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Abstract
Link prediction is a prominent research direction e.g., for inferring upcoming interactions 
to be used in recommender systems. Although this problem of predicting links between 
users has been extensively studied in the past, research investigating this issue simultane-
ously in multiplex networks is rather rare so far. This is the focus of this paper. We inves-
tigate the extent to which trading interactions between sellers and buyers within an online 
marketplace platform can be predicted based on three different but overlapping networks—
an online social network, a location-based social network and a trading network. In par-
ticular, we conducted the study in the context of the virtual world Second Life. For that, we 
crawled according data of the online social network, user information of the location-based 
social network obtained by specialized bots, and we extracted purchases of the trading net-
work. Overall, we generated and used  57 topological and homophilic features in differ-
ent constellations to predict trading interactions between user pairs. We focused on both 
unsupervised as well as supervised learning methods. For supervised learning, we achieved 
accuracy values up to 92.5% , for unsupervised learning we obtained nDCG values up to 
over 97% and MAP values up to 75%.
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1 Introduction

Social networks capture useful information about the relations between their users and 
their social characteristics (Coleman 1988). Since also the evolution of that structure is of 
particular interest, a large part of recent research activity in social networks is related to 
the link prediction problem: Here the goal is to estimate, whether two users u and v will 
interact with each other in the future or not (Liben-Nowell and Kleinberg 2007). Most of 
the work in this area being applied e.g., for friend recommendation (Barbieri et al. 2014), 
or community recommendation (Backstrom and Leskovec 2011). Recent approaches also 
include multiple relations that cover social networks from different perspectives, e.g., con-
sidering different relations between the set of actors, in order to enable context-aware 
social personalization and recommendation systems (Eirinaki et al. 2018). However, work 
that provides insights in which source of information is the most useful one, what types of 
features shall be used, and how well do both of these perform in unsupervised as well as 
supervised settings, are rare.

Objective The problem addressed in this paper is a particular kind of link prediction 
problem—relevant both for virtual as well as physical social networks. Here, we want to 
show if and to what extent it is possible to predict who will buy from whom and who will 
sell to whom, or in other words, who will trade with whom in the future. The predictions 
are based on three sources of data: (1) an online social network, (2) a location-based social 
network and (3) a trading network, including topological and homophilic features of these 
three different networks. Here, we aim at extending the existing analyses in two directions: 
we focus on a combined feature-based analysis of the different networks, in contrast to, 
for example, Guo et al. (2011) or Zhang and Pennacchiotti (2013), we specifically focus 
on the impact of different features since they provide actionable insights that can be used 
for decision making later. We aim at predicting trading interactions between users from 
four perspectives: an online social, a location-based social, a trading network and different 
combinations of them in order to see, if this increases our prediction results. We also con-
sider both unsupervised as well as supervised methods, applying different constellations of 
features generated by the set of networks. This is useful for estimating performance indica-
tors towards real application (Bischoff 2012), and it also provides additional support with 
respect to the importance of features (and their combinations).

As a data source for our experiments we rely on Second Life1: it aims to provide users 
a platform similar to the real-world but virtually to interact with each other via a social 
network called My Second Life. This also allows to create businesses over the Second Life 
marketplace that is similar to what we refer to as ebay2 in the real world, as shown in Szell 
et al. (2012), Lehdonvirta (2009) and Guo et al. (2011).

Research Questions To drive our research we have defined the following three high-
level research questions, which we will investigate and discuss in the following sections: 

RQ1  First, we focus on individual features: to what extent can trading interactions be 
predicted based on features from a set of networks (social, location-based, trading) 
individually, considering local (proximity), path-based and content-based features 
on the (overall) prediction accuracy?

1 http://secon dlife .com.
2 http://ebay.com.

http://secondlife.com
http://ebay.com
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RQ2  Second, we focus on the different feature types, as well as their collective interplay: 
does the combination of different feature types across multiple networks (social, 
location-based, trading) increase the results of predicting trading interactions?

RQ3  Third, we focus on different classification approaches and address the question 
about on different prediction approaches—unsupervised as well as supervised 
learning methods: what is their impact with respect to different constellations of the 
available features?

Outline In the following sections we will review appropriate background literature, 
introduce the datasets and methodology chosen to address our research questions, and pre-
sent and discuss the results of our study. Finally, we draw conclusions, discuss the limita-
tions of our study and propose future research directions.

2  Background

Link prediction is a prominent method for link analysis in social networks. It aims at pre-
dicting new and recurring links between the involved actors (Liben-Nowell and Kleinberg 
2003, 2007; Getoor and Diehl 2005; Al Hasan and Zaki 2011; Zhang and Philip 2014; 
Wang et al. 2015; Martínez et al. 2016). However, little work has been done in the context 
of predicting interactions between sellers and buyers.

Below, we first discuss related approaches for link prediction outlining both unsuper-
vised as well as supervised approaches, before we describe the relation to feature engineer-
ing for link prediction: this includes network proximity as well as path-based and content-
based measures. According to these dimensions, we summarize the different foci of link 
prediction approaches in Table  1. The table shows the underlying (learning) method for 
link prediction, as well as the respective applied features—according to the categories out-
lined above. We will discuss these in more detail in Sect. 2.2.

This section concludes with a final subsection, where we outline current gaps in the 
literature, and summarize differences to previous research. Furthermore, we provide and 
discuss a detailed list of contributions of this work.

2.1  Link prediction methods

The prediction of (new) links between nodes in a social network is an interesting and chal-
lenging task. A first comprehensive fundamental analysis was done by Liben-Nowell and 
Kleinberg (2003). In particular, Liben-Nowell and Kleinberg (2003, 2007) defined the 
link prediction problem as the search to carefully predict edges that will be added to a 
given snapshot of a social network during a given interval, using network proximity meas-
ures. Such link predictions could be used for suggesting promising interactions between 
two individuals in such a social network  (Zhang et  al. 2013; Barbieri et  al. 2014). This 
work is concerned with the prediction of trading interactions using several user information 
sources similar to Guo et al. (2011).

In the link prediction literature, typically two different types of learning approaches are 
distinguished: unsupervised and supervised approaches. In the following two paragraphs, 
we review literature in these two strands of research.

Unsupervised approaches Extending the fundamental work of Liben-Nowell and Klein-
berg (2003, 2007) using network proximity and path-based measures, Murata and Moriyasu 
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(2007) investigated weighted variants of the network proximity measures Adamic–Adar, 
common neighbors and preferential attachment; essentially these methods obtain a rank-
ing utilizing collaborative filtering techniques for obtaining similar users for a given user. 
Furthermore, Lü and Zhou (2010) presented an approach to analyze the role of weak ties in 
social networks, while Zhuang et al. (2012b) used active learning for inferring social ties.

Most of these works analyzed the predictability of new links in online social networks 
like co-authorship in DBLP or arXiv.org. The prediction of new links in real-world social 
contacts has been largely neglected. Zhuang et  al. (2012a) present prediction techniques 
using location-based proximity as a-weak-proxy for face-to-face encounters and online 
social networks. In contrast, Scholz et al. (2012) conducted a first analysis concerning the 
predictability of new links in real face-to-face contact networks. In Scholz et al. (2013a), 
a method for link prediction on multiplex networks, based on the idea of link prediction 
using the rooted PageRank algorithm (Liben-Nowell and Kleinberg 2007) is described 
yielding the Hybrid Rooted PageRank algorithm. This algorithm enables a combined infer-
ence on the multiplex network for prediction. In a similar setting, Kibanov et  al. (2015) 
apply content-based filtering.

Also, a structural view on link prediction is taken in Scholz et al. (2013b). In addition, 
the integration of heterogeneous information for link prediction is investigated in Scholz 
et al. (2014). Furthermore, Lichtenwalter et al. (2010) as well as Lichtenwalter and Chawla 
(2011) introduce a novel unsupervised method, i.e., a restricted variant of rooted PageR-
ank, and a new supervised method (Lichtenwalter and Chawla 2012) for link prediction. 
Here, we extend these approaches covering both supervised and unsupervised methods.

Supervised approaches In the literature supervised learning is commonly used to pre-
dict links between users in a network whenever label information is available, employing 
various machine learning methods.

Hasan et al. (2006) considered a social network with interactions as edges representing 
the co-authoring of research articles. Each article included at least author information and 
publication year. For link prediction, they first split the set of publication years into two 
non-overlapping sub-ranges as training and test set. Their classification dataset consisted of 
author pairs that already existed in the training set, but did not publish any papers together 
in this period. To become a positive example for their experiment, those author pairs had 
to publish at least one paper in the test set period, otherwise they represented a negative 
example. Each positive example of author pairs established a link between them, which did 
not exist for the period of the training set. Consequently, they had a binary classification 
problem that was solved by supervised learning. Here, they mainly focused on topological 
(proximity) features.

Backstrom and Leskovec (2011) introduced a supervised method, based on supervised 
random walks for predicting new links, focusing on the network structure as well. Simi-
larly, Menon and Elkan (2011) present a supervised approach using matrix factorization. 
Lu et al. (2010) applied a supervised approach using multiple sources, focusing on feature 
engineering methods. Compared to these approaches, we provide a much more feature rich 
setting integrating multiple relations and feature sets into our prediction approach. In addi-
tion, Scellato et al. (2011) present a supervised learning framework integrating place fea-
tures on location-based social networks.

In this paper, we extend the approaches mentioned above by not only focusing on net-
work (proximity) features or integrating place features, but by taking a more comprehen-
sive view: We focus on user, homophilic and locational features, integrating them in order 
to assess their impact and efficacy. Thiele et  al. (2018) present a longitudinal analysis 
of social network data for link prediction in the scope of the predictive impact of initial 
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face-to-face contacts on the formation and evolution of developmental peer network rela-
tionships. For the predictive model, a longitudinal RSiena model is applied, cf. Ripley et al. 
(2011). In the context of this paper, we instead focus on the relations between the different 
networks, considering the combinations of features for predicting buyer–seller interactions.

Overall, several machine learning algorithms for the supervised link prediction in 
online social networks have been investigated in the past. For example, decision trees 
[C4.5 (Quinlan 1986), in the J48 implementation of Weka (Hall et al. 2009)] were used in 
Cheng et al. (2011) and Fire et al. (2011), logistic regression (LR) in Cheng et al. (2011), 
Jones et al. (2013), Leskovec et al. (2010), Rowe et al. (2012) and Zhang and Pennacchiotti 
(2013), random forest (RF) in Fire et al. (2013) and Jones et al. (2013), and support vector 
machines (SVM) in Fire et al. (2011), Hasan et al. (2006), Jones et al. (2013) and Zhang 
and Pennacchiotti (2013), for a variety of tasks, e.g., reciprocal links, links of new users, or 
follower connections.

2.2  Features for predicting links between users in networks

Within social networks, important information about users and their relations can be 
extracted in order to assess similarities between users. Topological and homophilic features 
are hypernyms for such user similarities in partly large-scale network data (Coleman 1988; 
Steurer and Trattner 2013a). Then, these can be leveraged in link prediction approaches, 
relying on the (similar) social context of the users, e.g.,    Liben-Nowell and Kleinberg 
(2003) and Guo et al. (2011).

Topological features If the structure of a network is known, then network topological 
features can be applied for estimating the similarity between two users in the network, also 
in longitudinal analysis, e.g.,  Thiele et al. (2018).

For the analysis of co-authorship social networks, Liben-Nowell and Kleinberg (2007) 
used topological features for link prediction. They used measures such as common neigh-
bors (number of neighbors that two users have in common), Jaccard’s coefficient (num-
ber of common divided by number of total neighbors) as proposed by Salton and McGill 
(1983), Adamic–Adar (regarding the node degree of the common neighbors) proposed by 
Adamic and Adar (2003) or preferential attachment (multiplication of numbers of neigh-
bors of two users) proposed by Barabasi and Albert (1999), Newman (2001) and Barabasi 
et al. (2002). More detailed topological feature measures were used by Steurer and Trattner 
(2013a). They partly used a directed network for their experiments and thus distinguished 
between outgoing and incoming network topological features; e.g.,  common neighbors, 
total neighbors, Jaccard’s coefficient and preferential attachment were each split into an 
outgoing and an incoming feature. Furthermore, they applied the reciprocity of user com-
munication, Adamic–Adar and the neighborhood overlap. Additionally, Fire et al. (2013) 
defined topological features such as transitive friends (number of outgoing neighbors of 
a user intersected by the number of incoming neighbors of another user), Katz measure 
(path oriented measure) proposed by Katz (1953a), opposite direction friends (reciprocity 
between two users) for directed graphs or shortest paths.

Path-based features As an extension of topological features that focus on the (local) 
neighborhood of a node, path-based features take into account richer connectivity informa-
tion. The rooted PageRank (Liben-Nowell and Kleinberg 2003) algorithm, as an adaption 
of the PageRank algorithm (Brin and Page 1998) provides the stationary probability distri-
bution sets of nodes regarding a specific starting node, providing a ranking for link predic-
tion. Similarly, the Katz (1953b) measure also takes into account longer paths extending 
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the neighborhood, weighted by a damping factor. Katz basically measures the strength of 
the connection between two nodes: The more paths two nodes are connected with and the 
shorter these paths are, the stronger the connection. For very small values of those, Katz 
is actually similar to a network proximity measure based on the nodes’ neighborhood, 
because path lengths greater than three do not contribute very much  (Liben-Nowell and 
Kleinberg 2003).

Homophilic features Thelwall (2009) described homophily as the tendency for friend- 
or relationships to occur between individuals. Generally, homophily is the principle that an 
interaction between people rather occurs if they are similar than between dissimilar peo-
ple. The target of homophily is to perceive and localize the behavioral, cultural, genetic or 
material information that flows through networks.

Homophily structures the edges of a network of every type or relationship, which could 
be marriage, friendship, information transfer, work advice or other types of relationships. 
For the personal environment common homophilic attributes are age, religion, education, 
occupation and gender. However, homophilic attributes are very crucial for the user behav-
ior, the information users receive and the attitudes they form, as investigated by McPherson 
et  al. (2001) in the context of online social networks. Steurer and Trattner (2013a) used 
attributes as groups, interests, user interactions, events and regions for the computation of 
homophilic features for their experiments for predicting partnerships in social networks. 
For the different attributes they computed measures—also used in this paper—such as 
common items (number of items of an attribute two users have in common), total items 
(number of total items of an attribute of two users), Jaccard’s coefficient (common items 
divided by the number of total items) or cosine similarity of the item vectors.

Feature set modeling Overall, we can approach the link prediction task using different 
feature sets, dependent on their availability, both individually as well as in combination 
covering multiple networks. Although Fire et  al. (2011) used only topological features 
in their link prediction experiments, they demonstrated that their models surprisingly 
achieved considerable results. Their goal was to predict hidden links in social network 
structures which they tried to achieve with machine learning methods applied on several 
social network datasets such as Academia, TheMarker, Flickr, Youtube and Facebook. In 
order to obtain topological network features, the npreviousetwork structure has to be given. 
Otherwise, link prediction could be applied on homophilic features, which could also be a 
good measure for the similarity between the users in a network, e.g., as shown by Thelwall 
(2009). They attained highly significant indications of homophily for measures such as 
ethnicity, age, religion, sexual orientation, country or marital status for their experiments 
with a MySpace dataset. Furthermore, regarding the work of Cranshaw et al. (2010), they 
applied a hybrid approach, combining location-based data with online social network data. 
They used the location-sharing Facebook application called Locaccino and tried to predict 
the links in the online social network. Steurer and Trattner (2013a) also combined online 
social network data with location-based social network data in their partnership prediction 
experiments.

2.3  Differences to previous research and contributions

In summary, the background literature discussed above clearly shows that the general 
link prediction problem is a well-studied area of research. Many studies have been per-
formed to predict links in online social networks or other types of networks. However, 
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surprisingly little work has been conducted employing several different networks at the 
same time, e.g., concerning different types of networks, and in particular the combina-
tion of multiple networks, as well as feature types.

We started to investigate that topic using a location-based and an online social net-
work in  Steurer et  al. (2013), Steurer and Trattner (2013c) and Kibanov et  al. (2015) 
regarding interactions and their types. In addition, we tackled link prediction in the 
context of multiplex networks for predicting face-to-face interactions in  Scholz et  al. 
(2013a), and for attending talks in the context of academic conferences  Scholz et  al. 
(2014).

Furthermore, when reviewing the literature regarding the particular problem we 
study, namely predicting links (trading interactions) between sellers and buyers, we see 
that actually very little work can be found for that particular area. To the best of our 
knowledge there is only one study that is directly comparable to our work that has been 
performed by Guo et al. (2011) in the past, apart from preliminary own work of authors 
of this paper (Eberhard and Trattner 2016).

The work of Guo et  al. (2011) is interesting as it is the first to study usefulness of 
social networks and 13 different features to predict seller buyer interactions. The context 
of their work is the largest electronic marketplace in Chine named TAOBAO, with over 
370 million registered users at the end of 2010. Among the features investigated, they 
employ centrality metrics, such as PageRank as well as homophilic metrics such as the 
number of common friends a seller and a buyer have in common to predict trading inter-
actions. Also they used the prizes of the products as well as the ratings of the products 
as a proxy. The intention behind this is, that buyers typically buy from popular sellers 
(captured, for example, over centrality metrics such as PageRank) or keep also others 
types of types of relations, such as common friends that have been buying an item from 
the buyer before.

In this work we use similar features. However, compared to the work of Guo et al. 
(2011) we do not only rely on social network data, but also reveal whether there is also 
a signal present in the people’s location-based network to predict trading interactions. 
The features engineered in our approach are based on the existing related work. This 
includes link-prediction and recommender systems research as well as sociology as 
mentioned before, but also economy (DiMaggio and Louch 1998) which suggests that 
the social embeddedness of the sellers in the buyers networks is inherently important for 
further purchase decisions. As such, we induce in total 57 different features capturing 
not only network effects between sellers and buyers, but we also consider homophilic 
features such as the “number of groups or interests” that they have in common.

Furthermore, we make use of location-based network data, to understand whether 
features such as, for example, the “number of times seller and buyers have been seen 
in the same location” bears a signal that can be exploited to predict seller-buyer links 
in the future. In addition to this, our experiments make use of different supervised and 
unsupervised learning approaches.

To the best of our knowledge, this is the first kind of study that shows the relation 
between and individual as well as combined impact of three different types of networks, 
features, features sets and learning methods to predict links between sellers and buyers.

In total, the contributions of this work can be summarized as follows:

1. The collection of a unique dataset of user and activity data in three different networks: 
an online social network, a location-based social network and a trading network.
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2. The engineering of 57 topological and homophilic features to predict trading interactions 
between two users in these three different types of networks.

3. The statistical analysis of differences of the features to discriminate between seller and 
buyer interactions across different networks.

4. The presentation of a set of supervised and unsupervised learning experiments to show 
the meaningfulness of the inducted features individually to predict trading interactions 
between sellers and buyers.

5. The presentation of results revealing the value of predicting seller buyer trading inter-
actions based on feature sets (homophilic and topological) as well as different kinds of 
networks (trading, social and location-based).

6. Finally, we show how the features correlate with each other and reveal their importance 
(measured via Information Gain) when considering all features at the same time in the 
model.

3  Datasets

In order to address the three research questions, it was necessary to have three different 
kinds of data available:

1. Data from an online social network such as Facebook3 or Google+4 where users share 
personal information on their profiles and are able to communicate with others via the 
platform.

2. Data from a location-based social network such as Foursquare,5 where geographical 
position information about the users is available.

3. Data from a trading network such as eBay,6 where the community is able to trade with 
goods. The majority of these websites restrict the verbose crawling of their user pro-
files, but apart from this awareness, most of the users share their profiles only with their 
friends and prohibit the access by others.

As a consequence, we opted for the virtual world Second Life, which unites all the 
required kinds of data sources. On top of that, there is the advantage of a large user overlap 
across the three parts of the Second Life platform (Steurer and Trattner 2013a, b, c; Steurer 
et al. 2013). Although the users in Second Life do not interact with their real life names, 
but with the names of their avatars in a virtual world, La and Michiardi (2008) and Var-
vello et al. (2008) have shown that the avatars’ behavior tends to be similar to the behavior 
of humans.

The basic principle of Second Life is that avatars explore the virtual world, meet other 
avatars and communicate, play or trade with them. Varvello and Voelker (2010) denoted 
the Second Life social network as small-world network and much more similar to a real 
world network in comparison with popular online social networks. Crucial for this observa-
tion is the establishing of social relationships between users in Second Life, which requires 

3 http://faceb ook.com/.
4 http://plus.googl e.com/.
5 http://fours quare .com/.
6 http://ebay.com/.

http://facebook.com/
http://plus.google.com/
http://foursquare.com/
http://ebay.com/
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an active interaction between the involved users. By contrast, relationships in online social 
networks often signify only the acceptance of a friendship request without existing interac-
tions such as text messages between the users.

As source for our online social network we crawled data from My Second Life.7 The 
location-based data were monitored in-world in Second Life and the Second Life Mar-
ketplace8 was used as trading network in this paper. Table  2 provides an overview of 
the extracted entities of the respective data source that we further used for the feature 
engineering.

3.1  Online social network data

As described in our previous work (Eberhard and Trattner 2016), users in the virtual world 
of Second Life are able to establish social links through an online social networking plat-
form called My Second Life. Similar to Facebook and its timeline, My Second Life gives 
Second Life users the opportunity to present personal information on their user profiles 
or to interact with other users on the so-called feed. Apart from such information about 
the Second Life avatar such as interests, the day of birth in Second Life, or the biography, 
users are able to join groups or to show their favorite in-world regions on their profiles. It 
is also possible to share text messages or pictures with others on the feed. Furthermore, 
these postings can be commented or loved. A “love” in Second Life is similar to a “like” 
in Facebook or a plus in Google+. A considerable difference to Facebook exists concern-
ing friendship relations. Such a relation type does not exist in My Second life (Steurer and 
Trattner 2013a).

Based on the crawling methodology described in our previous work (Trattner and 
Steurer 2015), at the end of March 2013 we crawled the Second Life profiles of users with 
public user profiles. We extracted a list of user names from the location-based dataset (see 
Sect. 3.2) and iteratively extended it by further users who interacted on the feed with the 
users from the list. For each user, we obtained their interests, the joined groups and the feed 

Table 2  Extracted entities from 
the three different data sources

Online social network Location-based 
social network

Trading network

Users Users Users
Interactions Events Product categories

     Postings Event categories Product prices
       Text messages Event regions Product ratings
       Pictures
     Comments
     Loves

Groups
Interests
Check-ins
Favored regions

7 http://my.secon dlife .com/.
8 http://marke tplac e.secon dlife .com/.

http://my.secondlife.com/
http://marketplace.secondlife.com/
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interactions with others. Two different sources of Second Life regions were also part of the 
collected information for each user. In Second Life it is possible to record in-world snap-
shots of regions in terms of pictures and share them on the feed to show others where users 
have actually been at a particular time. We collected these so-called check-ins for each user 
and thus count as personal user information. Besides the interests, groups, biography etc., 
the profiles in Second Life provide an area to state preferred in-world locations—the sec-
ond source of locations and so-called favored regions.

We constructed the online social network on the basis of the feed interactions between 
the users, as an indicator for being acquainted. If the number of interactions was zero, no 
link was generated between them. Users with numbers of interactions greater than or equal 
to one were provided with an edge between them in the network. Eventually, this directed 
online social network was denoted as GO = ⟨VO,EO⟩ , where VO was the set of users with 
interactions on their feeds. If a user u ∈ VO communicated with a user v ∈ VO by posting a 
text message on v’s feed or commenting or loving a posting on v’s feed, the edge between 
them was formally defined as e = (u, v) ∈ EO.

First, this procedure reached a result of 169,035 users with 587,090 postings, 
459,734 comments and 1,631,568 loves, which gave a number of total interactions of 
3,175,304. Due to the fact that this paper is about predicting trading interactions, self 
connections in the network have been removed, because seller and buyer are not the 
same person in a trading relation. In this way, the dataset of the online social network 

Table 3  Basic statistics of the 
online social network dataset

Online social network G
O

Num. users 152,509
Num. edges 270,567
Type Directed
Degree 3.55
Num. connected components 13,115
Largest connected component 77.69%
Num. postings (text messages / pictures) 226,668
Num. comments 348,106
Num. loves 1,494,044
Num. overall interactions 2,068,818
Average num. interactions per user ≈ 14

Num. group joins 1,869,281
Num. unique groups 204,769
Num. users with group join(s) 114,205
Num. stated interests 227,596
Num. unique interests 62,170
Num. users who stated interest(s) 36,610
Num. check-ins 466,930
Num. unique checked-in regions 13,251
Num. users with check-ins 36,430
Num. stated favored regions 337,732
Num. unique favored regions 22,742
Num. users who stated favored region(s) 76,093
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of Second Life slightly decreased. Now there were 152,509 users with 226,668 post-
ings, 348,106 comments and 1,494,044 loves, which gave a number of total interac-
tions of 2,068,818. Probably, the number of loves remained nearly stable, because the 
loves for postings mostly apply to other users’ postings and not one’s own. Further-
more, the average of the number of interests defined by each user was ≈ 1.5 and the 
joined groups per user ≈ 12.4 on average. On average, for each user we obtained ≈ 3.1 
check-ins on the feed and ≈ 2.2 favored regions. Table 3 gives an overview of the num-
bers of the online social dataset.

3.2  Location‑based social network data

We extracted the location-based dataset used in this paper from the in-world of Second 
Life by scripted robots collecting information about surrounding users. As described 
in our previous work (Trattner and Steurer 2015), we sent the bots to locations of the 
Second Life event calendar from the Second Life website to presumably target regions 
with a higher user frequency than in other places in the huge world of Second Life. 
Starting from March 2012, over the period of one year, the collected user informa-
tion formed the basis for the location-based social network. Overall, nearly 19 million 
data entries with 410,619 different users in 4146 different locations were observed. To 
generate a network with an adequate density from this huge amount of data, we cre-
ated a link between two users, if they had met each other more than only once. This 
is formally defined as GL = ⟨VL,EL⟩ , where VL is the set of users and e = (u, v) ∈ EL 
the link between two users u ∈ VL and v ∈ VL , if they were observed together in the 
same place at the same time on at least two different days. This rule reduced the num-
ber of edges in this network many times over to 1,414,389 and the number of nodes 
to 122,936. The total number of monitored events for all users was 1,966,206 with 
81,671 unique events and 11 different event categories—an average of ≈ 16 events per 
user. There were 16,375,540 event regions entries registered with 3972 unique regions, 

Table 4  Basic statistics of the 
location-based social network 
dataset

Location-based social network G
L

Num. users 122,936
Num. edges 1,414,389
Type Undirected
Degree 23.01
Num. connected components 719
Largest connected component 98.01%
Num. events entries 1,966,206
Num. unique events 81,671
Num. event categories 11
Average num. events per user ≈ 16

Num. event regions entries 16,375,540
Num. unique event regions 3,972
Average num. entries per user ≈ 133
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which means that on the average, each user was found ≈ 133 times by the bots. Table 4 
provides an overview on the location-based dataset.

3.3  Trading network data

Besides the in-world of Second Life and My Second Life, there is an online trading plat-
form called Second Life Marketplace where Second Life users are able to trade with virtual 
goods. The users can act as sellers, buyers, or both, similarly to common online shopping 
platforms such as eBay. Only if a purchase is done via the Marketplace, the buyer can write 
a public review about the bought product or just rate the product from one to five stars. As 
a consequence, every stated review in the whole marketplace ensures the purchase of the 
product between the seller and the reviewer. Linking all sellers with their buyers based on 
the product reviews was our basic idea for the trading network for the experiments in this 
paper.

Based on the crawling methodology described in our previous work (Eberhard and 
Trattner 2016), we gathered all store sites of the Second Life Marketplace with a web 
crawler to collect the purchase information. This crawler detected 131,087 stores/sellers, 
whereof 36,330 had at least one product in supply and 17,914 sold at least one product. 
Overall 1,725,449 products in 22 different categories, e.g., avatar accessories or vehicles, 
were found, from which 120,762 were purchased at least once. The total number of noticed 
purchases was 268,852 with 77,645 different buyers. Due to the fact that a seller can also 
be a buyer and a buyer can also be a seller, 8259 users acted as both seller and buyer. The 
total number of involved users was 87,300. An overview of the trading network dataset is 
provided in Table 5.

Table 5  Basic statistics of the 
trading network dataset

Trading network G
T

Num. users 87,300
Num. edges 219,889
Type Directed
Degree 5.04
Num. connected components 933
Largest connected component 97.39%
Num. sellers 17,914
Num. buyers 77,645
Num. sellers∩buyers 8259
Num. product categories 22
Num. products 120,762
Average num. products per seller ≈ 7

Num. purchases 268,852
Average num. purchases per seller ≈ 15

Average num. purchases per buyer ≈ 3
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4  Methodology

In the previous sections we introduced the different sources of data used in our experi-
ments. In this section we describe the methodology for the experiments used in this paper 
to answer the research questions.

4.1  Dataset pre‑processing

To make the results for the different networks comparable, it was necessary to bring them 
on a common basis. We intersected the online social network, the location-based social 
network, and the trading network by picking out the common nodes of all networks. This 
means that we considered only those users who were active in all of the different networks, 
thus there was information about them in all of the network sources. Therefore, each user 
must have made at least one purchase as seller or buyer in the Second Life Marketplace, 
one interaction on My Second Life and an in-world observation by the robots.

We formally defined this combined network as GC = ⟨VC,EC⟩ , where VC was the set 
of common users of the three networks, the online social network GO , the location-based 
social network GL and the trading network GT : VC = {u | u ∈ VO, u ∈ VL, u ∈ VT} . EC was 
the union set of edges representing the relations between these users in either networks: 
EC = {(u, v) | (u, v) ∈ EO or (u, v) ∈ EL or (u, v) ∈ ET , and u, v ∈ VC}.

The numbers of this combined network, which we used for all the experiments in this 
paper, are shown in Table 6.

All basic computations for preparing the experiments were done with Python and net-
workx.9 The experiments were completed in a way where the starting point is a random 
seller s. The prediction result should tell to what extent any random buyer b will buy from s 
based on appropriate features.

4.2  Feature engineering

As mentioned in the background section (see Sect.  2), different characteristics can be 
extracted from networks and used for predicting links between users. In the following 

Table 6  Basic statistics of the 
combined network

Combined network G
C

Num. users 10,420
Num. online social network edges 8543
Num. location-based social network edges 45,558
Num. trading network edges 5376
Total num. edges 59,477
Num. sellers 2086
Num. buyers 9655
Num. sellers∩buyers 1321

9 http://netwo rkx.githu b.io/.

http://networkx.github.io/
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three subsection we describe in detail the features and feature sets which have been used 
and engineered to predict seller-buyer trading interactions. The first subsection describes 
how we inducted features from the online social network features, followed by a subsec-
tion detailing on how we induced features form the location-based social network. Finally, 
the trading network features are introduced. For each of the three data sources, we derive 
topological and homophilic features. While the former means inducing network-specific 
features the latter refers to features extracted from content.

4.2.1  Online social network features

Topological features We defined the neighbors of a user u in this directed network with 
respect to the direction of the communication between them. A neighbor v that received 
messages from a user u is called outgoing neighbor and a neighbor v that sent mes-
sages to a user u is called incoming neighbor (Steurer and Trattner 2013a). We denoted 
the definition of outgoing neighbors of a user u ∈ VO as �+(u) = {v | (u, v) ∈ EO} and 
incoming neighbors as �−(u) = {v | (v, u) ∈ EO} . Therefore, we could formally compute 
the whole set of neighbors of u as �(u) = �+(u) ∪ �−(u).

– Num. common outgoing neighbors We defined the number of neighbors that two 
users u and v have in common related to the outgoing communication of them as 
O+

CN
(u, v) = |�+(u) ∩ �+(v)| . For example, a user w ∈ O+

CN
(u, v) is a common outgo-

ing neighbor of user u and v if both u and v sent one or more messages to w.
– Num. common incoming neighbors This is the opposite of the common outgo-

ing neighbors. The number of common incoming neighbors of two users u and 
v are the users who sent messages to both of them. We defined this feature as 
O−

CN
(u, v) = |�−(u) ∩ �−(v)| . For example, a user w ∈ O−

CN
(u, v) is a common incom-

ing neighbor of user u and v if w sent one or more messages to u as well as v.
– Outgoing Jaccard’s coefficient The Jaccard’s coefficient is the division of the num-

ber of common by the number of total neighbors of two users u and v and could be 
seen as a measure for exclusiveness of the relation between them (Cranshaw et  al. 
2010). It was also split into an outgoing and an incoming feature. We denoted the 
outgoing Jaccard’s coefficient as O+

JC
(u, v) =

|�+(u) ∩�+(v)|
|�+(u) ∪�+(v)|.

– Incoming Jaccard’s coefficient This feature is the complement to the outgoing Jacca-
rd’s coefficient and we defined it as the number of common incoming neighbors 
divided by the number of total incoming neighbors: O−

JC
(u, v) =

|�−(u) ∩�−(v)|
|�−(u) ∪�−(v)|.

– Preferential attachment+– Here the preferential attachment score, first proposed 
by Barabasi and Albert (1999), is presented in a slightly different way, proposed 
by Cheng et  al. (2011). It is another popular measure to describe the correlation 
between the out-degree of a user u and the in-degree of a user v. We calculated the 
value for this feature as the product of the number of outgoing neighbors of u and 
the incoming neighbors of v, formally defined as O+

PS
(u, v) = |�+(u)| ⋅ |�−(v)|.

– Preferential attachment−+ The difference to the preferential attachment +− feature 
described above is, that the in- and out-degree of the involved users were swapped. 
So we denoted the preferential attachment in feature for two users u and v as 
O−

PS
(u, v) = |�−(u)| ⋅ |�+(v)|.

– Reciprocity of user communication The reciprocity of user communication in a 
directed network describes if a communication between two users u and v is bidirec-
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tional or in only one direction (Cheng et  al. 2011). We denoted this feature as 

OR(u, v) =

{
0 if (u, v) ∈ EO, (v, u) ∉ EO

1 if (u, v) ∈ EO, (v, u) ∈ EO

.

– Adamic–Adar Regarding the relation between two users related to their neighbors, 
Adamic and Adar (2003) proposed a measure for the activity of the common neigh-
bors of two users u and v in the network, because the definition regards the node 
degree of the common neighbors. For directed networks Cheng et  al. (2011) sug-
gested a refinement of the Adamic–Adar measure in which only the common incom-
ing neighbors are considered: OAA(u, v) =

∑
z∈�−(u) ∩�−(v)

1

log(��(z)−�).

– Katz Katz is a path-based attribute proposed by Katz (1953a) that measures the strength 
of the connection between two nodes in a network. The more paths two nodes are con-
nected with and the shorter these paths are, the stronger is the connection between the 
nodes. � expresses the emphasis of the path length l between two nodes u and v. The 
weight of shorter path lengths rises by decreasing � . Due to the high complexity calcu-
lating this measure for large networks, we introduced a cutoff c = 3 considering only 
paths with a maximum length of 3. With |pathl

u,v
| as the number of paths between u and 

v of length l, we formally defined the Katz measure as OK�(u, v) =
∑c

l=1
� l ⋅ �pathl

u,v
�.

– Rooted PageRank The rooted PageRank (Liben-Nowell and Kleinberg 2007) is also a 
path-based measure and special kind of the personalized PageRank (Chakrabarti 2007). 
The rooted PageRank score between two nodes u and v is based on a random walk on 
the network starting at node u. With probability 1 − � it iteratively moves to a random 
neighbor of the current node and with probability � it jumps back to u. We defined it 
as ORPR�(u, v) = stationary probability of v under the following random walk (Pearson 
1905; Spitzer 2013): (1) with probability 1 − � move to a random neighbor of the cur-
rent node, and (2) with probability � return to u.

Homophilic features The groups a user u can join in this social network were defined as 
�(u) and the self-defined interests of u as �(u).

– Num. common groups This feature represents the number of groups two users u and v 
have in common: GC(u, v) = |�(u) ∩ �(v)|.

– Jaccard’s coefficient of groups The Jaccard’s coefficient as already mentioned can also 
be applied for homophilic measures such as groups, interests, regions or events. In this 
case we denoted the Jaccard’s coefficient for groups as GJC(u, v) =

|�(u) ∩�(v)|
|�(u) ∪�(v)|.

– Num. common interests The same types of features as defined for groups were deter-
mined for the interests users are able to declare on their social feed. The common 
interests feature shows the number of interests two users u and v have in common: 
IC(u, v) = |�(u) ∩�(v)|.

– Jaccard’s coefficient of interests For the user-defined interests we computed the Jacca-
rd’s coefficient for the proportion of common and total interests of two users u and v as 
IJC(u, v) =

|�(u) ∩�(v)|
|�(u) ∪�(v)|.

– Num. interactions In the online social network of Second Life the users are able to 
share text messages with other users, or comment or love such messages. We defined 
the interactions from a user u to a user v as �(u, v) . So this feature shows the number of 
all interactions from u to v and we formally defined it as OI(u, v) = |�(u, v)|.
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On the online social network feed of Second Life users are able to record in-world snap-
shots of regions in terms of pictures and share them to show their friends or followers 
where they have actually been at a particular time. Such regions a user u shared on the feed 
were denoted as �(u).

– Num. common check-ins This feature is a measure for how many common regions two 
users u and v checked in and shared on their own feed and we formally specified it as 
RRC(u, v) = |�(u) ∩ �(v)|.

– Jaccard’s coefficient of check-ins The value of the common check-ins divided by the 
value of the total check-ins of two users u and v is the Jaccard’s coefficient measure 
again and we defined it as RRJC(u, v) =

|�(u) ∩�(v)|
|�(u) ∪�(v)|.

– Overlap of check-ins The overlap of the sets of check-ins of two users u and v differs 
from the Jaccard’s coefficient in terms of the division by the sum of u’s and v’s regions. 
We stated this feature as RRO(u, v) =

|�(u) ∩�(v)|
|�(u)|+ |�(v)|.

Apart from interests, groups or personal information, Second Life users are able to spec-
ify regions on their profiles. The purpose of such favored regions of users is to let others 
know about their preferred locations. The following features are based on these regions and 
the types of measures are again the same as from the check-ins. We defined the favored 
regions of a user u as �(u).

– Num. common favored regions We defined the number of favored regions two users u 
and v have in common as RFC(u, v) = |�(u) ∩ �(v)|.

– Jaccard’s coefficient of favored regions We state the Jaccard’s coefficient of favored 
regions of two users u and v as RFJC(u, v) =

|�(u) ∩�(v)|
|�(u) ∪�(v)|.

– Overlap of favored regions This feature represents the overlap between the common 
favored regions of two users u and v and the sum of the favored regions of u and the 
favored regions of v as RFO(u, v) =

|�(u) ∩�(v)|
|�(u)|+ |�(v)|.

4.2.2  Location‑based social network features

Topological features In the location-based social network we defined the neighbors of a 
user u ∈ VL as � (u) = {v | (u, v) ∈ EL} . Similar to the topological online social network 
features described in Sect. 4.2.1, we subdivided features to measure the structural overlap 
of two users in the location-based social network as follows:

– Num. common neighbors This feature represents the number of neighbors two users u 
and v have in common. We denoted the common neighbors as LCN(u, v) = |� (u) ∩ � (v)|.

– Jaccard’s coefficient We stated the Jaccard’s coefficient for two users u and v in the 
location-based social network as LJC(u, v) =

|� (u) ∩� (v)|
|� (u) ∪� (v)|.

– Adamic–Adar Slightly different from the Adamic–Adar measure of the online social 
network described in Sect. 4.2.1, we formally defined the Adamic–Adar for undirected 
networks as 

LAA(u, v) =
∑

z∈� (u) ∩� (v)

1

log(|� (z)|) .
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– Num. days seen We defined the set of days two users were in the same region at the 
same time as � . Therefore, the number of days two users u and v have met each other in-
world was formally stated as LDS(u, v) = |�(u, v)|.

– Mean distance � is the set of distances two users were apart in the same region at a cer-
tain point in time gathered by our bots. We stated this feature as 
LMD(u, v) =

1

��(u,v)�
∑

d∈�(u,v) d.

– Katz As described for the online social network, Katz is a path-based measure that 
quantifies the strength of the connection between two nodes in a network based on 
lengths of the paths between them. For the location-based social network, again with a 
cutoff c = 3 , we defined it as LK�(u, v) =

∑c

l=1
� l ⋅ �pathl

u,v
�.

– Rooted PageRank As mentioned above, the rooted PageRank is the stationary prob-
ability of node v based on a random walk that starts at node u. It iteratively moves to 
a random neighbor of the current node or jumps back to u. We formally denote it as 
LRPR�(u, v) , the stationary probability of v under the following random walk: (1) with 
probability 1 − � move to a random neighbor of the current node, (2) with probability � 
return to u.

Homophilic features As mentioned in Sect.  3.2 the implemented robots monitored users 
in-world at Second Life events. We stated the events a user u visited as �(u) . The following 
features refer to such events and their locations:

– Num. common events We defined the number of common events which two users u and 
v visited as EC(u, v) = |�(u) ∩�(v)|.

– Jaccard’s coefficient of events We computed the Jaccard’s coefficient measure of the 
events two users u and v visited as EJC(u, v) =

|�(u) ∩�(v)|
|�(u) ∪�(v)|.

– Cosine similarity of event categories Another way to measure the similarity between 
two users u and v is to compute the cosine similarity of two vectors including some user 
specific attributes. In this case two vectors �(u) and �(v) with the length of the number 
of all categories of the Second Life events for each user pair (u, v) were defined. Every 
item i in such a vector represented the number of events the user visited of a specific 
category. We computed the cosine similarity of event categories between two users u 
and v as ECCos(u, v) =

�(u) ⋅ �(v)

‖�(u)‖ ‖�(v)‖.

The information of the following features is based on the regions of the visited events 
of the users. The measures of the features are the same as from the check-ins and favored 
regions:

– Num. common event regions We stated the number of regions of events two users u and 
v visited in common as REC(u, v) = |� (u) ∩ � (v)|.

– Jaccard’s coefficient of event regions This feature measures the Jaccard’s coefficient of 
the event regions of two users u and v: REJC(u, v) =

|� (u) ∩� (v)|
|� (u) ∪� (v)|.

– Overlap of event regions We defined the overlap between the common event regions of 
two users u and v and the sum of the event regions of u and the event regions of v in this 
feature as REO(u, v) =

|� (u) ∩� (v)|
|� (u)|+ |� (v)|.
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4.2.3  Trading network features

Topological features The topological features to measure the structural overlap of two users 
in the online social network described in Sect. 4.2.1 could also be applied on the trading 
network of the Second Life Marketplace. Since this network is directed, we split some of 
the features into outgoing and incoming features again.

We denoted the outgoing neighbors in the trading network of a user u ∈ VT as 
�+(u) = {v | (u, v) ∈ ET} and incoming neighbors as �−(u) = {v | (v, u) ∈ ET} . The formal 
definition of the combined set of neighbors is then stated as � (u) = �+(u) ∪ �−(u).

– Num. common outgoing neighbors We defined the number of outgoing neighbors two 
users u and v have in common as T+

CN
(u, v) = |�+(u) ∩ �+(v)|.

– Num. common incoming neighbors The definition for the number of common incoming 
neighbors of two users u and v was stated as T−

CN
(u, v) = |�−(u) ∩ �−(v)|.

– Outgoing Jaccard’s coefficient We denoted the definition of the outgoing Jaccard’s 
coefficient of two users u and v of the trading network as T+

JC
(u, v) =

|�+(u) ∩�+(v)|
|�+(u) ∪�+(v)|.

– Incoming Jaccard’s coefficient The incoming Jaccard’s coefficient is the complement to 
the previous feature, given as T−

JC
(u, v) =

|�−(u) ∩�−(v)|
|�−(u) ∪�−(v)|.

– Preferential attachment +– As mentioned above the preferential attachment score is a 
measure for the correlation between the out-degree of a user u and the in-degree of a 
user v and we defined it as T+

PS
(u, v) = |�+(u)| ⋅ |�−(v)|.

– Preferential attachment−+ The difference to the preferential attachment 
+− feature is the swapping of the users. We formally defined this feature as 
T−
PS
(u, v) = |�−(u)| ⋅ |�+(v)|.

– Reciprocity of trading interactions As already mentioned, the value for the reciprocity 
between two users u and v in a directed network is 1 if there is an edge in both direc-
tions, and 0 if there is no bidirectional link between these users. Formally, we stated 

this feature as TR(u, v) =
{

0 if (u, v) ∈ ET , (v, u) ∉ ET

1 if (u, v) ∈ ET , (v, u) ∈ ET

.

– Adamic–Adar Similar to the Adamic–Adar measure for the online social network, this 
metric could also be used for the directed trading network as 
TAA(u, v) =

∑
z∈�−(u) ∩�−(v)

1

log(�� (z)−�).

Homophilic features All homophilic features of the trading network of the Second Life 
Marketplace are based on the attributes of the traded products. The attributes are category, 
price and ratings of the products. We used the cosine similarity measures for the following 
features:

– Cosine similarity of product categories To compute a value for the similarity between 
the product categories of a user pair (u, v), we defined two vectors � (u) and � (v) . The 
vectors’ lengths were the number of all product categories of the products u and v 
bought or sold. So each item i in these vectors represented a product category. The val-
ues for i were the number of products in a specific category that the user traded with. 
Similarly to the cosine similarity of event categories feature in the homophilic feature 
set of the location-based social network in Sect. 4.2.2, we computed the cosine similar-
ity of product categories between u and v as PCCos(u, v) =

� (u) ⋅ � (v)

‖� (u)‖ ‖� (v)‖.
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– Cosine similarity of product prices We applied the same metric for product prices. 
Therefore, we graduated the prices by the following scheme: 0 − 5L$ , 6 − 10L$ , 
11 − 20L$ , 21 − 50L$ , 51 − 200L$ , 201 − 500L$ , 501L$ −∞ . We denoted the vectors 
with the number of products per price step for two users u and v as �(u) and �(v) and so 
the cosine similarity of product prices between u and v could formally be written as 
PPCos(u, v) =

�(u) ⋅ �(v)

‖�(u)‖ ‖�(v)‖.

– Cosine similarity of product ratings We also calculated the cosine similarity for the 
user ratings of the products. Therefore, we classified the products in ten different 
rating schemes from .0 to 5.0 in incremental steps of .5. Each item i of the two vec-
tors �(u) and �(v) of the users u and v represented the number of traded products by 
u and v in each product rating class. So we computed the value of this feature as 
PRCos(u, v) =

�(u) ⋅ �(v)

‖�(u)‖ ‖�(v)‖.

Table 7 in this section gives a clear overview of the overall 57 used features consist-
ing of online social network features, location-based social network features and trad-
ing network features, each set split into topological and homophilic features.

4.3  Learning methods and evaluation

As mentioned in the related work before, in the literature two different kinds of learn-
ing methods are typically employed to predict links in networks: supervised and unsu-
pervised learning methods.

4.3.1  Supervised learning

The first approach we employed to predict links between seller and buyers was a 
machine learning approach as also referred to as supervised learning. To do so, we 
created a balanced dataset of user pairs with and without purchases. Therefore, we 
used all 5376 user pairs that had a purchase relation in between. As negative samples 
we randomly chose the same amount of user pairs that had no trading interactions in 
between. To bring this binary classification onto a common basis, all chosen user pairs 
had to consist of a seller and a buyer. With this rule we prevented to select a user pair 
consisting of, for example, two buyers and make a purchase prediction for them, which 
would not have made sense. These 10,752 user pairs were split into a training set to 
determine characteristics of purchase interactions and a test set for verification with a 
tenfold cross-validation. This balanced sample of data resulted in a baseline of 50% for 
the trading prediction task when guessing at random.

We repeated all experiments ten times always choosing new random samples for the 
negative user pairs. As such, the results represent the averages of the respective values 
of the ten iterations. As a tool to run this task we chose the WEKA machine learning 
software (Hall et al. 2009).

As pointed out in the related work, machine learning strategies, such as decision 
trees, logistic regression, SVMs or other types of meta-learning strategies such as 
bagging or boosting are usually used for predicting links in social networks and they 
work remarkably well. As such we applied a series of methods available in the Weka 
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machine learning framework, such as Naive Bayes, Bayes Networks, Decision Tables, 
Logistic Regression, Random Forest, J48 Tree, and Random Tree. For meta-learning 
we employed bagging and boosting with the same classifiers and also tested stacking. 
Due to space limitations, we can only present the results of a handful of approaches. 
The approaches we selected were Random Forest, Logistic Regression and Naive 
Bayes. They showed not only the best results of the classic learning methods inves-
tigated but are also easy to implement in a real world system. The best overall meta-
learning approach was bagging with Random Tree, which is also included.

As an evaluation metric Accuracy was chosen, as the positive and negative training 
examples are balanced.

4.3.2  Unsupervised learning

The second approach employed to predict trading interactions was an unsupervised 
learning approach in the form of a user-based collaborative filtering technique, as 
e.g.,  also proposed by Liben-Nowell and Kleinberg (2007). The intuition behind this 
idea was that buyers who are similar to each other will behave in a similar manner in the 
marketplace (Schafer et al. 2007).

We used the non-probabilistic user-based k-nearest neighbors algorithm (kNN), 
where for each buyer in the combined network we find their k-nearest neighbors, or 
more precisely, the k most similar buyers based on each individual feature and several 
feature sets. In a given data points collection a nearest neighbor of a query point is a 
data point that is closest to the query point (Beyer et al. 1999). k defines the size of the 
neighborhood, for example, for k = 10 the 10 most similar buyers (to the given buyer) 
are considered based on the respective feature or feature set. Afterwards, we recommend 
the top-N sellers who had a trading relation with the buyers computed via kNN. Finally, 
we compare these top-N predicted sellers with the real sellers of the origin buyer.

In order to have a fair comparison between all features and feature sets, we first nor-
malized all feature values. We applied various numbers for the parameters k and N. In 
this paper we only present the results of the parameters which performed best: k = 100 
and N = 5.

To evaluate this approach, we used the mean average precision (MAP) (Yue et  al. 
2007) as performance and correctness measure, and the normalized discounted cumula-
tive gain (nDCG) (Yilmaz et al. 2008) as a measure for the ranking quality. We obtained 
the MAP by computing the mean over the APs from all buyers, defined as follows:

We denoted AP as the average precision for a buyer with P(k) as the precision at 
cutoff k in the predicted sellers list. rel(k) is 1 if the kth seller in the list is predicted cor-
rectly, and 0 otherwise.

We compute nDCG as follow:

with

AP@n =

∑n

k=1
(P(k) × rel(k))

#true sellers
.

nDCG@n =
DCG@n

IDCG@n
,

DCG@n =

n∑

k=1

rel(k)

log
2
(k + 1)

.
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We assume that IDCG is the DCG in ideal ordering.
Additionally, we report the user coverage (UC) for every used feature and feature set 

to show for which fraction of users these were available.

4.4  Statistical comparison: sellers versus buyers

To show the differences between user pairs with and without trading interactions we 
computed the mean values of the features by simply calculating the average of the fea-
ture values of the involved edges. We calculated the significance of each feature in sev-
eral steps, similarly to Bischoff (2012): First, we computed the Levene test—introduced 
by Levene (1960)—with the positive and negative edges to test for equal variances. If 
the p-value of this function was below .01, we calculated the Wilcoxon rank-sum test, 
otherwise the two-sided Kolmogorov-Smirnov test. The returning p-value was the cru-
cial measure for the significance of a feature. Since we randomly chose the negative 
user pairs ten times (see Sect. 4.3), we did this procedure also ten times and finally com-
puted the mean of the values.

5  Results

This section presents the results of the implemented experiments. First, we show the 
mean values of the comparison between user pairs with and without trading interactions, 
the information gain of each feature and the Accuracy value with bagging, the nDCG, the 
MAP, and the UC, for each of the 57 features. Finally, we present a correlation heat map of 
all features and the trading prediction results for different feature combinations.

5.1  Individual features (RQ1)

In Table 7 we present the mean values and significances of all features of the three net-
works for user pairs with ( ∅Valw ) and without trading interactions ( ∅Valwo ). For the online 
social network we observed the highest significant differences for the preferential attach-
ment score features O+

PS
 , O−

PS
 . Although the values are tiny the Jaccard’s coefficient of 

groups feature exhibits the most significant differences of all homophilic features of the 
online social network. For the location-based social network the features with the highest 
significant differences are the Katz features LK and the common events feature EC . For LK 
user pairs with trading interactions have values about up to 38 times larger on average than 
user pairs without trading interactions. For EC the differences between the user pairs are 
even higher. With values on average 50 times higher for user pairs with trading interactions 
this feature shows the most significant differences of all features used in this paper. For the 
topological features of the trading network we observed the largest differences between 
user pairs with and without trading interactions for the preferential attachment out feature 
T+

PS
 . The cosine similarity of product categories PCCos is the feature with the highest differ-

ences of all homophilic features of the trading network.
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Table 8  The Accuracy with bagging represents the quality of each feature for predicting trading interactions 
with supervised learning

Feature Description Supervised Unsupervised

Accuracy nDCG MAP UC (%)

Online social network
Topological
 O+

CN
Num. common outgoing neighbors .5066 .0303 .0080 41.33

 O−
CN

Num. common incoming neighbors .5067 .0274 .0085 44.49
 O+

JC
Outgoing Jaccard’s coefficient .5065 .0311 .0084 41.33

 O−
JC

Incoming Jaccard’s coefficient .5068 .0308 .0097 44.49
 O+

PS
Preferential attachment +− .5441 .0468 .0101 66.52

 O−
PS

Preferential attachment −+ .5705 .0428 .0143 76.41

 OR Reciprocity of user communication .5091 .0623 .0261 10.46
 OAA Adamic–Adar .5059 .0274 .0086 36.12
 OK001 Katz ( � = .001) .5111 .0410 .0118 44.76
 OK01 Katz ( � = .01) .5109 .0406 .0117 44.76
 OK1 Katz ( � = .1) .5111 .0404 .0118 44.76
 ORPR01 Rooted PageRank ( � = .01) .5123 .0601 .0157 47.06
 ORPR05 Rooted PageRank ( � = .05) .5116 .0559 .0143 47.06
 ORPR15 Rooted PageRank ( � = .15) .5114 .0510 .0140 47.04
 ORPR3 Rooted PageRank ( � = .3) .5121 .0484 .0135 47.02
 ORPR5 Rooted PageRank ( � = .5) .5116 .0415 .0123 46.91

Homophilic
 GC Num. common groups .5333 .0894 .0336 75.24

 GJC Jaccard’s coefficient of groups .5327 .0874 .0332 75.24

 IC Num. common interests .5034 .0552 .0113 30.37
 IJC Jaccard’s coefficient of interests .5025 .0573 .0122 30.37
 OI Num. interactions .5076 .0418 .0173 27.14
 RRC Num. common check-ins .5009 .0313 .0088 22.52
 RRJC Jaccard’s coefficient of check-ins .5008 .0299 .0093 22.52
 RRO Overlap of check-ins .5008 .0297 .0093 22.52
 RFC Num. common favored regions .5139 .0564 .0196 73.54
 RFJC Jaccard’s coefficient of favored regions .5141 .0554 .0201 73.54
 RFO Overlap of favored regions .5141 .0554 .0201 73.54

Location-based social network
Topological
 LCN Num. common neighbors .5206 .0656 .0233 95.33
 LJC Jaccard’s coefficient .5202 .0641 .0227 95.33
 LAA Adamic–Adar .5170 .0638 .0227 95.33
 LDS Num. days seen .5171 .0408 .0177 74.74
 LMD Mean distance .5169 .0354 .0150 74.56
LK001 Katz ( � = .001) .5159 .0747 .0187 63.88
 LK01 Katz ( � = .01) .5159 .0744 .0189 63.88
 LK1 Katz ( � = .1) .5140 .0714 .0183 63.88
 LRPR01 Rooted PageRank ( � = .01) .5290 .0574 .0191 96.96

 LRPR05 Rooted PageRank ( � = .05) .5317 .0668 .0234 96.96
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Table 8 provides an overview of the predictive power of each individual feature. The 
best performing topological online social network feature with the highest Accuracy and 
UC was the preferential attachment score O−

PS
 . With unsupervised learning the best topo-

logical feature was the reciprocity of user communication OR . The most valuable homo-
philic feature of the online social network was the number of common groups feature GC . 
Although the result values are quite low, for the location-based social network the best 
performing features were the path-based measures rooted PageRank LRPR and Katz LK , and 
the number of common event regions REC . With the best Accuracy value of .8881 and the 
highest information gain, the preferential attachment feature T+

PS
 of the trading network per-

formed best.
Regarding unsupervised learning, the incoming Jaccard’s coefficient T−

JC
 had the highest 

MAP and the Adamic–Adar measure TAA had the best nDCG. Considering only homophilic 
features of the trading network, all three cosine similarity features performed quite simi-
larly and were in the top four features regarding the information gain.

Figure 1 provides further insights to the question which feature is the most useful one 
employing Information Gain rank correlation analysis on all features. The colors of the 

nDCG, MAP, and UC show the predictive power of each feature with collaborative filtering. The best 
results in each feature set are highlighted in bold face

Table 8  (continued)

Feature Description Supervised Unsupervised

Accuracy nDCG MAP UC (%)

 LRPR15 Rooted PageRank ( � = .15) .5352 .0717 .0241 96.96

 LRPR3 Rooted PageRank ( � = .3) .5302 .0697 .0232 96.96

 LRPR5 Rooted PageRank ( � = .5) .5270 .0721 .0243 96.96

Homophilic
 EC Num. common events .5195 .0508 .0194 93.69
 EJC Jaccard’s coefficient of events .5195 .0531 .0202 93.69
 ECCos Cosine similarity of event categories .5271 .0575 .0168 94.93
 REC Num. common event regions .5346 .0687 .0239 99.66

 REJC Jaccard’s coefficient of event regions .5344 .0659 .0205 99.66

 REO Overlap of event regions .5344 .0657 .0205 99.66

Trading network
Topological
 T+

CN
Num. common outgoing neighbors .5101 .0598 .0099 10.26

 T−
CN

Num. common incoming neighbors .5271 .9605 .7173 93.68
 T+

JC
Outgoing Jaccard’s coefficient .5100 .0595 .0098 10.26

 T−
JC

Incoming Jaccard’s coefficient .5271 .9660 .7509 93.68
 T+

PS
Preferential attachment +− .8881 .1049 .0180 13.71

 T−
PS

Preferential attachment −+ .5351 .0271 .0057 100

 TR Reciprocity of trading interactions .5029 .2321 .0342 00.32
 TAA Adamic–Adar .5146 .9676 .5549 63.30

Homo.
 PCCos Cosine similarity of product categories .7440 .2142 .0520 20.57
 PPCos Cosine similarity of product prices .7405 .2266 .0553 15.74
 PRCos Cosine similarity of product ratings .7530 .1792 .0375 20.58
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Fig. 1  Quality ranking of the features according to their Information Gain. The topologic and homophilic 
feature sets of the online social network (O), the location-based social network (L), and the trading network 
(T) are color-coded. The most useful features are related to the trading network
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Fig. 2  A heat map indicating the Spearman feature cross-correlation values and showing the significant 
( p < 0.001 ) correlations of all 57 features
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bars indicate the feature group. The features with the highest information gain are again the 
ones from the trading network followed by location-based features.

5.2  Feature sets (RQ2–RQ3)

In predictive modeling when combining features to sets of features, it is common to take off 
with a correlation analysis. A correlation analysis typically helps in understanding better 
whether there are multi-collinearity issues which may create a problem or not later when 
features are combined. The correlation heat map in Fig. 2 shows the correlations between 
all 57 features at a significance level at p < 0.001 . For several attributes, we obtained high 
correlations between the Jaccard’s coefficient, the Adamic–Adar, the observation and the 
common sets for the respective attribute. Apart from these expected findings, there are 
high correlations between the path measures Katz and rooted PageRank in the online social 
network. Also the interactions feature correlate with the path measures. As expected, the 
features about the number of days two users have met each other, and the mean distance 
between two users correlate with the events features, since they have similar data bases. 
The idea in this paper to use additional data sources instead of just trading network features 
to improve the trading predictions gets strengthened, since there are no significant correla-
tions between the trading network features and features from the other data sources.

Table 9 provides an overview of how the several feature sets of all used data sources 
performed predicting trading interactions. We analyzed each feature set on its own. Using 
only online social network features we attained reasonable Accuracy values of up to .6275. 
A bit worse performed the combination of location-based social network features with a 

Table 9  The Accuracy values with random forest, logistic regression, naive bayes, and bagging show the 
predictive power of several feature sets

nDCG, MAP, and UC represent the results for the unsupervised learning approach. Best results in each set 
are highlighted in bold face

Feature set Rand. 
For.

Logistic Naive 
bay.

Bag-
ging

nDCG MAP UC 
(%)

Num. 
features

Single Networks
Online social (Homo) .5380 .5424 .5397 .5439 .0790 .0282 91.73 11
Online social (Topo) .5941 .5974 .5183 .6065 .0403 .0127 100 16
Online social (All) .6106 .6157 .5476 .6275 .0756 .0263 100 27
Location-based (Homo) .5458 .5363 .5367 .5555 .0525 .0161 99.92 6
Location-based (Topo) .5361 .5250 .5273 .5400 .0580 .0205 96.96 13
Location-based (All) .5460 .5406 .5408 .5544 .0509 .0155 99.97 19
Trading (Homo) .7827 .6981 .7033 .8103 .1567 .0355 20.58 3
Trading (Topo) .8769 .���� .���� .8920 .���� .���� 100 8
Trading (All) .���� .8694 .7652 .���� .6797 .5283 100 11
Combined networks
Online + Location .6006 .5988 .5556 .6267 .0518 .0147 100 46
Online + Trading .9065 .8869 .���� .9233 .���� .���� 100 38
Location + Trading .9032 .8834 .7437 .9211 .1306 .0794 100 30
Online + Location + Trading .���� .���� .6998 .���� .2493 .1374 100 57
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Accuracy values of up to .5555. Combining the features of these two networks could not 
result in a performance boost, since the features of the online social network on its own are 
apparently quite tough for the seller buyer prediction task. We obtained the best prediction 
results using features of the trading network. Using only trading network features resulted 
in Accuracy values up to .9119. This astonishing result can be explained with the minor 
advantage the trading network has, because the trading interactions we tried to predict 
in our experiments originate from this network. Adding the online or the location-based 
social network features or both to the trading network features could slightly increase the 
prediction result about ≈ 1.5%.

Moreover, we observed that our topological features are more suitable than our homo-
philic features for the prediction of trading interactions as Table 9 also shows. This means 
that, by utilizing information of a network structure better trading prediction results could 
be obtained than by exploiting homophilic features regarding attributes of the users. The 
results of the collaborative filtering approach substantiate this finding.

6  Summary and discussion

The main findings with respect to our RQs can be summarized as follows:

– RQ1 As expected, the best trading prediction results were obtained employing features 
from the trading network. The preferential attachment score with an Accuracy value of 
.8881 and the highest information gain was the best performing feature overall by far. 
It also exhibited the large significant differences between user pairs with and without 
trading interactions. Features of the online social network and the location-based net-
work were also to some extend useful and could achieve Accuracy values up .5705 and 
.5352. The best individual features here were the Preferential Attachment feature in the 
social network and the rooted PageRank feature in the location-based network.

– RQ2 In general, the results of our experiments show that topological features are more 
suitable than homophilic features for the prediction of trading interactions, since the 
Accuracy values of the topological feature sets were crucial higher than the values of 
the homophilic feature sets. This means that, for trading predictions the network struc-
ture is more useful than other user related attributes represented through our homo-
philic features. The location-based social network feature set obtained the worst predic-
tion results of the three network sources with an Accuracy value with bagging of .5544. 
To exceed the “border” of a 60% prediction probability, it was necessary to use online 
social network features (.6275) or combine online and location-based social network 
features (.6267). Since the trading network has a minor advantage, because the trading 
interactions we tried to predict in our experiments originate from this network, the best 
results with Accuracy values up to .9119 could be achieved with the trading network 
feature sets. Adding online and/or location-based social network feature sets to them 
could slightly increase the prediction probability up to .9248. Conclusively, it could 
be said that online and location-based social network information on their own or in 
combination could result trading interaction prediction performance at an acceptable 
scale, which is convenient in specific setting, e.g., for cold-start prediction settings. As 
expected, the trading network information improved prediction performance strongly; 
it does not necessarily require the addition of further information of other network 
sources for trading interaction predictions. However, as noted above, trading informa-
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tion may not be available in all cases, therefore, the results show when the other net-
works can then compensate here.

– RQ3 Finally, we performed extensive experiments using both unsupervised as well 
as supervised learning approaches. As expected, the supervised approaches were able 
to score quite well, especially utilizing an ensemble classifier (bagging). Also, unsu-
pervised strategies, which are more suitable in certain application settings where no 
ground truth information is available scored sufficiently.

Altogether, our results show important implications concerning personalization and rec-
ommendation approaches, e.g., Eirinaki e al. (2018). Regarding business and managerial 
applications, as already has been laid out in first fundamental investigations on buyer seller 
networks, e.g., Thorelli (1986) and Kranton and Minehart (2001), recommender systems 
in those areas play a decisive role in e-commerce, e.g.,  Schafer et al. (1999) and Linden 
et al. (2003). In particular, this specifically relates to the combined environments of digital 
as well as physical network structures (Liu et al. 2018), and how to effectively build recom-
mender systems in those areas.

In the physical (real) world, for example, this relates to many systems which have a sim-
ilar setup such as ebay10 and other online stores, where there are important links and com-
monalities compared to Second Life as shown in Szell et al. (2012), Lehdonvirta (2009) 
and Guo et  al. (2011). Then, the relations between the actors in these networks can be 
investigated from different (feature) perspectives—both from the physical as well as the 
online perspective; based on the results of this work—concerning the different features 
sets and their impact classification approaches can be devised, making use of the available 
data in the best possible and cost-efficient way in order to optimize criteria such as pre-
dictive performance, recommendation diversity, or the available number of recommenda-
tions (Herlocker et al. 2004).

Finally, explainable recommenders, i.e., explanation-awareness  (Atzmueller and Roth-
Berghofer 2010; Nunes and Jannach 2017; Tintarev and Masthoff 2007) concerning the 
recommendations is very important, which is also enabled using the respective feature sets 
from multiple network perspectives. In addition, both supervised as well as unsupervised 
techniques can be applied here. In our experiments, random forest, logistic regression, 
naive bayes and bagging showed the best results which makes them very good candidates 
for providing explanations on the recommendations; because these are “white-box clas-
sifiers”, they can provide insights into the factors for inferring a certain recommendation 
based on the used parameters, and their weighting, e.g., Ribeiro et al. (2016), Li and Huan 
(2017) and Biran and Cotton (2017).

7  Conclusions and future work

In our work, we collected data from three different sources of Second Life—an online 
social network, a location-based social network and a trading network. Overall, we com-
puted 57 topological and homophilic features to measure the similarities between user 
pairs and conducted several experiments predicting trading interactions.

10 http://ebay.com.

http://ebay.com
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In that way, we incorporated and analyzed the multiplex structure of the different net-
works and the individual features both from an individual as well as a collective perspec-
tive. This allowed us to identify the impact of the features from those networks both from 
detailed to aggregated level in order to derive actionable insights and implications from the 
analysis, e.g., for prediction, recommendation and marketing.

As already mentioned, this paper is focused on predicting trading interactions based on 
features of several network sources. In the future the time component could be a very inter-
esting factor, which was entirely neglected in this work. Time-dependent attributes could 
be used as prediction features or existing features could be adapted to refine the trading 
prediction results. When calculating a feature between two users about already traded prod-
ucts, for example, the products could be weighted in a way where the older trades would 
not be that important as newer ones. Furthermore, item to user—or in this case product to 
buyer—recommendations based on the existing data could also be an interesting point for 
future work. Here, previous work that we have presented in Lacic et al. (2015) provides a 
good starting point for the mentioned future analysis directions.

A further interesting direction concerns the induction of other types of features such as 
recently proposed in Lee et al. (2016), e.g., employing Latent Dirichlet Allocation (LDA) 
(Blei et al. 2003) to find latent relations between users given their biographical informa-
tion. However, more refined topic modeling approaches, such as proposed by Weng et al. 
(2010), would be needed in the scope of the Second Life dataset, since biographic informa-
tion in the user profiles is rather sparse and typically less than 100 characters in length.

Another very interesting extension of this work would be to study the problem from a 
more theoretical/economical background. The study at hand does not do this extensively. 
Instead, we based our assumptions mostly on the link prediction and recommender sys-
tems research literature and common sociological factors indicating interactions. Building 
more grounded theoretical models would potentially also help to understand the nature of 
the problem better. So far, we have just a rough estimate. While our study suggests that 
predicting seller-buyer interactions from social network data is hard, Guo et al. (2011) esti-
mates this as a moderate-hard predicting problem (at least their experimental setup and 
dataset suggests this). As such, more research on this problem in different kinds of datasets 
is needed. So far we can only claim that the problem at hand is rather easy to resolve in the 
Second Life dataset given trading interactions alone, while given location-based and online 
social network data alone, it is not.

Finally, since using the data of Second Life, the experiments in this paper were based on a 
virtual world. A rather important and relevant research direction concerns the understanding 
and modeling of digital and physical network structures and the behavior of actors therein. 
Therefore, an important task in the future could be to investigate how the experiments would 
perform if data of the “real” world combined with online social data were used.
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