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Abstract
Automated construction of knowledge hierarchies from huge data corpora is gaining 
increasing attention in recent years, in order to tackle the infeasibility of manually extract‑
ing and semantically linking millions of concepts. As a knowledge hierarchy evolves with 
these automated techniques, there is a need for measures to assess its temporal evolution, 
quantifying the similarities between different versions and identifying the relative growth 
of different subgraphs in the knowledge hierarchy. In this paper, we focus on measures 
that leverage structural properties of the knowledge hierarchy graph to assess the temporal 
changes. We propose a principled and scalable similarity measure, based on Katz simi-
larity between concept nodes, for comparing different versions of a knowledge hierarchy, 
modeled as a generic directed acyclic graph. We present theoretical analysis to depict that 
the proposed measure accurately captures the salient properties of taxonomic hierarchies, 
assesses changes in the ordering of nodes, along with the logical subsumption of relation‑
ships among concepts. We also present a linear time variant of the measure, and show that 
our measures, unlike previous approaches, are tunable to cater to diverse application needs. 
We further show that our measure provides interpretability, thereby identifying the key 
structural and logical difference in the hierarchies. Experiments on a real DBpedia and bio‑
logical knowledge hierarchy showcase that our measures accurately capture structural simi‑
larity, while providing enhanced scalability and tunability. Also, we demonstrate that the 
temporal evolution of different subgraphs in this knowledge hierarchy, as captured purely 
by our structural measure, corresponds well with the known disruptions in the related sub‑
ject areas.
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1 Introduction

The current revolution in Semantic Web, Natural Language Processing and user modeling 
has witnessed the transition from documents and keywords to knowledge, entities and 
relationships. This has led to the advent of large knowledge repositories such as DBpe‑
dia (Lehmann et al. 2015), Freebase (Bollacker et al. 2008), and YAGO (Suchanek et al. 
2008)—forming the backbone of semantic search, personalization, recommendation and 
textual entailment (Fensel 2005; Maedche and Staab 2002; Harabagiu et al. 2003; Geffet 
and Dagan 2005). Knowledge hierarchies, or taxonomies, represent concepts and relations 
as hierarchies expressing semantic connections via parent–child or hypernym–hyponym 
edges, enabling easy navigation across concepts and information linking. These hierarchies 
typically represent information in the form of Directed Acyclic Graphs (DAGs).

1.1  Motivation

Traditionally, taxonomies have been created and curated manually by domain experts. 
However, with the enormous expanse of data available world wide, automated techniques 
to construct huge taxonomies have been proposed (Liu et al. 2012; de Knijff et al. 2011; 
Vedula et  al. 2018). Modern linked open data repositories like the DBpedia taxonomy1 
(over Wikipedia pages) contains over 6 million nodes (representing concepts) and 64 mil‑
lion directed edges (capturing relations) organized as a DAG.

As the knowledge hierarchies evolve, there is a need for taxonomy evaluation, i.e., com‑
paring hierarchies and quantifying their similarity. Linked knowledge repositories are con‑
ceptual models representing information from diverse sources, and may disagree among 
each other on certain aspects. Assessing such disagreements in the evolution process is 
crucial for information veracity and integration  (Pesquita et  al. 2009). Further, identify‑
ing the source of disagreement across the different hierarchies might provide interesting 
insights into the evolution or construction of the hierarchies (i.e., interpretability). Thus, it 
would help for translating semantically related query onto similar hierarchies (David et al. 
2010).

Traditionally, the generated hierarchies are presented to domain experts for manual eval‑
uation and curation. However, such techniques are practically infeasible for modern tax‑
onomies comprising millions of concepts and relations. Thus, there is a need for automated 
techniques to assess the evolution of very large knowledge hierarchies that capture logical 
semantic subsumption.

In building a learning system to capture semantic subsumption and evaluating knowl‑
edge hierarchies, there are various features that can be leveraged. Traditional features based 
on syntactic analysis and natural language processing can aid in identifying similar nodes. 
For instance, one can consider various distance measures on the string description of the 
nodes in the knowledge hierarchies to determine if they refer to the same node or not. How‑
ever, features based on syntactic approximations induce considerable errors and do not 
provide enough accuracy to assess the evolving knowledge hierarchies on their own. Simi‑
larly, word embeddings can capture semantic similarities but it is non‑trivial to determine 

1 Hierarchical ordering of DBpedia concepts and Wikipedia categories based on Simple Knowledge Organ-
ization System (SKOS)  : broader relationships between the corresponding Wikipedia pages is henceforth 
referred to as the DBpedia taxonomy.
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semantic subsumption just based on embeddings. Specifically, it is not clear how to deter‑
mine whether two nodes X and Y are siblings or X is a parent and Y a child or Y is a parent 
and X a child, based on word embeddings alone. Ideally, in addition to the semantic infor‑
mation coming from the syntactic and embedding features, we would like to leverage struc‑
tural properties of the entire knowledge hierarchy graph to assess the changes. This has the 
potential to not just quantify how much change has happened in the knowledge hierarchy, 
but also to understand which regions of the hierarchy are undergoing more changes relative 
to others, enabling us to gain deeper insight into the evolution of knowledge hierarchies.

In this paper, we explore if there is a scalable, tunable and interpretable graph similar‑
ity measure that can be leveraged to quantify the changes in the knowledge hierarchy. To 
this end, we identify a set of key characteristic properties that a graph similarity measure 
indicating semantic subsumption should possess. We then show that a measure based on 
a group Katz similarity satisfies these requirements and is a good indicator of logical sub‑
sumption change happening in a knowledge hierarchy. Then, we go to the extreme and 
assess how well we can identify the relative growth of different subject areas in the knowl‑
edge hierarchies merely based on our graph structure comparison measure, independent of 
any syntactic or embedding feature. We show that the proposed measure is able to identify 
key changes in the organization of popular subject areas in the DBpedia taxonomy and 
these changes match well with external events.

1.2  State‑of‑the‑art

The literature hosts a variety of techniques for assessing the quality of taxonomies and 
evaluating their similarities with other structures, and can be broadly categorized as (Brank 
et al. 2006):

• Traditionally, the generated hierarchies are presented to domain experts for manual 
evaluation and curation. However, such techniques are practically infeasible for modern 
taxonomies comprising millions of concepts and relations.

• Qualitative indicators compare taxonomies based on structural overlap, accuracy, con‑
sistency and rigidity (Volker et al. 2010). However, differences in structure and scope 
might stem from input data, domain of interest and granularity of application. Further, 
they fail to capture transitive closure or logical subsumption of hyponym relations.

• Automated measures for evaluating taxonomies against a gold standard taxonomy 
pose a rigid domain dependency, and are hence unable to provide a generic concept of 
similarity. For example, the concept “chiaroscuro” is categorized under picture, 
image, icon (along with concept “collage”) in WordNet, while it falls under perspective 
and shading technique category in Art and Architecture Thesaurus (with “collage” in 
image making processes and techniques) (Velardi et al. 2012).

• Similarity measures for tree structures or undirected graphs  (McVicar et  al. 2016; 
Koutra et al. 2016) are unable to model the structural complexity (like multiple parents) 
within DAGs or consider the semantic coherence of parent–child links that character‑
izes hierarchical knowledge sources.

Further, none of the above approaches are scalable in practice for comparing huge taxono‑
mies, and also do not provide tunability to characterize the degree of similarity for different 
scenarios. Also, most existing measures require many hours or days of computation on a 
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typical workstation, even for small sub‑graphs of DBpedia taxonomy. In contrast, we aim 
for a measure that is significantly faster and scalable.

1.3  Contributions

This paper proposes a novel similarity measure for comparing non‑specialized hierarchi‑
cally linked knowledge structures in a principled and scalable fashion. We show that our 
proposed measure exhibits the essential properties to capture structural similarity as well 
as logical coherence and subsumption in directed acyclic hierarchies. We also demonstrate 
that the measure is extremely scalable for massive taxonomies and tunable across diverse 
applications. In a nutshell, the contributions of this paper are:

• A generalized and scalable measure, based on weighted connected path count, to auto‑
matically compute the similarity between taxonomies (and directed acyclic graphs), 
capturing both the structural similarity and the logical subsumption of concepts. Par‑
ticularly, we focus on the scenario of comparing and evaluating taxonomies in an auto‑
mated fashion.

• Theoretical analysis to demonstrate that the performance of our similarity measure con‑
forms to commonsense and intuitive properties.

• A linear time variant of the measure for practical applications.
• Detailed experimental evaluations on the desired properties of a similarity measure, 

and the novel concept of interpretability.
• Experimental validation on large real linked knowledge repositories to showcase 

improved scalability and tunability of our measure.

Furthermore, the proposed technique can be generalized beyond taxonomies as a measure 
for computing similarities between Directed Acyclic Graphs (DAGs). The similarity meas‑
ures proposed in this paper have been implemented in C and the code for the same is avail‑
able at https ://githu b.com/gurup rasad nk7/DAGSi milar ityKa tz.

2  Related work

Traditional works on taxonomy construction and comparison relied on domain experts to 
evaluate the output hierarchies (Adams 1972) or test efficacy through the application per‑
formance. However, increase in the amount and diversity of information necessitates the 
need for automated evaluation methods (Dellschaft and Staab 2006). Evaluating a taxon‑
omy with respect to a given reference for semantic web has been proposed (Dellschaft and 
Staab 2006; Brank et  al. 2005; Velardi et  al. 2013). Automatically learned ontology can 
be compared against a gold standard by transforming concepts and their properties into 
term distributions for pairwise concept similarity between the hierarchies (Zavitsanos et al. 
2011; Brank et  al. 2006) using Rand index cluster analysis  (Rand 1971). However, such 
techniques converge to 1 as the number of clusters increases (Fowlkes and Mallows 1983). 
Taxonomies are also evaluated based on the lexical content, i.e., by comparing terms 
across taxonomies. The degree of edge overlap between the taxonomies is a common simi‑
larity measure (Bordea et al. 2016; Maedche and Staab 2002) to compute precision, recall 
and F1‑score. However, these methods consider differences in the parent–child structural 

https://github.com/guruprasadnk7/DAGSimilarityKatz
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relationships only, and does not take into account all connected pair of concepts (Guarino 
and Welty 2002).

Concept hierarchies capture the relative position of concepts between taxonomies for 
comparison  (Dellschaft and Staab 2006; Brank et  al. 2006; Velardi et  al. 2013), while 
semantic similarity measures consider the depth of the least common ancestor to judge 
the goodness of node addition in existing hierarchies (Jurgens and Pilehvar 2016; Wu and 
Palmer 1994). However, this only provides“in‑vitro comparison” of taxonomy enrichment, 
and none of the above measures capture the relational subsumption of concept linking in 
hierarchies. Measuring the similarities in language parse trees have been studied based on 
edge overlap by Cai and Knight (2013).

Among state‑of‑the‑art measures for taxonomy comparison (Bordea et al. 2016, 2015), 
the most commonly used is the Fowlkes-Mallows (FM) measure  (Fowlkes and Mallows 
1983; Wagner and Wagner 2007; Velardi et  al. 2013). It computes a hierarchical graph 
partitioning (based on vertex cuts with possible overlaps) of concepts. The taxonomies are 
then compared based on the agreement on the allocation of every vertex‑pair to the same 
partition, with associated path lengths assigned weights. However, the FM measure suffers 
from 4 key drawbacks—(1) dependence on hierarchy of vertices to capture graph structure 
(uniquely defined only for trees) and hence weights assignment is ad-hoc; (2) not scalable 
as it involves vertex partition at each level of the hierarchy; (3) not tunable to suit the sen-
sitivity needs of different applications; and (4) lacks interpretability.

A parallel body of related research includes tree and graph similarity measures. How‑
ever, it mostly involves capturing graph similarities with unlabeled nodes and undirected 
edges  (Foggia et  al. 2014; Elghawalby and Hancock 2008). Recent graph embedding 
approaches (Goyal and Ferrara 2017, 2018) have been proposed for comparison based on 
high‑dimensional representation, but such techniques suffer from scalability issues. Super‑
vised methods using guided walk on graph (Levin et al. 2016) have been studied to obtain 
similarities for recommendations—but requires large training data.

Shervashidze et al. (2009) proposed a scalable graph kernel approach based on the fre‑
quency of subgraph patterns called graphlets. Recently, DeltaCon (Koutra et al. 2016), a 
scalable similarity measure was proposed for undirected labeled graphs using pairwise 
node similarities, along with a faster approximate version using belief propagation (Koutra 
et al. 2011). Kendall–Tau based distance measures were also proposed (Brandenburg et al. 
2012) for comparing partial orderings. However such approaches consider undirected 
graphs or unlabeled nodes, and fail to model the structure of linked hierarchies (e.g., tax‑
onomies) represented as DAGs with labeled nodes.

Recently,a similarity measure for DAGs comparing partial rankings, based on the edge 
set of the DAGs, assigns different weights to different kinds of edge differences was pro‑
posed (Malmi et al. 2015). However, it ignores paths between nodes (uses direct relations) 
thus failing to capture multi‑hop semantic subsumption present in hierarchies. Other dis‑
tance metrics like tree edit  (Bille 2005) and graph edit distances  (Gao et al. 2010) were 
also explored. A graph similarity approach comparing taxonomies by defining edit distance 
on taxonomies was proposed (McVicar et al. 2016). However, the input taxonomies were 
assumed to be trees, which is not generally true (Bordea et al. 2016; Velardi et al. 2013; 
Kozareva and Hovy 2010). Also, it suffers from quadratic time complexity and hence is not 
scalable.

Similarity measures like Tversky’s parameterized ratio model  (Cross et  al. 2013) 
for comparing ontologies are sensitive to parameter setting and/or involve compu‑
tation of Information Content (IC) of concepts, making it practically infeasible for 
large hierarchies. Other approaches in this area  (David et  al. 2010; d’Aquin 2009) and 
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entity‑disambiguation (Hulpuş et al. 2015) consider mutual agreement scores or centrality 
based edge weights in DAGs, but do not capture the logical subsumption over longer paths.

3  Properties for similarity measure

Knowledge repositories and taxonomies model cotopy of concepts (i.e., super and sub‑con‑
cepts) as directed parent–child relationships. Hence, a measure to compare such hierarchies 
should be sensitive to the explicit structural similarity, directedness of semantic relations, 
and the implicit logical subsumption of concepts. An automated comparative measure, to 
be principled and practically sound, should ideally demonstrate the following qualitative 
properties to approximate the reasoning and commonsense of domain experts.

(1) Sensitivity to concept hierarchy The key characteristic of linked data is the hierarchi‑
cal relations among concepts, i.e., concept hierarchy. Specifically, a directed parent–child 
edge depicts two related concepts, with the parent representing a broader category. For 
example, in Fig.  1a, the edge Mammals → Felines models the relation that Felines are a 
sub‑type of Mammals.

On the other hand, an oppositely directed edge (from Felines to Mammals), although 
structurally similar (ignoring edge direction), denotes a completely different and possibly 
wrong relation. Similarity measure should be aware of this asymmetry to accurately cap‑
ture concept hierarchy. Hence, direct use of similarity measures designed for undirected 
graphs, would implicitly assume symmetry and fail to account for the strict ordering of 
concepts in a hierarchy.

(2) Proximity of least common ancestor Given two structurally different taxonomies, it 
may not be possible to completely characterize the effects of the differences on their simi‑
larity. However, analytically we can argue about the behaviour that a similarity measure 
should demonstrate for varying degrees of dissimilarity.

Consider two structurally different taxonomies, A and B, shown in Fig. 1b to be com‑
pared with taxonomy X (Fig. 1a). Assume taxonomy A to link concept Domestic Cats as 
a sub‑type of Bovines, while B connects Domestic Cats to Reptiles. Although both tax‑
onomies structurally differ in only one edge, intuitively, taxonomy A is semantically and 
logically more similar (than B) to X, as the concept Domestic Cats is still categorized as a 
sub‑type of Mammals in A, while it falls under Reptiles in B. A similarity measure should 
capture such multi‑hop transitive relations.

The above notion of semantic similarity (with structural differences) is captured by the 
Least Common Ancestor (LCA) of the “differing” concept nodes (Resnik 1995). Specifi‑
cally, greater the distance of the LCA from the root, more similar the taxonomies are. Intui‑
tively, a larger distance between the root and the LCA implies a more localized structural 
change, incurring less diffusion of concept semantic relatedness. Hence, a similarity meas‑
ure should monotonically decrease with decrease in distance of the LCA from the root.

However, the above notion of LCA property is not unique, and different structures might 
evaluate to the same value. Comparing such scenarios presents an extremely hard task, dif‑
ficult even for humans—consider quantifying the dissimilarity between two cases where 
Lizards is either linked to Tigers or to Domestic Cats. Interestingly, a few of the above 
scenarios can be captured by the LCA property, as the depth of a concept node provides a 
measure of its specificity. Nodes closer to the root represent broader domains, while those 
closer to the leaves depict specific concepts. As such, for the same LCA, the further down 
in the hierarchy the structural dissimilarity occurs, the greater the semantic diffusion tends 
to be.
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For example, consider taxonomy C in Fig. 1c to link Domestic Cats as a sub‑type of 
Lizards. The distance of the LCA (between positions of Domestic Cats) from root is the 
same for both taxonomies B and C when compared with Taxonomy X. However, intui‑
tively, representing Domestic Cats as type of Lizards seems worse than Reptiles. Hence, 
the degree of semantic “damage”, in this case, can be captured by the distance of the con‑
cept node (with structural difference) from the LCA, and should monotonically increase 
with increase in the distance of the concept from the LCA.

Thus, the degree of similarity between structurally different hierarchies can be captured 
by proximity of LCA based on: 

(a)  Distance from the root to LCA of the structurally different node.
(b)  Distance of the concept node from the LCA.

(a)

(b)

(c)

Fig. 1  Depiction for properties of similarity measure
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This characterization takes into account the logical subsumption of concepts, and a prin‑
cipled similarity measure should respect the monotonic nature of the above distances (i.e., 
no. of hops).

(3) Importance of relationship One of the subtleties of ancestor‑descendant relation‑
ships is the diminishing importance of relationship as we move up (closer to the root) the 
hierarchy. A parent–child edge provides a much stronger semantic coupling than the node 
and ancestors. For example, the relation Felines → Tigers depicts a stronger connection 
than Animals → Tigers . Hence, a similarity measure should incorporate this notion of rela‑
tion weights. However, the cumulative effect of a large difference in ancestral relations 
might degrade the overall quality of a taxonomy, and should be captured by the aggrega‑
tion of edge weights by the measure.

Further, the practical utility of a measure in comparing huge hierarchies arises from a 
number of computational properties, like:

• Scalability Modern taxonomies comprises millions of concepts and edges. For exam‑
ple, DBpedia contains around 5 million concepts, while Google Knowledge Graph con‑
tains nearly 500 million concepts. The practical feasibility of a similarity measure rests 
on its computational efficiency to gracefully scale for huge taxonomies.

• Tunability A similarity measure provides a comparative measure depicting the close‑
ness of two hierarchies. However, a few semantic inconsistencies or limited structural 
difference might be very “damaging” for certain applications, while it may be within 
the tolerable error rate for others. Hence, a robust similarity measure should be tunable 
to reflect the error sensitivity in diverse domains.

• Interpretability Interpreting the differences between taxonomies beyond a similarity 
score, and attributing the dissimilarity to nodes and edges characterizing it would ena‑
ble analysis of hierarchies.

It should be noted, that intermediate concepts in one of the taxonomies (modeled with 
higher granularity), does not affect the meaning of the relationships in any way, and a 
measure should be agnostic to such scenarios. In this work, we show that our proposed 
similarity measure conforms to the above intuitive properties, lending tunability and scal‑
ability for huge real‑world taxonomies with millions of nodes.

4  Proposed measures

Consider two DAGs, G1 = (V ,E1) and G2 = (V ,E2) representing two taxonomies, with 
identical vertex set V2 and edge sets E1 and E2 respectively. Intuitively, two graphs are 
said to exhibit high similarity if every pair of nodes are similar (i.e., high pair‑wise node 
similarity). It is important to note that the same concept may be represented in different 
surface‑forms (e.g., Neuroscience and Neurobiology) in different knowledge sources. In 
this work, we assume that the concepts are disambiguated and represented identically by a 
canonical form (possibly from a standard hierarchy like DBpedia). We further consider the 
taxonomies to contain the same set of vocabulary (i.e., vertex labels). For other scenarios, 
non‑overlapping vertices (i.e., differing labels) can either be added as singletons (to model 

2 For non‑identical sets, nodes present in one but absent in other are added as singletons.
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emergence of concept) or removed and the children connected to its parents (to capture 
concept evolution) in the corresponding taxonomies. We adopt the latter strategy in our 
experimental settings.

To model node similarities, we adapt the Katz similarity measure (Katz 1953; Ou et al. 
2016), which captures multiple short directed paths between vertices, and provides a good 
indicator of semantic subsumption.

Definition 1 (Katz similarity) Given vertices u and v, the Katz similarity (KS) is:

The idea is that the effectiveness of a link between two nodes is governed by a constant 
probability and their relatedness is accumulated over the paths, i.e., more and shorter rela‑
tion paths depict higher relatedness. The Katz measure inherently exhibits the following 
properties, making it better than other candidates like link precision.

• Asymmetry The Katz similarity between vertices u and v is computed based on the 
directed paths from u to v (and not from v to u). This captures the asymmetry present in 
directed concept relations, and hence is sensitive to concept hierarchy.

• Attenuation with path length The Katz similarity assigns a weight of �l to every path 
of length l between two nodes. Since � ∈ (0, 1) , paths have diminishing weight as their 
lengths increase. This provides two‑fold advantages: (1) Direct parent–child relation‑
ships are prioritized and captures importance of relationship, and (2) Provides tunabil‑
ity for requisite degree of semantic subsumption.

• Accounting for multiple paths A key distinguishing feature is that every path between 
nodes contributes additional weight to the Katz similarity. This is important since tax‑
onomies are DAG structures, and multiple paths should be accounted.

We next describe how the Katz similarity measure and the above properties can be 
extended for comparing taxonomies.

4.1  Katz similarity between graphs

We initially represent a DAG, G = (V ,E) by its Katz Similarity Vector (KSV) capturing the 
similarities between vertex pairs in G.

Definition 2 (Katz similarity vector) The pth element of the vector encodes the Katz sim‑
ilarity between the pth vertex pair in V × V .

The similarity between two DAGs is then defined via the KSV as,

Definition 3 (Katz graph similarity) Given Katz similarity vectors KSV1 and KSV2 for 
DAGs G1 = (V ,E1) and G2 = (V ,E2) resp., the Katz Graph Similarity, KGS, between them 
is defined as,

KS(u, v) =
∑
l

∑
Paths of length l

from u to v

𝛼l [where, 0 < 𝛼 < 1]
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where ||.||1 is the L1‑norm of the ith vector differences and 𝛾 > 0 is a tunable parameter that 
controls the sensitivity of the measure. Thus, KGS(G1,G2) ranges from 0 (completely dif‑
ferent graphs) to 1 (identical edge sets).

KGS captures the structural similarity between the graphs. Given vectors KSV1 and 
KSV2 , computing KGS takes O(|RV1| + |RV2|) time, where RVi is the number of reachable 
vertex pairs (u, v) (v is reachable from u) in graph Gi.

4.1.1  Computing the Katz similarity vectors

The Katz Similarity Vector (KSV) for graph G is a vector of |V| × |V| dimensions encoding 
the Katz similarities between vertex pairs in G. However, computing similarities between 
all vertex pairs independently is computationally infeasible. The acyclic nature of DAGs 
can thus be leveraged to speedup computations by pruning unreachable vertex pairs, using 
topological ordering. At each traversal iteration, nodes with zero in‑degree are assigned 
the current topological level (initialized to 1). Subsequently, the graph is updated by delet‑
ing these nodes and their edges, and the current level is incremented. As there are no 
cycles, every vertex is assigned to a unique topological level, defining our vertex ordering 
in O(|V| + |E|) time.

Observe, the Katz similarity between vertex pairs with one vertex at level > k and the 
other at level k is zero, since there are no paths starting from a level > k node and ending at 
a node at level k. This restricts the number of vertex pairs between which the Katz similar‑
ity is computed. The following lemma states how the Katz similarity between vertices is 
computed based on the vertex ordering.

Lemma 1 The Katz similarity between nodes u and v, KS(u,  v), is computed using the 
Katz similarity between u and every parent p of v as,

where indicator function �(u → v) is 1 if there is an edge (u, v), 0 otherwise.

Proof Every path from u to p (with length l) provides a unique path from u to v (of length 
l + 1 ) by appending the edge from p to v (as p is a parent of v). Since v is reachable only via 
its parents, this provides an exhaustive enumeration of paths to v. Observe, there are no self 
edges (i.e., KS(u, u) = 0 ), and �() captures the case where u is a parent of v.□

Let KSV( : , p) denote a sub‑vector encoding the Katz similarity between every vertex v 
and vertex p. Equation (2) can be rewritten as,

(1)KGS(G1,G2) =
2

1 + exp(� .||KSV1(∶, i) − KSV2(∶, i||1)

(2)KS(u, v) = � ×

( ∑
p∈parents(v)

KS(u, p)

)
+ � × �(u → v)

(3)KSV(∶, v) = � ×

( ∑
p∈parents(v)

KSV(∶, p)

)
+ � × �(∶, v)
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where �(∶, v) is an indicator vector of length |V|, with 1 for all vertices that are parents of v, 
and 0 otherwise.

Lemma 1 and the topological ordering can be used to efficiently compute KSVs. The 
Katz similarity sub‑vectors for nodes at each level of the ordering is computed iteratively. 
Since parents of nodes at level k lie at level < k , the sub‑vectors of parents are already 
computed before reaching a node, and only the non‑zero terms in sub‑vectors (correspond‑
ing to their parents) need to be computed. Thus, finding reachable nodes to a node with 
in‑degree d_node , incurs at most d_node computations. The total cost of computing KSVs 
is O(D × |RV|) , where |RV| denotes the number of reachable vertex pairs (i.e., (u, v), for v 
reachable from u) and D is the maximum in-degree. Note, in typical knowledge structures, 
|RV| ≪ |V| × |V|.

Hence, using Definition  3, the total complexity of computing the Katz 
similarity between graphs G1 = (V ,E1) and G2 = (V ,E2) is bounded by 
O(|V| + |E1| + |E2|) + O(D1 × |RV1|) + O(D2 × |RV2|) + O(|RV1| + |RV2|) , where Di and 
|RVi| denotes the maximum in‑degree and the number of reachable vertex pairs respectively. 
The practical run‑time is dominated by O(D1 × |RV1| + D2 × |RV2|) , as |V|, |Ei| < |RVi|.

We next present a faster approximate variant of the above similarity measure to cater to 
real‑time needs, albeit with error tolerability.

4.2  Grouped Katz similarity between graphs

For scenarios where the number of reachable pairs in the hierarchies is large, computing 
Katz Similarity between graphs might be expensive. We thus propose the Grouped Katz 
Similarity measure, a faster approximation to the KGS, computable in O(|V| + |E1| + |E2|) 
time (with vertex set V and edge sets E1 , E2).

The Grouped Katz Similarity measure partitions the vertex set V into  groups. Subse‑
quently, instead of computing the Katz similarity between every pair of reachable vertices, 
the similarity of vertices to each of the  groups is computed (to obtain a similarity vector). 
We now define the similarity between a vertex and a group.

Definition 4 (Katz group-vertex similarity) The similarity between a vertex v and a group 
g is defined as the sum of the Katz similarities between vertex v and every vertex u in 
group g. Formally, Katz Group‑Vertex Similarity, KG(g, v) =

∑
u∈g KS(u, v).

Considering the Katz Similarity Vector (Definition 2) as a matrix3 of size |V| × |V| , the 
corresponding Grouped Katz Similarity Vector (GKSV) is a matrix of size |V| ×  formed 
by summing up the columns corresponding to the vertices of each group. GKSV can then 
be plugged into Eq. (1) instead of the Katz Similarity Vectors to yield the Grouped Katz 
Similarity between two graphs. Thus,

Definition 5 (Grouped Katz similarity for graphs) For two directed acyclic graphs 
G1 = (V ,E1) and G2 = (V ,E2) , let GKSV1 and GKSV2 be the Grouped Katz Similarity Vec‑
tors (vertex set V partitioned into  groups). Then, the Grouped Katz Similarity between G1 
and G2 is,

(4)GKSG(G1,G2) =
2

1 + exp(� .||GKSV1 − GKSV2||1)
3 The Katz similarity vector of Eq. (1) is obtained by flattening this matrix into a vector.
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Since the GKSVs are of length |V| ×  , computing the final similarity using the vec‑
tors take O(|V| × ) time. Lemma 1 can be easily extended for computing the Katz Group‑
Vertex Similarity.

Lemma 2 The Katz Group-Vertex Similarity between vertex v and group g is computed 
using the Katz similarity between vertex v and the parents of vertices within group g as,

where indicator function �(u → v) is 1 if edge (u, v) exists, and 0 otherwise. Similarly, indi-
cator function �(p ∈ g) is 1 iff vertex p is in group g.

Computation Computing the Grouped Katz Similarity between two hierarchies involves 
topologically ordering the vertices and computing the similarity of each group with the 
vertices (as in Lemma 2) to obtain the Grouped Katz Similarity Vectors. Finally, the GKSG 
is obtained from Eq. (4) using the grouped similarity vectors.

For each parent of a vertex,  computations corresponding to each group are per‑
formed to generate the Grouped Katz Similarity Vectors, incurring a time complex‑
ity of O( × |E|) . The total time for computing GKSG between graphs G1 = (V ,E1) and 
G2 = (V ,E2) is, therefore, bounded by O(|E1| + |E2| +  × O(|V| + |E1| + |E2|) . Observe 
for  ≪ |V|, |E1|, |E2| , the complexity becomes O(|V| + |E1| + |E2|) , providing a linear 
time algorithm for comparing linked hierarchies.

We next discuss a special case of Grouped Katz Similarity, where the number of groups 
is 1, i.e., all vertices flattened into one group.

4.2.1  Katz Index similarity between graphs

The Katz Index is a centrality measure that measures the influence of a vertex in a 
graph (Katz 1953). Intuitively, it measures the number of paths that are incident onto a ver‑
tex from other vertices. Similar to the attenuation effect captured in Katz similarity, these 
paths are also weighted by their length (using an exponentially decreasing function). Katz 
index has been used to measure centrality of nodes in directed graphs (world wide web and 
citation networks) (Newman 2010; Ou et al. 2016).

We now show that the Katz Index is special case of the Grouped Katz Similarity 
(with  = 1 ) for measuring acyclic graph similarity. The Katz Index for vertex v in graph 
G = (V ,E) is defined as,

KG(g, v) =
∑
u∈g

KS(u, v) =
∑
u∈g

(
� ×

( ∑
p∈parents(v)

KS(u, p)

)
+ � × �(u → v)

)

= � ×

( ∑
p∈parents(v)

∑
u∈g

KS(u, p)

)
+ � ×

∑
p∈parents(v)

�(p ∈ g)

= � ×
∑

p∈parents(v)

(KG(g, p) + �(p ∈ g))

KI(v) =
∑
u∈V

∑
l

∑
Paths of length l

from u to v

�l
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For a general graph with adjacency matrix A, the vector of Katz indices, CKatz , is computed 
by solving the following linear system.

where I is the identity matrix and I⃗  the identity vector. Solving this linear system involves 
computing the inverse and takes O(|V|3).

However, as before, for a DAG,  the computation of Katz index can be scalably per‑
formed in terms of the parent vertex (similar to Lemma 1) as,

Lemma 3 The Katz index of a vertex v in a DAG, G = (V ,E) is defined in terms of the 
Katz indices of its parent vertices as,

Proof Consider the definitions and equations in Sect. 4, we have,

□

We next define the Katz Index similarity for graphs (KIG) as,

Definition 6 (Katz Index similarity for graphs) Given DAGs G1 = (V ,E1) and 
G2 = (V ,E2) , let KIV1 and KIV2 be the respective Katz Index Vectors. The Katz index simi‑
larity between G1 and G2 is,

Intuitively, this measure captures the fact that if the centrality of vertices across the two 
graphs is similar then the graphs are similar.

Computing the Katz Index Vectors (KIV) is similar to the previous approaches based 
on the parents of the vertices in the graph, with a complexity of O(|E| + |V|) . As, O(|V|) is 
required to compute the final similarity score between the vectors, the total time complex‑
ity for Katz Index Similarity between G1 and G2 is O(|E1| + |E2| + |V|).

Finally, we provide a relationship between the different similarity scores obtained from 
the above measures for comparing DAGs.

(5)CKatz = ((I − 𝛼AT )−1 − I)I⃗ [refer (Katz., 1953)]

(6)KI(v) = � ×
∑

p∈parents(v)

(KI(p) + 1)

KI(v) =
∑
u∈V

∑
l

∑
Paths of length l

from u to v

�l =
∑
u∈V

KS(u, v)

=
∑
u∈V

(
� ×

∑
p∈parents(v)

KS(u, p) + � × �(u → v)

)

= � ×
∑

p∈parents(v)

∑
u∈V

KS(u, p) + � ×
∑
u∈V

�(u → v)

= � ×
∑

p∈parents(v)

(KI(p) + 1) [since,∀p, �(u → v) = 1]

(7)KIG(G1,G2) =
2

1 + exp(� .||KIV1 − KIV2||1)
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Theorem 1 Given directed acyclic graphs G1 = (V ,E1) and G2 = (V ,E2) , the Group Katz 
Similarity with G groups is lower bounded by Katz Graph Similarity and upper bounded by 
Katz Index Similarity, i.e., KIG(G1,G2) ≥ GKSG(G1,G2) ≥ KGS(G1,G2)

Proof Let us define the following based on the Katz’s vectors for the two graphs:

Observe, KGS, GKSG and KIG are monotonically decreasing functions of dKSV , dGKSV and 
dKI respectively, for an input graph. Hence,

Thus, dKSV ≥ dGKSV . Similarly, we show,

dKI =
∑
i

|KI1(i) − KI2(i)|

dGKSV =
∑
i

||GKSV1(∶, i) − GKSV2(∶, i)||1, and

dKSV =
∑
i

||KSV1(∶, i) − KSV2(∶, i)||1

dKSV =
∑
i

||KSV1(∶, i) − KSV2(∶, i)||1 =
∑
i

(∑
j

|KSV1(j, i) − KSV2(j, i)|
)

=
∑
i

(∑
g

∑
j∈g

|KSV1(j, i) − KSV2(j, i)|
)

≥
∑
i

(∑
g

|∑
j∈g

(KSV1(j, i) − KSV2(j, i))|
)

=
∑
i

(∑
g

|∑
j∈g

(KSV1(j, i)) −
∑
j∈g

(KSV2(j, i))|
)

=
∑
i

(∑
g

|GKSV1(g, i) − GKSV2(g, i)|
)

=
∑
i

||GKSV1(∶, i) − GKSV2(∶, i)||1 = dGKSV

dGKSV =
∑
i

||GKSV1(∶, i) − GKSV2(∶, i)||1 =
∑
i

(∑
g

|∑
j∈g

(KSV1(j, i)) −
∑
j∈g

(KSV2(j, i))|
)

≥
∑
i

(
|∑

g

∑
j∈g

(KSV1(j, i)) −
∑
j∈g

(KSV2(j, i))|
)

=
∑
i

(
|∑

j

(KSV1(j, i)) −
∑
j∈g

(KSV2(j, i))|
)

=
∑
i

|KI1(i) − KI2(i)| = dKI
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Thus, dGKSV ≥ dKI . Hence, we have dKSV ≥ dGKSV ≥ dKI . Since KGS, GKSG and 
KIG are inversely proportional to dKSV , dGKSV and dKI (by definition), we obtain 
KIG(G1,G2) ≥ GKSG(G1,G2) ≥ KGS(G1,G2).□

5  Analyzing similarity measures

We study the behaviour of our proposed similarity measures for comparing hierar‑
chies, and explore the contributing factors. Specifically, we quantify the top k vertices 
and edges attributing to the similarity (or dissimilarity) between DAGs, thus providing 
interpretability.

5.1  Proximity of LCA

The proposed Katz Graph Similarity Measure (in Definition  3) inherently captures the 
desired properties of Concept Hierarchy and Relationship Importance via the Katz meas‑
ure as discussed in Sect. 4. We now provide a mathematical analysis to show that our pro‑
posed measure also satisfies the Proximity of Least Common Ancestor property. For tracta‑
bility of analysis, we consider:

1. The taxonomy under consideration is a directed tree instead of a DAG, so there is a 
unique parent–child relation and there is at most one path from one vertex to another.

2. In this scenario, we consider an atomic structural change (between two hierarchies) 
wherein a leaf node L is moved from its correct parent, TP, (considered as ground truth) 
to another (possibly false) parent, FP as depicted in Fig. 2.

Fig. 2  Example of atomic change of moving a leaf node L in a taxonomy G
1
 to b another parent in tax‑

onomy G
2
 . a G

1
 : original taxonomy, b G

2
 : modified taxonomy
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Let LCA denote the least common ancestor of TP and FP, the parent nodes of L in the 
two taxonomies. Without loss of generality, considering TP to be constant, the different 
choices of FP as a new parent can be encoded in terms of 2 parameters:

(1) The distance of LCA to TP, denoted as a, and
(2) The distance from LCA to FP, denoted as b.

Observe that the above distances capture the notion of LCA proximity as described previ‑
ously in Sect. 3. Hence, we have,

Theorem 2 The Katz similarity measure demonstrates monotonic behavior with respect 
to both the distances, a and b, for structural changes between two taxonomies modeled as 
tree structures.

Proof Considering the example in Fig. 2, the only vertex between G1 and G2 , to undergo a 
change in its Katz Similarity sub-vector is the modified leaf vertex L, i.e., only KSV( : , L) 
is affected. This is because, all other paths, except those ending at vertex L, remain intact 
between the graphs.

Note that since there is at most one path between the two vertices, if L is k hops away 
from a vertex u, the Katz similarity KS(u, L) = �k . The terms that contribute to the factor 
||KSV1 − KSV2||1 in Eq. (1) are those capturing the similarity between all other nodes and 
vertex L in G1 and G2.

Only the vertices (in subtree of LCA) that lie on the path from LCA to TP have a path 
to L in G1 , and are affected by the change in G2 . Hence, the difference in Katz similarity, 
induced by structural change, is,

Similarly, vertices lying on path from LCA to FP have a path to L in G2 , and the associated 
difference in Katz similarity (to G1 ) is,

Further, all vertices that lie between the Root and the LCA, also have a path to vertex L. 
Hence, the norm of the Katz vector difference for these vertices will depend on the greater 
of a and b values. Without loss of generality, assume a < b , i.e., L is closer to LCA in G1 
compared to G2 . Considering TP to be TPD hops away from Root, LCA becomes (TPD − a) 
hops away from the Root. Hence, the difference in Katz similarity for these vertices is,

�1 =

a∑
i=1

�i = �(1 + � +⋯ + �a−1) =
�(1 − �a)

1 − �

�2 =

b∑
i=1

�i = �(1 + � +⋯ + �b−1) =
�(1 − �b)

1 − �

�3 =

TPD−a∑
i=0

(�a+i+1 − �b+i+1) = (�a+1 − �b+1)

TPD−a∑
i=0

�i

=
(�a+1 − �b+1)(1 − �TPD−a+1)

1 − �
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Thus, combining the above equations, the total difference in term ||KSV1 − KSV2||1 for 
Katz graph similarity (Eq. 1) when a < b is,

Similarly, for the case where a > b , � evaluates to,

Assuming TPD ≫ a, b , i.e., a displacement of a vertex occurs across similar depths within 
the taxonomy, Eq. (8) becomes,

where k1 =
�(2+�TPD+1)

1−�
 and k2 =

�(2−�TPD+1)

1−�
 are constants as TPD is constant. Similarly, when 

a > b , Eq. (9) becomes, � = k3 − �ak4 , where k3 and k4 are constants. The above two cases 
can be combined into,

where K1 and K2 are constants that depend on the depth of the parent TP in the first tax‑
onomy. From Eq.  11, we can observe that � = ||KSV1 − KSV2||1 is monotonically non‑
decreasing with respect to both a and b, while one is kept constant. Hence, the Katz Graph 
Similarity between G1 and G2 given by Eq. (1) is also individually monotonic with respect 
to both a and b, and exhibits the Proximity of LCA property. □

5.2  Vertex attribution

To provide a notion of interpretability, as to why two hierarchies have been considered to 
be dissimilar by the measure, in this section, we quantify the role of differing vertex plays 
in the Katz similarity vector dissimilarity. Since, the amount of change influences the final 
similarity value, vertices with greater quantifiable change are more responsible for the dis‑
similarity between taxonomies. Thus,

Definition 7 (Vertex importance) The importance of a vertex v with respect to its influ‑
ence on the change in similarity between graphs G1 = (V ,E1) and G2 = (V ,E2) is defined 
by,

where KSV1 and KSV2 are the Katz Similarity sub‑vectors of vertex v in the two graphs 
respectively, and ||.||1 denotes the L1‑norm.

(8)
� = �1 + �2 + �3 =

�
(
1 − �a + 1 − �b + (�a − �b)(1 − �TPD−a+1)

)
1 − �

=
�
(
2 − �TPD+1 − �b

[
2 − �TPD+1−a

])
1 − �

(9)� =
�
(
2 + �TPD+1 − �a

[
2 − �TPD+1+b−2a

])
1 − �

(10)� = k1 − �bk2

(11)𝛥 = K1 − 𝛼max{a,b}K2 [forTPD ≫ a, b]

(12)Imp(v) = ||KSV1(∶, v) − KSV2(∶, v)||1
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Note, the Katz Similarity sub‑vectors can be replaced by the corresponding Katz 
grouped (or index) vectors, for the different variants. Also, note that these vectors and 
the difference i.e., Imp(v) can be computed as a by‑product of the similarity computation. 
Hence, the top‑k vertices with the highest importance values contributing the most for the 
dissimilarities between the hierarchies can be obtained in O(k logV).

5.3  Edge attribution

The contribution of an edge to the dissimilarities between linked structures is captured by 
its centrality in the graphs. Hence, the edge importance is the total Katz similarity that it 
contributes.

Definition 8 (Edge importance) The importance of an edge (u, v) in a graph G = (V ,E) 
is defined as,

The above definition, provides the following interesting mathematical relation for effi‑
cient computation of the edge importance.

Theorem 3 The importance of edge (u, v), Imp(e(u, v)), in G = (V ,E) is proportional to 
the product of the Katz Index of u, KI(u), and the reverse Katz Index of v, RevKI(v), i.e., the 
Katz index of v in graph G′ obtained from G by reversing the edges.

Proof Every path including edge (u, v) can be viewed as a combination of a path ending at 
u, the edge (u, v), and the remaining path from v. Subsequently, every path ending at u can 
be combined with every path beginning at v to obtain a unique path going through the edge 
(u, v). Using Definition 8, we have,

� □

Observe, Katz and reverse Katz index for vertices in V of G can be computed in O(|E|) 
time. We can thus compare the centrality contribution for edges present in one of the 
DAGs, attributing the difference in similarity scores in O(k logE) time.

(13)
Imp(e(u, v)) =

∑
l

∑
paths of length l

that contain edge (u,v)

�l

(14)Imp(e(u, v)) = KI(u) × � × RevKI(v)

Imp(e(u, v)) =
�
l

�
paths of length l

that contain edge (u,v)

�l

=

⎛⎜⎜⎜⎝

�
l1

�
paths of length l1
that end at u

�l1

⎞⎟⎟⎟⎠
× � ×

⎛⎜⎜⎜⎝

�
l2

�
paths of length l2
that start at v

�l2

⎞⎟⎟⎟⎠
= KI(u) × � × RevKI(v)
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6  Experimental evaluation

In this section, we empirically validate the scalability and tunability of our proposed meas‑
ures, and demonstrate that it conforms to the intuitive properties and theoretical analysis 
presented previously. We perform experiments on different sub‑hierarchies of the DBpedia 
taxonomy with varying the number of concept nodes.4 We also use the real‑life biological 
plant kingdom hierarchy for our experimental setup. The characteristics of the datasets can 
be observed in Table 1. Since cycles are inconsistent with the logical usage of taxonomies 
(modeling broader‑specific relation among nodes), we remove cycles as a pre‑processing 
step using DFS‑based technique in line with Suominen and Hyvönen (2012), to obtain a 
DAG. We note that alternative cycle removal techniques (e.g., Sun et al. 2017) can also be 
used.

Tunability and parameter setting One key aspect of our proposed measures is the tun‑
ability for capturing different notions of similarity for diverse applications. The parameters 
� and � in the Katz Similarity measure model the degree of structural and semantic differ‑
ences between two hierarchies that might be tolerable. We use the Death taxonomy and 
Group Katz similarity measure with 250 groups.

The parameter � controls the decay of similarity between two vertices as their path 
length increases, modeling importance of relationships. A higher value of � increases the 
influence of distant ancestors to structural changes, while setting � = 1 treats every path 
between two vertices as same, irrespective of its length, and is similar to measuring the 
transitive closure (multiple paths added with equal weights). Figure 3a shows the behav‑
iour of different � values for increasing number of displaced leaves with (a = 2, b = 1) and 
� = 0.005∕|V|.

Table 1  Running times (in s) for different methods on taxonomies of varying sizes

∗Killed after 24 h
+Out of memory

Taxonomy |V| |E| FM node2vec Katz Simil. Grouped 
Katz@250

Katz Index

Bio Tx 338 346 0.03 10.80 0.01 0.03 0.01
Mobile Tech. 11,267 19,036 62.59 292.74 0.15 0.54 0.05
Climate Change 22,251 29,629 334.90 583.46 0.29 0.75 0.08
Domest. Animals 49,814 93,475 1923.84 1213.28 0.83 1.74 0.20
Aeronautics 174,896 323,596 45,518 4256 6.41 7.24 0.73
Ethnobiology 289,479 472,145 NA

∗ 7332.26 7.76 10.14 1.09
Particle Physics 832,980 1,618,005 NA

∗ 22,102 183.06 33.42 3.85
Physical Chem. 1,945,984 4,032,670 NA

∗ 52,900 465.11 85.57 9.69
Computer Science 2,616,557 6,774,884 NA

∗ 70,005 1,435 140.56 15.82
Death 3,643,987 10,283,884 NA

∗
NA

∗ 2,979 253.57 26.85
DBpedia 6,535,441 27,065,747 NA

∗
NA

∗
OM

+ 1222 171.47

4 DBpedia, derived from Wikipedia pages, contains over 6 million vertices and 25 million edges for a hier‑
archical ordering of Wikipedia concepts using the Simple Knowledge Organization System (SKOS) broader 
(i.e., skos:broader) relationships.
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The parameter � , on the other hand, controls the sensitivity of the measures to structural 
differences between taxonomies, and is a normalizing factor characterizing the similarity 
score to differences in the Katz similarity vectors. Figure 3b exhibits the similarity scores 
for different values of � , with � = 0.8 . Observe that, setting � = 0.005∕|V| or to 0.002/|V|, 
tunes the sensitivity of the measure to report a similarity score of 0 when the structural dif‑
ference is more than 300K or 700K nodes respectively, depending on application.

Table 1 lists the top‑level sub‑concepts of the taxonomies and their characteristics used 
for our evaluations. The sub‑taxonomies were derived by choosing a sub‑concept node 
and considering the sub‑graph induced by its descendants. For the remaining sections, the 
parameters � and � were set to their default value of 0.8 and 0.001/|V| respectively, while 
for the Grouped Katz Similarity measure, the vertices were randomly split into  = 250 
groups. All algorithms were implemented in C and run‑times reported for Intel(R) Xeon(R) 
E5‑2470 processor with 150 GB memory.

We next benchmark the performance and the different features of proposed measure 
against state‑of‑the‑art node2vec embedding technique and the Fowlkes-Mallows (FM) 
measure. For the node2vec approach, the vector representation of each node (based on 
random walk) in both the taxonomic structures were constructed. The cosine similarity 
between the vectors were then added across all the nodes to obtain the similarity score 
between the hierarchies. An open‑source implementation for node2vec was obtained from 
http://githu b.com/palas h1992 /GEM (Goyal and Ferrara 2018).

6.1  Qualitative analysis

In this section, we study the qualitative performance of the competing approaches based 
on the intuitive features that a similarity measure should demonstrate. We use the “Mobile 
Tech.” sub‑concept from the DBpedia hierarchy. Further, we also use a real‑life Biological 
taxonomy on plant kingdom classification (named dwca − census_plants_pahou − v1.2 ) 
obtained from www.gbif.org/.

6.1.1  Concept hierarchy awareness

To understand the degree of sensitivity of the competing measures to the input concept 
hierarchy structure, we perturb the original hierarchy by flipping (i.e., reversing) the 

Fig. 3  Variation of parameters for similarity measures. a Varying � with � = 0.005∕|V| , b varying � with 
� = 0.8

http://github.com/palash1992/GEM
http://www.gbif.org/
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directions of increasing number of parent–child edges (at the level of the leaves). With this 
increasing change in the logical subsumption of concept, from Fig.  4a, we observe that 
both the FM and the Grouped Katz index similarity measure value decreases with increase 
in the damage of the Mobile Tech. hierarchy from DBpedia. However, the FM measure 
shows a slow decrease in its similarity value, while our measure demonstrates a steeper 
decrease. We argue that this better captures the logical difference between the hierarchies, 
as with increase in reversal of edge directions, the quality of the taxonomy decreases dra‑
matically (and not a slow degradation as captured by FM). On the other hand, we find that 
the “node2vec” approach exhibits nearly constant similarity with some random spikes due 
to the effect of the inherent random walk procedure. Similar results were also obtained on 
the Bio‑taxonomy dataset, as shown in Fig. 4b.

6.1.2  Capture of logical subsumption

We now consider how the competing approaches behave under the presence of various 
types of structural difference in the taxonomies. We broadly consider the three different 
types of deviation in the logical subsumption within the hierarchies as shown by the carica‑
ture example of Fig. 1 in Sect. 3. Specifically, a particular concept vertex is dislodged from 
its current position and is attached to: (1) sibling of parent, (2) sibling of grandparent, and 
(3) to another concept at the same level as that of its parent, but in a different sub‑hierarchy 
with respect to its grandparent. These perturbation (referred to as Taxonomy A, B, and C 
respectively) have been intuitive argued (in Sect. 3) to demonstrate increasing degrees of 
degradation in the logical subsumption and semantic integrity of the hierarchy. Hence, the 
similarity values for the three perturbed hierarchy when compared to the original taxonomy 
should monotonically decrease.

We induce the above three structural perturbations to the Mobile Tech. and Bio‑Plant 
taxonomy, vary the number of vertices taking part in such perturbations, and compute the 
similarity measures with respect to the original unchanged taxonomy. From Fig.  5, we 
observe that the behavior for both the FM measure and our proposed Katz Graph Similar‑
ity measure is persistent with the properties of Sect.  3—that is, the similarity decreases 
as we move from perturbation type A to that of C (Fig. 1). This also captures and mod‑
els the property of Proximity to LCA. However, we again observe that the performance 

Fig. 4  Awareness of concept hierarchy on a Mobile Tech. in DBpedia and b biological plant kingdom
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of the embedding technique rapidly oscillates and behaves randomly with respect to the 
taxonomic “damage type”.

6.1.3  Closeness to LCA: empirical validation

Next, we empirically show the monotonicity property of our proposed measures, with 
respect to distances a and b capturing the Proximity of LCA (of Sect. 5.1). We demonstrate 
the effect for a general DAG structure instead of a directed tree, as assumed in our analysis. 
However, unlike in a tree, the least common ancestor (LCA) of two nodes in a DAG is not 
uniquely defined. Hence, we define the LCA of a vertex present in two DAGs as the ances‑
tor having the shortest path to the vertex in one of the DAGs (i.e., to TP for example in 
Fig. 2).

For evaluation, we take the Death taxonomy derived from DBpedia (Table 1) and gener‑
ate the comparing taxonomy by inducing structural “damages” by—taking a leaf 
node, detaching it from its original parent and reattach it 
as a child of another node at a distance of (a, b).

Figure  6a, b depicts the similarity between the modified taxonomy and the origi‑
nal taxonomy with increasing number of induced structural differences. As presented in 
Sect. 5.1, we observe monotonic decrease in the similarity score as the distance values of 
a and b are increased. Further, the score decreases as the number of structural differences 
are increased. This monotonic behaviour is depicted by all our measures, conforming to 
Theorem 2.

Fig. 5  Logical subsumption property on different taxonomic perturbations for the two datasets
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6.1.4  Interpretability: vertex importance

A key feature of our proposed measure in the concept of interpretability, wherein structural 
or logical difference between hierarchies, that play a key part in their dissimilarities, can 
be identified. In fact, such differences in modeling parent–child relationships and/or logi‑
cal and semantic binding of concepts may indicate key insights or as well be presented to 
domain‑experts for evaluation.

DBpedia subhierarchy experiment We compute the vertex importance (as shown in Def‑
inition 7) for the vertices of the input taxonomies, with an induced perturbation where the 
edges between leaves and their parents were reversed. It was interesting to observe that 
exactly the vertices affected by the perturbation (i.e., the parent and the corresponding 
leaves) received a positive Imp() score, while the score remained 0 for all other vertices.

Caricature taxonomy experiment Consider the perturbations of the caricature example 
in Sect. 3, we observe an increase in the Vertex Importance score of the concept node with 
increase in the logical difference between the compared hierarchies—as shown in Fig. 7a.

For other diverse changes in the hierarchy structures, as shown in Fig. 7b, c wherein the 
structural change does not occur at the leaves, we observe the concept nodes with shorter 
connected paths (to the “damaged” vertex) demonstrating a higher vertex importance 
score, which percolates down the children (albeit with a lower score) to capture the effect 
of change in logical subsumption of the hierarchy due to the structural change.

Fig. 6  Variation in Katz similarity measures with increasing distance of induced structural differences. a 
Varying distance a (b fixed), b varying distance b (a fixed)
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Fig. 7  Vertex Importance of concept vertices for a Caricature example perturbations, b, c other perturba‑
tions
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This is indeed a key novelty provided by our measure, and enables it to identify the 
probable key differences between the hierarchies, providing insights into the logical differ‑
ence between them.

6.2  Scalability studies

We demonstrate the scalability of our proposed measures against state‑of‑the‑art Fowlkes-
Mallows (FM) measure and node2vec based similarity, by comparing the time taken by the 
competing approaches to compute the similarity scores between the input taxonomy and 
itself.

Table 1 tabulates the time taken by the FM, node2vec, Katz Similarity, Grouped Katz 
Similarity, and Katz Index Similarity measures. We observe that the compute time of FM 
measure is manageable for smaller taxonomies (with < 100,000 vertices), but quickly esca‑
lates into multiple hours even on the medium sized Aeronautics taxonomy with 167,297 
vertices. The FM measure takes more than 11  h to complete, while the Katz similarity 
measure incurs less than 4 s, providing an improvement of around 10,000× . The node2vec 
approach is tractable in the sense that it runs to completion for large taxonomies (where 
FM fails). However, the Katz similarity demonstrates nearly 70× run‑time improvements 
for larger hierarchies like Computer Science, and shows nearly 7000× speedup for the pro‑
posed Katz index technique.

Fig. 8  Variation of the run‑time for grouped Katz similarity
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The Katz similarity measure relies on the computation of path distances between every 
pair of reachable vertices, and hence for huge taxonomies might be practically inefficient. 
Hence, the more compute efficient Grouped Katz similarity measure and the Katz Index 
measure provide approximations to the Katz similarity measure in such scenarios. Figure 8 
shows the running time for Grouped Katz similarity with varying group sizes on four large 
taxonomies from Table 1. For example, on the Death sub‑hierarchy (with 3.6 million con‑
cepts), the Katz similarity and Grouped Katz similarity takes around 50 and 4 min respec‑
tively, while the FM measure was terminated after 24 h. Even for the whole of DBpedia, 
the Grouped Katz similarity took only around 20 min, showcasing extreme scalability in 
gracefully handling Web‑scale taxonomies.

Intuitively, the run‑time of Grouped Katz measure increases with increase in the number 
of groups (shown in Fig. 8), as the group‑vertex similarity computation increases. Interest‑
ingly, we observed that the run‑time for Katz Similarity measure might not always be more 
than the Group Katz measure for various group sizes, as Grouped Katz computes a dense 
matrix of size |V| ×  , and  can be greater than the number of reachable vertex pairs in 
some cases. For example, Grouped Katz with 1000 groups was more compute intensive 
than the Katz similarity on  Physical Chemistry taxonomy.

6.2.1  Discussion

Hence, we observe that our proposed similarity measures are indeed adept in capturing the 
structural similarities along with incorporating the property of logical subsumption of con‑
cepts (transitivity‑aware) in DAGs or other hierarchical structures. We show that our meas‑
ure respects all the intuitive properties of a similarity measure in this problem domain. 
Further, our measure demonstrates the vital features of interpretability, tunability, and scal‑
ability making it far superior as compared to other existing approaches.

6.3  Further analysis

6.3.1  Loss of structural information from Katz similarity to grouped variant

As we have observed in Fig. 6, Katz similarity captures the logical subsumption among 
concepts. However, as we go from Katz similarity to the Grouped version, not all structural 
changes might be captured by the Grouped variant (and the special case of Katz Index). 
For example, in Taxonomy X (Fig. 1a) consider parents of concepts Lizards and Bovines 
to be interchanged (i.e., Mammals → Lizards and Reptiles → Bovines ). Katz Index only 
considers the path length incident on a vertex, and not the origin or path vertices. Since 
our modified taxonomy still preserves the overall incident structure (i.e., number of paths 
ending) of the vertices, the Katz Index remains unchanged. Contrarily, the Katz similarity 
measure accounts for this difference by considering the entire path (i.e., in Taxonomy X, 
path of length 1 incident on Bovines originated from Mammals, while in the new taxonomy 
it originated from Reptiles).

This loss of structural information occurs as it is oblivious to paths coming from differ‑
ent vertices only if they originate from vertices within the same group. Thus, the more the 
number of groups, the closer Grouped Katz Similarity is to the Katz Similarity measure 
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(Fig.  9). This corresponds to the bounds on the Grouped Katz similarity, as shown in 
Theorem 1.

6.3.2  Assessing temporal evolution of categories

Next, we consider the extreme case where we assess how well we can identify the relative 
growth of different subject areas in the knowledge hierarchies merely based on our graph 
structure comparison measure, independent of any syntactic or embedding feature. Specifi‑
cally, we capture:

Fig. 9  Deviation in group Katz similarity compared to the Katz similarity measure with varying group sizes

Fig. 10  �KIC for different 
categories
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(1) emergence of new concepts within a category, and
(2) disruptive evolution of categories.

We consider snapshots of categories in DBpedia for years 2011–2016. The change in cat‑
egory,  , from year y1 to y2 is measured by the micro‑averaged Katz index change, �KIC , 
defined as:

with nodes i computed by BFS from category node to leaves.
Figure 10 depicts that the field of “Machine Learning” underwent a major disrup‑

tion in 2012, which corresponds to the development of deep learning techniques in this 
area. Similarly, the organization of “Viruses” category underwent major changes in 
2012, 2014 and 2016, with the outbreak of H1N1, Ebola and Zika virus strains. In contrast, 
the field of “Television Series” doesn’t witness sudden radical changes, but rather 
undergoes smooth regular changes.

Hence, the temporal evolution of categories as captured by our measure seems to corre‑
spond well with the known disruptive emergence and evolution of concepts in those areas.

7  Conclusion

This paper proposed principled and scalable similarity measures, adapting the Katz similarity, 
for comparing DAGs. We identified key properties that a similarity measure for knowledge 
hierarchies should capture, and provided a theoretical analysis depicting that our measures 
capture the structure and logical subsumption of concept relations in these hierarchies. We 
also presented a linear time variant, to cater to various real‑world applications, and empirically 
showed that our measures are scalable, efficient (with upto 10,000× run‑time improvements) 
and tunable. We also demonstrated that our measure depicts interpretability, and identifies the 
precise region that contributes to the semantic and logical differences between hierarchies. 
Furthermore, we showed that the temporal evolution of different subgraphs, as captured by our 
measure, corresponds well with known disruptions in the related subject areas. Future work 
involves deriving approximation bounds for Grouped Katz similarity and comparing different 
knowledge hierarchies with varying granularity within the proposed framework. The similar‑
ity measures proposed in this paper have been implemented in C and the code for the same is 
available at https ://githu b.com/gurup rasad nk7/DAGSi milar ityKa tz.
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