false negative (FN) with false positive (FP). Absolute weighting based measures are 
invariant under certain weighting schemes. Measures from the other two families are 
in general non invariant.

•	 Invariance under the change in TN when all other matrix entries remain the same. 
According to the authors, all the precision/recall based measures are invariant under 
the change of TN. This property characterizes the class-oriented measure fam-
ily. This is closely related to our Non-Informativeness Growing Quality property. 
Intuitively, changing the size of a non-informative output |¬i| produces a trade-
off between components in the contingency matrix. If the measure is not sensitive 
to one of the components, then increasing the non-informative output size can be 
always beneficial.

•	 Invariance under the change in FP when all other matrix entries remain the same. 
The non-invariance is necessary if the measure satisfies the Strict Monotonicity  
axiom.

•	 Invariance under the classification scaling: 

 where k1, k2 > 0 . This invariance does not hold for any of our measure families. In fact, 
according to the author, this invariance is only satisfied by Precision ( P(|) ), which is 
a partial measure that does not satisfy the Strict Monotonicity  axiom.

7.1.7 � Wrap up

In short, there exists in the state of the art a clear distinction between threshold measures 
for discrete binary outputs versus ranking evaluation measures. The Utility and Accuracy 
measures have been distinguished from other binary measures, but not formally. There 

TP ⇒ k1TP TN ⇒ k2TN

FP ⇒ k1FP FN ⇒ k2FN
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exists an informal category based on informativeness (probabilistic measures). And there 
exists also an indirect property that discriminate class-oriented measures (invariance over 
changes in TN).

The main contribution of our analysis with respect to the state of the art is to establish 
a framework, based on the concept of informativeness, which formally distinguishes three 
families of measures and clarifies the basic assumptions that define each measure set. A 
strength of our categorization scheme is that how measures evaluate non informative out-
puts determines measure disagreement as well as measure families.

7.2 � Formal constraints for information access problems

Formal constraints as a tool to analyze and categorize evaluation metrics have previously 
been used in other information access problems: (Amigó et al. 2009) proposed four con-
straints for extrinsic clustering evaluation measures, which are only satisfied by the Bcubed 
precision & recall metric pair. Amigó et al. (2013) postulates five constraints for document 
retrieval evaluation measures which no metric in the state of the art satisfies, and propose a 
new metric pair, Reliability and Sensitivity, which comply with all constraints and can also 
be applied to tasks that mix retrieval, clustering and filtering aspects. Busin and Mizzaro 
(2013) also introduces a wide range of constraints that cover many aspects of the document 
retrieval problem, in an attempt to characterize document retrieval evaluation measures. 
Amigó et al. (2018) proposes a measure to evaluate search results diversification (Rank-
Biased Utility), designed to comply with a set of formal constraints for the problem of 
search with diversity. The metric takes into account redudancy and user effort associated to 
the inspection of documents in the ranking.

Besides the analysis of evaluation measures, formal constraints have also been used 
to analyze and improve document retrieval models.11 For instance, Fang et  al. (2004) is 
a seminal work that postulates a number of constraints on tf*idf weights, which lead to a 
reformulation of some popular weighting schemes—such as okapi weighting—that result 
in better document retrieval effectiveness (Lv and Zhai 2011); proposes two constraints 
to lower-bound term frequency normalization (Fang and Hui 2006; Fang 2008); introduce 
formal constraints to model semantic term matching and query expansion (Clinchant and 
Gaussier 2011); propose a constraint on document frequency for pseudo-relevance feed-
back models; and (Karimzadehgan and Zhai 2012) introduces formal constraints to model 
translation estimations for document retrieval based on statistical translation models. 
Recently, a SIGIR workshop on the topic (Axiomatic Thinking for Information Retrieval 
and Related Tasks) (Amigo et al. 2017) has contributed to highlight the relevance of axi-
omatic thinking in several areas of Information Retrieval.

In general, formal constraints have proved to be a powerful analysis tool in several 
aspects of Information Access problems, which starts from foundational aspects rather than 
circumstantial empirical observations, and ultimately provide qualitative and quantitative 
improvements on the systems.

11  See Fang and Zhai (2014) for an extensive discussion on the topic.
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7.3 � Wrap up

In summary, the main contributions of this paper with respect to the state of the art are: 
(1) a formal analysis and categorization of measures into families that starts from a proba-
bilistic interpretation, which relates them with their suitability for particular user scenarios; 
(2)  a proposal of smoothing techniques in order to keep the basic properties of metrics; 
(3) an empirical study of metrics based on their strictness (a good result with a strict meas-
ure ensures a good results with respect to other measures) and robustness; and (4) based on 
our formal and empirical results, a set of best-practice recommendations to select the most 
appropriate measure in a given application scenario.

8 � Conclusions

The current variety of approaches to document filtering evaluation may be not only the 
consequence of the different nature of the various filtering tasks, but also a reflection of 
the lack of a systematic, analytical comparison of the properties of evaluation metrics. Our 
work attempts to fill this gap by presenting a comparison of measures based on formal con-
straints and properties.

We have relied on only one basic constraint (an axiom to be satisfied by any valid evalu-
ation measure) that was first proposed by Sebastiani, the strict monotonicity constraint; 
and we have proved that not all popular measures satisfy it. We have also shown that non-
compliant measures (such as Precision/Recall and Lam%) can be modified, under a proba-
bilistic interpretation, to comply with the monotonicity constraint while preserving their 
properties. Our smoothing technique replaces the equiprobability assumption of Laplace’s 
correction with a probability based on the input distribution.

Our analysis also shows that the main difference between metrics can be explained in 
terms of how non-informative outputs are evaluated. As a result, many evaluation measures 
for document filtering can be grouped in three families, each satisfying one out of three 
formal properties which are mutually exclusive. Utility-based measures reward good deci-
sions in the classification process, stating an absolute weight for relevant versus irrelevant 
documents. Informativeness-based measures penalize good decisions which are taken by 
chance, considering that any non-informative output is equally useless. Finally, Class-ori-
ented measures penalize reduced outputs (low recall), considering that the quality of non-
informative outputs correlates with its size (in other words, doing nothing is better than 
randomly discarding information).

Finally, we have also studied the Reliability/Sensitivity metric pair, which does not fit 
into any of the three families, and has two distinctive empirical properties: (1) it is stricter 
than all other metrics in our study: a high Reliability/Sensitivity score ensures high scores 
with all other measures; and (2) it is more robust to changes in the set of test items than all 
other metrics in our study.

Our results do not prescribe any particular measure as the best option for every con-
ceivable document filtering scenario. But, from the results of our formal analysis and our 
experimentation, a reasonable methodology to select and adequate measure for a particular 
document filtering scenario would be the following:

1.	 Decide how non-informative outputs should be evaluated, and select a measure in the 
appropriate family accordingly.
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2.	 If such decision cannot be made (because the scenario is too general, for instance) com-
pare results of measures from each of the families, and use the Reliability/Sensitivity 
metric pair as a stricter evaluation criterion.

3.	 If a highly unbalanced input is expected, compute measures in probabilistic terms with 
the non-informative smoothing mechanisms proposed in this paper, in order to avoid a 
biased analysis.
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Appendix: Formal proofs

Proof  Utility satisfies the Absolute Weighting property
The characteristic of Utility-based metrics in general, and accuracy in particular, is that 

they assign an absolute weight to relevant (versus non relevant) documents in the output 
regardless of the output size. For instance, in the case of the Utility measure U

�
 , being ¬i 

and  �
¬i

 two non-informative outputs:

Therefore, if � =
P(¬)

P()
 then the score of non-informative outputs is fixed. If 𝛼 >

P(¬)

P()
 , the 

score of non-informative outputs grows with its size, and reversely if 𝛼 <
P(¬)

P()
 . In sum-

mary, the value of the � parameter determines the relative score of two non-informative 
outputs. 	�  □

Proof  Weighted Accuracy satisfies Absolute Weighting
Note that, although Accuracy can be considered a Utility-based measure, it does not 

directly satisfy the Absolute Weighting property, given that its definition does not include 
any parameter. However, the weighted accuracy proposed in Androutsopoulos et al. (2000) 
does satisfy this property, and it is a generalization of Accuracy (see proof in this section).

If we derive over P(¬i) we obtain:

U
�
(¬i) = �P(¬i|)P() − P(¬i|¬)P(¬)

= �P(|¬i)P(¬i) − P(¬|¬i)P(¬i) = P(S¬i)(�P() − P(¬))

Weighted Accuracy (¬i) =
�P(¬i|)P() + P(¬¬i|¬)P(¬)

�P() + P(¬)

=
�P(¬i|)P() + P(¬¬i)P(¬)

�P() + P(¬)

=
�P(¬i)P() + (1 − P(¬i))P(¬)

�P() + P(¬)

=
�P(¬i)P() + P(¬) − P(¬i)P(¬)

�P() + P(¬)



615Information Retrieval Journal (2019) 22:581–619	

1 3

Therefore, the score of a non-informative output grows or decreases with its size depending 
on whether � is larger or smaller than 1

2P()
 . 	�  □

Proof  Lam% satisfies Non-Informativeness Fixed Quality
Given a non informative output ¬i , then:

But given that:

The two components in the numerator cancel out each other:

Therefore, given any non-informative output  ′ , the fixed resulting score is 0.5. 	�  □

Proof  Phi satisfies Non-Informativeness Fixed Quality

Phi is always zero if ¬i is non informative (see proof in this section), because then the two 
numerator components cancel each other:

And therefore Phi is zero. 	�  □

Proof  Odds Ratio satisfies Non-Informativeness Fixed Quality
If ¬i is non informative:

	�  □

�P() − P(¬)

�P() + P(¬)
=

�2P() − 1

�P() + P(¬)

lam%(¬i) = logit−1
(
logit(P(¬i)) + logit(P(¬¬i))

2

)

logit(P(¬i)) =log

(
P(¬i)

1 − P(¬i)

)
= log

(
1 − P(¬¬i)

P(¬¬i)

)

= − log

(
P(¬¬i)

1 − P(¬¬i)

)
= −logit(P(¬¬i))

logit(P(¬i)) + logit(P(¬¬i)) = −logit(P(¬¬i)) + logit(¬P(¬i)) = 0

Phi =
TP.TN − FP.FN

√
(TP + FN).(TN + FP).(TP + FP).(TN + FN)

TP.TN =P(¬i|)P()P(¬¬i|¬)P(¬) = P(¬i)P()P(¬¬i)P(¬)

=P(¬i|¬)P()P(¬¬i|)P(¬)
=P(¬i|¬)P(¬)P(¬¬i|)P() = FP.FN

Odds(¬i) =
TP.TN

FN.FP
=

P(¬i|)P()P(¬¬i|¬)P(¬)
P(¬i|¬)P(¬).P(¬¬i|)P()

=
P(¬i)P()P(¬¬i)P(¬)

P(¬i)P(¬)P(¬¬i)P()
= 1
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Proof  Macro Average Accuracy satisfies Non-Informativeness Fixed Quality

If ¬i is non-informative then:

	�  □

Proof  Kappa statistic satisfies Non-Informativeness Fixed Quality
The Kappa statistic is defined as:

where Random Accuracy represents the Accuracy obtained randomly by an output with 
size || . In our probabilistic notation, Kappa can be expressed as:

If ¬i is non informative then P(¬i|) = P(¬i) , and the formula returns zero. 	�  □

Proof  Chi-square satisfies Non-Informativeness Fixed Quality

If an output ¬i is non informative then:

	�  □

Proof  The F measure of Precision and Recall for the positive class satisfies non-informa-
tiveness growing quality

The F measure for a non-informative output grows with its size (i.e. with the ratio of 
items labeled as positive by the system), because

MAAc(¬i) =

TP

TP+FN
+

TN

TN+FP

2
=

P(|) + P(¬|¬)
2

MAAc(¬i) =
P(¬i|) + P(¬¬i|¬)

2
=

P(¬i) + P(¬¬i)

2

=
P(¬i) + 1 − P(¬i)

2
=

1

2

KapS() =
Accuracy − Random Accuracy

1 − Random Accuracy

KapS() =
(P(|)P() + P(¬|¬)P(¬)) − (P()P() + P(¬)P(¬))

1 − (P()P() + P(¬)P(¬))

Chi() =
(| ∩ |.|¬ ∩ ¬| − | ∩ ¬|.|¬ ∩ |) + |T|

|| + || + |¬| + |¬|

=
(P(|).P(¬|¬) − P(|¬).P(¬|)) + 1

2

Chi(¬i) =
(P(¬i)P(¬¬i) − P(¬i)P(¬¬i) + 1

2
=

1

2

F
�
(¬i) = F

�
(P(|¬i),P(¬i|)) = F

�
(P(),P(¬i))
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The F measure Independence property (Van Rijsbergen 1974) states that, if the first param-
eter is fixed (in our case, P() ), F grows with the second parameter (in our case, P(¬i) , 
which is the probability that an item receives a posivitive label). Therefore,

which satisfies the non-informativeness growing quality. 	�  □

Proof  Every non informative output receives an F(R,S) score lower than 0.25.
Given a non informative input ¬i , F�(R(¬i ), S(¬i )) can be expressed as:

We can prove easily that if 0 ≤ x ≤ 1 , then the function f = x(1 − x) is upper bounded by 
0.25.12 Therefore, according to the harmonic mean properties, the maximal value of F(R,S) 
is:

	�  □
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