
NEURAL INFORMATION RETRIEVAL

Using word embeddings in Twitter election classification

Xiao Yang1 • Craig Macdonald1 • Iadh Ounis1

Received: 8 November 2016 / Accepted: 2 October 2017 / Published online: 9 November 2017
� Springer Science+Business Media, LLC 2017

Abstract Word embeddings and convolutional neural networks (CNN) have attracted

extensive attention in various classification tasks for Twitter, e.g. sentiment classification.

However, the effect of the configuration used to generate the word embeddings on the

classification performance has not been studied in the existing literature. In this paper,

using a Twitter election classification task that aims to detect election-related tweets, we

investigate the impact of the background dataset used to train the embedding models, as

well as the parameters of the word embedding training process, namely the context win-

dow size, the dimensionality and the number of negative samples, on the attained classi-

fication performance. By comparing the classification results of word embedding models

that have been trained using different background corpora (e.g. Wikipedia articles and

Twitter microposts), we show that the background data should align with the Twitter

classification dataset both in data type and time period to achieve significantly better

performance compared to baselines such as SVM with TF-IDF. Moreover, by evaluating

the results of word embedding models trained using various context window sizes and

dimensionalities, we find that large context window and dimension sizes are preferable to

improve the performance. However, the number of negative samples parameter does not

significantly affect the performance of the CNN classifiers. Our experimental results also

show that choosing the correct word embedding model for use with CNN leads to sta-

tistically significant improvements over various baselines such as random, SVM with TF-

This manuscript extends a version previously made available on arXiv (https://arxiv.org/abs/1606.07006)
entitled ‘‘Using Word Embeddings in Twitter Election Classification’’, and presented at the Workshop on
Neural Information Retrieval at SIGIR 2016.

& Xiao Yang
Xiao.Yang@glasgow.ac.uk

Craig Macdonald
Craig.Macdonald@glasgow.ac.uk

Iadh Ounis
Iadh.Ounis@glasgow.ac.uk

1 School of Computing Science, University of Glasgow, Glasgow, UK

123

Inf Retrieval J (2018) 21:183–207
https://doi.org/10.1007/s10791-017-9319-5

http://orcid.org/0000-0002-1322-7701
https://arxiv.org/abs/1606.07006
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9319-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9319-5&domain=pdf
https://doi.org/10.1007/s10791-017-9319-5

IDF and SVM with word embeddings. Finally, for out-of-vocabulary (OOV) words that are

not available in the learned word embedding models, we show that a simple OOV strategy

to randomly initialise the OOV words without any prior knowledge is sufficient to attain a

good classification performance among the current OOV strategies (e.g. a random ini-

tialisation using statistics of the pre-trained word embedding models).

Keywords Word embedding � CNN � Twitter � Election classification � Word2vec

1 Introduction

Word embeddings have been proposed to produce effective word representations. For

example, in the Word2Vec model (Mikolov et al. 2013c), by maximising the probability of

seeing a word within a fixed context window, it is possible to learn for each word in the

vocabulary a dense real-valued embedding vector from a shallow neural network. As a

consequence, similar words are close to each other in the embedding space (Bengio et al.

2003; Collobert et al. 2011; Mikolov et al. 2013c), such as ‘‘quick’’ and ‘‘quickly’’ that are

syntactically similar. However, word embeddings can provide more complex semantic

relationships by applying algebraic operations to certain word vectors. For example,

Mikolov et al. (2013d) observed that a simple algebraic operation vector(‘‘King’’) -

vector(‘‘Man’’) þ vector(‘‘Woman’’) results in a vector that is closest to the vector rep-

resentation of ‘‘Queen’’. A similar example is to find the country that a city belongs to,

such as ‘‘France’’ is to ‘‘Paris’’ what ‘‘China’’ is to ‘‘Beijing’’. Such semantic relationships

are useful for various tasks such as information retrieval (Mitra et al. 2016), named entity

tagging (Godin et al. 2015), text classification (Kim 2014) and machine transla-

tion (Mikolov et al. 2013b).

However, a common issue of using word embeddings is the out-of-vocabulary (OOV)

words that appear in the datasets but not in the word embedding models. Thus, the vector

representations of the OOV words cannot be obtained from the learned word embedding

model. There are several existing OOV strategies in the existing literature. For example,

Kim (2014) used the statistics from learned word embedding models to randomly initialise

the vector representations for the OOV words. On the contrary, the OOV words were

ignored by both Bojanowski et al. (2016) and Mitra et al. (2016). Dhingra et al. (2016)

proposed character-based distributed representations which learn embeddings for each

character rather than each word, and therefore the vectors for OOV words are resolved at

the character level. However, there has been little exploration of which strategy is better at

dealing with the OOV words from the word level, and indeed both Kim (2014) and Mitra

et al. (2016) suggested that further study on the OOV strategies for word embedding

models is needed.

Recently, the use of word embeddings together with convolutional neural networks

(CNN) has been shown to be effective for various classification tasks such as sentence

classification (Kim 2014) and sentiment classification on Twitter (Ebert et al. 2015;

Severyn and Moschitti 2015). In such approaches, word embeddings are used to construct

the vector representation of a sentence or a tweet as the input of a CNN classifier. In order

to investigate the effect of different CNN settings in sentence classification performance, a

sensitivity analysis of a one-layer CNN classifier has been conducted by Zhang and

Wallace (2015), by varying the hyperparameters such as the filter region size, the number

of feature maps and the pooling strategy. However, the effect of the configuration used to

generate the word embeddings on the classification performance has not been studied in the

184 Inf Retrieval J (2018) 21:183–207

123

literature. Indeed, while different background corpora (e.g. Wikipedia and Twitter) and

parameters (e.g. context window and dimensionality) could lead to different word

embeddings, there has been little exploration of how such background corpora and

parameters affect the classification performance.

In this paper, using two Twitter datasets collected during the Venezuela parliamentary

election in 2015 and the Philippines general election in 2016 respectively, we investigate

the use of word embeddings with CNN in a new classification task, which aims to identify

those tweets that are related to the election. Such a classification task is challenging

because election-related tweets are usually ambiguous and it is often difficult for human

assessors to reach an agreement on their relevance to the election (Bermingham and

Smeaton 2011). For example, such tweets may refer to the election implicitly without

mentioning any political party or politician. In order to tackle these challenges, we propose

to use word embeddings to build richer vector representations of tweets for training the

CNN classifier on our election datasets.

Our contributions are three-fold: First, we thoroughly investigate the parameter settings

(e.g. context window, the dimensionality and negative sample size) of word embeddings on

our election classification task. We show that word embeddings trained using a large

context window size and dimension size can help CNN to achieve a significantly better

classification performance over our baselines (e.g. SVM with TFIDF). Second, we

explicitly study the effect of the background corpus. Our results show that when the type

and time period of background corpus align with the classification dataset, the CNN

classifier achieves statistically significant improvements over the classification baseline of

SVM with TF-IDF on our task. Third, we compare several random strategies to address

the OOV words. Our results on two datasets demonstrate that simpler OOV strategies to

randomly initialise the OOV words without any prior knowledge is sufficient to attain a

good classification performance among the current OOV strategies. Thus, our results in-

deed suggest that the background corpus and parameters of word embeddings have an

impact on the classification performance. Moreover, our results contradict the findings on

different tasks such as dependency parsing (Bansal et al. 2014) and named entity recog-

nition (NER) (Godin et al. 2015) where a smaller context window is suggested. Such a

contradiction suggests that the best setup of parameters such as the context window and

dimensionality might differ from a task to another.

In the remainder of this paper, we explain the related work in Sect. 2. We describe the

CNN architecture used for our classification task in Sect. 3. In Sect. 4, we describe our

datasets and the experimental setup. In Sect. 5, we investigate the impact of the context

window size, dimensionality and negative sample size of word embeddings on the clas-

sification performance. In Sect. 6, we discuss the impact of two different types of back-

ground corpora (Wikipedia articles and Twitter microposts) on the effectiveness of the

learned classifier. In Sect. 7, we study the strategies that aim to deal with the out-of-

vocabulary (OOV) words. We provide concluding remarks in Sect. 8.

2 Related work

In this section, we introduce related work in the areas of word embedding, Twitter clas-

sification and how they relate to the study presented in this paper.

Inf Retrieval J (2018) 21:183–207 185

123

2.1 Word embedding models

In most text classification tasks, terms within the documents are often used as features such

as the classic TF-IDF vector representation. Word embedding models based on neural

networks have emerged as an effective alternative to build vector representations of

text (Bengio et al. 2003; Collobert and Weston 2008; Mikolov et al. 2013a; Pennington

et al. 2014). The main aim of word embeddings is to learn vector representations of words

by mapping semantic information into a geometric word embedding space. In these

models, the vector representation w of a given word is usually learned through a fixed

context window W. In addition, to capture semantic information from the fixed context

window, the recently proposed GloVe model (Pennington et al. 2014) also aims to capture

global corpus statistics through the word co-occurrence probabilities. Another word

embedding model, namely Word2Vec (Mikolov et al. 2013a, c), maximises the conditional

probability of a word given the context words that appeared around that word within the

context window W. After training, the learned vector representations w can be used to

reveal the relation between two words using their corresponding vector representations wi

and wj and a similarity measure (e.g. cosine similarity):

simðwi;wjÞ ¼ cosineðwi;wjÞ ¼
wi � wj

jjwijjjjwjjj ð1Þ

In particular, the Word2Vec model contains two separate embeddings, namely the input

and output embeddings (Mitra et al. 2016). However, the output embedding is usually

discarded in most applications (Godin et al. 2015; Kim 2014; Mikolov et al. 2013b). To

leverage both of the embeddings, Mitra et al. (2016) proposed a dual word embedding

model for document ranking by retaining the output embedding that is often discarded in

other applications. Using the cosine similarity defined in Eq. (1), Mitra et al. (2016) noted

that words in a dual word embedding model are more likely related by topics (e.g. ‘‘yale’’

is close to ‘‘faculty’’). Without retaining the outputs embeddings, words are more likely

related by types (e.g. ‘‘yale’’ is close to ‘‘harvard’’). In particular, Bansal et al. (2014) and

Pennington et al. (2014) observed that the embedding parameters can also affect the type

of generated word embeddings. This shows that word embeddings can exhibit different

properties in various settings, which leads to our proposed study on the effect of the

embedding parameters such as the context window size W on the resulting classification

performance.

2.1.1 Embedding parameters

A number of studies have already shown that the context window and dimensionality of the

used word embedding vectors can affect performance in various tasks such as dependency

parsing (Bansal et al. 2014) and named entity recognition (NER) (Godin et al. 2015). For

instance, using publicly available corpora such as Wall Street Journals and Wikipedia,

Bansal et al. (2014) investigated Word2Vec word embeddings in a dependency parsing

task, which aims to provide a representation of grammatical relations between words in a

sentence. By only varying the context window size from 1 to 10, their results on the

accuracy of part-of-speech (POS) tagging showed that the context window size of

Word2Vec can affect the type of the generated word embedding. In particular, they

observed that a smaller context window gives a better performance on accuracy. In the

named entity recognition (NER) task, Godin et al. (2015) investigated three context

186 Inf Retrieval J (2018) 21:183–207

123

window sizes W ¼ f1; 3; 5g based on the accuracy of NER tagging. From their results,

they also reached a similar conclusion, namely that a smaller context window gives a better

performance using the Word2Vec word embeddings when the model is trained from a large

Twitter corpus containing 400 million tweets.

Using a subset of the semantic-syntactic word relationship test set, Mikolov et al.

(2013c) investigated the dimensionality of the Word2Vec word embeddings and the size of

background data. In the test set, word pairs are grouped by the type of relationship. For

example ‘‘brother–sister’’ and ‘‘grandson–granddaughter’’ are in the same relationship of

‘‘man–woman’’. The accuracy is measured such that given a word pair, another word pair

with the correct relationship should be retrieved. Using this accuracy measure, they noted

that at some point increasing the dimensionality or the size of background data only

provides slightly better performance. Therefore, they concluded that the dimensionality

and background data size should be increased together (Mikolov et al. 2013c). Mikolov

et al. (2013c) also studied another parameter, namely the number of negative samples,

which defines how many negative examples are randomly sampled from the corpus

vocabulary to train the word embedding models. For example, for the context ‘‘the cat sits

on the mat’’, a negative sample will be a word (e.g. project) randomly sampled from the

entire corpus, which is often irrelevant to the current context. Such negative examples help

the word embedding model to differentiate the correct word relationships from noise (i.e.

negative samples). Therefore, during training, the model maximises the probabilities to real

word relationships and minimises the probabilities to the noise words. Mikolov et al.

(2013c) observed that a large negative sample size is useful for small background corpora

while for large corpora the negative sample size could be as small as 2–5. However,

Mikolov et al. (2013c) only investigated the Word2Vec parameters using the GoogleNews

background corpus.

The aforementioned studies provide a useful guide about the effect of the word

embeddings configuration on performance in the specific applications they tackled, but

their findings were obtained on tasks different from Twitter classification tasks. Hence, the

question arises as whether such findings will generalise to classification tasks on Twitter,

which is the object of our study in this paper.

2.2 Twitter classification

In fact, there is little work in the literature tackling the task of election classification on

Twitter. However, similar classification tasks such as Twitter sentiment classification have

been well studied (Ebert et al. 2015; Severyn and Moschitti 2015; Tang et al. 2014). In

particular, word embeddings were recently used to build effective tweet-level represen-

tations for Twitter sentiment classification (Severyn and Moschitti 2015; Tang et al. 2014).

For instance, in the SemEval-2015 Twitter Sentiment Analysis challenge, Severyn and

Moschitti (2015) proposed to use word embeddings learned from two Twitter corpora to

build the vector representations of tweets. Using the Word2Vec model, default parameter

values such as context window size 5 and dimensionality 100 were applied to train the

word embedding. In their approach, one Twitter background corpus (50 million tweets)

was used to train the word embedding, while another one (10 million tweets) containing

positive and negative emoticons was used to refine the learned word embeddings using the

proposed CNN classifier. The CNN classifier was then trained on the SemEval-2015

Twitter sentiment analysis dataset, which contains two subsets: phrase-level and message-

level datasets. Each subset contains 5K? and 9K? training samples, respectively. The

official ranking in SemEval-2015 showed that this system ranked 1st and 2nd on the phase-

Inf Retrieval J (2018) 21:183–207 187

123

level dataset and the message-level dataset, respectively. However, Severyn and Moschitti

(2015) focused on refining the word embeddings by using another Twitter corpus with

emoticons to learn sentiment information, but did not study the impact of the background

corpus and the chosen parameters on the classification performance.

In another approach based on the word embeddings model proposed by Collobert and

Weston (2008) and Tang et al. (2014) proposed a variation to learn sentiment-specific

word embeddings (SSWE) from a large Twitter corpus containing positive and negative

emoticons. Tang et al. (2014) empirically set the context window size to 3 and the

embedding dimensionality to 50. The SemEval-2013 Twitter sentiment analysis dataset,

which contains 7K? tweets was used to evaluate the effectiveness of their proposed

approach. Compared to the top system of the SemEval-2013 Twitter Sentiment Analysis

challenge, their approach of using an SVM classifier with SSWE outperformed the top

system on the F1 measure. However, only the Twitter background corpus was used by

Tang et al. (2014), which contains 10 million tweets with positive and negative emoticons.

On the other hand, the parameters of word embeddings such as the context window and

dimensionality were not studied by Tang et al. (2014), nor in the existing literature for

Twitter classification tasks. In particular, the aforementioned studies do not address the

out-of-vocabulary (OOV) words that are not appeared in the learned embedding model. As

such, in this paper, we conduct a thorough investigation of word embeddings together with

CNN on a Twitter classification task and explore the impact of both the background corpus,

the context window, the dimensionality and the negative sample size of word embeddings

and OOV words on the classification performance.

3 The CNN model

For our Twitter election classification task, we use a simple CNN architecture described by

Kim (2014) and Severyn et al. (2015) and highlighted in Fig. 1. It consists of a convo-

lutional layer, a max pooling layer, a dropout layer and a fully connected output layer.

Each of these layers is explained in turn.

Tweet-level representation The inputs of the CNN classifier are preprocessed tweets that

consist of a sequence of words. Word embeddings play an important role in building the

tweet-level representations. The semantic relations carried by word embeddings are helpful

to find semantic similarities between tweets.

Fig. 1 Convolutional neural network architecture for tweet classification. Adapted from Kim (2014)

188 Inf Retrieval J (2018) 21:183–207

123

Using word embeddings, tweets are converted into vector representations in the fol-

lowing way. Assuming wi 2 Rn to be the n-dimensional word embeddings vector of the i-

th word in a tweet, a tweet-level representation for convolutional neural networks (denoted

TCNN) is obtained by looking up the word embeddings and concatenating the corre-

sponding word embeddings vectors of the total k words:

TCNN ¼ w1 � w2 � � � � � wk ð2Þ

where � denotes the concatenation operation (Kim 2014). As suggested by Kim (2014),

for a word not appearing in a word embeddings (also known as out-of-vocabulary OOV),

we generate its vector by sampling each dimension from the uniform distributions

Ui½mi � si;mi þ si�, where mi and si are the mean and standard deviation of the i-th

dimension of the word embeddings. For training purposes, short tweets are padded to k—

the length of the longest tweet—using a special token. The vector representation of each

word is concatenated and stacked as illustrated in Fig. 1. Hence, the total dimension of the

vector representation TCNN is always k � n. Afterwards, the tweet-level representation

will feed to the convolutional layer.

Convolutional layer The convolutional layer consists of a set of learnable filters that are

applied to the network input TCNN using convolution operations. Since the size of each filter

Fi 2 Rm�n is usually smaller than TCNN, a filter aims to only detect the presence of specific

features or patterns. This is the core building block of convolutional neural networks, which

helps the network to learn the important patterns no matter where they appear in a

tweet (Severyn andMoschitti 2015). In this layer, the filter Fi 2 Rm�n is randomly initialised

and applied to the tweet-level representation TCNN. By varying the size of m, multiple filter

sizes can be used to covermwords during the convolution operation as shown in Fig. 1,where

three filter sizes are illustrated in different colours. By this means, the network learns

important features by considering two or more adjacent words together. In this layer, by

varying another parameter, namely stride s (Krizhevsky et al. 2012), we can shift the filters

across sword embeddings vectors at each step. Therefore, a larger s leads to less computation.

By sliding the filters over m word vectors in TCNN using stride s, the convolution operation

produces a new feature map ci for all the possible words in a tweet:

ci ¼ f ðFi � TCNNi:iþm�1 þ biÞ ð3Þ

where i : i þ m � 1 denotes the word vectors of word i to word i þ m � 1 in TCNN. bi is

the corresponding bias term that is initialised to zero and learned for each filter Fi during

training. In Eq. (3), f is the activation function. In this CNN architecture, we use a rectified

linear function (ReLU) (Hahnloser et al. 2000) as the activation function f since ReLU

shows very promising performance in convolutional neural networks (Glorot et al. 2011).

Its output is given by:

Output ¼ Maxð0; InputÞ ð4Þ

Therefore, the ReLU unit ensures its output is always positive.

Max pooling layer A pooling layer aims to reduce the spatial size of features and the com-

putation in the network. All the featuremaps ci from the convolutional layer are then applied to

the max pooling layer where the maximum value cmax
i is extracted from the corresponding

feature map. In this way, only the most salient features are kept. Afterwards, the maximum

values of all the feature maps ci are concatenated as the feature vector of a tweet.

Dropout layer Dropout is a simple yet effective regularisation technique that is often

used in neural networks (Srivastava et al. 2014). A neuron is a basic unit in such neural

Inf Retrieval J (2018) 21:183–207 189

123

networks, which is a mathematical function that attempts to model a biological neuron. It

sums the inputs and passes them to an activation function to produce an output. However,

dropout only keeps a neuron active with some probability p (e.g. p ¼ 0:5) during training

(Kim 2014). After training, p ¼ 1 is used to keep all the neurons active for predicting

unseen tweets. We apply both dropout and the well-known L2 regularisation technique to

control overfitting.

Softmax layer The fully connected softmax layer transforms the output scores of pos-

itive and negative classes into normalised class probabilities (Kim 2014) using the softmax

function:

ŷi ¼
ezi

P1
t¼0 ezt

for i ¼ 0; 1; ð5Þ

where ŷi indicates the normalised probability of class i. zi denotes the output score of class

i. The value of i can only be 0 or 1 in our task since we aim to only classify tweets as

‘‘election-related’’ or ‘‘not election-related’’, which is a binary classification task. Let y be

a vector representing the true label distribution and ŷ be the vector of the normalised

probabilities from the softmax layer, the cross-entropy cost function is defined as follows:

lossðŷ; yÞ ¼ �
X1

i¼0

yilogðŷiÞ ð6Þ

Equation (6) calculates the dissimilarity between the true label distribution y and the

predicted label distribution ŷ. During training, the weights of each layer are updated

according to the calculated loss. Once a CNN classifier is trained from a training set, all of

its parameters and learned weights are saved. Unseen tweets can then be classified by

applying their tweet-level representations to the trained CNN classifiers.

4 Experimental setup

In this paper, we argue that the types of background corpora as well as the parameters of

Word2Vec model could lead to different word embeddings and could affect the perfor-

mance on Twitter classification tasks. In the following sections, we address three research

questions using our Twitter election classification task:

• RQ1: For Twitter election classification task, do the CNN classifiers prefer different

word embedding settings from other tasks, e.g. dependency parsing (Bansal et al.

2014) and NER (Godin et al. 2015)?

• RQ2: By using the same type of background corpus as the background dataset, does

the learned word embedding model improve the classification performance?

• RQ3: For out-of-vocabulary (OOV) words, what particular strategy (e.g. random

initialisation using statistics of the pre-trained word embedding models) is preferred to

attain good classification performance?

Our experiments are tailored to conduct a thorough investigation of word embeddings

together with CNN on a Twitter classification task by addressing RQ1 in Sect. 5, RQ2 in

Sect. 6 and RQ3 in Sect. 7. The remainder of this section details our datasets (Sect. 4.1),

our experimental setup and used word embedding models (Sect. 4.2), the used baselines

(Sect. 4.3) and measures (Sect. 4.4)

190 Inf Retrieval J (2018) 21:183–207

123

4.1 Datasets

Our two manually labelled election datasets are sampled from tweets collected about the

2015 Venezuela parliamentary election (held on 06/12/2015) and the 2016 Philippines

general election (held on 09/05/2016), respectively. Both of the datasets cover the period of

one month before and after the election dates. We use the Terrier information retrieval (IR)

platform (Macdonald et al. 2012) and the DFReeKLIM (Amati et al. 2011) weighting

model—designed for microblog search—to retrieve tweets related to selected query terms

that were provided by social science experts (we list all our query terms in Table 1a). Only

the top 7 retrieved tweets are selected for each query term on each of the 60 days, making

the size of the collection realistic for human assessors to examine and label the tweets. The

sampled tweets are merged into one pool and judged by 5 experts who label a tweet as:

‘‘Election-related’’ or ‘‘Not Election-related’’. To determine the judging reliability, an

agreement study was conducted for the Venezuela dataset using 482 random tweets that

were judged by all 5 assessors. Using Cohen’s kappa (Cohen 1968), we found a moderate

agreement of 52% between all assessors. For tweets without a majority agreement, an

additional expert of Venezuela or Philippines politics was used to further clarify their

categories. Therefore, we obtain a dataset with good quality human labels. In total, our

Venezuela election dataset consists of 5747 Spanish tweets, which contains 9904 unique

words after preprocessing (stop-word removal & Spanish Snowball stemmer). In our

Philippines election dataset, there are 4163 English tweets with a total 10,229 unique

words after preprocessing (stop-word removal & English Snowball stemmer). Overall,

both of our labelled election datasets cover significant events during the elections. For

example, the killing of opposition politician Luis Diaz (BBC 2015) in the 2015 Venezuela

parliamentary election is observed in our Venezuela dataset. From the general statistics

shown in Table 1b, we observe that both datasets are unbalanced; the majority class (non-

election) has more tweets than the minority class (election).

Table 1 Query terms and statistics of the datasets used in the experiments

(a) Query terms used to retrieve tweets

Query terms

Venezuela dataset eleccion, violencia, votar, pistola, armas, ametralladora, ataque

electora, muerto, miedo, muerte, asesinato, disparar, fraude

muere, delincuente, herido, agreden, asesinar, guachiman, protesta

Philippines dataset violence, attack, dead, fraud, assault, protest, intimidation, unrest

gunshot, racial, die, kill, threat, vote buying, murder, corrupt

terrorize, ambush, explosion, shoot, fire, harass, injure, burn

selling vote, cheating, election

(b) Statistics of the labelled datasets

Language Election Non-Election Total # Words

Venezuela dataset Spanish 2274 3474 5747 9904

Philippines dataset English 1755 2408 4163 10,229

Inf Retrieval J (2018) 21:183–207 191

123

4.2 Word embeddings

As part of our experiments, we train word embedding models on different background

corpora. When training on Twitter data, we removed tweets with less than 10 words since

such tweets contains less information and are often meaningless (e.g. only contain Twitter

handles or are dominated by stopwords and emoticons) for training the word embeddings

in our task. For consistency, we apply the same preprocessing, namely stop-word removal

and stemmer (see Sect. 4.1), to all of the background corpora. Since the Venezuela dataset

is in Spanish while the Philippines dataset is in English, we train both Spanish and English

word embedding models for our experiments.

4.2.1 Spanish word embedding models

Our Spanish word embeddings are for use with the Venezuela dataset that contains

annotated tweets of the 2015 Venezuela parliamentary election (held on 06/12/2015). The

word embeddings used in this paper are trained from three different background corpora:

• es-Wiki: a Spanish Wikipedia snapshot dated 02/10/2015.

• es-Twitter-general: a general Spanish Twitter data collected from 05/01/2015

to 30/06/2015, which does not align with the election period of the 2015 Venezuela

parliamentary election.

• es-Twitter-time: a Spanish Twitter data collected from the period 01/11/2015 to

31/12/2015, which covers the election period of the 2015 Venezuela parliamentary

election.

Over 1 million Spanish articles are observed in es-Wiki. After removing tweets with less

than 10 words, over 20 million Spanish tweets are collected in the corpus es-Twitter-
general. In es-Twitter-time, over 5 million Spanish tweets are observed. After

preprocessing, the es-Wiki corpus contains 436K unique words, es-Twitter-
general has 629K unique words while es-Twitter-time has only 196K unique

words. Salient statistics are provided in Table 2a. Indeed, by comparing the unique words

in our election datasets with the words in the three background corpora, we observe that

Table 2 Statistics of the background corpora used to train word embedding models and words coverage on
the election datasets

(a) Spanish word embeddings

es-Wiki es-Twitter-general es-Twitter-time

Documents 1M? 20M? 5M?

Vocabulary size 436K 629K 196K

Word coverage count 5111 6612 6309

Word coverage rate (%) 51 66 63

(b) English word embeddings

es-Wiki es-Twitter-general es-Twitter-time

Documents 4.9M? 32M? 18M?

Vocabulary size 925K 1.05M 649K

Word coverage count 4745 5335 5610

Word coverage rate 46% 52% 54%

192 Inf Retrieval J (2018) 21:183–207

123

5111 words in our Venezuela dataset appear in es-Wiki, 6612 words appear in es-
Twitter-general while 6309 words appear in es-Twitter-time. This shows that
es-Twitter-general has a better word coverage on our election datasets. We notice

that es-Twitter-time has a very similar word coverage to es-Twitter-general
though it has a much fewer number of documents.

4.2.2 English word embedding models

Our English word embeddings are for use with the Philippines dataset that contains

annotated tweets of the 2016 Philippines general election (held on 09/05/2016).

• en-Wiki: an English Wikipedia snapshot dated 02/10/2015

• en-Twitter-general: a general English Twitter data collected from 05/01/2015

to 23/03/2015, which does not align with the election period of the 2016 Philippines

general election

• en-Twitter-time: an English Twitter data that is collected from the period 01/04/

2016 to 31/05/2016, which covers the election period of the 2016 Philippines general

election

For English word embedding corpora, over 4.9 million English articles are observed in

en-Wiki, over 32 million English tweets in the corpus en-Twitter-general and

over 18 million English tweets are observed in en-Twitter-time. As shown in

Table 2b, the statistics of English word embeddings after the preprocessing, the en-Wiki
corpus contains 925K unique words, en-Twitter-general has 1.05M unique words

while en-Twitter-time has only 649K unique words. Similar to the Spanish word

embedding models, by comparing the unique words in our Philippines election dataset with

the words in the three English word embedding models, we observe that en-Wiki has the

lowest word coverage count, which shows that Twitter corpora have better word coverage

on our election datasets. Hence, potentially the en-wiki model cannot work as well as

en-Twitter-general and en-Twitter-time due to the low word coverage.

We use the Word2Vec implementation in deeplearning4j1 to generate a set of word

embeddings by varying the context window size W, the dimensionality D and the number

of negative samples ns. We use context window sizes W ¼ f1; 5; 10g to study both small

and large context window sizes. For each context window W, we use three different

dimension sizes D ¼ f200; 500; 800g to study both of the low and high dimensionalities of

the word embedding vectors. Therefore, 9 word embedding models in total are generated

by varying W and D for both es-Twitter-general and en-Twitter-general.
For other parameters, we use the same values that were set by Mikolov et al. (2013c): We

set the batch size to 50, negative sampling to 10, minimum word frequency to 5 and

iterations to 5. In addition, we also study the effect of the negative sample size on both es-
Twitter-general and en-Twitter-general by using negative sample sizes

ns ¼ f2; 10g.

4.3 Baselines

To evaluate the CNN classifiers and word embeddings, we use four baselines, namely:

Random classifier According to the class distribution in the training set, the random

classifier simply makes random predictions to the test instances.

1 https://deeplearning4j.org/.

Inf Retrieval J (2018) 21:183–207 193

123

https://deeplearning4j.org/

SVM with TF-IDF (SVM?TFIDF) As a more sophisticated baseline than the random

classifier, the traditional weighting scheme, namely TF-IDF, is used in conjunction with an

SVM classifier for the Twitter election classification.

SVM with word embeddings (SVM?WE) We use a similar scheme that was used by

Wang et al. (2015) to build the tweet-level representation for the SVM classifiers. The

vector representation (i.e. TWE) of a tweet is constructed by averaging the word embed-

ding vectors along each dimension for all the words in the tweet:

TWE ¼
Xk

i¼1

wi=k ð7Þ

where k is the number of words in a tweet and wi 2 Rn denotes the word embedding vector

of the i-th word. By this means, the vector representation of each tweet has exactly the

same dimension as the word embedding vector wi, which is the input of an SVM classifier.

The concatenation scheme used in the CNN classifiers is not applied to the SVM classifiers

because it gives worse performance according to our initial experiments. Indeed, a key

advantage of the CNN classifier is to detect important patterns within a context window

and capture word order, attributes that cannot be captured using SVM with or without word

embeddings.

fastText As a state-of-the-art text classifier, fastText provides both effective and efficient

learning of word representations and sentence classification (Bojanowski et al. 2016;

Joulin et al. 2016). Based on the Word2Vec model, fastText can classify text documents

using the word embeddings learned from the given dataset. In addition, it also allows to use

N-gram features to capture some partial information about the local word order (Joulin

et al. 2016). The efficiency and effectiveness of fastText has been tested on several datasets

(e.g. the Yelp review and Amazon review datasets). Compared to other systems (Conneau

et al. 2016; Tang et al. 2015; Zhang and LeCun 2015; Zhang et al. 2015) using convo-

lutional neural networks and recurrent neural networks, fastText shows comparable results

but significantly less training time.

4.4 Hyperparameters and measures

To train the classifiers and evaluate their performances on our datasets, we use a 5-fold

cross validation, such that in each fold, 3 partitions are used for training, 1 partition for

validation and 1 partition for test. Afterwards, the overall performance on the test instances

is assessed by averaging the scores across all folds. We report effectiveness in terms of

classification measures, precision (denoted P), recall (denoted R) and F1 score (denoted

F1). For statistical testing, we use the non-parametric McNemar’s test as proposed by

Dietterich (1998) for an computationally inexpensive method of hypothesis testing.

For all the experiments, we use 3 filter sizes m ¼ f1; 2; 3g, stride s ¼ 1 and dropout

probability p ¼ 0:5 for our CNN classifier, which gives better performance according to

our initial experiments on the validation set. For each filter size, 200 filters are applied to

the convolutional layer and therefore 600 feature maps are produced in total. For the SVM

classifiers, we use the LinearSVC model in scikit-learn2 (Pedregosa et al. 2011) and tune

the parameter c for each SVM classifier using the validation set. For fastText3, the

implementation provided by Joulin et al. (2016) is used. We tune the dimensionality

2 http://scikit-learn.org.
3 https://github.com/facebookresearch/fastText.

194 Inf Retrieval J (2018) 21:183–207

123

http://scikit-learn.org
https://github.com/facebookresearch/fastText

parameter dim to 200, the N-gram parameter wordNgrams to 2 and context window size ws

to 5, which attains good performance according to our initial experiments. For other

parameters, such as learning rate, we use the default settings.

5 Effect of word embeddings parameters

In this section, we address RQ1 and investigate the effect of parameters (e.g. context

window, dimensionality and negative samples) for the Twitter election classification task.

As shown in Table 2, since word embedding models es-Twitter-general and en-
Twitter-general have good word coverage on our Venezuela and Philippines data-

sets respectively, we use them for all the experiments in this section.

5.1 Effect of context window and dimensionality

For the Venezuela dataset, Table 3a shows the results of our four baselines, while Table 3b

shows the results of classifiers using word embeddings, namely SVM with word embed-

dings (SVM?WE) and CNN. In Table 3b, the measurements for SVM?WE and CNN are

arranged by the dimensionality and context window size of word embeddings. For each

row of W1, W5 and W10, Table 3b shows results for context window sizes of W ¼
f1; 5; 10g along each dimension sizes of D ¼ f200; 500; 800g. The best overall scores are
highlighted in bold. Table 4 has the same arrangement as Table 3 but shows the corre-

sponding results for the Philippines dataset.

In Table 3b, where both approaches (e.g. SVM?WE and CNN) use the same word

embeddings, we observe that SVM?WE and CNN show similar preferences in word

embeddings dimensionality. When we fix the context window size, SVM classifiers clearly

show improvements on F1 score for all sizes of W ¼ f1; 5; 10g by increasing the

dimensionality D. In particular, a larger dimensionality D ¼ f500; 800g results in better

performances in terms of precision, recall and F1 scores compared to the embedding

models with a smaller dimensionality D ¼ 200. We observed similar results for the CNN

classifiers. In particular, when W ¼ f5; 10g, increasing the dimensionality D improves the

recall and F1 scores.

Next, we study the effect of context window size W. If we fix the dimensionality

D while increasing the context window size W from 1 to 10, CNN classifiers show

improvement on F1 score. In particular, larger context window sizes W ¼ f5; 10g also

attain better recall compared to the embedding models using W ¼ 1 when D ¼ f500; 800g.
Similarly, the SVM classifiers also demonstrate improvements in recall and F1 when

D ¼ 800 when increasing context window size W. In particular, by considering both the

context window and dimensionality, SVM and CNN classifiers attain best performances in

of terms of F1 scores when W ¼ 10 and D ¼ 800. As such, the experimental results on

the Venezuela dataset show that a word embedding model with a higher context window

size and dimensional is potentially the most appropriate for our task.

For the Philippines dataset, as shown in Table 4b, we have observed similar results of

the Venezuela dataset. By fixing context window W and increasing the dimensionality D,

SVM classifiers clearly show improvements on all metrics. For CNN classifiers, the use of

word embedding models with the largest dimensionality D ¼ 800 attains the best F1 score.

Next, we study the effect of context window. If we fix the dimensionality D ¼ f200; 500g
and increase the context window W from 1 to 10, all metrics are improved for the SVM

Inf Retrieval J (2018) 21:183–207 195

123

T
a
b
le

3
R
es
u
lt
s
o
f
o
u
r
b
as
el
in
es

an
d
C
N
N

m
o
d
el
s
in

th
e
T
w
it
te
r
el
ec
ti
o
n
cl
as
si
fi
ca
ti
o
n
ta
sk

u
si
n
g
th
e
V
en
ez
u
el
a
d
at
as
et

(a
)
R
es
u
lt
s
o
f
ra
n
d
o
m

cl
as
si
fi
er
,
S
V
M
?
T
F
ID

F
,
S
V
M
?
W
E
an
d

fa
st

T
ex

t

P
re
ci
si
o
n

R
ec
al
l

F
1
sc
o
re

R
an
d
o
m
*

3
8
.6

2
8
.5

3
8
.5

S
V
M
?
T
F
ID

F
*

8
2
.6

6
9
.6

7
5
.5

S
V
M
?
W
E
*

7
9
.1

7
0
.5

7
4
.5

fa
st

T
ex

t¼
8
1
.2

7
2
.7

7
6
.7

(b
)
R
es
u
lt
s
o
f
S
V
M

w
it
h
w
o
rd

em
b
ed
d
in
g
s
(S
V
M
?
W
E
)
an
d
C
N
N

D
2
0
0

D
5
0
0

D
8
0
0

S
V
M
?
W
E

C
N
N

S
V
M
?
W
E

C
N
N

S
V
M
?
W
E

C
N
N

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

W
1

7
8
.1

6
5
.7

7
1
.3

8
1
.2

7
1
.6

7
6
.1

7
8
.3

6
9
.4

7
3
.6

8
0
.7

7
1
.9

7
6
.0

7
9
.6

6
9
.0

7
4
.0

8
0
.8

7
1
.6

7
5
.9

W
5

7
8
.6

6
8
.1

7
3
.0

8
2
.0

7
1
.5

7
6
.4

7
9
.2

6
9
.7

7
4
.1

8
0
.9

7
2
.2

7
6
.3

7
9
.3

6
9
.6

7
4
.1

8
0
.6

7
4
.0

7
7
.1

W
1
0

7
8
.9

6
5
.6

7
1
.6

8
0
.8

7
2
.8

7
6
.6

7
8
.9

6
8
.3

7
3
.2

8
0
.7

7
3
.9

7
7
.1

7
9
.1

7
0
.5

7
4
.5

8
1
.6

7
3
.9

7
7
.6

W
1
m
ea
n
s
co
n
te
x
t
w
in
d
o
w

si
ze

1
an
d

D
2
0
0
d
en
o
te
s
w
o
rd

em
b
ed
d
in
g
s
d
im

en
si
o
n
si
ze

2
0
0

*
In
d
ic
at
es

th
at
th
e
d
if
fe
re
n
ce

b
et
w
ee
n
th
e
C
N
N
cl
as
si
fi
er

(W
¼

1
0
an
d

D
¼

8
0
0
)
an
d
th
at
b
as
el
in
e
is
st
at
is
ti
ca
ll
y
si
g
n
ifi
ca
n
t
(M

cN
em

ar
’s
te
st
,
p
\
0
:0
5
),
w
h
il
e
¼
in
d
ic
at
es

th
e

d
if
fe
re
n
ce

is
n
o
t
si
g
n
ifi
ca
n
t

196 Inf Retrieval J (2018) 21:183–207

123

T
a
b
le

4
R
es
u
lt
s
o
f
o
u
r
b
as
el
in
es

an
d
C
N
N

m
o
d
el
s
in

th
e
T
w
it
te
r
el
ec
ti
o
n
cl
as
si
fi
ca
ti
o
n
ta
sk

u
si
n
g
th
e
P
h
il
ip
p
in
es

d
at
as
et

(a
)
R
es
u
lt
s
o
f
ra
n
d
o
m

cl
as
si
fi
er
,
S
V
M
?
T
F
ID

F
,
S
V
M
?
W
E
an
d

fa
st

T
ex

t

P
re
ci
si
o
n

R
ec
al
l

F
1
sc
o
re

R
an
d
o
m
*

4
2
.4

4
2
.1

4
2
.2

S
V
M
+
T
F
ID

F
¼

8
0
.3

8
0
.9

8
0
.6

S
V
M
?
W
E
*

7
9
.0

7
8
.2

7
8
.6

fa
st

T
ex

t¼
7
9
.4

8
0
.9

8
0
.0

(b
)

R
es

u
lt

s
o

f
S

V
M

w
it

h
w

o
rd

em
b

ed
d

in
g

s
(S

V
M
?

W
E

)
a

n
d

C
N

N

D
2
0
0

D
5
0
0

D
8
0
0

S
V
M
?
W
E

C
N
N

S
V
M
?
W
E

C
N
N

S
V
M
?
W
E

C
N
N

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

W
1

7
6
.8

7
4
.8

7
5
.8

7
9
.1

8
0
.2

7
9
.6

7
8
.8

7
6
.0

7
7
.3

8
1
.2

7
9
.2

8
0
.1

7
9
.0

7
8
.2

7
8
.6

8
0
.9

7
9
.7

8
0
.2

W
5

7
7
.7

7
5
.6

7
6
.6

7
9
.4

8
0
.2

7
9
.8

7
9
.0

7
6
.6

7
7
.8

8
0
.4

8
0
.5

8
0
.4

8
0
.3

7
6
.8

7
8
.5

8
0
.6

8
0
.9

8
0
.6

W
1
0

7
8
.4

7
6
.4

7
7
.4

8
1
.5

7
9
.3

8
0
.4

7
9
.0

7
7
.0

7
8
.0

7
9
.8

8
1
.1

8
0
.3

7
9
.9

7
7
.3

7
8
.5

8
2
.2

7
9
.4

8
0
.8

W
1
m
ea
n
s
co
n
te
x
t
w
in
d
o
w

si
ze

1
an
d

D
2
0
0
d
en
o
te
s
w
o
rd

em
b
ed
d
in
g
s
d
im

en
si
o
n
si
ze

2
0
0

*
In
d
ic
at
es

th
at

th
e
d
if
fe
re
n
ce

b
et
w
ee
n
th
e
C
N
N

cl
as
si
fi
er

(W
¼

1
0
an
d

D
¼

8
0
0
)
an
d
th
e
b
as
el
in
e
is
si
g
n
ifi
ca
n
t.
H
o
w
ev
er
,
¼
in
d
ic
at
es

th
e
d
if
fe
re
n
ce

is
n
o
t
si
g
n
ifi
ca
n
t

Inf Retrieval J (2018) 21:183–207 197

123

classifiers. We note that the size of context window W does not affect the performance of

the SVM classifiers much when D ¼ 800. However, the use of larger context window sizes

W ¼ f5; 10g improves F1 score for CNN classifiers compared to a small window size

W ¼ 1. In particular, the CNN classifier attains the best F1 score by using the word

embedding model with W ¼ 10 and D ¼ 800, which is the same to our finding on the

Venezuela dataset. Hence, a word embedding model with a larger context window size and

dimensionality is the most appropriate for our task.

5.1.1 Comparison to baselines

We first compare the results of the CNN classifiers to the random baseline and the

SVM?WE baseline (shown in Tables 3a, 4a). Clearly, for the Venezuela dataset

(Table 3a), the CNN classifiers outperform these two baselines across all measures. By

comparing CNN classifiers to the SVM?TFIDF baseline, the CNN classifiers consistently

outperform the SVM?TFIDF baseline on recall and F1 scores. As a state-of-the-art text

classifier, fastText also leverages the word embedding model and neural networks, and its

classification performance is very similar to the CNN classifier. Compared to the CNN

classifier that uses the word embedding model of W ¼ 5 and D ¼ 800, fastText has slightly

worse performance on all the metrics, which shows the effectiveness of convolution neural

networks with word embeddings on the Twitter election classification task. Comparing

CNN and SVM?TFIDF, our statistical test result shows the difference between them is

significant, with a p-value less than 0.05. However, we note that the performance differ-

ence between CNN and fastText is not statistically significant.

For the Philippines dataset, the CNN classifiers consistently outperform the random and

SVM?WE baselines (shown in Table 4a) on all the metrics. However, the performances of

CNN, SVM?TFIDF and fastText are very similar. When the word embedding model with

W ¼ 10 and D ¼ 800 is used, the CNN classifier has a slightly better F1 score compared to

SVM?TFIDF. However, we note that the differences between CNN, SVM?TFIDF and

fastText are not statistically significant, with p-values greater than 0.05. However, con-

sidering the overall performance on the two datasets, the CNN classifiers consistently

attain the best results in terms of F1 score compared to the other baselines. Although

fastText shows similar performance with CNN classifiers, it uses a bag of words that is

invariant to the words ordering. Therefore, to take the order information into account,

a bag of N-grams are used as additional features by fastText. On the contrary, the CNN

classifier inherently captures the local word ordering using existing word embedding

models and therefore does not need to learn N-gram features. In particular, the CNN

parameters, such as the filter sizes and stride, provide more flexibility on how to capture the

words ordering information as introduced in Sect. 3.

5.2 Effect of negative samples

We have shown that word embedding models with larger context window and dimen-

sionality improve the classification performance in Sect. 5.1. However, there is another

important parameter, namely the negative sample size (denoted ns), that could affect the

classification performance as well. When negative sampling is used to train word

embedding models, ns defines how many negative samples are randomly sampled for each

data. Such negative samples help the word embedding model differentiate correct word

relationships from noise. Mikolov et al. (2013a) observed that negative sample size ns in

the range 5–10 is useful for small training corpora while for a large training corpus ns can

198 Inf Retrieval J (2018) 21:183–207

123

be as small as 2–5. To study the effect of negative sample size ns, we train word

embedding models with ns ¼ f2; 10g to cover a value from each range. Since in Sect. 5.1,

a word embedding model with context window W ¼ 5 and dimensionality D ¼ 500

already attains good performance for the CNN classifiers, we use this setting for all the

experiments in this part.

Results on both Venezuela and Philippines datasets are shown in Table 5 by varying the

value of ns. A larger ns gives slightly better performances on recall and F1 scores across

two different datasets as highlighted in Table 5. However, since a larger negative sample

size ns requires much more training time, ns ¼ 10 does not benefit the CNN classifiers

much compared to ns ¼ 2 in this case. The result of the McNemar’s test also indicates that

there is no significant difference between CNN classifiers learned using word embeddings

with ns ¼ 2 and ns ¼ 10. In particular, the word embedding corpora (en-Twitter-
general and es-Twitter-general) we used have different size: en-Twitter-
general contains 12M more tweets and 421K more unique words than es-Twitter-
general. As such we conclude that, a small negative sample size (i.e. ns) is sufficient for

our Twitter election classification task.

5.3 Discussion

Compared to the studies on other tasks such as named entity recognition (NER) and

dependency parsing (see Sect. 2), our results differ from their conclusions that ‘‘a smaller

context window size gives a better performance’’ (Bansal et al. 2014; Godin et al. 2015).

Such a contradiction suggests that the best setup of parameters such as context window and

dimensionality may differ from our task to another. For example, both Bansal et al. (2014)

and Mitra et al. (2016) have noted that the learned word embeddings can be type-based or

topic-based due to different context window sizes. Bansal et al. (2014) clustered two word

embeddings that are learned using context window size 1 and 10, respectively. The

example clusters showed that, when context window size W ¼ 1, syntactic words (e.g. his,

your, her and its) are close to each other in the embedding space. On the contrary, topical

words (e.g. financing, equity, investor and stock) are close to each other in the embedding

space learned using context window size W ¼ 10.

Following the aforementioned work, we study our Spanish Twitter word embeddings

that were learned with dimensionality D ¼ 200 and context window sizes W ¼ f1; 5g.
Using the cosine similarity defined in Eq. (1), we retrieve the most similar words from the

embedding space given a query word. Examples are shown in Table 6 using two query

words ‘‘futbol (football)’’ and ‘‘venezuela’’. We observe that the closest words to ‘‘futbol’’

are mostly the names of football players when W ¼ 1. However, for W ¼ 5, we note that

some topical words such as ‘‘despidieron (dismiss)’’ and ‘‘banquillo (bench)’’ are also

Table 5 CNN classification results by using word embedding models with different negative sampling size
ns ¼ f2; 10g on both of our datasets

Negative sampling Venezuela Philippines

P R F1 P R F1

ns ¼ 2¼ 80.2 71.9 75.8 81.6 79.0 80.2

ns ¼ 10¼ 80.9 72.2 76.3 80.4 80.5 80.4

¼ indicates that the difference between ns ¼ 2 and ns ¼ 10 is not significant

Inf Retrieval J (2018) 21:183–207 199

123

included. For the query word ‘‘venezuela’’, the retrieved words are mostly hashtags and

Twitter handles for context window W ¼ 1, while some typos and abbreviations (e.g.

‘‘veneuela’’ and ‘‘vzla’’) of ‘‘venezuela’’ appear in the retrieved words for W ¼ 5. This

clearly shows that a large context window size (e.g. W ¼ 5) allows word embedding

models to learn relationships of two words that are more topic-based than a small context

window size (e.g. W ¼ 1). Therefore, in our examples, the abbreviations and typos of

‘‘venezuela’’ can be related in the embedding space.

Our findings together with the observations from Bansal et al. (2014) and Mitra et al.

(2016) are helpful to explain the contradiction between the results of the NER task (Godin

et al. 2015) and our Twitter election classification task. In the NER task, the classifier aims

to identify named entities (e.g. names of persons, organisations and locations), which are

often composed of a few adjacent words or the same type of words. Therefore, a word

embedding model learned with a small context window benefits the NER task by relating

the words having the same type (e.g. relating ‘‘futbol’’ to football players’ names as shown

in Table 6). In our Twitter election classification task, the CNN classifiers aim to classify

tweets by the topics within their content. As such, a word embedding model learned with a

large context window helps the CNN classifiers to capture the semantic information, the

typos and even the abbreviations about the same topic.

In summary, for the Twitter election classification task using CNNs, word embeddings

with large context window and dimension size can outperform all of our baselines,

including the state-of-the-art text classifier fastText, in particular, achieving a statistically

significant improvement over the classic classification baseline of SVM with TF-IDF for

the Venezuela dataset. Therefore, we answer RQ1, that for our Twitter election classifi-

cation task, a large context window size is preferred which is different to that from other

tasks, e.g. Dependency parsing (Bansal et al. 2014) and NER (Godin et al. 2015).

6 Effect of the background corpora

Due to the noisy nature of Twitter data, Twitter posts can often be poor in grammar and

spelling. Meanwhile, Twitter provides more special information such as Twitter handles,

HTTP links and hashtags which would not appear in common text corpora. In order to

study RQ2 and infer whether the type of background corpus could affect the Twitter

classification performance, we compare the background corpora of es-Wiki, es-
Twitter-general and es-Twitter-time for the Venezuela dataset. We compare

en-Wiki, en-Twitter-general and en-Twitter-time for the Philippines

dataset. By considering the various experimental results reported in Sect. 5, we set the

Table 6 Example words retrieved using cosine similarity for embeddings with window size W ¼ 1 and
W ¼ 5

W Query Retrieved words

W1 futbol hokey, messi, suarez, #barcelonavsrealmadrid, neymar, ronaldo

venezuela #envide, oposicion, #vzlanoesunaamenaz, @ntn24ve, #angelustim, @fholland

W5 futbol lionel, segun, messi, despidieron, banquillo, #barcelonavsrealmadrid

venezuela venezue, @delgadoantoniom, #concluvzla, venezeula, vzla, veneuela

200 Inf Retrieval J (2018) 21:183–207

123

context window W = 5 and the dimensionality D = 500 for the word embeddings used in

this section since they have demonstrated good performance for the CNN classifiers.

6.1 Types of background corpora

Before we show the effect of the types of background corpora, we first compare the word

embedding models trained from Wikipedia corpus and Twitter corpus. Take the Spanish

word embeddings as an example, the pairwise comparison (Table 7) between es-Wiki
and es-Twitter-general shows vocabulary difference of the word embedding

models. As we show the salient statistics of the two background corpora in Table 2, 66% of

the vocabulary of our Venezuela election dataset appear in the word embedding model

trained from es-Twitter-general while only 51% appear in es-Wiki. By

removing the words shared by both embedding models, we observe that 1527 unique words

are covered by es-Twitter-general but not covered by es-Wiki from Table 7.

However, there are only 26 unique words that are covered by es-Wiki only. In Table 7,

es-Twitter-general versus es-Wiki categorises the words only found in es-
Twitter-general, which are mostly words unique to Twitter, such as Twitter handles

and hashtags. The other 374 words are mainly incorrect spellings and elongated words such

as ‘‘bravoooo’’, ‘‘yaaaa’’ and ‘‘urgenteeeee’’, which occur more often in Twitter than in

other curated types of data such as Wikipedia. Our initial study on the vocabulary coverage

shows that when the type of background corpus aligns with our Twitter classification task,

it can potentially cover more unique terms that often occur in Twitter.

The classification results are shown in Table 8, where the first column shows the dataset

we used. In other columns, we report three measures for embedding models trained from

two types of background corpora es-Wiki and es-Twitter-general for the Ve-

nezuela election dataset and en-Wiki and en-Twitter-general for the Philippines

Table 7 Statistics of the pair comparison in unique vocabulary of Spanish background corpora (e.g. es-
Twitter-general versus es-Wiki shows unique words only covered by es-Twitter-general
compared to Wiki)

Twitter handles Hashtags Others Total

es-Twitter-general versus es-Wiki 818 225 374 1,527

es-Twitter-general versus es-Twitter-time 156 43 378 577

es-Twitter-time versus es-Wiki 731 437 312 1,480

es-Twitter-time versus es-Twitter-general 69 145 60 274

es-Wiki versus es-Twitter-general 0 0 26 26

es-Wiki versus es-Twitter-time 0 0 282 282

Table 8 Classification results by using different background corpora on Venezuela and Philippines datasets

Dataset es-Wiki= es-Twitter-general=

P R F1 P R F1

Venezuela 81.6 70.7 75.8 80.9 72.2 76.3

Philippines 80.7 80.6 80.6 80.4 80.5 80.4

¼ indicates that the difference between Wikipedia and Twitter corpus is not significant

Inf Retrieval J (2018) 21:183–207 201

123

election dataset. For each dataset, the best scores are highlighted in bold. From Table 8, we

observe that when the type of background corpus aligns with the Twitter election dataset,

the performance is better for the Venezuela dataset in terms of recall and F1 scores.

However, the performances of the two word embedding models on the Philippines dataset

are very similar. As such, we conduct the McNemar’s test, which indicates that the dif-

ference between the two types of word embedding models is not significant when applied

to our Twitter election classification task. The additional words learned by es-Twitter-
general (as categorised in Table 7) do not significantly affect the classification

performance.

6.2 Time periods of background corpora

We have shown in Sect. 6.1 that there is no significant difference between the two

background data types. However, when the type of background corpus aligns with the

dataset (e.g. Twitter data), will the covered time period affect the classification perfor-

mance? To address this question, we first compare the performance of es-Twitter-
general and es-Twitter-time where the latter one covers the election period of the

Venezuela election dataset; similarly, for the Philippines dataset, we compare en-
Twitter-general and en-Twitter-time.

For each dataset, the classification results are shown in Table 9. For the Venezuela

dataset, es-Twitter-time slightly outperforms es-Twitter-general in recall

and F1 scores. However, according to McNemar’s test, this difference between the

embedding models trained from es-Twitter-general and es-Twitter-time is

not statistically significant, with a p-value greater than 0.05. For the Philippines dataset, as

shown in Table 9, en-Twitter-time outperforms en-Twitter-general on all

the metrics. Moreover, the McNemar’s test confirms that the performance difference is

significant between en-Twitter-time and en-Twitter-general. From Table 2,

by comparing the number of tweets collected in both of the corpora of en-Twitter-
general and en-Twitter-time, we notice that although the corpus en-Twitter-
time has a fewer number of tweets and unique words after preprocessing, it has a similar

word coverage on our Philippines election dataset. Thus, it indicates that for our particular

Table 9 Classification results of CNN classifiers using word embedding models with and without overlap
with the election periods

Dataset es-Twitter-time= es-Twitter-general=

P R F1 P R F1

Venezuela 80.1 73.3 76.7 80.9 72.2 76.3

Dataset en-Twitter-time* en-Twitter-general*

P R F1 P R F1

Philippines 82.9 82.4 82.7 80.4 80.5 80.4

¼ Indicates that the difference between es-Twitter-time and es-Twitter-general is not
significant

* Indicates the difference between en-Twitter-time and en-Wiki is significant

202 Inf Retrieval J (2018) 21:183–207

123

classification task a smaller background corpus is capable to capture most of the salient

words to distinguish different classes.

Furthermore, from Table 7, we notice that compared to es-Twitter-general,
es-Twitter-time covers more hashtags but fewer Twitter handles. By investigating

the hashtags only covered by the es-Twitter-time, we note that they correspond to

hashtags that were frequently used on Twitter during the 2015 Venezuela parliamentary

election period, for example ‘‘#venezueladecide’’, ‘‘#vota6d’’, ‘‘#reporte6d’’ and

‘‘#venezuelacambio’’. Since some hashtags are only popular during the election period, by

covering the time period of the election dataset, it allows the word embedding to provide

more domain-based features. In particular, although es-Twitter-time contains fewer

number of tweets, it shows comparable classification results on our Twitter election

classification task and requires less time for training a word embedding compared to es-
Twitter-general. For the Philippines dataset, by covering the election period, en-
Twitter-time even outperforms en-Twitter-general significantly. In summary,

in answer to RQ2, we find that aligning both the type and time period of background

corpus with the classification dataset leads to better feature representations, and hence a

more effective classification using the CNN classifier.

7 Out-of-vocabulary words

Out-of-vocabulary (OOV) words are those that appear in the dataset but not in the word

embedding model, and therefore vector representations cannot be obtained for such words.

Although a larger background corpus can help word embeddings to cover more words,

OOV words can still appear in a Twitter dataset. Indeed, as reported in Table 2, the es-
Twitter-general corpus can only cover 66% words in our Venezuela election dataset,

for instance due to the occurrence of various hashtags and Twitter handles. In recent

studies of word embeddings (Bojanowski et al. 2016; Kim 2014; Mitra et al. 2016), the

OOV words appear in different datasets such as the German dataset, namely DE-
GUR350 (Zesch and Gurevych 2006), which is used to study the semantic relatedness of

word pairs. OOV words were simply ignored by Bojanowski et al. (2016) and Mitra et al.

(2016). On the contrary, Kim (2014) randomly initialised the vector representations of

OOV words by sampling each dimension from a uniform distribution U½�a; a�. a was

selected in such way that the initialised vectors have the same variance as the learned word

embedding model. Since this strategy uses the statistics of the pre-trained word embedding

models, we address RQ3 in this section to study whether such kind of strategies improves

the classification performance.

We use our word embedding models trained from es-Twitter-general and en-
Twitter-general with the context window size W ¼ 5 and dimensionality D ¼ 500,

since it was already shown in Sect. 5 to attain good performance. Five different strategies

are used in this section:

1. Random-full: Following the strategy used by Kim (2014), we randomly initialise

the OOV words using the calculated means and standard deviations from the entire

pre-trained word embedding model.

2. Random-local: We randomly initialise the OOV words using the calculated means

and standard deviations from only the vector representations of words that appear in

the dataset.

Inf Retrieval J (2018) 21:183–207 203

123

3. Zero-vector: We apply a simple strategy similar to the one used by Bojanowski

et al. (2016) and Mitra et al. (2016) to initialise the vector representations of OOV

words as n-dimensional zero vectors.

4. Random-pure: We apply a purely random strategy to sample a number from the

range (0, 1) for each dimension of the vector representations of OOV words.

5. Random-norm: We randomly initialise the OOV word using normal distribution and

the means and standard deviations obtained from the word embedding model.

An alternative strategy would be the use of a character-based distributed representations

approach (e.g. as proposed by Dhingra et al. (2016)) to address the OOV problem. How-

ever, in this paper, we omit this approach to focus exclusively on word-level embedding

models. In particular, character-level approaches (e.g. character-level CNN) cannot reuse

pre-trained word-level embedding models, such as those obtained from Twitter or Wiki-

pedia. Therefore, we leave the character-level approaches to future work. The classification

performances of the aforementioned retained strategies are compared in Table 10 over

precision, recall and F1 scores for Venezuela and Philippines datasets.

From Table 10, we observe that indeed all the random initialisation strategies of

Random-full, Random-local, Random-pure and Random-norm slightly

improve the attained recall and F1 scores compared to the Zero-vector strategy –

indeed, this conclusion agrees with the observation of Kim (2014), who observed slight

improvements using a similar strategy for text classification. However, Zero-vector
strategy has a slightly better precision over random strategies for the Venezuela dataset.

Since Random-local has the best performance in terms of F1 score for the Venezuela

dataset in Table 10, we conduct the statistical test between the two strategies of Random-
local and Zero-vector. The result of the statistical test yields a p-value greater than

0.05, which shows that the difference between them is not statistically significant. For the

Philippines dataset, we then conduct the McNemar’s test to compare Random-pure and

Random-norm, since they outperform the other strategies. The result of statistical test

shows that the difference between the two strategies is not significant, with a p-value

greater than 0.05. Hence, we conclude that, compared to simple strategies (e.g. Zero-
vector and Random-pure), a more complicated random initialisation strategy that

uses the means and standard deviations of word embeddings does not significantly improve

the performance of CNN classifiers on both datasets.

Table 10 Classification results of CNN classifiers by using different OOV strategies

OOV strategy Venezuela Philippines

Precision Recall F1 Score Precision Recall F1 Score

Zero-vector 81.7 71.1 76:0¼ 81.3 79.0 80.1*

Random-full 80.9 72.2 76:3¼ 80.4 80.5 80.4*

Random-local 81.5 72.2 76:5¼ 80.8 79.5 80.1*

Random-pure 79.8 73.2 76:3¼ 82.5 81.3 81:8¼

Random-norm 80.4 72.3 76:1¼ 81.9 81.1 81:4¼

Highest score for each dataset is highlighted in bold
¼ Indicates that the difference between each strategy is not significant.

* Indicates the difference is significant compared to Random-pure

204 Inf Retrieval J (2018) 21:183–207

123

In summary, the simplest strategies (e.g. Zero-vector and Random-pure) are able
to achieve comparable or better classification performance to Random-norm and

Random-full, which shows simple strategies are sufficient for our Twitter election

classification task. This answers our RQ3 that there is no obvious preference between the

different OOV strategies studied in this section (e.g. Random-norm and Random-
pure), since their classification performances are comparable according to the statistical

test.

8 Conclusions

Since previous investigations on the parameter configuration of word embeddings focus on

different tasks such as named entity recognition (Godin et al. 2015) and dependency

parsing (Bansal et al. 2014), their findings may not generalise to Twitter classification

tasks. Meanwhile, similar work on Twitter classification tasks (Ebert et al. 2015; Severyn

and Moschitti 2015; Tang et al. 2014) have not studied the impact of the background

corpora and the Word2Vec parameters such as the context window and dimensionality.

Our finding shows that these two factors can indeed affect the classification performance

on Twitter classification tasks. In particular, in this paper, we studied word embeddings

when using convolutional neural networks. Using two different types of background

corpora, we observed that when the type and time period of background corpus align with

the classification dataset, the CNN classifier can achieve significantly better performance

on Twitter data (Sect. 6). In particular, our investigation showed that choosing the correct

type of background corpus can potentially cover more vocabulary of the classification

dataset. Thus, the alignment between the background corpus and the classification dataset

provides better tweet-level representations. For inferring the best setup of the Word2Vec

parameters (e.g. context window, dimensionality and negative samples), we applied word

embeddings with various parameter setup to convolutional neural networks (Sect. 5). As a

practical guide for a Twitter classification task, word embeddings with both large context

windows and dimensions are preferable to attain high effectiveness with a convolutional

neural network (CNN) classifier. In contrast, the number of negative samples does not

affect the performance of a CNN classifier in our task. In addition, we show that there is no

obvious winner among the current OOV strategies for our Twitter classification task using

CNN classifiers and word embedding models (Sect. 7). Thus, the simplest random strategy

of sampling each dimension of the OOV word vectors from range (0, 1) is sufficient to deal

with the OOV words.

Acknowledgements This paper was supported by a grant from the Economic and Social Research Council
(ES/L016435/1). The authors would like to thank the assessors for their efforts in reviewing tweets.

References

Amati, G., Amodeo, G., Bianchi, M., Marcone, G., Bordoni, F. U., Gaibisso, C., Gambosi, G., Celi, A.,
Di Nicola, C., & Flammini, M. (2011). FUB, IASI-CNR, UNIVAQ at TREC 2011 microblog track. In:
Proceedings of TREC.

Bansal, M., Gimpel, K., & Livescu, K. (2014). Tailoring continuous word representations for dependency
parsing. Proceedings of ACL, 2, 809–815.

BBC. (2015). Venezuela opposition politician luis manuel diaz killed. http://www.bbc.co.uk/news/world-
latin-america-34929332. Accessed 15 May 2016.

Inf Retrieval J (2018) 21:183–207 205

123

http://www.bbc.co.uk/news/world-latin-america-34929332
http://www.bbc.co.uk/news/world-latin-america-34929332

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. Journal
of Machine Learning Research, 3, 1137–1155.

Bermingham, A., & Smeaton, A. F. (2011). On using Twitter to monitor political sentiment and predict
election results. In: Proceedings of SAAIP workshop at IJCNLP.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword infor-
mation. arXiv preprint arXiv:1607.04606.

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial
credit. Psychological Bulletin, 70(4), 213.

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural
networks with multitask learning. In: Proceedings of ICML (pp. 160–167).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language
processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493–2537.

Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2016). Very deep convolutional networks for natural
language processing. arXiv preprint arXiv:1606.01781.

Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., & Cohen, W. W. (2016). Tweet2vec: Character-based
distributed representations for social media. In Proceedings of ACL.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning
algorithms. Neural Computation, 10(7), 1895–1923.

Ebert, S., Vu, N.T., & Schütze, H. (2015). CIS-positive: Combining convolutional neural networks and
SVMs for sentiment analysis in Twitter. In: Proceedings of SemEval (p. 527).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In: Proceedings of
AISTATS (Vol. 15, p. 275).

Godin, F., Vandersmissen, B., De Neve, W., & Van de Walle, R. (2015). Multimedia Lab@ ACL W-NUT
NER shared task: Named entity recognition for Twitter microposts using distributed word represen-
tations. In: Proceedings of ACL-IJCNLP (p. 146).

Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection
and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405(6789), 947–951.

Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In: Proceedings of EMNLP (pp.
1746–1751).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In: Proceedings of NIPS (pp. 1097–1105).

Macdonald, C., McCreadie, R., Santos, R.L., & Ounis, I. (2012). From puppy to maturity: Experiences in
developing terrier. In: Proceedings of OSIR workshop at SIGIR (Vol. 60).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Le, Q. V., & Sutskever, I. (2013b). Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed representations of
words and phrases and their compositionality. In: Proceedings of NIPS (pp. 3111–3119).

Mikolov, T., Yih, W. T., & Zweig, G. (2013d). Linguistic regularities in continuous space word repre-
sentations. In: Proceedings of HLT-NAACL (Vol. 13, pp. 746–751).

Mitra, B., Nalisnick, E., Craswell, N., & Caruana, R. (2016). A dual embedding space model for document
ranking. arXiv preprint arXiv:1602.01137.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In:
Proceedings of EMNLP (pp. 1532–1543).

Severyn, A., & Moschitti, A. (2015). UNITN: training deep convolutional neural network for Twitter
sentiment classification. In: Proceedings of SemEval (pp. 464–469).

Severyn, A., Nicosia, M., Barlacchi, G., & Moschitti, A. (2015). Distributional neural networks for auto-
matic resolution of crossword puzzles. In: Proceedings of ACL-IJCNLP.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1),
1929–1958.

Tang, D., Qin, B., & Liu, T. (2015). Document modeling with gated recurrent neural network for sentiment
classification. In: Proceedings of EMNLP (pp. 1422–1432).

Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., & Qin, B. (2014). Learning sentiment-specific word
embedding for Twitter sentiment classification. Proceedings of ACL, 1, 1555–1565.

206 Inf Retrieval J (2018) 21:183–207

123

http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1606.01781
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1602.01137

Wang, P., Xu, J., Xu, B., Liu, C. L., Zhang, H., Wang, F., et al. (2015). Semantic clustering and convo-
lutional neural network for short text categorization. Proceedings of ACL-IJCNLP, 2, 352–357.

Zesch, T., & Gurevych, I. (2006). Automatically creating datasets for measures of semantic relatedness. In:
Proceedings of linguistic distances workshop at ACL (pp. 16–24).

Zhang, X., & LeCun, Y. (2015). Text understanding from scratch. arXiv preprint arXiv:1502.01710.
Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. In:

Proceedings of NIPS (pp. 649–657).
Zhang, Y., & Wallace, B. (2015). A sensitivity analysis of (and practitioners’ guide to) convolutional neural

networks for sentence classification. arXiv preprint arXiv:1510.03820.

Inf Retrieval J (2018) 21:183–207 207

123

http://arxiv.org/abs/1502.01710
http://arxiv.org/abs/1510.03820

	Using word embeddings in Twitter election classification
	Abstract
	Introduction
	Related work
	Word embedding models
	Embedding parameters

	Twitter classification

	The CNN model
	Experimental setup
	Datasets
	Word embeddings
	Spanish word embedding models
	English word embedding models

	Baselines
	Hyperparameters and measures

	Effect of word embeddings parameters
	Effect of context window and dimensionality
	Comparison to baselines

	Effect of negative samples
	Discussion

	Effect of the background corpora
	Types of background corpora
	Time periods of background corpora

	Out-of-vocabulary words
	Conclusions
	Acknowledgements
	References

