
Retrieving and classifying instances of source code
plagiarism

Debasis Ganguly1
• Gareth J. F. Jones1

• Aarón Ramı́rez-de-la-Cruz2
•

Gabriela Ramı́rez-de-la-Rosa2
• Esaú Villatoro-Tello2

Received: 3 August 2016 /Accepted: 25 July 2017 / Published online: 13 September 2017
� Springer Science+Business Media, LLC 2017

Abstract Automatic detection of source code plagiarism is an important research field for

both the commercial software industry and within the research community. Existing

methods of plagiarism detection primarily involve exhaustive pairwise document com-

parison, which does not scale well for large software collections. To achieve scalability, we

approach the problem from an information retrieval (IR) perspective. We retrieve a ranked

list of candidate documents in response to a pseudo-query representation constructed from

each source code document in the collection. The challenge in source code document

retrieval is that the standard bag-of-words (BoW) representation model for such documents

is likely to result in many false positives being retrieved, because of the use of identical

programming language specific constructs and keywords. To address this problem, we

make use of an abstract syntax tree (AST) representation of the source code documents.

While the IR approach is efficient, it is essentially unsupervised in nature. To further

improve its effectiveness, we apply a supervised classifier (pre-trained with features

extracted from sample plagiarized source code pairs) on the top ranked retrieved docu-

ments. We report experiments on the SOCO-2014 dataset comprising 12K Java source files

with almost 1M lines of code. Our experiments confirm that the AST based approach

& Debasis Ganguly
debasis.ganguly1@ie.ibm.com

Gareth J. F. Jones
gjones@computing.dcu.ie

Aarón Ramı́rez-de-la-Cruz
aaron.rc24@gmail.com

Gabriela Ramı́rez-de-la-Rosa
gramirez@correo.cua.uam.mx

Esaú Villatoro-Tello
evillatoro@correo.cua.uam.mx

1 ADAPT Centre, School of Computing, Dublin City University, Dublin, Ireland

2 Language and Reasoning Research Group, Information Technologies Department, Universidad
Autónoma Metropolitana, Cuajimalpa, México, D.F., Mexico

123

Inf Retrieval J (2018) 21:1–23
https://doi.org/10.1007/s10791-017-9313-y

http://orcid.org/0000-0003-0050-7138
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9313-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9313-y&domain=pdf
https://doi.org/10.1007/s10791-017-9313-y

produces significantly better retrieval effectiveness than a standard BoW representation,

i.e., the AST based approach is able to identify a higher number of plagiarized source code

documents at top ranks in response to a query source code document. The supervised

classifier, trained on features extracted from sample plagiarized source code pairs, is shown

to effectively filter and thus further improve the ranked list of retrieved candidate pla-

giarized documents.

Keywords Source code plagiarism detection � Field based indexing and

retrieval � Lexical, Structural and stylistic features � Document representation

1 Introduction

Plagiarism detection for programming language source code represents a topic of growing

interest for both the software industry and academia. While in the case of the former,

automated plagiarism detection helps prevent copyright infringements,1 for the latter it

finds use in minimizing unauthorized source code reuse in programming assignments

among students. Additionally, community question answering (CQA) forums and pro-

gramming related blogs on the web, e.g., StackOverflow and ‘‘Google Code’’, have made

source code widely available to be read, copied and modified. Programmers often reuse

source code snippets available on the web without acknowledging their true sources. The

massive amount of source code reuse makes it impractical to perform manual analysis of

unauthorized source codes. This necessitates the application of automated methods for

source code plagiarism detection. Moreover, whilst not strictly plagiarism, automated

source code similarity detection can also be beneficial to maximize the legal code reuse

practices within a software company, for example an automatic tool can suggest to a

programmer the use of a piece of previously developed code as a library instead of copy-

pasting it. Consequently, automated source code plagiarism detection has become an

important research topic.

Existing automated source code plagiarism detection systems mostly seek to detect

plagiarism cases by exhaustive comparison. While this approach is feasible for small

source code collections, such as those encountered in local checking for source code reuse

in student assignments, the quadratic time complexity of the pairwise computations makes

it unsuitable for larger collections, such as the Google code base.

In this work, we address the computational overhead of the exhaustive pairwise com-

putation approach by using an information retrieval (IR) based method. In this approach,

original source code documents (i.e., files from known authors) are added to an inverted list

based indexed organization. Thus, every time a new source code file arrives (i.e., a sus-

picious file), this is treated as a pseudo-query to retrieve a ranked list of similar documents

from the collection. Retrieved candidate original documents are then selected for further

examination though a supervised classifier that accurately identifies plagiarized source

code documents.

However, for source code documents, the computation of inter-document similarities

using a traditional bag-of-words (BoW) encoding is likely to result in a massive number of

false hits (non-zero similarity values) of non-plagiarized code due to the frequent use of

1 Refer to the case of Oracle America, Inc. versus Google, Inc. for an example of possible source code
plagiarism: https://www.theguardian.com/technology/2016/may/26/google-wins-copyright-lawsuit-oracle-
java-code, http://www.potomaclaw.com/oracle-v-google-copyrightability-apis/.

2 Inf Retrieval J (2018) 21:1–23

123

https://www.theguardian.com/technology/2016/may/26/google-wins-copyright-lawsuit-oracle-java-code
https://www.theguardian.com/technology/2016/may/26/google-wins-copyright-lawsuit-oracle-java-code
http://www.potomaclaw.com/oracle-v-google-copyrightability-apis/

identical constructs and keywords within code segments for a particular programming

language.

Consequently, realizing an effective means of source code plagiarism detection based

on an IR approach raises its own research challenges.

Q1: Can a BoW model (as used in standard IR) suffice for effective source code

plagiarism detection, and can the source code structure be used to contribute to this

effectiveness, for example to minimize the number of false positive retrieved items?

Q2: Can source code documents be indexed so that a retrieval model can best make use

of the indexed terms to retrieve relevant (plagiarized) documents at top ranks?

Q3: How should a source code document be represented as a pseudo-query for effective

use in an IR-based method?

An IR approach can potentially identify a set of candidate relevant (plagiarized) documents

very quickly from a large collection of source code documents. However, one major

limitation of the retrieval approach is that it is essentially unsupervised, and hence cannot

provide the opportunity to benefit from manually annotated source code plagiarism sample

pairs when they are available. It is intuitive that in such cases a supervised learning

algorithm that utilizes fine-grained sub-document level characteristic features, when

applied over the candidate documents obtained with the IR approach, could provide added

benefit. Moreover, similar to text documents in natural language (e.g., news), source code

documents in addition to containing structural and semantic information, also possess

inherent characteristic signatures of the original author’s writing style, such as indentation

style, variable naming convention etc., which may serve as potentially useful features to

train a supervised classifier for distinguishing true plagiarism cases from false ones.

In this study, we propose a supervised classification approach which makes use of

features derived from source code documents such as character n-grams, data types, and

identifier names. With the help of such a broad set of specific features, we aim to capture

some of the most common practices employed by a plagiarist when attempting to cam-

ouflage plagiarized sections. Our method considers different characteristic features at

multiple levels of granularity for the source code plagiarism detection task.

Generally speaking, the architectural configuration of our proposed two stage method

can be described as follows. The first stage comprises of an efficient processing approach

for fast detection of candidate plagiarized source codes with the help of an IR based

approach. In the second stage, a supervised approach is employed for a more fine-grained

analysis over the candidate plagiarized documents. We might think of this as akin to re-

ranking in standard IR. In fact, such a two stage process for plagiarism detection has been

found to be effective for natural language text documents as well (Stein et al. 2011;

Potthast et al. 2014). However, in the context of our problem, a bag-of-words based

document representation for an IR based approach is not able to capture the inherent

grammatical structure of source codes. The main difference between our work and the two

stage pipeline of plagiarism detection for natural language documents, as reported in

(Potthast et al. 2014), is the incorporation of the abstract syntax tree (AST) information in

document index construction and its use during the retrieval phase.

The remainder of this paper is organized as follows. In Sect. 2, we report previous

research on source code plagiarism detection. In Sect. 3, we describe our proposed IR

approach for identifying a candidate plagiarized documents. In Sect. 4, we introduce the

features of our classification approach for predicting plagiarized documents from the

candidate ones obtained with initial retrieval. Section 5 describes the experimental

Inf Retrieval J (2018) 21:1–23 3

123

environment and Sect. 6 reports the results of our experiments. Finally, Section 7 con-

cludes the paper with suggestions for further elaboration of this work.

2 Related work

In this section we give a concise review of the most relevant existing work relating to

identification of plagiarised source code. Generally speaking, two main directions have

been proposed for tackling the source code plagiarism detection problem, namely natural

language processing (NLP) based methods and IR based approaches.

The most common approach to software plagiarism detection involves application of

NLP adapted to the specific characteristics of source code files. One such method takes into

account the ‘‘whitespace’’ indentation patterns of a source code file (Baer and Zeidman

2012), where a source code document is converted to a pattern, namely whitespace format,

replacing any visible character by X and any whitespace by S, and leaving newlines as they
appear. The similarity between two source code documents is then computed by the longest

common substring (LCS) between the two patterns.

Another common approach to source code plagiarism detection is to determine the

fingerprint of a source code document by making use of the word n-grams. Thus, in

(Marinescu et al. 2012) authors proposed representing different source code segments with

hashes,2 which are compared using the Winnowing algorithm (Schleimer et al. 2003).

However, this approach does not consider important characteristics inherent to source code

such as keywords, identifiers names, number of lines, number of terms per line, number of

hapaxes, etc. For instance, the work reported in (Narayanan and Simi 2012) proposes a

similarity measure that uses a particular weighting scheme for combining different char-

acteristics of source codes. The work in (Cosma and Joy 2013) investigates dimensionality

reduction with the help of latent semantic analysis (LSA). A major drawback of this work is

that the experiments were conducted on small collections of documents (number of docu-

ments varying from 106 to 179), which is far from a real-life scenario. Contrastingly, we

perform retrieval experiments on a much larger collection. A further limitation of the

experimental setup in (Cosma and Joy 2013) is that the authors performed plagiarism

detection experiments on four separate chunks of document collection pairs by using a priori

knowledge that there are no plagiarized pairs between different collections. In contrast, we

perform our experiments on a single collection without any a priori knowledge.

A major drawback of most previous research is that it uses methods that involve an

exhaustive pair-wise similarity comparison between all source code files in a collection

(Baxter et al. 1998; Chae et al. 2013a, b, thus making it too costly for real-life large sized

collections. Due to the difficulty in carrying out experimental investigations on large

software collections, such approaches have mostly been evaluated on very small collec-

tions of source code, e.g., the evaluation in (Chae et al. 2013a) uses a collection of 56

programs and the evaluation in (Baxter et al. 1998) is carried out on 40K lines of code. In

contrast, the dataset used for our experiments is comprised of over 12K source code

documents and about 1M lines of code (see Sect. 5 for more details). Further, it is worth

mentioning that most of the previous research employs its own manually constructed

corpus for evaluation purposes, meaning that it is not possible to obtain conclusive and fair

comparisons between existing approaches and proposed new ones. Contrastingly, our

2 http://theory.stanford.edu/*aiken/moss/.

4 Inf Retrieval J (2018) 21:1–23

123

http://theory.stanford.edu/%7eaiken/moss/

experiments are conducted on a publicly available dataset (described in Sect. 5), thus

ensuring reproducibility of the experiments.

Moreover, it should be noted that a common trend within existing work is that it does

not differentiate between structural (pertaining to source code syntax) and stylistic features

(pertaining to individual coding styles and patterns). However, it is intuitive that each

individual feature, i.e., either structural or stylistic, provides its own important information

that should perhaps not be mixed with the other. In our work, we handle these two classes

of features differently.

Finally, taking an alternative approach relevant to our study, the work reported in

(Burrows et al. 2007) develops an IR based approach to software code plagiarism, where

the type of each token (such as name, data type, etc.) in a source code document is

concatenated to form a string, character n-grams of which are then stored in an index. A

key difference between our work and this earlier work is that the latter does not store the

identifier (function or data variable) names in the index and does not make use of the

structure of the source code document with the help of fields.

In summary, most related existing work has applied a pair-wise comparison between

source code files, which is an unsuitable approach for a real life scenario. Accordingly,

several similarity measures are employed in order to highlight the content overlap degree

between a pair of source code files. In contrast to previous work, in this paper we tackle the

problem of computational cost by means of an IR based approach which makes use of an

abstract syntax tree (AST) representation for the index construction. Then, to further

improve the effectiveness of the method we apply a supervised method, which represents a

pair of source code files using three sets of high-level attributes, namely lexical, structural

and stylistic features. The remaining sections of this paper describe our proposed approach

and our experimental investigation of its effectiveness.

3 Retrieval stage

In this section, we first motivate our approach by outlining deficiencies of standard

approaches for the source code plagiarism detection problem. We then describe our pro-

posed document representation method for indexing and retrieval of source code.

3.1 Motivation

A standard BoW encoding of source code is likely to result in falsely high similarity values

between non-plagiarized document pairs due to the use of similar programming language

specific constructs and keywords. Figures 1 and 2 illustrate this point with an example.

Figure 1a shows a very simple Java program3 for adding two numbers. Consider the

problem of subtracting two numbers, shown in Fig. 1b, c. The code in Fig. 1b essentially

copies the content from that of 1a with slight modifications in the function names and the

operator, and hence is a typical instance of plagiarism. Contrastingly, the code in Fig. 1c

illustrates the ideal way of code reuse which is that of calling a public method from an

open source, and hence should definitely not be considered as plagiarism.

Ideally speaking, the similarity between two source code documents for the purpose of

plagiarism detection should take into account the extent of overlap in the structures of their

3 The code fragments of Fig. 1 are motivating examples only, and do not form a part of our experimental
dataset.

Inf Retrieval J (2018) 21:1–23 5

123

class Add {
stat ic int add (int a , int b) {

return a+b ;
}

}

class Sub {
stat ic int sub (int a , int b) {

return a−b ;
}

}

class Sub2 {
stat ic int sub (int a , int b) {

int r e s = Add . add (a , −b) ;
return r e s ;

}
}

(a) (b)

(c)

Fig. 1 An example Java code fragment showing two sample ways of reusing it. While the programmer of
b essentially copies the code from (a), the program of c shows a valid reuse case of invoking a method from
(a).

CU

CLASS

NAME

Add

BODY

METHOD

add
PARAMS

a, b

STMTS

a + b

(class, 1) (Add, 1) (static, 1) (int, 3) (add,
1) (a, 2), (b, 2), (return, 1) (plus, 1)

Field Name Terms

Classes Add
Method calls
String literals
Arrays
Method definitions add a b
Assignment statements a plus b
Package imports
Comments

(a)

CU

CLASS

NAME

Sub

BODY

METHOD

sub
PARAMS

a, b

STMTS

a - b

(class, 1) (Sub, 1) (static, 1) (int, 3) (sub,
1) (a, 2), (b, 2), (return, 1) (minus, 1)

Field Name Terms

Classes Sub
Method calls
String literals
Arrays
Method definitions sub a b
Assignment statements a minus b
Package imports
Comments

(b)

Fig. 2 Abstract syntax tree (AST) outline, BoW, and per-field BoW representation of the code fragments
from Fig. 1a, b . The cosine similarity between the programs of Fig. 1a, b (simða; bÞ ¼ 0:869) is computed
using the BoW representation

6 Inf Retrieval J (2018) 21:1–23

123

abstract syntax trees (AST). In fact, it can be seen that the ASTs between Fig. 2a, b are

more similar than those between Figs. 2a and 3. However, exhaustive pairwise computa-

tion of tree distances between source code parse trees is not computationally realistic, and

hence a suitable approximating measure should be devised for this similarity comparison if

it is to be scaled to real world tasks.

A simple approach to developing an approximate comparison between source codes

would be to use a BoW model for the source code document representation. However, this

may not be a suitable approximating function given the high overlap of common ground

among source code files. To see the problem of the BoW model, note that the additional

words ‘‘Add’’ and ‘‘add’’4 shown in bold face in Fig. 3, contribute to additional matching

terms, which in turn increases the cosine similarity of this code with that of 2a. In addition,

programs tend to use a frequent set of variable names, specially for looping constructs, e.g.,

i, j, k, etc., which may also cause false high similarities. Furthermore, programs make

extensive use of common library classes, such as the ‘‘ArrayList’’, ‘‘HashMap’’, etc. in

Java, which may also contribute to false matches. For example, two Java programs making

CU

CLASS

NAME

Sub2

BODY

METHOD

sub

CALL

CLS NAME

Add

FN NAME

add
PARAMS

a, -b

(class, 1) (Sub2, 1) (static, 1) (int, 4) (sub, 1)
(a, 2), (b, 2), (return, 1) (minus, 1) (Add, 1)
(add, 1) (res, 1)

Field Name Terms

Classes Sub2
Method calls Add add a minus b
String literals
Arrays
Method definitions sub a b
Assignment statements res a minus b
Package imports
Comments

Fig. 3 Cosine similarity between
the programs of Fig. 1a, c
(simða; cÞ ¼ 0:907) shows how
the program in Fig. 1c can be
falsely identified as a plagiarism
case with the BoW representation

4 According to Java programming conventions, an identifier name starting with an upper case letter denotes
a ‘class’ name, whereas one beginning with a lower case denotes the name of a variable or a method, hence,
‘‘Add’’ and ‘‘add’’ have different semantic meanings.

Inf Retrieval J (2018) 21:1–23 7

123

use of the standard library class ‘‘HashMap’’ may be falsely identified as a plagiarized pair.

The next subsection describes how we tackled this problem.

3.2 Proposed IR approach

A standard way to avoid per pair similarity computation is to use an inverted list orga-

nization of documents to retrieve a candidate list of the top most similar documents with

respect to a given query, as classically applied in IR systems. In this section, we describe

how such an approach can be applied for the source code plagiarism detection task.

3.2.1 Document representation

Given a suspicious source code file or even a small fragment of source code suspected of

being plagiarised, we need to identify all the candidate (original) source code files within a

collection of source codes of known authorship from which it may have been copied. Thus,

we propose to treat the suspicious document as a pseudo-query and retrieve a list of the top

ranked most similar documents in response to the query. However, in contrast to the

standard method of result presentation as a ranked list in IR, the objective in the case of

source code plagiarism detection is to obtain a set of candidate files that are likely to be

plagiarized.

As discussed in Sect. 3.1, the BoW document model representation of a source code file

cannot effectively capture cases where a part of the source code of one program is copy-

pasted into another one. To alleviate this problem, a solution is to take into account the

grammatical structure of a source code while representing the source document as a vector.

The standard way of representing a program control flow structure is through an AST

(abstract syntax tree) (Jones 2003). ASTs are typically used for static code analysis, i.e.,

detecting whether parts of programs produce identical outputs when presented with

identical inputs (Baxter et al. 1998; Neamtiu et al. 2005). In our case, the AST can be

applied for the plagiarism detection problem because the ASTs of parts of cut-pasted

source codes have similar structures with respect to the original code, (e.g., see Fig. 2).

Unfortunately, there is no direct way of computing AST similarity (e.g., the edit dis-

tance between two ASTs) within the inverted list organization used as the standard data

structure in IR. A solution is to decompose a whole source code document into smaller

fragments (commonly known as fields in the IR literature). Most natural language text

documents are explicitly structured into different fields, e.g., title, abstract, body, etc. It is a

common practice in IR to compute document-query similarities on a per-field basis and

then to combine the per-field scores to get the overall query-document similarity (Ogilvie

and Callan 2003; Kim and Croft 2012). Field based retrieval models have two helpful

properties in the context of source code comparison. Firstly, they allow consideration of

only intra field matches, while avoiding the inter field matching. Secondly, they allow for

provision of per-field normalization.

In our case, the source code documents are not explicitly marked into separate sections

or fields. The field representation of a source code document can however be obtained from

its AST. After constructing an AST from each source code document in the collection, we

visit and extract terms from a specific subset of terminal (leaf level) nodes of the AST.

These terms are then stored in separate fields corresponding to the nodes from which they

were extracted. In our experiments, to simplify the experimental setup, the field weights

are set uniformly across all the fields.

8 Inf Retrieval J (2018) 21:1–23

123

The specific nodes of the AST that we make use of are shown in Table 1 (see also

Figs. 2 and 3 which show the field names at the bottom of the corresponding ASTs). For

example, with reference to Fig. 3, the field ‘‘Classes’’ is comprised of the term ‘‘Sub2’’

because there is only one class declaration in this source file, which is named ‘‘Sub2’’ (see

Fig. 1c). The list of fields that we use for plagiarism detection typically represents the

major Java program constructs that can be used as cues for detecting plagiarized cases.

A field representation of a document is expected to better utilize the source code

document structure than a flat BoW representation. This is shown in Fig. 1b, c, where it is

seen that the additional matches (i.e., ‘‘Add’’ and ‘‘add’’ shown bold faced in Fig. 1c) do

not contribute to the overall similarity because these words occur in different fields

(‘‘Classes’’ and ‘‘Method calls’’ in Fig. 1a, c respectively). To give another example, a

match in the ‘‘String literals’’ field will be treated separately with respect to a match in the

‘‘Classes’’ field, as a result of which a program using the string constant ‘‘HelloWorld’’ will

not be considered to have been plagiarized from a source which defines a class named

‘‘HelloWorld’’.

3.2.2 Query representation

Since only a part of the source code is typically copy-pasted into another program, it is not

generally appropriate to use whole source code documents as a pseudo-queries. Instead, we

propose to extract a preset number of terms from each field of a document (see Table 1) to

construct a pseudo-query. This approach of extracting a selected number of terms from

each field of a document has been applied to formulate queries from expository articles

such as patents (Takaki et al. 2004; Xue and Croft 2009). In the case of source code

plagiarism detection, this way of formulating queries ensures that representative terms

from each individual field, e.g., classes, method calls, etc. (see Table 1), of the current

suspicious source code (the pseudo-query) are matched with individual fields of indexed

documents in the collection. We use the field language model (LM), shown in Eq. 1, as the

term selection function (Hiemstra 2000; Ponte 1998) to obtain representative terms from

each field.

LMðt; f ; dÞ ¼ k
tf ðt; f ; dÞ
lenðf ; dÞ þ ð1� kÞ cf ðtÞ

cs
ð1Þ

In order to formulate a query from a document d, we score each term of each field f of d by

the function shown in Eq. 1, and then select the top most k terms, where k is a parameter to

Table 1 AST nodes of a Java program from which terms are extracted during indexing

Field name Field description

Classes Names of Java classes

Method calls Method names with actual parameter names and types

String literals Values of the string constants

Arrays Names of arrays and dimensions

Method definitions Names of methods and formal parameter names and types

Assignment statements Variable names and types

Package imports Names of imported packages

Comments Text inside comments

Inf Retrieval J (2018) 21:1–23 9

123

represent the query constructed from d. The value of the parameter k, used for the query

representation for each document, is determined with the help of a grid search in our

experiments. Although small constant values of k, irrespective of the document length, may

not be sufficient to represent large source code documents, such a query representation

mechanism with a fixed number of terms ensures consistent retrieval efficiency for all

documents in the collection.

The parameter k controls the relative importance of the term frequency of a term t in

field f of document d, tf(t, f, d), as against the collection frequency of the term, cf(t),

normalized by dividing it by the collection size, cs. The expression len(f, d) denotes the

length of the field f in document d.

We use relative term counts instead of absolute ones, because completely ignoring the

document length factor may produce non-representative terms in the query, such as a local

variable name with a very small scope. The motivation for using collection statistics of a

term, in addition to its term frequency, is explained by the observation that some pro-

gramming language specific words, such as keywords (e.g., for, while) or common variable

names (e.g., i, j etc.), are used very frequently and hence a match for these terms may not

strongly indicate potential plagiarism. On the other hand, a match for rare terms, e.g.,

uncommon variable or function names, should represent more likely cases of plagiarism.

4 Classification stage

In this section, we describe our proposed method for performing the more fine-grained

analysis of the retrieved source code documents. The IR stage (discussed in Sect. 3) returns

a ranked list of candidate (plagiarized) source code files ordered by their similarity to the

suspicious source code (i.e., the query document). However, as discussed earlier, a high

retrieval similarity score does not necessarily mean a high likelihood of plagiarism. To

address this issue, we use a supervised classification approach that outputs a binary

decision of whether a document in the candidate list of retrieved documents is plagiarized

or not. In particular, in order to capture some of the most common practices among source

code plagiarists, our classifier makes use of three sets of high-level features namely:

lexical, structural and stylistic, each of which is explained in the subsequent subsections.

4.1 Lexical features

The main idea of the lexical features (Flores et al. 2014a)is to represent a source code

fragment by means of a bag of character n-grams, with the intention of measuring lexical

similarity (i.e., content overlap). In particular, we use the value of n ¼ 3 for character

grams, because previous research has shown that character 3-g cosine similarity proves to

be the most effective for detecting plagiarized pairs (Flores et al. 2011). The main problem

with the method described in (Flores et al. 2011) is related to the number of keywords

present in any source code document, resulting in an overestimation of the lexical simi-

larity. Therefore, and contrary to previous work to alleviate this problem, we eliminate all

reserved words from the source code documents, hence the lexical similarity will not result

in bias due to overlap between keywords.

10 Inf Retrieval J (2018) 21:1–23

123

4.2 Structural features

The proposed structural features (six in total) consist of two forms of representation, both

of which are based on a function’s signature definition within a source code. The first types

of representation consider the data types (e.g.,, int, char, long, float, String,
etc.) of a function’s signatures.5 The second type of representation considers the identifiers,

e.g., a variable’s name used by the programmer in the function’s signature, i.e., the name of

the function itself and the names of all its arguments. Intuitively, the former attempts to

capture those cases where the programmer changes the identifiers of some function in order

to camouflage the plagiarism, but not the data types; whereas the latter is able to capture

those cases where the plagiarist changes a function’s data types but not the names of the

identifiers. As stated in (Faidhi and Robinson 1987) these type of practices represent

different forms of plagiarism.

4.2.1 Similarity between data types

We represent each function’s signature as a list of data types. For example, the following

function’s signature int sum(int numX, int numY) is transformed into int (int,
int). Our proposed representation also accounts for the frequency of each data type. To

calculate the similarity between two functions, we need to compare the two elements from

the signature of these functions, i.e., the return data type and the data types of the argu-

ments. We measure the importance of each element independently to establish the best way

to combine them in a second step.

Given two functions, ms and mc, contained in the suspicious code (ds) and the candidate

code (dc) respectively, the similarity between their return data types, simr , is 1 if the return

types are identical or 0 otherwise. Next, to determine the similarity of their arguments’ data

types, we propose a more elaborate strategy. First, we compose a bag of data types for each

function with their respective frequencies; hence each function is represented as a vector

where its components are data types. Then, we compute a similarity between two func-

tions’ vectors ms and mc as defined in Eq. 2, where n indicates the number of different data

types in both functions, i.e., the vocabulary of data types. Notice that Eq. 2 depicts the

Jaccard coefficient, and accounts for the data type coincidences between two functions.

simaðms;mcÞ ¼
Pn

i¼0 minðms
i;m

c
iÞPn

i¼0 maxðms
i;mc

iÞ
ð2Þ

After the return data type similarity (simr) and the arguments’ data type similarity (sima)

are computed, we determine a single value (sim1) of the data type similarity by means of a

linear combination as defined in Eq. 3, where r 2 R and r 2 ð0; 1Þ. For our experimental

investigation we set r ¼ 0:5, thus in effect, giving equal importance to return types and

arguments. This value was empirically determined using the available training set (see

Sect. 5.2).

sim1ðms;mcÞ ¼ r � simrðms;mcÞ þ ð1� rÞ � simaðms;mcÞ ð3Þ

Finally, in order to compute the global data-types similarity between all functions defined

within the source code pair ds and dc, we compose a function-similarity matrix Mtype
s;c ,

5 We refer to these simply as ‘‘functions’’ and do not make a distinction between a function and a class
method.

Inf Retrieval J (2018) 21:1–23 11

123

where all functions contained in ds are compared against those in dc. Thus, the final value

of similarity between a code pair is computed as shown in Eq. 4, where f(x) represents

either the maximum, minimum or the average of the matrix values.

simDataTypesðds; dcÞ ¼ f ðMtype
s;c Þ ð4Þ

Notice that selecting either the maximum or the minimum value from Mtype
s;c implies that

the similarity between ds and dc is determined by considering only the similarity of one

pair of functions (the most similar or the least similar respectively), whilst the average

value considers the similarity between all the possible pairs of functions contained in ds
and dc. Since all of these (max/min/avg) may act as distinguishing features, we use them all

in our feature set.

4.2.2 Similarity between identifiers

Complementary to the data types features, this set of features considers the structure by

means of using a function’s name as well as the name of its arguments. For this, we

construct a string formed by the concatenation of a function’s name and the name of all its

arguments. All characters are converted to lowercase and white spaces are removed. For

example, the function int sum(int numX, int numY) is represented as the string

sumnumxnumy. The next step consists of computing the corresponding character n-grams

representation using a binary weighting scheme, particularly, we set the value of n ¼ 3. We

based our decision on the results obtained in (Flores et al. 2011, 2014a), where exhaustive

experimentation was done in order to resolve what is the best size of n in a character n-

grams representation.

Accordingly, given the functions ms and mc, belonging to the suspicious (ds) and to the

candidate (dc) source code respectively, and their corresponding sets of character 3-g, ms

and mc, we compute their similarity using the Jaccard coefficient as shown in Eq. 5. We

employ the Jaccard coefficient since it is particularly well suited to handling asymmetric

binary attributes, i.e., comparing the similarity and diversity of two sets.

sim2ðms;mcÞ ¼ ms \ mc

ms [mc
ð5Þ

Analogous to the data type features, every function in the suspicious source code ds and in

the candidate source code dc are compared. From this, we obtain a name-similarity matrix

Mnames
s;c . The overall similarity value of ds and dc is shown in Eq. 6.

simNamesðds; dcÞ ¼ f ðMnames
s;c Þ ð6Þ

where f(x) can denote either the maximum, minimum or the average of the matrix values.

We include all these values in our feature set.

4.3 Stylistic features

Analogous to natural language text documents, which inherently contain author specific

writing style characteristics (Grieve 2007), we hypothesize that source code also carries (to

some extent) programmer specific stylistic features. Accordingly, we defined a set of 11

stylistic features appropriate for the type of documents under consideration, i.e., source

code files. Based on inspection of code examples, we employ the number of lines of code,

12 Inf Retrieval J (2018) 21:1–23

123

the number of white spaces, the number of tabulations, the number of empty lines, the

number of defined functions, average word length, the number of upper case letters, the

number of lower case letters, the number of under scores, vocabulary size, and the lexical

richness. The latter two features are defined as follows: on the one hand, the lexical

richness is the ratio between the number of distinct lexical units and the total number of

lexical elements used. This metric is intended to capture the vocabulary diversity used by

the programmers. On the other hand, the vocabulary size represents the number of distinct

lexical units employed by the programmer.

Our intuition is that all of these features might be helpful in distinguishing different

programming styles. Finally, the stylistic similarity value between ds and dc is obtained by

computing the cosine similarity between the pair of vectors representing the stylistic

features of such documents.

5 Experimental setup

In this section, we describe the dataset and the tools used for our experiments.

5.1 Dataset

For the experiments reported in this paper, we used the test dataset of the Source Code

reuse SOCO task, which was carried out as a part of the Forum of Information Retrieval

Evaluation (FIRE 2014)6 (Flores et al. 2014b). The documents in this dataset are real-life

source code plagiarism cases. The collection7 consists of annotated examples of source

code files collected from the 2012 edition of the Google Code Jam Contest.8

An overview of the characteristics of the dataset is presented in Table 2. It can be seen

that the entire collection of about 12, 000 files is categorized into three separate folder

types, the first letter of the name indicating its type, i.e., ‘‘A’’, ‘‘B’’ and ‘‘C’’. The types

themselves represent broad level categories of problems given to the Google CodeJam

participants. Due to the large size of the corpus, it is practically impossible to obtain a per-

pair manual plagiarism judgement in order to obtain a reference set for evaluation. Thus, to

evaluate the performance of the participating systems during the SOCO track, the orga-

nizers applied a standard pooling approach (Sanderson and Zobel 2005). The intersection

of the set of plagiarised pairs reported by the participating systems was used to construct

the pool. The documents of this pool were then judged manually by the track organizers for

manual relevance judgements, relevance of a document in this context referring to the

scenario that it is being plagiarized from the query document source code.

It is important to mention that according to the SOCO task guidelines there are no

plagiarism cases across different source code category types, e.g., it is known a priori that

the sources belonging to category B1 are only plagiarized from those belonging to B1 and

not from A1 or B2. However, this a priori knowledge fails to simulate a real-life collection

accurately enough, because in a real-life situation, availability of such knowledge would be

highly unlikely. Moreover, it also makes the task less challenging because there would be a

lower number of documents to process in total. In our experiments, we ignore this a priori

6 http://www.isical.ac.in/*fire/.
7 http://users.dsic.upv.es/grupos/nle/soco/.
8 https://code.google.com/codejam/contest/1460488/dashboard

Inf Retrieval J (2018) 21:1–23 13

123

http://www.isical.ac.in/%7efire/
http://users.dsic.upv.es/grupos/nle/soco/
https://code.google.com/codejam/contest/1460488/dashboard

information in order to simulate a more realistic scenario. In our work, we process the

whole collection of about 12,000 documents (without assuming that they are categorized

into different thematic types). This adjustment to the task also helps to demonstrate the

scalability of our IR based approach.

5.2 Training set for classification

The supervised approach, described in Sect. 4, requires a training set of manually anno-

tated plagiarized source code pairs. To train our classifier, we used the official SOCO

training dataset, which consists of 254 source code files where 84 are labeled as plagiarized

pairs (See Table 2). By following this approach we ensure that the generated model is not

being evaluated under the same set of documents, in other words, there is no overlap

between training and test sets.

5.3 Settings

The AST for each Java source code was obtained with the help of ‘‘Java parser’’,9 which is

an open source syntax parser for Java programs. Information extracted from the AST nodes

was then used to construct the field representation for every document in the index. We

indexed the document set using Lucene (version 4.6),10 The indexing and retrieval code is

publicly available in the Github code repository.11 To account for the non-informativeness

of Java programming language specific words, we use a set of 25 frequent Java constructs

as our stopword list.12

For supervised classification on the candidate documents obtained after retrieval, we

employed the widely used machine learning toolkit Weka.13 The classifier used was the

state-of-the-art Random Forest (RF) classifier, which has been shown to perform better

than other well known ones such as logistic regression and SVM (Fernández-Delgado et al.

Table 2 Characteristics of the
Java source code collection (cat-
egorized by theme)

Category #Files #Plagiarized #Lines

Training set (classifier only)

N/A 256 84 38,356

Test set (IR and classifier)

A1 3241 54 266,885

A2 3093 47 249,263

B1 3268 73 247,696

B2 2266 34 174,416

C1 124 0 18,786

C2 88 14 12,194

Total 12,080 222 969,240

9 http://code.google.com/p/javaparser/.
10 https://lucene.apache.org/core/4_6_0/index.html.
11 https://github.com/gdebasis/YASOCS.
12 https://github.com/gdebasis/YASOCS/blob/master/javastopwords.txt.
13 http://www.cs.waikato.ac.nz/ml/weka/.

14 Inf Retrieval J (2018) 21:1–23

123

http://code.google.com/p/javaparser/
https://lucene.apache.org/core/4%5f6%5f0/index.html
https://github.com/gdebasis/YASOCS
https://github.com/gdebasis/YASOCS/blob/master/javastopwords.txt
http://www.cs.waikato.ac.nz/ml/weka/

2014). The number of trees, which is a parameter of the RF classifier, was set to 10, as

prescribed in (Breiman 2001), for all our classification experiments.

5.4 Evaluation metrics

To measure the effectiveness of the IR stage we use standard ranked list evaluation

measures, such as the mean average precision (MAP), GMAP and recall. We emphasize

that these metrics are only used to evaluate the IR stage of the plagiarism detection process.

Clearly, if a higher number of ‘relevant’ (plagiarized) documents is retrieved within the top

K ranks, it gives the subsequent filtering stage the potential to predict them as sources from

which the current document is plagiarized.

While it is true that some source code documents have many plagiarized cases, whereas

some do not, we emphasize that MAP (along with GMAP) reflects this scenario. This is

because MAP combines aspects of both precision and recall, i.e., a high value of MAP

represents the situation that firstly, a high number of ‘relevant’ documents are retrieved in

the top K and that these are retrieved towards the top of the ranked list. Ideally speaking, a

high MAP value in the IR stage would also indicate a better input to the supervised

classification stage, because it would mean that the computationally expensive supervised

stage can only work with a small subset of documents, thus contributing to increasing the

efficiency of the overall process.

For measuring the overall effectiveness of the plagiarism detection process, we use

standard set-based evaluation measures, such as precision, recall and F-score.

6 Results

This section reports the plagiarism detection results obtained with our proposed approach.

We first evaluate the effectiveness of the IR stage (Sect. 6.1), which is followed by the

evaluation of the classification stage (Sect. 6.2). Each IR run constitutes a ranked list of

100 documents, on which standard IR metrics are computed. The number of documents to

be retrieved was empirically determined in previous experiments, specifically we found

that a ranked list of 100 achieves nearly a perfect recall (see Table 3) and there is no

requirement to go further down the ranked list. In addition, we compare the results of our

experiments against the official runs submitted for the SOCO task (Sect. 6.3). Finally, we

report the computational efficiency of our proposed method in the form of run-time

comparisons (Sect. 6.4).

Table 3 Candidate plagiarized
document detection with our
proposed IR approach

Name Parameters Evaluation metrics

AST Fld MAP GMAP Recall

JPlag n/a n/a 0.2940 0.0004 0.2978

LM No No 0.5199 0.3160 0.9595

LM_AST Yes No 0.5274 0.3381 0.9595

LM_AST_SPLIT Yes No 0.3142 0.0014 0.4258

FLM_AST Yes Yes 0.5345 0.4008 0.9865

Inf Retrieval J (2018) 21:1–23 15

123

6.1 Run descriptions

This section describes the configuration employed for performing our experiments as well

as how the baselines were defined.

JPlag (External Baseline) As an external baseline, we used the popular source code

plagiarism tool, JPlag (Prechelt et al. 2002), using its default parameters (as was used in

the SOCO task baseline). A reason for using this external baseline is to be able to compare

our results with the SOCO submissions since this approach served as the baseline in the

SOCO task as well (Flores et al. 2014c). In JPlag, after a source code is parsed and

converted into token strings, a greedy string tiling algorithm is applied to identify the

longest non-overlapped common sub-strings within the tokens, mostly similar to (Burrows

et al. 2007).

Our Baselines As our own baselines, we conducted experiments with three different

approaches. The first of these simply uses a standard language modeling (LM) retrieval

model (Hiemstra 2000) with a flat BoW representation, named ‘‘LM’’ in Table 3. We used

Jelinek-Mercer smoothing with k set to 0.4, after tuning this parameter on the SOCO

training collection of documents. In this baseline, the structural information of the source

code documents is ignored. Source code documents are treated similar to non-structured

text documents with the content in the index separated into separate fields.

As the second baseline approach, we extract the terms from the nodes (fields) of the

AST, e.g., classes, method calls, etc. (see Table 1). However, we do not store these terms

in separate fields; but again store them in a single field. This approach is denoted as

‘‘LM_AST’’. This method thus takes into consideration the structure of a source code for

extracting key terms for indexing; but keeps storing a document in the index as a single

BoW.

As a third baseline, we make use of the parse tree of a query source code document to

decompose it into separate method bodies, each of which is treated as an individual query.

The retrieved ranked lists for each of these is then merged using the standard COMBSUM

fusion method (Fox et al. 1992). The rationale for using this approach is to account for the

fact that sometimes a part of a source code is copied and pasted into another. The idea for

this baseline is to use a combined aggregate of these piece-wise similarities to estimate the

overall similarity between source code documents. We name this run ‘‘LM_AST_SPLIT’’.

AST based IR The fourth approach is our proposed method where we leverage the

structural information of the source code documents by both extracting terms from the

AST and storing them in different fields of the index, as described in Sect. 3.2. This is

shown as ‘‘FLM_AST’’ in Table 3.

6.1.1 Results

The results obtained with different parameter settings are shown in Table 3. A number of

findings can be observed from these results. First, it can be seen for our alternative systems

that all the IR approaches, including the baselines, outperform the JPlag tool. This can be

explained from the fact that JPlag ignores identifier names while converting a source code

program into the BoW representation (Prechelt et al. 2002) (similar to Burrows et al.

2007). By contrast, all the IR approaches do consider the identifier names, which shows

that identifier names play an important role in identifying candidate plagiarized documents.

This is particularly true for relatively rare identifier names in the collection, because the IR

approaches utilize the idf values of terms which the JPlag tool does not.

16 Inf Retrieval J (2018) 21:1–23

123

Second, it can be seen that splitting a document into individual queries (the method

LM_AST_SPLIT) does not perform well in comparison to the approaches which construct

a single pseudo-query form a source code document. A likely explanation for this obser-

vation is that the individual functions do not have sufficient information in them for

identification of candidate plagiarism cases.

Third, the BoW baseline (LM) works well yielding a MAP of 0.5199, thus producing a

strong baseline. However, the use of AST in term extraction for indexing (LM_AST)

produces better results (increasing MAP to 0.5274) than LM (which ignores document

structure). This suggests that the structure of a program can be a useful cue for this task.

Finally, it can be observed that the best results are obtained when terms extracted from

the AST of a source code document are stored in different fields in the index and retrieved

with the help of a field-based retrieval model (FLM_AST). The improvements in MAP

obtained with our proposed method were found to be statistically significant (Wilcoxon test

with 95% confidence measure) over the three baselines: ‘LM’, ‘LM_AST’ and

‘LM_AST_SPLIT’ (see Table 3). The improvements in GMAP are statistically significant

as well for both the baselines, which is indicative that the per-query improvements are

consistent.

In Fig. 4, we show the MAP values measured individually for each source code doc-

ument category type with an intention to observe the per-category breakdown of retrieval

effectiveness. It can be seen that the ‘FLM_AST’ method performs the best for each

category (except ‘A2’).

The results shown in Table 3 were obtained by using whole documents as pseudo-

queries for retrieval (i.e., all terms contained within documents). Instead of using whole

documents as queries, it is more efficient (and often more effective) to use a selected

number of terms as a pseudo-query for retrieving the documents. This way of using

reduced queries for retrieval is particularly common for long documents, such as patents

(Xue and Croft 2009), where a number of terms are extracted from each field of a docu-

ment in order to construct the pseudo-query. The term scoring function to select the

important or key terms from each field, as used in (Xue and Croft 2009), is the tf-idf score

of a term. Since the retrieval model that we use for our experiments is LM, we use the LM

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A1 A2 B1 B2 C2

M
A

P

Categories

JPlag
LM

LM-AST
LM-AST-SPLIT

FLM-AST

Fig. 4 Per category MAPs obtained with three different IR methods and the JPlag (c.f. Table 3)

Inf Retrieval J (2018) 21:1–23 17

123

term score, as shown in Eq. 1, to extract the key terms from each field of a source code

document. The LM term score can in fact be considered as a generalized version of tf-idf,

with the k parameter being able to adjust the relative contributions of each component. The

value of k used for term selection was 0.4. Instead of tuning this parameter separately, we

use the value of k that was identical to the value used for the retrieval of documents.

In Table 4, we show the results obtained with the selective term extraction approach.

The maximum number of terms to extract from each field of an indexed source code

document is a parameter of this method. It can be observed that using at most 5 terms from

each field produces the best results in terms of GMAP and recall. The effectiveness

gradually decreases as the number of terms in the pseudo-query is increased. In terms of

MAP, the best results are obtained with 20 terms.

6.2 Classification evaluation

As shown in the previous section, the most effective retrieval result in terms of MAP is

obtained from ‘FLM_AST’ using 20 terms for the pseudo-query construction. We

henceforth refer to this configuration as ‘FLM_AST_20’. Consequently, for performing the

experiments of the classification stage we use the retrieval results as obtained by the

‘FLM_AST_20’ configuration. The main goal of our experiments was to examine the

ability of a supervised approach to further improve the effectiveness of plagiarized source

code identification (see Sect. 4).

The classifier acts as a filter on the top k candidate documents obtained with

FLM_AST_20, and outputs a filtered ranked list of documents in the following way. If a

document is classified as plagiarized (the positive class) by the classifier, it is retained in

the ranked list. On being classified as non-plagiarized (the negative class) the document is

removed from the list. Note that the classifier only acts as a filter on the ranked list and

does not re-rank its constituents. The objective is to remove false positive cases returned by

the IR method.

Figure 5 shows the MAP values obtained after filtering the IR ranked list

(FLM_AST_20). It can be seen that with the help of a supervised approach, the effec-

tiveness of the results increases significantly. Particularly interesting is to see that the best

results are obtained when only the top 20 documents from the retrieved ranked list are

processed by the classifier. This shows that the documents classified as plagiarized are

mostly reported within the top 20 rank by the retrieval method. The MAP values do not

change beyond rank 20, which shows that the classifier does not identify any documents

beyond rank 20 as plagiarized. Our classification experiments thus validate that it is not

Table 4 Results obtained when term extraction is applied for pseudo-query construction from source code
documents

#Terms MAP GMAP Recall

All 0.5345 0.4008 0.9865

5 0.5369 0.4422 0.9955

10 0.5367 0.4229 0.9909

20 0.5371 0.4232 0.9909

30 0.5348 0.4010 0.9864

First row (All) depicts results obtained with the FLM_AST configuration (see Table 3)

18 Inf Retrieval J (2018) 21:1–23

123

necessary to apply a computationally intensive supervised classification step beyond a

small number of very ‘similar’ candidate source code documents.

Finally, Table 5 reports the relative importance of features used in our classifier. For

this we employed the well known Information Gain metric (i-gain) (Breiman 2001), which

is an entropy based measure that helps in determining the importance from a set of

features. It can be seen that the lexical feature (character 3-g cosine similarity) turns out to

be the most distinguishing feature. The next set of important features are those involving

the identifier names (Sect. 4.2). As expected, the features corresponding to the data types

are less important than those involving identifier names, because a match in the function

name denotes a more likely case of source code plagiarism than a match in the function

prototype. The stylistic features (Sect. 4.3), which aim to capture the inherent writing

styles of authors e.g., white space indentation, variable name length etc., are also important

for source code plagiarism detection.

6.3 Comparison with SOCO official runs

In this section, we compare the results of our experiments with the official runs submitted

for the SOCO task, the details of which can be found in the overview paper of the task

(Flores et al. 2014c). In order to compare the results, we report the set based evaluation

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

5 10 20 50 100

M
A

P

Number of candidate documents considered

IR stage
Classification stage

Fig. 5 MAP values obtained by
classifying the candidate
documents returned by the
FLM_AST_20 retrieval model

Table 5 Feature ranking with i-
gain measure

Feature name i-gain

Lexical (character 3-g) 0.191

Avg identifier sim (Eq. 6) 0.051

Min identifier sim (Eq. 6) 0.039

Avg identifier sim (Eq. 6) 0.037

Stylistic 0.036

Min data type sim (Eq. 4) 0.034

Max data type sim (Eq. 4) 0.030

Avg data type sim (Eq. 4) 0.022

Inf Retrieval J (2018) 21:1–23 19

123

measures for our experiments as well. We emphasize that rank based measures reported in

Sects. 6.1 and 6.2 still continue to hold as important metrics for this task.

In Table 6, we report the two baselines used by the SOCO organizers and the best of the

submitted results in the SOCO task. The first baseline uses JPlag and hence is similar to our

baseline reported in this paper. The second baseline uses a character 3-gram model

weighted using term frequency and a cosine measure to compute the similarity between

two source code document pairs. This baseline considers all source code pairs that exceed a

similarity threshold of 0.95 to be plagiarized pairs. Finally, the last row depicts the best

performance obtained during the SOCO competition.

In Table 7, we report the set based evaluation measures obtained in our experiments. It

can be seen that the classification stage always improves the evaluation measures over the

IR stage alone. For the IR stage, the ranked list of retrieved documents is cut-off at a fixed

rank (20 in this case) to obtain the set representation. The IR stage achieves a high recall

due to the fact that it is able to find (almost) all plagiarized documents within the top 20

positions in the ranked list (particularly the FLM_AST configuration). However, the

precision is not satisfactory due to the presence of false positives. The results improve with

the classifier because of the elimination of these false positives, which in turn also leads to

improving the F-score significantly.

Out of the three retrieval approaches (followed by the same classification approach),

FLM_AST performs the best because of the better retrieval quality (see Table 3). Notice

that recall drops after applying the supervised classification step, because the supervised

step aims to achieve a high precision (and in this trade-off process, recall decreases). A

high precision is important from the end-user perspective because it indicates a reduced

number of false positives being reported.

6.4 Efficiency evaluation

In this section, we report the computational run times of each individual method. The

objective is to see how much we gain in terms of run-time, by applying our retrieval

strategy. When reporting the run times, we do not take into consideration the content pre-

processing times, i.e., the indexing time for the IR stage or the training time for the

classification stage.

Figure 6 shows (using a logarithmic scale) the execution times required by the different

approaches and their combinations. All the experiments were executed on a standard PC

with a 3.16 GHz Quad-core CPU with 8GB RAM. To obtain run-time comparisons, we

executed the RF classifier (see Sect. 6.2) on all pairs of documents. As expected, due to the

quadratic time complexity this method takes a massive amount of time to execute,

specifically about 3 days.

Notice that the constant valued horizontal line represents the total retrieval time taken

by FLM_AST_20, i.e., the time to execute about 12, 000 queries on the collection of about

Table 6 Source Code Reuse
(SOCO) official results (Flores
et al. 2014b)

Run name Set-based metrics

Precision Recall F-score

Baseline 1 0.542 0.293 0.38

Baseline 2 0.457 0.712 0.556

Best (UAM-C-run3) 0.691 0.968 0.807

20 Inf Retrieval J (2018) 21:1–23

123

12, 000 documents (see Table 2). The x-axis shows the number of top k documents used

for classification. The IR retrieval time, included for the sake of comparison in Fig. 6, is

shown as a constant because the IR method does not involve supervised classification.

It can be observed from Fig. 6 that the execution time involved in feature extraction and

classification for the top k candidate source code documents steadily increases as more

documents are processed for classification. The solid black line represents the accumulated

execution time for the combined approach, i.e., IR þ classification. It is important to

mention that the combination method (which achieves the best results for k ¼ 20 top

documents) takes a significantly lower run-time than the traditional pair-wise similarity

computation approach, which is shown by the top right point in the graph.

7 Conclusions and future work

In this paper we have described an approach to source code plagiarism detection which

combines IR and supervised classification. The aim of the IR stage is to retrieve a set of

potential plagiarism cases in an efficient manner. In the second stage, a supervised

approach is employed to perform a more fine-grained analysis over the candidate set of

plagiarized documents returned by the retrieval stage.

We hypothesized that the BoW model of indexed document representation may not be

suitable for source codes (see research question Q1 in Sect. 1). Experiments confirm that

approaches that utilize the source code structure are more effective in retrieving plagia-

rized documents at top ranks.

Table 7 Experimental results
evaluated with set based metrics
(for comparison with SOCO
runs)

Run name IR (top 20 set) IR ? Classification

Prec Rcll F-sc Prec Rcll F-sc

LM 0.432 0.995 0.602 0.808 0.964 0.879

LM_AST 0.530 0.995 0.692 0.856 0.964 0.907

FLM_AST 0.515 1.000 0.689 0.874 0.968 0.919

 64

 256

 1024

 4096

 16384

 65536

 262144

5 10 20 50 100 All

se
co

nd
s

Number of candidate documents considered

Accumulative execution time (total)
Retrieval time
Attribute extraction and classification time

Fig. 6 Comparison of the
execution times (on a log scale)
for the different methods

Inf Retrieval J (2018) 21:1–23 21

123

Our aim in research question Q2 was to investigate alternative ways of document

representation for indexing and retrieval. Experiments confirmed that the best performing

IR approach is to extract terms from selective nodes of the AST of a source program, and

then to store these terms in separate fields corresponding to the different AST node types

from which they were extracted.

In research question Q3, we investigated ways of effectively representing a source code

document as a pseudo-query. We find that best results are achieved when at most 20 terms

are selected from each field of a source code document to constitute a pseudo-query for the

retrieval phase.

For the supervised stage, we proposed three different categories of features, namely:

lexical, structural and stylistic attributes. A random forest (RF) classifier was trained on the

SOCO training set of plagiarized source code document pairs. Experiments confirm that a

combination of these features is able to capture the inherent characteristics of plagiarism

patterns by demonstrating that with the help of supervised classification, it is possible to

further improve the results obtained from the IR stage. The implication is that a supervised

classification approach is able to discard many false-positive cases form retrieved lists of

candidate source codes thus improving plagiarism identification effectiveness.

Our future work will involve investigating more characteristic features for training the

supervised approach to achieve further improvement in results; for instance, we may

consider as an additional similarity matching strategy, the well known SimHash algorithm

(Charikar 2002). For the retrieval stage, we plan to consider exploring the pros and cons of

pseudo-relevance feedback for source code documents with an aim to further enhance

retrieval effectiveness.

Acknowledgements The authors would like to thank to Enrique Flores, Paolo Rosso and Lidia Moreno for
providing us with important details regarding the participating systems in the SOCO 2014 shared task. The
first two authors are supported by Science Foundation Ireland (SFI) as a part of the ADAPT Centre at DCU
(Grant No.: 13/RC/2106). The work of the last three authors was partially funded by CONACyT under the
Thematic Networks program (Language Technologies Thematic Network Project No. 260178, 271622).
Additionally, they would also like to thank to UAM Cuajimalpa and SNI-CONACyT for their support.

References

Baer, N., & Zeidman, R. (2012). Measuring whitespace pattern sequence as an indication of plagiarism.
Journal of Software Engineering and Applications, 5(4), 249–254.

Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., & Bier, L. (1998). Clone detection using abstract syntax
trees. In Proceedings of the international conference on software maintenance, ICSM ’98 (p. 368).

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Burrows, S., Tahaghoghi, S. M . M., & Zobel, J. (2007). Efficient plagiarism detection for large code

repositories. Software: Practice and Experience, 37(2), 151–175.
Chae, D.-K., Ha, J., Kim, S.-W., Kang, B., & Im, E. G. (2013a). Software plagiarism detection: A graph-

based approach. In Proceedings of the 22nd ACM international conference on information and
knowledge management, CIKM ’13 (pp. 1577–1580).

Chae, D.-K., Kim, S.-W., Ha, J., Lee, S.-C., & Woo, G. (2013b). Software plagiarism detection via the static
api call frequency birthmark. In Proceedings of the 28th annual ACM symposium on applied com-
puting, SAC’13 (pp. 1639–1643).

Charikar, M. S. (2002). Similarity estimation techniques from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on theory of computing, STOC ’02 (pp. 380–388). New York,
NY, USA: ACM.

Cosma, G., & Joy, M. (2013). Evaluating the performance of lsa for source-code plagiarism detection.
Informatica, 36(4), 409–424.

22 Inf Retrieval J (2018) 21:1–23

123

Faidhi, J. A. W., & Robinson, S. K. (1987). An empirical approach for detecting program similarity and
plagiarism within a university programming environment. Computers and Education, 11(1), 11–19.

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers
to solve real world classification problems? Journal of Machine Learning Research, 15, 3133–3181.

Flores, E., Barrón-Cedeño, A., Rosso, P., & Moreno, L. (2011). Towards the detection of cross-language
source code reuse. In Proceedings of the 16th international conference on applications of natural
language to information systems, NLDB 2011 (pp. 250–253).

Flores, E., Barrede, A., Moreno, L., & Rosso, P. (2014a). Uncovering source code reuse in large-scale
academic environments. Computer Applications in Engineering Education, 23, 383–390.

Flores, E., Rosso, P., Moreno, L., & Villatoro-Tello, E. (2014b). PAN@FIRE: Overview of SOCO track on
the detection of source code re-use. InWorking notes of the forum for information retrieval evaluation,
FIRE 2014.

Flores, E., Rosso, P., Moreno, L., & Villatoro-Tello, E. (2014c). Pan@fire: Overview of soco track on the
detection of source code re-use. In Proceedings of the forum for information retrieval evaluation, FIRE
2014.

Fox, E. A., Koushik, M. P., Shaw, J. A., Modlin, R., & Rao, D. (1992). Combining evidence from multiple
searches. In Proceedings of the first text REtrieval conference, TREC 1992, Gaithersburg, Maryland
(pp. 319–328), November 4–6, 1992.

Grieve, J. (2007). Quantitative authorship attribution: An evaluation of techniques. Literary and Linguistic
Computing, 22(3), 251–270.

Hiemstra, D. (2000). Using language models for information retrieval. Ph.D. thesis, CTIT, AE Enschede.
Jones, J. (2003). Abstract syntax tree implementation idioms. In Proceedings of PLP ’03.
Kim, J. & Croft, W. B. (2012). A field relevance model for structured document retrieval. In Proceedings of

the 34th European conference on IR research, ECIR 2012 (pp. 97–108).
Marinescu, D., Baicoianu, A., & Dimitriu, S. (2012). Software for plagiarism detection in computer source

code. In Proceedings of the 7th international conference on virtual learning (Vol. 156, pp. 373–379).
Narayanan, S., & Simi, S. (2012). Source code plagiarism detection and performance analysis using fin-

gerprint based distance measure method. In Procceedings of the 7th international conference on
computer science and education, ICCSE ’12 (pp. 1065–1068).

Neamtiu, I., Foster, J. S., & Hicks, M. (2005). Understanding source code evolution using abstract syntax
tree matching. Proceedings of the 2005 International Workshop on Mining Software Repositories,
MSR’05, 30(4), 1–5.

Ogilvie, P., & Callan, J. (2003). Combining document representations for known-item search. In Pro-
ceedings of the 26th annual international ACM SIGIR conference on research and development in
information retrieval, SIGIR ’03 (pp. 143–150). New York, NY, USA: ACM.

Ponte, J. M. (1998). A language modeling approach to information retrieval. Ph.D. thesis, University of
Massachusetts.

Potthast, M., Hagen, M., Beyer, A., Busse, M., Tippmann, M., Rosso, P., & Stein, B. (2014). Overview of
the 6th international competition on plagiarism detection. In Working notes for CLEF 2014 conference
(pp. 845–876).

Prechelt, L., Malpohl, G., & Philippsen, M. (2002). Finding plagiarisms among a set of programs with jplag.
Journal of Universal Computer Science J-UCS, 8(11), 1016–1038.

Sanderson, M., & Zobel, J. (2005). Information retrieval system evaluation: Effort, sensitivity, and relia-
bility. In Proceedings of the 28th annual international ACM SIGIR conference on research and
development in information retrieva, SIGIR’05 (pp. 162–169). New York, NY, USA.

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: Local algorithms for document finger-
printing. In Proceedings of the 2003 ACM SIGMOD international conference on Management of data
(pp. 76–85). ACM.

Stein, B., Potthast, M., Rosso, P., Barredeo, A., Stamatatos, E., & Koppel, M. (2011). Fourth international
workshop on uncovering plagiarism, authorship, and social software misuse. In SIGIR Forum (Vol. 45,
pp. 45–48).

Takaki, T., Fujii, A., & Ishikawa, T. (2004). Associative document retrieval by query subtopic analysis and
its application to invalidity patent search. In Proceedings of the thirteenth ACM international con-
ference on information and knowledge management, CIKM ’04 (pp. 399–405).

Xue, X. & Croft, W. B. (2009). Automatic query generation for patent search. In Proceedings of the 18th
ACM conference on information and knowledge management, CIKM ’09 (pp. 2037–2040). New York,
NY, USA: ACM.

Inf Retrieval J (2018) 21:1–23 23

123

	Retrieving and classifying instances of source code plagiarism
	Abstract
	Introduction
	Related work
	Retrieval stage
	Motivation
	Proposed IR approach
	Document representation
	Query representation

	Classification stage
	Lexical features
	Structural features
	Similarity between data types
	Similarity between identifiers

	Stylistic features

	Experimental setup
	Dataset
	Training set for classification
	Settings
	Evaluation metrics

	Results
	Run descriptions
	Results

	Classification evaluation
	Comparison with SOCO official runs
	Efficiency evaluation

	Conclusions and future work
	Acknowledgements
	References

