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Abstract
A typical information retrieval (IR) system applies a single retrieval strategy to every infor-
mation need of users. However, the results of the past IR experiments show that a par-
ticular retrieval strategy is in general good at fulfilling some type of information needs 
while failing to fulfil some other type, i.e., high variation in retrieval effectiveness across 
information needs. On the other hand, the same results also show that an information need 
that a particular retrieval strategy failed to fulfil could be fulfilled by one of the other exist-
ing retrieval strategies. The challenge in here is therefore to determine in advance what 
retrieval strategy should be applied to which information need. This challenge is related to 
the robustness of IR systems in retrieval effectiveness. For an IR system, robustness can be 
defined as fulfilling every information need of users with an acceptable level of satisfac-
tion. Maintaining robustness in retrieval effectiveness is a long-standing challenge and in 
this article we propose a simple but powerful method as a remedy. The method is a selec-
tive approach to index term weighting and for any given query (i.e., information need) it 
predicts the “best” term weighting model amongst a set of alternatives, on the basis of 
the frequency distributions of query terms on a target document collection. To predict the 
best term weighting model, the method uses the Chi-square statistic, the statistic of the 
Chi-square goodness-of-fit test. The results of the experiments, performed using the offi-
cial query sets of the TREC Web track and the Million Query track, reveal in general that 
the frequency distributions of query terms provide relevant information on the retrieval 
effectiveness of term weighting models. In particular, the results show that the selective 
approach proposed in this article is, on average, more effective and more robust than the 
most effective single term weighting model.
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1 Introduction

An information retrieval (IR) system is supposed to fulfil every information need of users 
with an acceptable level of satisfaction, where a posed information need is a query that 
may be formulated by any inquirer. Given a set of queries, high average retrieval effective-
ness is, in this respect, necessary but not the sufficient criterion. An IR system may have 
relatively a high level of retrieval effectiveness on average, while it makes abject failures 
for a few queries. Averaging over a set of queries would in general hide the per-query effec-
tiveness of IR systems (Voorhees 2004).

In addition to high average retrieval effectiveness, an IR system should also be robust in 
per-query effectiveness, robust in the sense of making no abject failure for any query. We 
argue, in this study (Sect. 2), that robustness in per-query effectiveness can be maintained 
by means of a selective approach that predicts what retrieval strategy should be applied to 
which query, assuming that some retrieval strategy performs well on one query but poorly 
on a second, while other strategies may perform poorly on the first query, but succeed on 
the second (Buckley 2009).

In this article, we propose a selective approach to index term weighting (Sect. 3). The 
approach is of pre-retrieval type, where the model selection is made before the actual 
search takes place. It predicts the best model amongst a set of 8 well-established probabil-
istic term weighting models, including BM25, PL2, DFRee, DPH, DLH13, LGD, DFI and 
the language model with Dirichlet smoothing (DLM). For any given query, the best model 
is determined by utilizing only one source of information, the frequency distributions of 
(query) terms on the target document collection. As a feature, term frequency distributions 
relate the underlying assumptions of probabilistic term weighting models to queries, and 
hence it provides information on the expected effectiveness of the models.

The contributions of the work presented in this paper can be summarized as given by:

• A query-based selective term weighting algorithm that predicts the best index term 
weighting method, for any given query, among a predefined set of index term weighting 
methods (Sect. 3).

• An empirical justification in support for the claim that the probabilistic index term 
weighting models can be characterized with respect to retrieval effectiveness on the 
basis of the frequency distributions of query terms on documents.

From the results of the experiments presented in this article (Sect. 4), we observe that 
the proposed approach is on average more effective and also more robust than that of the 4 
well-formed baselines considered, including the current state-of-the-art selective approach 
to index term weighting in the IR literature (He and Ounis 2003b, 2004). On the other 
hand, we note, also, that there is still room for improvement in this research direction. On 
this account the experimental results reveal that the proposed approach shows a signifi-
cantly lower performance on average than an optimal/oracle approach that could predict the 
most effective model for any given query, with 100% accuracy. We speculate the reasons 
behind the latter observation, and discuss the possible improvements over the proposed 
approach, in the discussion section (Sect. 5).

The experimental evaluations presented in this article is performed using the set of 200 
queries released from the TREC Web track studies performed between the years 2009 and 
2012, and the set of 562 queries released from the TREC Million Query (MQ) track study 
in 2009. The official document collection used in those two studies is called “ClueWeb09 
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collection” (Callan et al. 2009). For the set of 200 TREC Web track queries, we use the 
English portion of the ClueWeb09 collection consisting of about 500 million English Web 
pages, and for the set of 562 MQ track queries, the Category B subset of the English por-
tion consisting of about 50 million English Web pages. These subsets are the original sub-
sets used in the corresponding TREC tracks. The details of the data sets and the experi-
mental setup are given in “Appendix.”

2  Motivation

The reliable information access (RIA) workshop1 is the pioneering effort to investigate the 
factors that affect the variability in retrieval effectiveness, where the goal is to perform a 
per-query failure analysis of individual IR systems (Harman and Buckley 2004). A major 
result from the RIA workshop is that most of the failures could in fact be fixed by applying 
an existing retrieval strategy. On this account, Harman and Buckley (2009) state, later on, 
that “it may be more important for research to discover what current techniques should be 
applied to which topics [i.e. queries], rather than to come up with new techniques.”

Selective information retrieval is in theory capable of fulfilling every information 
need of users, with a level of satisfaction that the current IR strategies could together 
provide. Table 1, for instance, lists the 50 TREC 2012 Web track queries along with the 

Table 1  The highest nDCG@100 scores observed for 50 TREC 2012 Web Track queries over all of the 
participating IR systems

The average is 0.4239

Query Run nDCG Query Run nDCG Query Run nDCG

151 uogTrA44xu 0.4090 168 uogTrA44xi 0.9145 185 QUT..Bline 0.3118
152 uogTrA44xl 0.5066 169 QUT...TQEg1 0.5144 186 uogTRA44xu 0.6683
153 qutwa 0.3870 170 manualSTA 0.3307 187 qutwa 0.2392
154 uogTrB44xu 0.4634 171 autoSTB 0.3221 188 2012b...d8 0.3223
155 uogTrA44xl 0.4560 172 comb...CatB 0.2996 189 ICT...ADR1 0.7205
156 ICT...DVR3 0.3461 173 utw...lm09 0.4715 190 uogTrA44xi 0.4321
157 uogTrB44xu 0.4896 174 uogTrB44xu 0.4987 191 src...12c10 0.4105
158 DFalah121A 0.5088 175 uogTrB44xu 0.3031 192 src...12c10 0.3581
159 lcmweb10p 0.7799 176 comb...CatB 0.4908 193 QUT...Bline 0.5737
160 uogTrA44xu 0.2308 177 src...12c00 0.4468 194 qutwb 0.3331
161 ICT...ADR2 0.1897 178 uogTrA44xu 0.5443 195 autoSTB 0.3699
162 lcm4res 0.0560 179 uogTrA44xl 0.2699 196 DFalah120A 0.7029
163 uogTrB44xu 0.5952 180 DM...CatASP 0.2077 197 autoSTA 0.4311
164 QUT...TQEg1 0.3365 181 utw2012fc1 0.2700 198 uogTrB45aIs 0.4296
165 ICT...DVR3 0.4855 182 uogTrA44xu 0.3606 199 lcm4res 0.3114
166 lcmweb10p 0.2572 183 uogTrA44xi 0.2351 200 uogTrB44xu 0.5266
167 uogTrB45aIs 0.3202 184 uogTrB44xu 0.7543

1 https ://ir.nist.gov/ria.

https://ir.nist.gov/ria
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highest observed nDCG@100 scores over all of the participating IR systems. The aver-
age of the per-topic highest nDCG@100 scores over the 50 queries is 0.4239. The mean 
nDCG@100 score of the most effective IR system participating in the TREC 2012 Web 
track is 0.2784. For this instance, selective information retrieval is, therefore, capable 
of being nearly as twice as more effective than the most effective single IR system, on 
average.

In the context of selective information retrieval, it is presumed that a query that a 
particular retrieval strategy failed to fulfil can be fulfilled by one of the other exist-
ing retrieval strategies. Basically, the success of any selective approach depends on to 
what degree this fundamental assumption holds true in practice. As seen in Table 1, the 
assumption holds true for the TREC 2012 Web track queries.

Actually, the truth value of this assumption, in turn, depends on the richness or diver-
sity of the alternative retrieval strategies among which the selection will be made, sim-
ply because similar retrieval strategies would in general show similar performances on 
the same queries. In this respect, it can be said, in general, that the potential retrieval 
effectiveness of any selective approach increases, as the number of distinct retrieval 
strategies increases.

In the TREC 2012 Web track, the total number of participating IR systems is 48 and 
the number of distinct systems yielding the highest nDCG@100 scores for the 50 que-
ries in Table 1 is 24. This means that a set of 24 distinct retrieval strategies is diverse 
enough to be as twice as more effective than the state-of-the-art TREC 2012 IR system, 
on average.

A full-fledged IR system, such as the systems participating in the TREC Web track, 
usually employs a multi-stage retrieval strategy (Mackenzie et al. 2018), including query 
expansion techniques, index term weighting models, learning-to-rank techniques, spam 
filtering, etc. Index term weighting is the core component of such multi-stage retrieval 
strategies, since it quantifies the degree of relevance between a document and a given 
query. Thus, the resulting effectiveness of any retrieval strategy basically depends on 
the effectiveness of the index term weighting model in use. In this respect, it can be 
said that the key to effective retrieval is to determine what index term weighting model 
should be applied to which query.

In this study, we consider a set of probabilistic term weighting models that is 
diverse enough to cover the major methods in the IR literature, including the informa-
tion theoretic models (e.g. LGD), the language model (e.g. DLM), the divergence from 

Table 2  The 8 probabilistic index term weighting models and the probability distributions that each model 
assumes for the frequency distributions of (query) terms

No Model Distribution References

1 BM25 Two-Poisson distribution Robertson and Zaragoza (2009)
2 DLM Binomial/multinomial distribution Zhai and Lafferty (2004)
3 DFIC Empirical distribution Kocabaş et al. (2014)
4 DFRee Hypergeometric distribution Amati (2009)
5 DLH13 Hypergeometric distribution Amati (2006)
6 DPH Hypergeometric distribution Amati (2006)
7 LGD Log-logistic distribution Clinchant and Gaussier (2010, 2011)
8 PL2 Poisson distribution Amati and Van Rijsbergen (2002)
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randomness models (e.g. PL2, DFRee, DPH and DLH13), the divergence from inde-
pendence models (e.g. DFIC) and the Harter’s two Poisson model (e.g. BM25). The 
models under consideration are listed in Table 2, along with the probability distribu-
tions that each model assumes.

Table  3 lists the same TREC 2012 Web track queries along with the highest 
observed nDCG@100 scores over those term weighting models. The average of the 
per-topic highest nDCG@100 scores is 0.1760. The most effective model is “PL2” and 
the corresponding mean nDCG@100 score is 0.1368. This means that, for the term 
weighting models, an optimal selective approach could provide nearly 50% increase 
in average nDCG@100 score, compared to the most effective, single term weighting 
model.

Table  3 also shows the within-query performance variations among the 8 term 
weighting models, i.e. the column labeled as “CoV.” Here, within-query performance 
variation is expressed as a standardized measure of dispersion, called the “Coefficient 
of Variation” in statistics. For each query in Table 3, the associated “CoV” value refers 
to the ratio of the standard deviation (s) of the 8 models’ within-query nDCG@100 
scores to the corresponding mean ( � ) of the scores, i.e., s∕� . For this reason, “Coef-
ficient of Variation” is also known as relative standard deviation, i.e., s “relative” to  � . 
In the current context, “Coefficient of Variation” can be interpreted as how informative 
a query is, with respect to the performance differences between the 8 term weighting 
models under consideration. Since “Coefficient of Variation” is a standardized measure 
of dispersion, CoV values can be compared with each others. In other words, two que-
ries with different within-query mean scores may have the same CoV value, and hence 
they can provide equal information on the within-query rankings of 8 term weighting 
models, irrespective of the mean scores. A “supervised” selective approach to index 
term weighting is, thus, likely to benefit more from the queries with high CoV values 
than the queries with low CoV values.

In addition to improved average retrieval effectiveness, selective approaches are also 
capable to provide robustness, in a way that the “Risk-Sensitive” measures of IR can 
quantify (Collins-Thompson 2009). Risk-sensitive measures assess the extend to which 
a system is more effective for a given query than a baseline system. For any given 
query, baseline effectiveness can, in general, be thought of as the level of performance 
that a state-of-the-art IR system would, on average, show for that query. In this respect, 
as the per-query effectiveness of an IR system increases, the level of robustness of the 
system increases. In particular, Table 3 represents an instance of the highest level of 
robustness, in terms of nDCG@100, that an optimal selective approach could achieve 
by using the 8 index term weighting models under consideration. Similarly, Table  1 
represents an instance of the highest level of robustness, with respect to full-fledged IR 
systems. This notion of robustness can directly be quantified by using the Geometric 
Risk measure, “GeoRisk” (Dinçer et al. 2016), as demonstrated in Sect. 4—Results.

Although the uncertainty associated with a selective approach to index term weight-
ing is relatively high (i.e., for the case of 8 term weighting models it is 87.5%) and the 
per-query expected effectiveness of a term weighting model is difficult to estimate, 
probabilistic term weighting models have a common property that in fact enables 
selective term weighting. Every probabilistic term weighting model makes an assump-
tion (Table  2) about the shape of the frequency distributions of terms on documents 
and this property can be exploited in selective term weighting, as explained in the next 
section.
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3  The proposed selective approach to index term weighting

The key to success in selective term weighting is to determine a source of information that 
explains the variation in the retrieval effectiveness of individual term weighting models 
across queries. In other words, retrieval effectiveness of term weighting models should, 
somehow, be related to the characteristics of queries, in a way that permits to predict the 
model that is most likely to show the highest performance for any given query. Here, we 
argue that one of the primary sources of information for this purpose is the observed fre-
quency distributions of query terms on the document collection in use.

A simple but powerful selective approach to index term weighting can be built upon 
pairwise query similarity, as demonstrated in the inspiring works of He and Ounis (2003b, 
2004). In this approach, it is assumed that the same term weighting model will show simi-
lar levels of effectiveness for two queries that are similar to each other in terms of some 
measurable query characteristics. Application of such an approach can vary in practice 
depending on the measure of similarity to be adapted and the query characteristics to be 
chosen for similarity measurements. For instance, He and Ounis (2004) use Euclidean 
distance as the measure of similarity, and the vectors of 3 query properties for similarity 
measurements, where the properties are (1) the number of terms in a given query, (2) the 
number of documents that contain at least one of the query terms, and (3) the ratio of the 
minimum Inverse Document Frequency (IDF) to the maximum IDF associated with the 
query terms.

In this study, we use only a single query property, the frequency distributions of query 
terms, and, as the similarity measure, we use the Chi-square statistic.

3.1  The Chi‑square statistic as a query similarity measure

We claim that frequency distributions of query terms on documents, as a query characteris-
tic, can explain the variation in the retrieval effectiveness of individual index term weight-
ing models across queries. The underlying theoretical basis for this claim is simple and it 
can be expressed as follows. Every probabilistic term weighting model assumes a particu-
lar probability distribution (e.g., Poisson, Geometric, etc.) for the observed term frequen-
cies on documents (i.e. empirical distribution). Such an assumed probability distribution 
characterizes the corresponding term weighting model, with respect to the degree of rel-
evance to be quantified by the model, given a pair of document and query. Thus, for any 
given query, it is expected that the effectiveness of a probabilistic term weighting model 
will be proportional to the degree of the goodness-of-fit between the assumed probability 
distribution and the actual distribution of term frequencies on documents. This implies that 
any probabilistic term weighting model would show similar performances for the queries 
that are similar to each others with respect to the term frequency distributions. Indeed, the 
results of the experiments presented in Sect.  4 provide empirical evidence in support of 
this claim.

To measure the similarity in distribution between two queries, we use the Pearson’s 
Chi-square statistic. The Chi-square statistic, which is the test statistic of the Chi-square 
goodness-of-fit test (Agresti 2002; Press et al. 2007), can be expressed for the frequency 
distributions of two (query) terms, t1 and t2 , as given by:

(1)�2 =

n
∑

i=0

[

Ft1
(i) − Ft2

(i)
]2

Ft1
(i) + Ft2

(i)
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In Eq.  1, n denotes the number of relative frequency groups taken into account (i.e. 
n = 1000 ), and Ft1

(i) and Ft2
(i) ( i = 0, 1, 2,… , n ) refers to the observed document density 

at the ith bin for the terms t1 and t2 , respectively. In particular, Ft1
(0) and Ft2

(0) refer to the 
density of the documents at the relative term frequency value of 0 for t1 and t2 , respectively. 
Here, a low �2 value implies a high degree of goodness-of-fit, where �2 = 0 refers to the 
perfect fit between two term frequency distributions. It is worth noticing, here, that, for any 
term t, the document density at 0, Ft(0) is proportional to the inverse document frequency 
(IDF) of the term t.

Every probabilistic term weighting model applies some form of normalization to 
within-document raw term frequencies (He and Ounis 2003a, 2005), in order to avoid bias-
ing towards long documents in quantifying the relevance of a document to the query given. 
The reason behind this practice can be explained as follows. A term may occur in two 
documents with the same value of frequency, but the documents would in general be differ-
ent in length from each others. On the other hand, for any given term, it is expected that the 
number of occurrence of the term would increase, as the length of the document increases. 
Probabilistic term weighting models assume that the number of occurrence of a query term 
in a particular document is proportional to the relevance of the document to the query. This 
means that longer documents are more relevant than shorter documents to any given query, 
which in fact is not always true. Hence, in order to make such frequency values comparable 
with each others across documents, probabilistic term weighting models employ “docu-
ment length normalization.” For this purpose, we use relative term frequencies, i.e. the 
ratio of the number of occurrences of a term in a document to the length of the documents.

Here, raw term frequencies constitute a discrete distribution, while, in contrast, relative 
term frequencies constitute a continuous distribution. The Chi-square statistic can only be 
applied to discrete distributions. Thus, for any given term, the calculated relative frequen-
cies should be grouped into a finite number of bins, in order to obtain the required discrete 
distribution. According to our normalization scheme, relative term frequencies can vary 
in between 0 and 1. Except for the relative frequency value of 0, we divided that range 
into 1000 intervals of equal length: (0.000–0.001], (0.001–0.002], and so on. The case of 
the value 0 is special because, in contrast to those 1000 bins, it refers to the density of the 
documents that the term under consideration does not occur in. In query similarity meas-
urements, we take into account both the relative frequency value of 0 (as a separate group) 
and the relative frequency values grouped into 1000 bins, so that the calculated relative fre-
quencies for any given term sum up to 1 over all of the documents in the target collection, 
i.e. in order to obtain a formal probability distribution.

Figure 1 illustrates the relative frequency distribution of the terms family, for, of and 
wedding, where the relative frequency value of 0 is excluded for the ease in interpretation.2 
The observed frequency distributions of family and wedding are quite different from that 
of for and of, while the distributions are relatively similar to each other for both the for-
mer terms and the latter terms. As seen in Fig. 1, the frequency distributions of the terms 
for and of resemble a Poisson distribution. Given that the terms for and of are used due 
to grammatical necessity rather than serving to impart knowledge (i.e. semantically non-
selective words) and the terms family and wedding are semantically selective words, it is 
reasonable that, for a query including these 4 terms, a term weighting model assuming a 

2 Since the number of documents in which a term does not occur is usually far more higher in magnitude 
than that of the complementary case, inclusion of the relative frequency value of 0 into such a plot would in 
general make the plot unreadable, especially with respect to the semantically selective words.
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Poisson distribution for the frequency distributions of terms is likely to distinguish seman-
tically selective words (i.e. index terms) from the semantically non-selective words (i.e. 
function words), than a term weighting model assuming a different probability distribution.

Our approach is based on pairwise query similarity but queries would in general be dif-
ferent from each others in length. This is an issue, because Chi-square statistic can in fact 
be used as the measure of pairwise similarity between terms, rather than queries, except for 
the queries that are composed of a single term. In order to measure the similarity between 
two queries having more than one term, we adapted a simple heuristic that aggregates the 
term similarity measurements over queries.

Assuming that the occurrence of a term in a query is independent of the occur-
rences of other terms, we can construct a cartesian table for any given pair of queries. 
Table  4 illustrates a cartesian table for two queries Q1 = {internet, phone, service } and 
Q2 = {air, travel, information }. Each cell of such a cartesian table contains the value of the 
Chi-squared distance/difference that is measured between the frequency distribution of the 
associated row and the frequency distribution of the corresponding column. For instance, 
the measured Chi-squared distance is 0.163 for the term pair (internet, air).

706050403020100
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Fig. 1  Grouped relative frequency distributions for the terms family, for, of and wedding 

Table 4  Cartesian 
table for the queries 
Q1 = {internet, phone, service } 
and Q2 = {air, travel, information}

Each cell contains the Chi-squared difference in frequency distribution 
between the associated row and the corresponding column. The meas-
ured Chi-squared difference between internet and air, for instance, is 
0.163

Air Travel Information

Internet 0.163 0.012 0.001
Phone 0.006 0.220 0.145
Service 0.148 0.014 0.002
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In Table 4, the smallest measured Chi-square distance is 0.001 and it is observed for 
the term pair (internet, information). This suggests that the terms internet and information 
are the terms that have the highest degree of similarity in frequency distribution, among 
all possible pairs of terms that are yielded by the cross-product of the sets of terms Q1 and 
Q2 . According to our heuristic algorithm, after determining the most similar query terms, 
we remove the corresponding row and the column from the table. For two queries each of 
which consists of n terms, this operation results in a cartesian table of (n − 1) × (n − 1) 
cells, as illustrated in Table  5 for the example queries. In the resulting cartesian table, 
the most similar terms are phone and air, with the smallest Chi-squared distance value 
of 0.006. For this example, there remains only one pair of terms, (service, travel) , with a 
Chi-squared distance value of 0.0014, and as a result, we can, now, aggregate the obtained 
term-based Chi-square measurements to derive an overall similarity value for the queries 
Q1 and Q2 . We have examined two aggregation methods, namely arithmetic mean and 
Euclidean distance, but the aggregation method that serves well with respect to average 
effectiveness is the Normalized Euclidean Distance, as given by:

The pseudocode of the demonstrated sim measure is given in Algorithm 1. Similar to the 
�2 measure, a low value of this sim measure refers to a high level of similarity between the 
queries Q1 and Q2 , where sim(Q1,Q2) = 0 indicates that Q1 is identical to Q2 , with respect 
to term frequency distributions.

(2)sim(Q1,Q2) =

√

0.0012 + 0.0062 + 0.0142

3
= 0.005

Table 5  The resulting cartesian table after removing the most similar pair of terms internet and information 
from the original table in Table 4

Air Travel

Phone 0.006 0.220
Service 0.148 0.014
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Data: Input: Q1 and Q2
Data: Output: Similarity between Q1 and Q2
if |Q1 = |Q2| then

throw new IllegalArgumentException(“Query lengths are not equal!”);
end
double [ ][ ] table = new double[|Q1|][|Q2|];
for termi ∈ Q1 do

for termj ∈ Q2 do
table[i][j] ← χ2(termi, termj);

end
end
double euclidian ← 0.0;
while table is not empty do

int minimum ← Math.minimum(table);
int r ← row index of the minimum element;
int c ← column index of the minimum element;
remove all elements at rowr and columnc from the table;
euclidian ← euclidian + table[r][c]× table[r][c];

end
return

√
euclidian÷ |Q1|;

Algorithm 1: Couple Similarity

This sim measure requires that the two queries to be compared should have equal lengths as 
measured by the number of terms. In our heuristic, when the lengths of the queries are differ-
ent, we label the two queries as Qlong and Qshort . Then, we generate Qshort combination of Qlong , 
each of which has the same length as Qshort . In order to give a concrete example, consider two 
queries X = {internet, phone, service} and Y = {disneyland, hotel }. First, we obtain 
(

Qlong

Qshort

)

=

(

3

2

)

= 3 sub-queries of the long query X: [internet, phone] [internet, service] 

[phone, service]. Then we apply sim, as is, for each sub-piece using Qshort:

• sim(disneyland hotel, internet phone)
• sim(disneyland hotel, internet service)
• sim(disneyland hotel, phone service).

This process results in a list of similarity values computed for each sub-query of the long 
query hence an aggregation method is required to obtain an overall similarity value for the 
queries Q1 and Q2 . To obtain a final similarity score, we use the average of the minimum and 
the maximum of the list: sim =

max(list)+min(list)

2
 . The whole process of how unequal query 

lengths are handled is given in Algorithm 2.
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Data: Input: Q1 and Q2
Data: Output: Similarity between Q1 and Q2
if |Q1| == |Q2| then

return couple(Q1, Q2);
end
if |Q1| > |Q2| then

Qlong ← Q1;
Qshort ← Q2;
else

Qshort ← Q1;
Qlong ← Q2;

end
end
List<Double> list = new ArrayList<>();
// generate Qshort combination of Qlong

for Qi ∈ Qlong
Qshort

do
list.add(couple(Qshort, Qi));

end

return min(list)+max(list)
2 ;

Algorithm 2: Cartesian Similarity

Figure 2 shows the plot of the calculated pairwise similarities between the 194 TREC Web 
track queries. The scatter plot in Fig. 2 is obtained by “Multidimensional Scaling” (MDS) of 
the matrix of calculated pairwise similarities. In such a MDS plot, distances between points 
correspond to the magnitudes of the differences between rows and columns, as measured by 
the similarity/difference measure in use. Here, points represent queries. Thus, in Fig. 2, simi-
lar queries, with respect to the similarity scores calculated as given above, are shown close to 
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each others, and vice versa. In the plot, selected queries are labeled by their query texts for 
the ease in interpretation. As seen in Fig. 2, the queries that are different from each others in 
length are scattered along the x axis, suggesting that the difference between one-term queries 
and multiple-term queries are exhibited along the x axis for this MDS plot. Similarly, along 
the y axis, it appears that the differences between the queries with equal lengths are depicted. 
The queries with terms such as the, of, and a are grouped at the upper right corner. One-term 
queries are positioned at the upper left corner, with the exception of the query maps, which is 
neither specific nor common. The queries that are composed of the terms with similar prop-
erties to that of the term maps are grouped around the origin of the plot, suggesting that these 
queries are not different from each others compared to the differences observed for those 
queries that are scattered towards the edges of the plot. The MDS plot in Fig. 2 suggests in 
general that term frequency distribution, as a feature, is capable to characterize queries with 
respect to the types of the terms that the queries are composed of.

3.2  The win‑sets, the loss‑sets and the small sample size problem

Our selective approach is of supervised classification type and hence it requires training 
data to learn the association between queries and term weighting models, with respect to 
retrieval performance. In our approach, given a set of training queries, we, first, measure 
the per-query performances of the 8 term weighting models in order to determine the best 
model amongst the 8 term weighting models under consideration. We, then, compose a win 
set of queries for each of the 8 term weighting models, by grouping those training queries 
that the corresponding term weighting model has the highest per-query performance score. 
In the case of a tie, we apply the following process. When there are more than one winner 
model for a training query, the query is added to all win-sets of the winner models sepa-
rately; and when every term weighting model has a per-query performance score of 0 or all 
of the observed scores are equal to each others in magnitude, the query is simply discarded. 
Having the win-sets for the 8 term weighting models, the model that is likely to show the 
highest performance for any given new query can be predicted by measuring the similar-
ity of the new query to the associated win-sets. The predicted model for a new query will 
in this respect be the one whose win-set consists of the queries that are, on average, more 
similar to the new query than the queries in the win-sets of the other models.

This classification algorithm actually suffers from the same, universal weakness that 
every supervised, statistical classification algorithm suffers from, the lack of enough 
training data. In theory, the information to be provided by the “win-sets” can be assumed 
enough to fully explain the differences in per-query effectiveness between individual term 
weighting models, as long as the training set is large enough in size. For instance, the num-
ber of queries released from the TREC Web track studies in between 2009 and 2012 is 
200. In our approach, there are 8 term weighting models to be classified with respect to 
their per-query performances. This means that each model would ideally have the highest 
per-query performance score for 25 queries at most, if the win-sets were, somehow, to be 
balanced in size for the 8 term weighting models. In practice, the win-sets associated with 
individual term weighting models would usually vary in size. For the 200 TREC Web track 
queries and the 8 term weighting models under consideration, the number of the training 
queries in each win-set varies from 10 (for DLM) to 38 (for BM25). Comparing to the 
sample size of 8! (40,320) required for the full factorial design to have at least one sample 
query for every possible within-query rankings of the 8 term weighting models, it would 
appear that a set of 200 training queries is quite small in size.
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To alleviate the effect of this weakness, we also use loss sets, in addition to the win-sets, 
which in theory doubles the amount of information that could be obtained for each term 
weighting model from the same set of queries. In similar to win-sets, we compose a loss-
set of queries for each of the 8 term weighting models, by grouping those training queries 
that the corresponding term weighting model has the lowest per-query performance score. 
On this account, the most likely term weighting model is the one whose loss-set consists 
of the queries that are, on average, more dissimilar to the new query than the queries in the 
loss-sets of the other models. As a result, relating the win-sets and the loss-sets, we can say 
that the term weighting model that is likely to show the highest performance for any given 
query would be the one whose win-set and loss-set are respectively the most similar to, 
and, simultaneously, the most dissimilar to the query given. To obtain an overall similarity 
score for a query with respect to both the win-set and the loss-set associated with a particu-
lar term weighting model, we use the ratio of the win-set similarity score to the loss-set 
dissimilarity score.

Lastly, we compose the training sets of queries by choosing those queries within which 
the 8 term weighting models show high variation in performance. In other words, given a 
set of queries, the training set of queries is composed of the 75% of the original queries 
having the highest CoV scores (i.e., the highest Coefficient of Variation scores) among all. 
This election process discards the queries that carry relatively less or no information about 
the within-query performance differences between the models, i.e. it eliminates the noise 
and the extreme/outlier cases from the training data.

4  Results

In this section, we demonstrate the effectiveness of the proposed selective approach to 
index term weighting, using the standard TREC test collections. Two sets of queries are 
used for this purpose: (1) the official set of 200 queries from the TREC Web track and (2) 
the official set of 562 queries from the TREC MQ track. In accordance with the sets of que-
ries at hand, we divided this section into two subsections, and at the end of the section we 
summarize the results of individual experiments.

The proposed selective approach is evaluated with respect to the two aspects of retrieval 
effectiveness: (1) the observed average retrieval performance and (2) the accuracy in clas-
sifying the test queries into the true classes of 8 term weighting models, i.e. the classi-
fication accuracy. The measure of retrieval effectiveness that we use in the evaluations 
is the normalized Discounted Cumulative Gain at 100 document, nDCG@100 (Järvelin 
and Kekäläinen 2002). Although the main analysis is made using the nDCG@100 values, 
nDCG@20 values are also reported in order to make the performance gains reported in this 
paper comparable with existing work.

To measure the robustness of the proposed selective approach, we use the current 
state-of-the-art risk-sensitive evaluation measure, called the GeoRisk (Dinçer et al. 2016). 
GeoRisk is a well-founded measure that is used for the risk-sensitive evaluation of IR 
experiments (Collins-Thompson 2009; Wang et  al. 2012; Dinçer et  al. 2014). As a risk-
sensitive measure, GeoRisk combines the average performance of an IR system and the 
level of risk associated with the system, i.e. the geometric mean of the average retrieval 
performance of a system and the associated level of risk:
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where RP
(

si
)

 stands for the average retrieval performance of the system si as measured by 
a performance measure (e.g., nDCG, ERR, etc.) and ZRisk

(

si
)

 stands for the level of risk 
associated with the system si . Here, c is the number of queries under consideration and 
0 ≤ �() ≤ 1 is the cumulative distribution function of the standard normal distribution. �() 
is used to normalize ZRisk values into [0,1], because −∞ ≤ ZRisk∕c ≤ +∞.

The measure of risk in GeoRisk is ZRisk and in the context of risk-sensitive IR evalua-
tion, “risk” refers to the risk of performing worse than a baseline system for a given query. 
In this respect, ZRisk rewards the system under evaluation for the queries that the system is 
better than the baseline, and conversely, it punishes for the queries that the system is worse 
than the baseline, as given by

For any system si ( i = 1, 2,… , r ), Q+ ( Q− ) is the set of queries where ziq > 0 ( ziq < 0 , 
respectively), determined by whether system si outperforms the baseline on query q. In 
Eq. (4), the risk sensitivity parameter3 � ≥ 0 controls the tradeoff between reward and risk 
(or win and loss). Here, ziq =

�

xiq − eiq
�

∕
√

eiq , where xiq and eiq are, respectively, the per-
formance score of the system si for query q and the expected performance score for q from 
the baseline system(s). Given a system si , the expected performance score for a particular 
query j ( j = 1, 2,… , c ) is calculated as eij =

(

Si × Tj
)

∕N , where N is the total performance 
score over all systems and queries (i.e., N =

∑

i

∑

j xij ), Si is the total performance score of 
the system si over all queries (i.e., Si =

∑

j xij ), and Tj is the total performance score for the 
query j over all systems (i.e., Tj =

∑

i xij).
The risk measure ZRisk, as a result, promotes a particular system over another system 

if that system is more robust, or rather less “risky” than the other. The ZRisk measure per-
mits to derive the baseline performance of a query from multiple (baseline) systems. In 
this study, we derive the per-query baseline performances from the set of 8 term weighting 
models under consideration.

It is worth mentioning that the baselines in ZRisk measurements are different from the 
baselines that are used for the comparative evaluation of the proposed approach. The for-
mer baselines are implicit, and embedded into the GeoRisk measurements, in contrast to 
the latter baselines. For the comparative evaluation of the proposed approach, we use four 
(explicit) baselines. One of those 4 baselines is the most effective, single term weighting 
model on average. For the TREC Web track queries, the most effective term weighting 
model is LGD, with an average nDCG@100 score of 0.1808, and the most effective term 
weighting model for the TREC MQ track queries is DPH, with an average nDCG@100 
score of 0.3585. In addition, we define two theoretical selection strategies as two baselines: 
(1) a random selection strategy (RND), and (2) a maximum likelihood estimation/selection 
strategy (MLE). The fourth and the last baseline is the current state-of-the-art selective 
approach to index term weighting in the IR literature (He and Ounis 2003b, 2004), which is 
referred to as “MS7” in this study.

(3)GeoRisk
(

si
)

=

√

RP
(

si
)

×�
(

ZRisk
(

si
)

∕c
)

(4)ZRisk

(

si
)

=

[

∑

q∈Q+

ziq + (1 + �)
∑

q∈Q−

ziq

]

3 The value of the parameter � is usually taken as 5 in practice.
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Lastly, we use both the Student’s t test and the Wilcoxon signed-rank test for testing the 
significance of the experimental results presented in this section.

4.1  The results for the TREC Web track queries

The results of the experiment on the TREC Web track queries are presented in Table 6. 
There are 194 queries that are actively used in this experiment, due to the lack of relevant 
documents in the result sets of the considered 8 term weighting models for 6 queries.

The 13 models that are listed in Table  6 are ranked according to their average 
nDCG@100 scores. As seen in the table, the proposed selective approach, “SEL,” has the 
highest average nDCG@100 score of 0.1934, except for the score associated with the vir-
tual model, “Oracle,” that could select the best model for every query. Similarly, “SEL” has 
the highest GeoRisk score of 0.3111. Relating these effectiveness and robustness scores 
of the proposed method, we can say that, for the TREC Web track queries, the proposed 
method, “SEL” is more effective and more robust than the state-of-the-art term weighting 
models under consideration.

Except for the “MS7” model, the differences in average nDCG@100 scores between 
“SEL” and each of the models listed in Table 6 are statistically significant, with a p value 
that is less than 0.05, according to both the t test and the signed-rank test. The two hypoth-
esis tests, the t test and the signed-rank test, failed to give significance to the observed dif-
ference between “SEL” and “MS7.” This suggests, either that the difference may be attrib-
uted to chance fluctuation on the population of queries, or that the size of the sample at 
hand may not be sufficient to provide a reasonable chance (power) to the hypothesis tests in 
order to detect the population effect between the models, “SEL” and “MS7.” Considering 
the results presented in the next sub-section, it would appear that the latter is true: a set of 
200 queries is not sufficient in size to provide reasonable power. Indeed, a set of approxi-
mately 500 queries can provide enough power to both the t-test and the signed-rank test to 
give significance to the observed difference between “SEL” and “MS7,” as demonstrated in 
Sect. 4.2.

Table 6  Selective term weighting result for ClueWeb09A dataset over 194 queries

Model Performance Robustness Accuracy

nDCG@20 nDCG@100 GeoRisk Rank 0 × SE 1 × SE 2 × SE

Oracle 0.2131 0.2269 0.3401 * 194 194 194
SEL 0.1637 0.1934 0.3111 1 43 82 110
MS7 0.1623 0.1877 0.3066 2 34 74 105
LGD 0.1586 0.1808 0.3006 3 22 66 91
PL2 0.1509 0.1781 0.2987 4 30 75 93
BM25 0.1490 0.1774 0.2971 5 39 69 96
MLE 0.1409 0.1713 0.2928 6 38 62 88
DLM 0.1433 0.1680 0.2896 7 12 41 62
DPH 0.1424 0.1677 0.2890 8 43 58 74
RND 0.1454 0.1651 0.2864 9 29 51 67
DFRee 0.1319 0.1577 0.2798 11 26 42 55
DFIC 0.1359 0.1565 0.2804 10 18 46 69
DLH13 0.1290 0.1460 0.2689 12 15 22 36
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The risk-sensitive evaluation measure, GeoRisk quantifies the degree of robustness 
associated with each model. As seen in Table 6, the robustness ranking of the models is 
identical to the ranking based on their average performance scores, except for the models 
“DFRee” and “DFIC.” This means that each model distributes their total performance on 
the queries proportional to the expected performances for each query. Here, the expected 
performance for each query refers to the baseline performance for each query. Thus, for 
two models, the one that has a higher GeoRisk score is the one that is better than the other 
in making no abject failure, on average.

The number of queries that a model has the highest score, which corresponds to the 
“Accuracy” in this study, is actually a measure of robustness in a similar sense that GeoRisk 
refers to. However, they are different, in that GeoRisk takes into account the per-query 
baseline performances, in contrast to the “Accuracy.” In Table 6, the number of queries that 
a model has the highest score4 is listed under the column with label “0 × SE.” Here, for a 
query, “SE” stands for the standard error in the within-query average nDCG@100 score 
over 8 models. Thus, a “0 × SE” difference from the highest score for a query corresponds 
to exactly that highest score. On the other hand, a “1 × SE” difference from the highest 
score means that the query will also be considered as a hit for those models whose scores 
are less than the highest score but within the range of one standard error from the highest 
score. Similarly, “2 × SE” refers to the range of two standard error from the highest score. 
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Fig. 3  Visual comparison of the proposed selective term weighting method “SEL” with the 4 baselines for 
the 194 TREC Web track queries. Each of the 4 plots shows the per-query nDCG@100 score differences, in 
ascending order of magnitude along the x axis, for “SEL” and one of the 4 baselines. For each plot, the label 
at the left, on the origin line, shows the percent of queries that the corresponding baseline has higher scores 
than “SEL.” The label at the right shows the percent of queries where “SEL” has higher scores than the cor-
responding baseline

4 The number of queries listed for 8 models does not sum up to 194 due to the ties on the highest scores for 
some queries. In the case of a tie, that query is counted for each model, separately.
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Factoring out the hits associated with a model in such a way allows us to interpret the 
GeoRisk score of the model in detail, to a certain extent.

A visual comparison of the proposed selective term weighting method (“SEL”) with the 
4 baselines is given in Fig. 3. For the pairs of models, such a visual comparison allows us 
to fully explore the per-query score differences between the models, and hence the robust-
ness of one model with respect to the other. There are 4 plots in Fig. 3, each of which is 
dedicated to the comparison of the proposed method with one baseline model. Each plot 
in Fig.  3 show the per-query differences in nDCG@100 scores between “SEL” and one 
of the 4 baselines, i.e. y axis. The x axis represents the number of queries, where the per-
query score differences are sorted in increasing order of magnitude. Thus, the left side of 
each plot (i.e. the low values of x axis) shows the queries that the baseline has a higher 
nDCG@100 score than “SEL,” and conversely the right side of the plot shows the queries 
that “SEL” has higher scores than the baseline. The middle part of the plots, where the 
score difference is equal to 0, shows ties (i.e. no risk). In such a plot, the ideal case is to 
have no score difference that is less than zero, i.e. the area under the origin line, the left 
part, would be equal to zero for a model that is absolutely more robust than the baseline.

Figure 3 shows in general that the proposed selective term weighting method is more 
robust than all of the 4 baselines. In particular, it seems that the observed difference in 
average nDCG@100 scores between “SEL” and “MS7” is due to a few queries (i.e., a high 
score difference in positive direction for a few queries that are shown on the right side of 
the corresponding plot), while for the majority of the queries, there is a tie. On the other 
hand, this plot also shows that the GeoRisk scores reflect the fact that “SEL” does not make 
any abject failure, compared to the model “MS7.” For the other 3 baselines, the superiority 
of the model “SEL,” with respect to robustness, is clearly exposed by the plots.

Overall, the results of the experiment on TREC Web track queries show that term 
frequency distributions are a viable source of information for the prediction of the per-
query effectiveness of individual term weighting models. Indeed, as we demonstrated in 
the following sub-section, a selective term weighting method built upon this single source 
of information can outperform every single term weighting model, as well as the existing 
approach to selective term weighting, “MS7.”

4.2  The results for the TREC million query track queries

The TREC MQ track provides 562 queries in total, 34 of which are eliminated due to the 
lack of relevant documents in the result sets of the 8 base models. The resulting set of 528 
queries is used for the evaluation of the proposed selective term weighting method. Table 7 
lists the results of the experiment performed on the TREC MQ track queries.

For the TREC MQ track queries, the proposed selective term weighting method, “SEL” 
has the highest average nDCG@100 score (0.3740), except for the score of the virtual 
model, “Oracle” (0.4498). Similar to the TREC Web track queries, for the TREC MQ track 
queries, the t test and the signed-rank test give significance to the observed differences in 
average nDCG@100 scores between “SEL” and each of the models under consideration, 
with a p value less than 0.05. In contrast to the TREC Web track queries, for this query 
set, the observed average performance difference between “SEL” and “MS7” is statistically 
significant, suggesting that a set of approximately 500 queries is sufficient enough in size to 
detect the population effect between “SEL” and “MS7.”

The calculated GeoRisk scores for the models indicate, in this time, that the most 
effective single term weighting model, DPH is more robust than the baseline selective 
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approach “MS7.” As listed in the column “Accuracy,” the model “DPH” has more hits 
than “MS7” at every level of standard error. It is worth mentioning that the model DPH 
has also more hits than the proposed method “SEL” at “0 ×  SE,” while the “SEL” is 
in fact more robust than “DPH,” as the number of hits at the deeper levels of standard 
error indicates. This means that the model DPH is a strong alternative to selective term 
weighting. On the other hand, since the observed difference in average nDCG@100 
scores between “SEL” and “DPH” is statistically significant, it is expected, on the popu-
lation of queries, that using “DPH” for every query will cause significant performance 
losses, compared to “SEL.” This is also true with respect to robustness, as indicated by 
the GeoRisk scores associated with “SEL” and “DPH.”

A visual comparison of the proposed term weighting method with the 4 baselines 
is given in Fig. 4. Figure 4 has the same properties with the Fig. 3 that is given for the 
visual comparison for TREC Web track queries in Sect. 4.1.

For the TREC MQ track queries, the observed difference in average nDCG@100 
scores between “SEL” and “MS7” is not attributed to a few queries: the right side of the 
corresponding plot in Fig. 4 (i.e. SEL > MS7) has an apparently larger area than the left 
side of the plot (i.e. MS7 > SEL), as indicated by the associated GeoRisk scores. “SEL” 
has a higher score than “MS7” for 248 queries in total (i.e. 47% ), and for 73 queries (i.e. 
14% ), they have the same scores, and for 207 queries (i.e. 39% ), “MS7” has a higher 
score than “SEL.”

The case of the most effective single term weighting model, “DPH,” is similar to the 
case of “MS7.” The proposed term weighting method, “SEL” has a higher score than 
“DPH” for 263 queries (i.e. 50% ), and there is a tie for 24 queries (i.e. 4% ), and for 241 
queries (i.e. 46% ), “DPH” has a higher score than “SEL.”

In summary, Fig. 4 shows that the proposed selective term weighting method, “SEL” 
is better in both performance and robustness than the most effective term weighting 
model, as well as the exiting approach to selective term weighting, “MS7.”

Table 7  Selective term weighting result for Million Query 2009 dataset over 528 queries

Model Performance Robustness Accuracy

nDCG@20 nDCG@100 GeoRisk Rank 0 × SE 1 × SE 2 × SE

Oracle 0.3723 0.4498 0.4807 * 528 528 528
SEL 0.2899 0.3740 0.4327 1 147 218 268
MS7 0.2783 0.3610 0.4250 3 92 165 237
DPH 0.2745 0.3585 0.4254 2 155 213 250
DFRee 0.2765 0.3579 0.4230 4 88 158 224
BM25 0.2769 0.3572 0.4224 5 145 203 244
MLE 0.2651 0.3463 0.4156 6 98 157 203
LGD 0.2493 0.3396 0.4113 7 35 92 155
RND 0.2638 0.3307 0.4054 8 72 123 176
DLH13 0.2458 0.3292 0.4037 9 53 107 143
PL2 0.2371 0.3234 0.4006 10 61 109 159
DLM 0.2343 0.3217 0.3995 11 24 77 124
DFIC 0.1985 0.2834 0.3752 12 37 73 108
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4.3  Overall analysis

We evaluated the proposed selective term weighting method in comparison of 4 baselines, 
using the two official sets of queries from previous TREC studies. Relating the results in 
Table 6 and the results in Table 7, it would appear that, as the set of queries changes, the most 
effective, single term weighting model changes. For the TREC MQ track, the most effective 
term weighting model is “DPH,” whereas it is “LGD” for the TREC Web track queries. As 
seen in Table 6, where the results for the TREC Web track queries are presented, the model 
“DPH” has a rank of 8: that is, it is listed below the baseline “MLE” and above the baseline 
“RND.” Thus, in the general context of making a decision to choose between a single term 
weighting model and a selective approach, it can be said, in the body of the data at hand, 
that the best decision to be made is, on average, to choose a selective approach to index term 
weighting. In particular, compared to the existing selective approach “MS7,” the proposed 
selective term weighting method “SEL” will be the best choice, with respect to both average 
retrieval performance and robustness.

5  Discussion

From the results of the experiments presented in Sect. 4, we observe that the proposed 
selective term weighting method has significantly lower effectiveness than the “Oracle,” 
the optimal selective approach that could predict the best model for any given query, 
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Fig. 4  Visual comparison of the proposed selective term weighting method “SEL” with the 4 baselines for 
the 528 TREC Million Query track queries. Each of the 4 plots shows the per-query nDCG@100 score dif-
ferences, in ascending order of magnitude along the x axis, for “SEL” and one of the 4 baselines. For each 
plot, the label at the left, on the origin line, shows the percent of queries that the corresponding baseline 
has higher scores than “SEL.” The label at the right shows the percent of queries where “SEL” has higher 
scores than the corresponding baseline
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with 100% accuracy. We speculate that one of the reasons behind this optimality issue 
is the existence of the supplementary components in the functional forms of the proba-
bilistic term weighting models. Probabilistic term weighting models are, in theory, built 
upon a particular assumed probability distribution, but in practice the implemented 
functional forms usually include supplementary components, in addition to the theo-
retical basis. For instance, the PL2 weighting method, which is an instance of the diver-
gence from randomness model (Amati and Van Rijsbergen 2002), assumes a Poisson 
distribution, denoted by “P” in PL2, and its functional form includes an additional com-
ponent that is derived from the Laplace law of succession, denoted by “L” in PL2, and it 
also applies a term frequency normalization scheme, denoted by “2” in PL2. Similarly, 
the BM25 method, which is one of the successful implementations (Robertson et  al. 
1981; Robertson and Walker 1994) of the Harter’s 2-Poisson model (Harter 1975a, b), 
assumes in principle a Poisson distribution, but its functional form additionally includes 
an “IDF” component, and applies a term frequency normalization scheme. A remedy for 
this issue could be factoring out each model into its components and then combining a 
term weighting model on the fly based on the query given. However, such an approach 
would suffer from the lack of enough training queries in number. One of the future work 
that can be carried out in the same line of research will perhaps be to experiment on this 
component-based selective approach, once a large enough set of queries is obtained.

6  Related work

Selective IR is an attractive subject of interest, simply because it promises, at least in 
theory, a great deal of improvement in retrieval effectiveness, as well as robustness, 
compared to the traditional methods of IR. Unfortunately, this potential has not been 
completely put into practice yet, though there exist several attacks in the literature.

The scope of selective IR is wide and virtually it covers every phase of IR process. 
A typical example for the successful application of selective IR is perhaps query expan-
sion, where the expansion is applied to the queries that are likely to benefit from auto-
matic query expansion (Amati et al. 2004; Yom-Tov et al. 2005).

Regarding the different tasks in IR, a selective approach to personalization, for 
instance, is introduced by Teevan et  al. (2008). Similarly, in the work of White et  al. 
(2008), commercial search engines are the subject of selection and in the works of Peng 
et  al. (2010) and Balasubramanian and Allan (2010), the subject is learning-to-rank 
methods. Search result diversification (Santos et  al. 2010) and collection enrichment 
(Peng et al. 2009a, b) are also known subjects of selective IR.

In addition to making selective application of alternative IR techniques, it is also 
possible to make selective application of different document representations (Plachouras 
et  al. 2004, 2006), and selective application of query-independent features (Peng and 
Ounis 2009), or to make selection among different query sets for the purpose of train-
ing a machine learning technique (Geng et al. 2008), or to make dynamic pruning of the 
result sets to be re-ranked via a learning-to-rank technique (Tonellotto et al. 2013).

Among all of the IR tasks, the least studied one is the task of index term weighting. In 
this respect, the pioneering work is the work of He and Ounis (2003b, 2004). In that study, 
queries are represented by vectors of three features: (1) the number of query terms, (2) the 
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number of documents that contain at least one of the query terms,5 and (3) the ratio of the 
minimum IDF to the maximum IDF associated with the query terms. The candidate model 
set used in the original work consists of 11 term weighting models that are derived from 
the divergence-from-randomness (DFR) framework (Amati and Van Rijsbergen 2002). 
Given a set of training queries, the proposed approach clusters the queries into k clusters, 
and assigns the most effective DFR model to each cluster. The term weighting model to be 
applied to a new query is determined according to the distance of the new query from the 
k clusters.

Recently, Petersen et  al. (2016) present an extension to the DFR framework, called 
Adaptive Distributional Ranking (ADR) model. In that work, given a dataset consisting 
of a document collection and a query set, the best-fitting distribution to non-informative 
query terms is, first, selected among a candidate set of statistical distributions including the 
geometric, negative Binomial, Poisson, power law and Yule-Simon distributions. Then, the 
corresponding term weighting model is derived from the DFR framework, and applied to 
any given new query. In this respect, ADR can be considered a per-dataset basis selective 
approach to index term weighting.

As a summary, the aforementioned works suggest in general that selective IR is a prom-
ising line of research, with the potential of being a viable remedy for the long-standing 
challenge of robustness in IR.

7  Conclusions

There has been a great deal of research dedicated to developing term weighting models 
for IR. However, IR research has shown that there is no single term weighting model that 
could satisfy every information need of users, with an acceptable level of satisfaction. 
Rather, high performance fluctuation across information needs has been empirically shown 
in time. This issue refers to the robustness in retrieval effectiveness. The presented study in 
this paper investigates the selective application of existing term weighting models on a per-
query basis to tackle down the challenge of robustness in retrieval effectiveness.

We test the proposed selective method on the ClueWeb09-English corpus and its cor-
responding TREC tasks, namely the Web Track and the Million Query Track. The experi-
mental results show that selective term weighting does improve retrieval effectiveness on 
average, compared to a baseline where a single term weighting model is applied uniformly 
to every query. The experimental results also show that the proposed method forms a 
robust system that avoids making an abject failure for any query, while maintaining a high 
average retrieval effectiveness at the same time. In other words, we show that a robust and 
an effective system can be built by leveraging only the existing term weighting models in a 
selective manner, without inventing a new one.

Most importantly, to our best knowledge, this study is the first that provides empirical 
evidence in favor of the fundamental assumption of probabilistic term weighting models, 
which relates the relevance of a document to a query by means of probability distributions. 
In particular, we empirically justify the presumed relationship between the frequency dis-
tributions of (query) terms and the retrieval effectiveness of probabilistic term weighting 
models.

5 In order to calculate this feature, the test query must be searched without fetching the result list. Thus, this 
feature is not a pure pre-retrieval type.
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Appendix: Experimental setup and details

The IR community has recently encouraged the reproducibility of the published experi-
mental results (Arguello et al. 2016; Lin et al. 2016; Voorhees et al. 2016). In this section, 
therefore, we provide every detail of our experimental setup necessary to reproduce the 
results of the experiment presented in this article. To further promote open-source sharing, 
repeatability and reproducibility, the source codes are made publicly available on GitHub, 
https ://githu b.com/iorix xx/lucen e-cluew eb-retri eval, so that IR researchers could benefit 
from the presented work as much as possible.

The ClueWeb09-English documents are indexed after the Hyper Text Markup Language 
(HTML) tags are stripped from every document using the jsoup6 library (version 1.10.2). 
The HTML tag stripping procedure yields empty text blocks for some documents, which 
are skipped during indexing. We employ no structural document representation i.e. the title 
and body sections of each document are combined together to form a single text block. 
However, anchor texts from incoming links are appended to the document contents.

In our experiments, we discard the topics that have no relevant documents in the judg-
ment set. The exact number of effective topics used in this study is 759. The descriptive 
statistics for those 759 queries are given in Table 8.

We use gdeval.pl (version 1.3) TREC evaluation tool (downloaded from trec-
web-20147 GitHub repository) to calculate nDCG@k values. The tool computes nDCG 
using the standard rank-plus-one discount function and exponential gain (Burges et  al. 
2005). The relevance judgments for the Million Query (Carterette et al. 2009) 2009 topics 
are distributed as a five-column prels file instead of a four-column standard qrels file. 
Therefore, statAP_MQ_eval_v4.pl8 evaluation script is used to calculate nDCG@k 
values for the Million Query 2009.

The models LGD, PL2, and Language Modeling with Dirichlet smoothing (DLM) 
contain one free parameter, while BM25 contains two free parameters. It is important to 

Table 8  Salient statistics for the query sets used in the experiments

Track # of queries Average 
query length

Average # of relevant 
documents per query

Average # of non-relevant 
documents per query

# of 
relevance 
levels

MQ09 562 2.6 15.5 ( ± 25.7) 38.6 ( ± 48.1) 3
WT09 49 2.1 140.0 ( ± 79.0) 333.6 ( ± 80.1) 3
WT10 48 2.0 109.0 ( ± 70.7) 418.7 ( ± 132.1) 5
WT11 50 3.4 63.1 ( ± 63.7) 324.5 ( ± 101.4) 5
WT12 50 2.3 70.5 ( ± 55.3) 250.6 ( ± 87.2) 6

6 http://jsoup .org.
7 http://githu b.com/trec-web/trec-web-2014.
8 http://ir.cis.udel.edu/milli on/statA P_MQ_eval_v4.pl.

https://github.com/iorixxx/lucene-clueweb-retrieval
http://jsoup.org
http://github.com/trec-web/trec-web-2014
http://ir.cis.udel.edu/million/statAP_MQ_eval_v4.pl
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fine tune the parameters of those models because they can affect the retrieval effective-
ness of the models to a statistically significant degree. To obtain strong baselines, we use 
the optimum parameter values that attain the highest average retrieval effectiveness scores. 
Table  9 shows ranges of free-parameters used during parameter tuning. The optimum 
parameter values are as follows for the Web Tracks (2009–2012) of ClueWeb09A: BM25 
( k1 = 1.0 b = 0.3 ), LGD ( c = 8.0 ), DLM ( � = 800 ) and PL2 ( c = 8.0 ); for the Million 
Query 2009 of ClueWeb09B: BM25 ( k1 = 1.6 b = 0.5 ), LGD ( c = 1.0 ), DLM ( � = 200 ) 
and PL2 ( c = 12.0).

Cormack et al. (2011) carried out the first systematic spam study for the ClueWeb09-
English dataset, and presented the quantitative results of the impact of spam filtering on IR 
effectiveness. They reported that a substantial fraction of the ClueWeb09-English dataset 
consist of “spam” documents, spam in the sense of carrying no relevant information to any 
information need. It is also reported that the use of spam filtering significantly improves 
retrieval effectiveness for most of the systems that participated in the TREC 2009 Web 
Track. We use Cormack et al’s fusion spam scores to exclude the t% spammy documents 
from the result lists, where t% ∈ [0, 90] (in increments of 5). The spam threshold t% value 
that maximizes the mean nDCG@100 scores of eight term-weighting models is 45% for 
the Web Tracks (2009–2012) while it is 10% for the Million Query 2009.

We use Apache Lucene (Białecki et al. 2012), an open-source search library written in 
Java, for indexing and searching. We adopted several term-weighting model implementa-
tions from Terrier9 (version 4.0) retrieval platform to Lucene10 (version 7.4.0). Over time, 
Lucene has become an industry standard and the usage of Lucene in academic work has 
been gaining a remarkable momentum (Azzopardi et al. 2017).

We keep the preprocessing of documents and queries minimum: after case-folding, we 
apply KStemming (Krovetz 1993) and do not perform stop word removal because stop 
words are essential for certain queries, such as “to be or not to be,” “the current,” “the 
wall,” “the who,” and “the sun.” The preprocessing pipeline, as a result, filters Stand-
ardTokenizer with LowerCaseFilter and KStemFilter of the Apache Lucene 
search engine.

To split the available query set into training and test subsets/samples we employ the 
leave-one-out method, which is widely used for exhaustive cross-validation evaluation 
efforts (Arlot and Celisse 2010). In this method, each query is in turn “left out,” one at a 
time, from the query set and used for the purpose of testing, while the remaining queries 
are used for training. Given that only a limited amount of queries is available, omitting 

Table 9  Free-parameter values

Model Parameter and set of values

BM25 k1 ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0}

BM25 b ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

PL2, LGD c ∈ {0.25, 0.5, 0.8, 1, 2, 3, 5, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}

DLM � ∈ {10, 50, 100, 200, 500, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000}

9 http://terri er.org.
10 http://lucen e.apach e.org.

http://terrier.org
http://lucene.apache.org
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each query in turn and using the remaining subset for training purposes is the maximal use 
of the query set at hand because only one query is omitted at each step. Furthermore, the 
procedure is deterministic since no sampling is involved.
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