
Statistical biases in Information Retrieval metrics
for recommender systems

Alejandro Bellogı́n1 • Pablo Castells1 • Iván Cantador1

Received: 4 August 2016 /Accepted: 19 July 2017 / Published online: 27 July 2017
� Springer Science+Business Media, LLC 2017

Abstract There is an increasing consensus in the Recommender Systems community that

the dominant error-based evaluation metrics are insufficient, and mostly inadequate, to

properly assess the practical effectiveness of recommendations. Seeking to evaluate rec-

ommendation rankings—which largely determine the effective accuracy in matching user

needs—rather than predicted rating values, Information Retrieval metrics have started to be

applied for the evaluation of recommender systems. In this paper we analyse the main

issues and potential divergences in the application of Information Retrieval methodologies

to recommender system evaluation, and provide a systematic characterisation of experi-

mental design alternatives for this adaptation. We lay out an experimental configuration

framework upon which we identify and analyse specific statistical biases arising in the

adaptation of Information Retrieval metrics to recommendation tasks, namely sparsity and

popularity biases. These biases considerably distort the empirical measurements, hindering

the interpretation and comparison of results across experiments. We develop a formal

characterisation and analysis of the biases upon which we analyse their causes and main

factors, as well as their impact on evaluation metrics under different experimental con-

figurations, illustrating the theoretical findings with empirical evidence. We propose two

experimental design approaches that effectively neutralise such biases to a large extent. We

report experiments validating our proposed experimental variants, and comparing them to

alternative approaches and metrics that have been defined in the literature with similar or

related purposes.

& Alejandro Bellogı́n
alejandro.bellogin@uam.es

Pablo Castells
pablo.castells@uam.es

Iván Cantador
ivan.cantador@uam.es

1 Universidad Autónoma de Madrid, Madrid, Spain

123

Inf Retrieval J (2017) 20:606–634
DOI 10.1007/s10791-017-9312-z

http://orcid.org/0000-0001-6368-2510
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9312-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-017-9312-z&domain=pdf

Keywords Evaluation � Recommender systems � Popularity bias � Sparsity
bias � Cranfield

1 Introduction

There is a raising awareness in the Recommender Systems (RS) community that impor-

tant—or even central—open questions remain to be addressed concerning the evaluation of

these systems. The error in predicting held-out user ratings has been by far the dominant

offline evaluation methodology in the RS literature (Breese et al. 1998; Herlocker et al.

2004). The limitations of this approach are increasingly evident and have been extensively

pointed out (Cremonesi et al. 2010). The prediction error has been found to be far from

enough or even adequate to assess the practical effectiveness of a recommender system in

matching user needs. The end users of recommendations receive lists of items rather than

rating values, whereby recommendation accuracy metrics—as surrogates of the evaluated

task—should target the quality of the item selection and ranking, rather than the system

numeric scores that determine that selection.

For this reason, researchers are turning towards metrics and methodologies from the

Information Retrieval (IR) field (Barbieri et al. 2011; Cremonesi et al. 2010; Herlocker

et al. 2004), where ranking evaluation has been studied and standardised for decades. Yet,

gaps remain between the methodological formalisation of tasks in both fields, which result

in divergences in the adoption of IR methodologies, hindering the interpretation and

comparability of empirical observations by different authors.

The use of offline IR evaluation techniques involves the adoption of the Cranfield

paradigm (Voorhees and Harman 2005), and common metrics such as precision, mean

average precision (MAP), and normalised Discounted Cumulative Gain (nDCG) (Baeza-

Yates and Ribeiro-Neto 2011). Given the natural fit of top-n recommendations in an IR

task scheme, the adoption of IR methodologies would be straightforward. However, rec-

ommendation tasks, settings, and available datasets for offline evaluation involve subtle

differences with respect to the common IR settings and experimental assumptions, which

result in substantial biases to the effectiveness measurements that may distort the empirical

observations and hinder comparison across systems and experiments.

Taking up from prior studies on the matter (Cremonesi et al. 2010; Herlocker et al.

2004; Shani and Gunawardana 2011; Steck 2011), we revisit the methodological

assumptions underlying IR metrics, and analyse the differences between Recommender

Systems and Information Retrieval evaluation and its implications. Upon this, we identify

two sources of bias in IR metrics on recommender systems: data sparsity and item pop-

ularity. We characterise and study the effect of these two factors both analytically and

empirically. We show that the value range of common IR metrics is determined by the

density of the available user preference information, to such an extent that the measured

values per se are not meaningful, except for the purpose of comparison within a specific

experiment. Furthermore, we show that the distribution of ratings among items has a

drastic effect on how different recommendation algorithms compare to each other. In this

context, we propose and analyse two approaches to mitigate popularity bias on the mea-

sured ranking quality, providing theoretical and empirical evidence of their effectiveness.

Our study focuses on the offline side of recommender system evaluation. Online

evaluation, typically AB testing, is the dominant and ultimately most reliable evaluation

methodology in commercial settings. However offline evaluation is still a prevailing,

affordable alternative in recommender systems research (where an online environment is

Inf Retrieval J (2017) 20:606–634 607

123

not always readily available), and an important tool in the industrial context as well,

typically as an economic and safe early-stage filter for algorithm selection and upgrade in

commercial applications. On the other hand, inasmuch as online data may suffer from

similar biases as offline evaluation does, our findings may generalise to online conditions

as well.

The reminder of the paper follows by revisiting the principles and assumptions

underlying the IR evaluation methodology: the Cranfield paradigm (Sect. 2). After that, in

Sect. 3 we elaborate a formal synthesis of the main approaches to the application of IR

metrics to recommendation. In Sects. 4 and 5 we analyse, respectively, the sparsity and

popularity biases of IR metrics on recommendation tasks. We present and evaluate two

approaches to avoid these biases in Sect. 6, some works related to our paper are presented

in Sect. 7, and end with some conclusions in Sect. 8.

2 Applying Information Retrieval methodologies to the evaluation
of recommender systems

Offline Information Retrieval evaluation methodologies have been designed, studied and

refined over the years under the so-called Cranfield paradigm (van Rijsbergen 1989;

Voorhees 2001) for offline evaluation. In the Cranfield paradigm, as e.g. typically applied

in the TREC campaigns (Voorhees and Harman 2005), Information Retrieval systems are

evaluated on a dataset comprising a set of documents, a set of queries—referred to as

topics1 and consisting of a description or representation of user information needs –, and a

set of relevance judgments by human assessors, which play the role of a gold standard or

ground truth (as understood e.g. in machine learning) against which the evaluated system’s

output accuracy is assessed and benchmarked. Judgments are typically provided by edi-

torial assessors though in some cases end-users can play this role. The assessors manually

inspect queries and documents, and decide whether each document is relevant or not for a

query. Theoretically, each query-document pair should be assessed for relevance, which,

for thousands or millions of documents, is obviously unfeasible. Therefore, a so-called

pooling approximation is applied, in which the assessors actually inspect and judge just a

subset of the document collection, consisting of the union of the top-n documents returned

by a set of systems for each query. These systems are commonly the ones to be evaluated

and compared, and n is called the pooling depth, typically around 100 documents. While

this procedure obviously misses some relevant documents, it has been observed that the

degree of incompleteness is reasonably small, and the missing relevance does not alter the

empirical observations significantly, at least up to some ratio between the pooling depth

and the collection size (Buckley et al. 2007).

Whereas in a search system users may enter multiple queries, the recommendation

task—in its classic formulation—typically considers a single ‘‘user need’’ per user, that is,

a user has a set of cohesive preferences that defines her main interests. In this view, a

natural fit of recommendation in the Cranfield paradigm would take users—as an abstract

construct—as the equivalent of queries in ad-hoc retrieval (the user need to be satisfied),

and items as equivalent to documents (the objects to be retrieved and ranked), as sum-

marised in Table 1. A first obvious difference is that queries are explicit representations of

specific information needs, whereas in a recommendation setting, user profile records are a

1 In fact topics are a more general notion than queries, but for the purpose of our discussion and task
comparison we will use queries as a most familiar notion for a broad audience.

608 Inf Retrieval J (2017) 20:606–634

123

global and implicit representation of what the user may need or like. Still, the query-user

mapping is valid, inasmuch as user profiles may rightfully fit in the IR scheme as ‘‘vague

queries.’’

The equivalent to Cranfield relevance judgments is less straightforward. User ratings for

items, as available in common recommendation datasets, are indeed relevance judgments

of items for user needs. However, many recommendation algorithms (mainly collaborative

filtering methods) require these ‘‘relevance judgments’’ as input to compute recommen-

dations. The rating data withholding evaluation approach, pervasive in RS research, nat-

urally fits here: some test ratings can be held out as ground truth, and the others can be left

as training input for the systems. Differently from TREC, here the ‘‘queries’’ and the

relevance assessments, by (the task) definition, can only be entered by the same people: the

end-users, and they only need to reflect their own subjectivity or whim, whereas in a search

task, relevance assessors may want to capture more objective descriptions of relevance.

Furthermore, how much data are taken for training and for ground truth is left open to the

experiment designers, thus adding a free variable to be watched over as it significantly

impacts the measurements.

Furthermore, whereas in the IR setting all the documents in the collection are candidate

answers for all queries, the set of target items on which recommender systems are tested is

not necessarily the same for each user. In general, at least all the items with a test rating are

included in the candidate set for all the corresponding raters, though not necessarily in a

single run (Cremonesi et al. 2010). Moreover, it is common to select further non-rated

target items, but not necessarily all the items (Bellogı́n et al. 2011), and the items rated by

a user in the training set are generally excluded from the recommendation to this user. The

way these options are configured has a drastic effect on the resulting measurements, with

variations in orders of magnitude (Bellogı́n et al. 2011; Jannach et al. 2015).

Table 1 Offline recommender system evaluation setup: fitting the recommendation task in the Cranfield IR
evaluation paradigm

Task element TREC ad-hoc retrieval
task

Recommendation task

Information need expression Topic (query and
description)

User profile

Candidate answers All documents in the
collection

Target item set

Same for all queries One or more per user, commonly
different among users

Document data available as system
input

Document content Training ratings, item features

Relevance Commonly topical,
objective

Inherently personalised, fully subjective

Ground truth Relevance judgments Test ratings

Relevance assessment Editorial assessors End users

Relevance knowledge coverage
(sparsity bias)

Reasonably complete
(pooling)

Highly incomplete (inherently to task)

Relevance distribution of answers
(popularity bias)

Not long-tailed Long-tailed

Inf Retrieval J (2017) 20:606–634 609

123

In addition to the previous issues, the coverage of user ratings (density or lack of

sparsity) is inherently much smaller in RS datasets compared to TREC collections. The

amount of unknown relevance is pervasive in recommendation settings (it is in fact

intrinsic for the task to make sense), to a point where some assumptions of the IR

methodology may not hold, and the gap between measured and real metric values becomes

so significant that a metric absolute magnitude may just lose any meaning. Still, such

measurements may support comparative assessments between systems, as far as the bias is

system-independent (sparsity bias). The missing relevance knowledge in TREC has been

found to have a negligible effect on system comparison (Buckley et al. 2007), though this

assumption may have to be revised as very large collections are becoming commonplace in

IR evaluation. In this context, specific metrics, such as notably bpref (Buckley and

Voorhees 2004) and infAP (Yilmaz and Aslam 2006), have been proposed in the IR field

with the aim of better dealing with missing relevance information, distinguishing between

the absence of judgment and explicit non-relevance judgments.

On the other hand, the TREC methodology makes the underlying assumption that

missing relevance judgments should be uniformly distributed over documents. This is of

course not quite true, as there are indeed biases in the pooling process: the ones introduced

by the pooled systems. But it has been found that it is not unreasonable to work with that

simplifying assumption. In contrast, the distribution of relevance in the retrieval space for

recommender systems displays massive popularity skewness patterns that are not found

with any comparable strength in IR datasets. The number of users who like each item is

very variable (typically long-tailed) in recommendation datasets, and so is the amount of

observed relevance conveyed as ratings, whereas in TREC collections very few documents

are relevant for more than one query. We shall show that this phenomenon has a very

strong effect not only on metric values, but more importantly on how systems compare to

each other (popularity bias).

In order to provide a formal basis for our study we start by elaborating a systematic

characterisation of design alternatives for the adaptation of IR metrics to recommender

systems, taking into account prior approaches described in the literature. This formal

framework will help us to analyse and describe the sparsity and popularity biases in the

application of IR metrics to recommender systems, and study new approaches to mitigate

them.

3 Characterisation of design alternatives in IR methodologies
for recommender systems

The application of Information Retrieval metrics to recommender systems evaluation has

been studied by several authors in the field (Barbieri et al. 2011; Breese et al. 1998;

Cremonesi et al. 2010; Herlocker et al. 2004; Shani and Gunawardana 2011). We elaborate

here an experimental design framework that aims to synthesise commonalities and dif-

ferences between studies, encompassing prior approaches and supporting new variants

upon a common methodological grounding.

We start by introducing some concepts and notation; Table 2 summarises all the

notation that we shall introduce and use along the paper. Given a rating set split into

training and test rating sets, we say an item i 2 I is relevant for a user u 2 U if u rated i

positively, and its corresponding rating falls in the test set. By positive rating we mean a

value above some threshold that is domain and design-dependent. All other items (non-

610 Inf Retrieval J (2017) 20:606–634

123

positively rated or non-rated) are considered as non-relevant. In an evaluation setting,

recommender systems are requested to rank a set of target items Tu for each user. Such sets

do not need to be the same for each user, and can be formed in different ways. In all

configurations, Tu contains a combination of relevant and non-relevant items, and the

different approaches are characterised by how these are selected, as we describe next.

3.1 Target item sampling

We identify three significant design axes in the formation of the target item sets: candidate

item selection, irrelevant item sampling, and relevant item selection. We consider two

Table 2 Notation summary

Symbol Meaning

U I C Set of all users | all items | candidate items

R Rtest Rtrain Set of all | test | training ratings

PR PRtest PRtrain Set of all | test | training positive ratings (likes)

R uð Þ Rtest uð Þ Rtrain uð Þ Set of all | test | training items rated by u

PR uð Þ PRtest uð Þ PRtrain uð Þ Set of all | test | training items liked by u

R ið Þ PR ið Þ … Set of users who rated | like | … item i

Tu Tr
u Set of target items for u in AR | 1R

Nu Nr
u Non-relevant items added to build Tu | Tr

u

Pu
s@n Tuð Þ P@n of item set Tu as ranked by s for u

topus Tu; nð Þ Top n items in Tu as ranked by s for u

sus i; Sð Þ Position of i in S3i as ranked by s for u

i
u;s
k i

u;r;s
k The item ranked k-th in Tu | Tr

u by s for u

r Split ratio: Rtestj j= Rj j
qu q qu ¼ Tu \ PRtest uð Þj j= Tuj j; q ¼ avguqu
t ‘‘Average’’ target set size: 1=avgu 1= Tuj jð Þ
d Relevance density in target sets: PRj j=ðt Uj jÞ

As a general convention, u is used for users and i for items. We use the symbol R for sets of ratings and PR
for sets of positive ratings (a rating in this mathematical sense is essentially a user-item pair). As soon as we
add a user or an item in parenthesis next to these symbols—as in R uð Þ—they denote sets of items (the ones
rated by u) or users (the ones who rated an item in question). And we add the subscript ‘‘train’’ or ‘‘test’’ to
refer to the corresponding subsets, relative to a given split of the set of all ratings

Table 3 Design alternatives in
target item set formation

Design settings Alternatives

Base candidate items AI C ¼ I
TI C ¼

S

u2U
Rtest uð Þ

Item selection

Relevant AR Tu � PRtest uð Þ
1R Tr

u \ PRtest uð Þ
�
�

�
� ¼ 1

Non-relevant AN Nu ¼ CnPRtest uð ÞnRtrain uð Þ
NN Fixed Nuj j, random sampling

Inf Retrieval J (2017) 20:606–634 611

123

alternatives for each of these axes, summarised in Table 3, illustrated in Fig. 1, and

described next.

We shall use R uð Þ and PR uð Þ to denote the set of all and positively rated items by user u,

respectively, and R uð Þj j, PR uð Þj j to denote the respective size of those sets. With the

subscripts ‘‘test’’ and ‘‘train’’ we shall denote the part of such sets (or their sizes) contained

on the corresponding side of a data split. An equivalent notation R ið Þ, PR ið Þ, and so on, will
be used for the ratings of an item, and when no user or item is indicated, the total number

of ratings is denoted, i.e., R, PR.

For the candidate item selection alternatives, let Nu ¼ TunPRtest uð Þ be the non-relevant

target items for u. As a general rule, we assume non-relevant items are randomly sampled

from a subset of candidate items C � I , the choice of which is a design option. We mainly

find two significant alternatives for this choice: C ¼ I (e.g. Shani and Gunawardana 2011)

and C ¼
S

u2U
Rtest uð Þ (e.g. Bellogı́n et al. 2011; Vargas and Castells 2011). The first one,

which we denote as AI for ‘‘all items’’, matches the typical IR evaluation setting, where the

evaluated systems take the whole collection as the candidate answers. The second, to

which we shall refer as TI (‘‘test items’’) is an advisable condition to avoid certain biases in

the evaluation of RS, as we shall see.

AR 1R

AN NN with | | = 1

TI

AI

Test rating

Positive rating

Negative rating

TI AR AN TI 1R AN TI 1R NN

AI AR AN AI 1R AN AI 1R NN

Fig. 1 Sampling approach alternatives on a toy example. Each subfigure represents a rating matrix with
relevant (‘‘positive’’), non-relevant (‘‘negative’’), and unobserved values, partitioned into training and test
(circled) ratings. We show how the item subsets for user u are taken in different experimental configurations
as listed in Table 3. The set of illustrated combinations are non-exhaustive to avoid further cluttering: in
particular, we omit the AR-NN option; at the top of the figure we omit some of the sets defined in Table 2;
and overall we just show sets for one user u. In the 1R option, we only show one of the two possible choices

of relevant items in the Tr
u set (we show picking d in T1

u , and another set T2
u would include e instead). In the

NN option, the single (Nuj j ¼ 1Þ non-relevant item is arbitrarily chosen (we pick c, but it could as well be b
or, in the AI option, a). The reader can easily figure this out and the remaining options from the illustrated
cases

612 Inf Retrieval J (2017) 20:606–634

123

Once C is set, let us decide the irrelevant item sampling strategy. For each user we select

a set Nu � CnPRtest uð ÞnRtrain uð Þ, Nu can be sampled randomly for a fixed size Nuj j (we call
this option NN for ‘‘N non-relevant’’), or all candidate items can be included in the target

set, Nu ¼ CnPRtest uð ÞnRtrain uð Þ (we refer to this as AN for ‘‘all non-relevant’’). Some

authors have even used Tu ¼ Rtest uð Þ (Basu et al. 1998; Jambor and Wang 2010a, b), but

we discard this option as it results in a highly overestimated precision (Bellogı́n et al.

2011). The size of Nu is thus a configuration parameter of the experimental design. For

instance, in (Cremonesi et al. 2010) the authors propose Nuj j = 1000, whereas in (Bellogı́n

et al. 2011) the authors consider Nu ¼
S

v2U
Rtest vð ÞnRtrain uð ÞnPRtest uð Þ, among other alter-

natives. To the best of our knowledge, the criteria for setting this parameter have not been

analysed in detail in the literature, leaving it to common sense and/or trial and error. It is

worth noting nonetheless that in general Nuj j determines the number of calls to the rec-

ommendation algorithms, whereby this parameter provides a handle for adjustment of the

cost of the experiments. Regarding the relevant item selection, two main options are

reported in the literature, to which we shall refer as AR for ‘‘all relevant’’, and 1R for ‘‘one

relevant.’’ In the AR approach all relevant items are included in the target set, i.e., Tu �
PRtest uð Þ (Bellogı́n et al. 2011). In the 1R approach, for user u, several target item sets Tr

u

are formed, each including a single relevant item (Cremonesi et al. 2010). This approach

may be more sensitive to the lack of recommendation coverage, as we shall observe later

on. The choice between an AR or a 1R design involves a difference in the way the ranking

quality metrics are computed, as we shall discuss in the next section.

3.2 AR versus 1R precision

Essentially, the way metrics are defined in AR and 1R differs in how they are averaged. In

AR, the metrics are computed on each target set Tu in the standard way as in IR, and then

averaged over users (as if they were queries). As a representative and simple to analyse

metric, we shall use P@n henceforth. Though more complex metrics such as MAP and

nDCG are not as tractable formally, the analysis and findings we derive for precision are

also observed empirically—with particular differences in some cases—with such metrics,

as we shall point out. The mean AR precision of a recommender system s can be expressed

as:

Ps@n ¼ 1

Uj j
X

u2U

1

n
topus Tu; nð Þ \ PRtest uð Þ
�
�

�
�

where topus Tu; nð Þ denotes the top n items in Tu ranked by s for u.

In the 1R design, drawing from (Cremonesi et al. 2010), we compute and average the

metrics over the Tr
u sets, as follows:

1RPs@n ¼ precision nð Þ ¼ 1

PRtestj j
X

u2U

XPRtest uð Þj j

r¼1

Pu
s@n Tr

u

� �
ð1Þ

where Pu
s@n Tr

u

� �
is the standard precision of Tr

u for u. This form to express the metric is

equivalent to the original formulation in (Cremonesi et al. 2010), but allows a straight-

forward generalisation to any other IR metric such as MAP and nDCG, by just using them

in place of Pu
s@n in Eq. (1). We shall intentionally use the same symbol P to refer both to

Inf Retrieval J (2017) 20:606–634 613

123

1R and AR precisions when there is no ambiguity. Whenever there may be confusion, or

we wish to stress the distinction, we shall use 1RP to explicitly denote 1R precision.

AR precision basically corresponds to the standard precision as defined in IR, whereas

1R precision, while following essentially the same principle, departs from it in the for-

mation of runs, and the way to average values. Additionally, note that the maximum value

of 1RP@n is 1=n as we shall see in the next section, mainly since each run has only one

relevant item. Besides, in Sect. 4 we shall establish a formal relation between both ways to

compute precision.

3.3 Preliminary experimental comparison

In order to illustrate the effects of the design alternatives presented before, we show their

results on three common collaborative filtering algorithms, based respectively on proba-

bilistic Latent Semantic Analysis (pLSA) (Hofmann 2004), matrix factorisation (MF)

(Koren et al. 2009), and user-based nearest-neighbours (kNN) (Cremonesi et al. 2010). As

additional baselines, we include recommendation by popularity and random recommen-

dation. We use two datasets: the 1M version of MovieLens, and an extract from Last.fm

published by Ò. Celma (Celma and Herrera 2008). A 5-fold cross-validation is applied on

80–20% training-test splits of rating data (as is common practice, we loop through the set

of all ratings and ‘‘flip a coin’’—with 0.8 probability for training—to decide whether the

rating is assigned to the training or test set, in such a way that the expected size of these

sets is 80 and 20% respectively). The Last.fm data consist of music track playcounts for

nearly 1000 users, which we aggregate by artist (amounting to Ij j = 176,892), and map

into ratings as in (Celma and Herrera 2008). We use a single temporal split of user music

track scrobbles2 in this dataset, with the same 80–20% ratio of training-test data.

Figure 2 shows the P@10 results with AR and 1R configurations. For 1R we shall

always use TI-NN, with Tuj j = 100. This is a significantly lower value than Tuj j = 1001

reported in (Cremonesi et al. 2010), but we have found it sufficient to ensure statistical

significance (e.g. Wilcoxon p � 0.001 for all pairwise differences between the recom-

menders in Fig. 2), at a considerably reduced execution cost. We adopt the TI policy in 1R

to avoid biases that we shall describe later. In the AR configuration we show TI-AN

(meaning ‘‘TI followed by AN’’) and AI-AN for MovieLens, though we shall generally

stick to TI-AN in the rest of the paper. In Last.fm we use only TI-NN and a temporal split,

with Nuj j = 2500 for efficiency reasons, since Ij j = 176,948 is considerably large in this

dataset. We set the positive relevance rating threshold to 5 in MovieLens, as in (Cremonesi

et al. 2010), whereas in Last.fm, we take any number above two playcounts as a sign of

positive preference. We have experimented with other thresholds for positive ratings,

obtaining equivalent results to all the ones that are reported here—the only difference is

discussed in Sect. 6.

It can be seen that pLSA consistently performs best in most experimental con-figura-

tions, closely followed by popularity, which is the best approach in Last.fm with AR, and

that MF is generally superior to kNN. Some aspects strike our attention. First, even though

P@10 is supposed to measure the same thing in all cases, the range of the metric varies

considerably across configurations and datasets, and even the comparison is not always

consistent. For instance, in AR popularity ranges from 0.08 on MovieLens to 0.35 on

Last.fm; and AR versus 1R produces some disagreeing comparisons on Last.fm. It may

2 A scrobble is a play log record in Last.fm jargon, i.e., a user-track-timestamp triplet recorded each time a
user plays a music track in the system.

614 Inf Retrieval J (2017) 20:606–634

123

also be surprising that popularity, a non-personalised method, fares so well compared to

other algorithms. This effect was already found in (Cremonesi et al. 2010) and (Steck

2011), and in (Pradel et al. 2012). We also see that TI and AI produce almost the same

results. This is because
S

u2U
Rtest uð Þ� I in MovieLens; differences become noticeable in

configurations where
S

u2U
Rtest uð Þ is significantly smaller than I , as we shall see in

Sect. 6.2. As mentioned before, note that in this case the upper bound of P@10 for the 1R

methodology is 0.10. Other metrics such as nDCG, MAP, or Mean Reciprocal Rank

(MRR) show similar trends as with P@10.

Some of this variability may reflect actual strengths and weaknesses of the algorithms

for different datasets, but we shall show that a significant part of the observed variations is

due to statistical biases arising in the adaptation of the Cranfield methodology to recom-

mendation data, and are therefore meaningless with respect to the assessment of the

recommenders accuracy. Specifically, we have found that the metrics are strongly biased to

test data sparsity and item popularity. We shall analyse this in detail in Sects. 4 and 5, but

before that we establish a relation between AR and 1R precision that will help in this

analysis.

3.4 Analytical relation between AR and 1R precision

We have seen that AR and 1R precisions produce in general quite different values, and we

shall show they display different dependencies over certain factors. We find nonetheless a

direct relation between the two metrics. Specifically, 1R precision is bound linearly by NN-

AR precision, that is, 1RPs@n ¼ H Ps@nð Þ, as we show next.

Lemma Let us assume the irrelevant item sampling in 1R is done only once for all the

test ratings of a user, that is, we select the same set of non-relevant items Nr
u ¼ Nu in the T

r
u

target sets. If we denote Tu ¼ Nu [PRtest uð Þ—in other words, Tu ¼
S

r

Tr
u—, we have:

Uj jPs@n

PRtestj j � 1RPs@n�
P

u2U muP
u
s@mu Tuð Þ

n PRtestj j ð2Þ

0

0.04

0.08

MovieLens Last.fm

1R

0

0.04

0.08

0.12

0.16

AI - AN TI - AN

P@
10

AR

MovieLens

0

0.1

0.2

0.3

0.4

|Nu| = 2,500

Last.fm (TI - NN)

 Popularity

 pLSA

 MF

 kNN

 Random

Fig. 2 Precision of different recommendation algorithms on MovieLens 1M and Last.fm using AR and 1R
configurations

Inf Retrieval J (2017) 20:606–634 615

123

with mu ¼ nþ PRtest uð Þj j � 1, where Ps@n is the NN-AR precision computed with the

target sets Tuf g.3

Proof Let iru be the relevant item included in Tr
u , and let sus i; Sð Þ denote the ranking

position assigned to i by s for u within a set S, where i 2 S. Since Tr
u � Tu, we have that

sus iru; T
r
u

� �
� sus iru; Tu

� �
. This means that if iru is ranked above n in Tu, then it is also above n

in its target set Tr
u . Hence

Pnptest uð Þ

r¼1

topus Tr
u; n

� �
\ PRtest uð Þ

�
�

�
�	 topus Tu; nð Þ \ PRtest uð Þ
�
�

�
�. Sum-

ming on u, and dividing by n and PRtestj j we prove the first inequality of Eq. (2).

On the other hand, it is easy to see that sus iru; T
k
u

� �
	 sus iru; Tu

� �
þ PRtest uð Þj j � 1. Thus, if

iru is ranked above n in Tk
u , then it is above mu ¼ nþ PRtest uð Þj j � 1 in Tu. Thus

Pnptest uð Þ

r¼1

topus Tr
u; n

� �
\ PRtest uð Þ

�
�

�
�� topus Tu;muð Þ \ PRtest uð Þ
�
�

�
� ¼ muPs@mu Tuð Þ. And the sec-

ond inequality of Eq. (2) follows again by summing on u, and dividing by n and PRtestj j.h

Note that the assumption Nr
u ¼ Nu in the lemma is mild, inasmuch as the statistical

advantage in taking different Nr
u for each r is unclear. Even in that case, Ps@n and

avgu2U muP
u
s@mu Tuð Þ

� �
should be reasonably stable with respect to the random sampling of

Nr
u, and thus Eq. (2) tends to hold.

We thus have a formal proof that AR and 1R precision are quite directly related,

however the lemma does not establish how tight is the bound, and how close are the

extremes from each other. Figure 3 illustrates and provides an example quantification of

the relation between the AR bounds and the 1R values. The empirical observation suggests

they provide similar while not fully redundant assessments. We also see that the bounding

interval reduces progressively as Tuj j is increased (right), and even faster with test data

sparsity (left)—in sum, the metric converges to its bounds as

Tuj j
 avgu2U PRtest uð Þj j ¼ PRtestj j= Uj j.

4 Sparsity bias

As mentioned earlier, we identify two strong biases in precision metrics when applied to

recommendation. The first one is a sensitivity to the ratio of the test ratings versus the

added non-relevant items. We study this effect by an analysis of the expected precision for

non-personalised and random recommendations in the AR and 1R settings.

4.1 Measuring the expected precision

Let i
u;s
k 2 Tu be the item ranked at position k in the recommendation output for u by a

recommender system s, and let r be the ratio of test data in the training-test data split. In an

AR setup the expected precision at n (over the sampling space of data splits with ratio r,
the sampling of Nu, and any potential non-deterministic aspect of the recommender sys-

tem—as, e.g. in a random recommender) is:

3 Note than mu is a function of n, but we omit an explicit indication of this to avoid further burdening the
notation.

616 Inf Retrieval J (2017) 20:606–634

123

E Ps@n½ � ¼ avg
u2U

1

n

Xn

k¼1

p reljiu;sk ; u; Tu
� �

 !

where p relji; uð Þ denotes the probability that item i is relevant for user u, i.e., the proba-

bility that i 2 PRtest uð Þ. Now we may write p reljiu;sk ; u; Tu
� �

¼def p rel; Tujis;uk ; u
� �

=

p Tujis;uk ; u
� �

, where we have p Tujis;uk ; u
� �

¼ p i
s;u
k 2 Tu
� �

¼ Tuj j= Cj j. On the other hand,

p rel; Tujis;uk ; u
� �

¼def p i
s;u
k 2 PRtest uð Þ \ Tu
� �

¼ p i
s;u
k 2 PRtest uð Þ
� �

¼ p reljis;uk ; u
� �

, since

PRtest uð Þ � Tu in the AR methodology. If s is a non-personalised recommender then i
u;s
k

and u are mutually independent, and it can be seen that avgu2Up reljiu;sk ; u
� �

¼
avgu2Up reljiu;sk

� �
. All this gives:

E Ps@n½ � ¼ Cj j
nt

Xn

k¼1

avg
u2U

p reljiu;sk

� �

where 1=t ¼ avgu2U 1= Tuj jð Þ—if Tu have all the same size, then t ¼ Tuj j. As all relevant
items for each user are included in her target set, we have

p reljiu;sk

� �
¼ E PRtest i

u;s
k

� ��
�

�
�

� �
= Uj j. If ratings are split at random into test and training, this is

equal to r PR i
u;s
k

� ��
�

�
�= Uj j. Hence, we have:

E Ps@n½ � ¼ r Cj j
nt Uj j

Xn

k¼1

avg
u2U

PR i
u;s
k

� ��
�

�
� ð3Þ

Now, if items were recommended at random, we would have

E PR i
u;RND
k

� ��
�

�
�

� �
¼ PRj j= Ij j, and therefore:

E PRND@n½ � ¼ E PRND½ � � r PRj j
t Uj j ¼ rd ð4Þ

where d is the average density of known relevance—which depends on how many pref-

erences for items the users have conveyed, and the size of the target test item sets.

On the other hand, in a 1R evaluation setup, we have:

0

0.02

0.04

0.06

0.08

0.1

100 400 700 1,000

|Tu|

pLSA

kNN
0

0.02

0.04

0.06

0.08

0.1

0% 30% 60% 90%

1R
P@

10

Removed test ratings

kNN

pLSA

Fig. 3 Empirical illustration of Eq. (2). The curves show 1RP@10 and its bounds, for pLSA and kNN over
MovieLens 1M. The light and dark shades mark the distance to the upper and lower bounds, respectively.
The left side shows the evolution when progressively removing test ratings, and the right side displays the
variation with Tuj j ranging from 100 to 1000

Inf Retrieval J (2017) 20:606–634 617

123

E 1RPs@n½ � ¼ 1

n PRtestj j
X

u2U

XPRtest uð Þj j

r¼1

Xn

k¼1

p reljiu;r;sk ; u; Tr
u

� �

where i
u;r;s
k 2 Tr

u denotes the item ranked at position k in Tr
u . For random recommendation,

we have p reljiu;r;RNDk ; u; Tr
u

� �
¼ 1= Tr

u

�
�
�
� ¼ 1=t since all target sets have the same size,

whereby we have:

E 1RPRND@n½ � ¼ E 1RPRND½ � ¼ 1=t ð5Þ

4.2 Testing the sparsity bias

The above results for the expected random precision provide a formal insight on strong

metric biases to characteristics of the data and the experimental configuration. In both

Eqs. (4) for AR and (5) for 1R, we may express the expected random precision as

E PRND@n½ � ¼ avgu2Uqu ¼ q, where qu is the ratio of positively rated items by u in Tu (or

Tr
u , for that matter), and q�rd, or q ¼ 1=t, depending on the experimental approach. In

the AR approach the density d, and thus the q ratio, are also inversely proportional to t.

Precision in this methodology is therefore sensitive to (grows linearly with) r and PRj j, and
is inversely proportional to t, whereas 1R is only sensitive (inversely proportional) to t. The

expected precision of random recommendation naturally provides a lower bound for any

acceptable recommender. Note that in any configuration of AR and 1R, the total precision

of any system is Ps ¼ PRND ¼ q ¼ E PRND@n½ �, since as all systems are required to return

(recommend) all items in the target sets Tu (or Tr
u), that is, the total precision does not

depend on the ranking. At lower cutoffs, we expect to have Ps@n[E PRND@n½ � ¼ q. In
other words, the lower bound—and so the expected range—for the P@n of recommender

algorithms grows with the average ratio of relevant items per target item set.

The q ratio—hence the random precision—thus depends on several aspects of the

experimental setup (the experimental approach, the split ratio r, the number of non-

relevant items in the target sets), and the test collection (the number of ratings, the number

of users). Therefore, since q and the random precision can be adjusted arbitrarily by how

the test sets are split, constructed, etc., we may conclude that the specific value of the

metric has a use for comparative purposes, but has no particular meaning by itself, unless

accompanied by the corresponding average relevance ratio q of the target test sets. This is

naturally in high contrast to common IR datasets, where both the document collection and

the relevance information are fixed and not split or broken down into subsets. In fact, the

metric values reported in the TREC campaigns have stayed within a roughly stable range

over the years (Armstrong et al. 2009a, b). Note also that the sparsity bias we analyse here

is different from the impact of training data sparsity in the performance of collaborative

filtering systems. What we describe is a statistical bias caused by the sparsity of test data

(as a function of overall data sparsity and/or test data sampling), and its effect does not

reflect any actual variation whatsoever in the true recommendation accuracy.

The sparsity bias explains the precision range variations observed earlier in Fig. 2. The

empirically obtained values of random precision match quite exactly the theoretically

expected ones. To what extent the random recommendation analysis generalises to other

algorithms can be further analysed empirically. Figure 4 illustrates the bias trends over

rating density and target set size, using the experimental setup of Sect. 3.3 (with TI-AN in

AR, and TI-NN in 1R). We show only the results in MovieLens—they display a similar

effect on Last.fm. In the left and centre graphics, we simulate test sparsity by removing test

618 Inf Retrieval J (2017) 20:606–634

123

ratings. In the right graphic we vary t ¼ Tuj j in a 1R configuration. We observe that the

empirical trends confirm the theoretical analysis: precision decreases linearly with density

in the AR methodology (left graphic, confirming a linear dependence on d), whereas
precision is independent from the amount of test ratings in the 1R approach (centre), and

shows inverse proportionality to t (right). It can furthermore be seen that the biased

behaviour analytically described for random recommendation is very similarly displayed

by the other recommenders (only differing in linear constants). This would confirm the

explanatory power of the statistical trend analysis of random recommendation, as a good

reference for similar biases in other recommenders. On the other hand, even though the

precision values change drastically in magnitude, it would seem that the comparison

between recommenders is not distorted by test sparsity.

We should also underline the property that the sparsity bias is controlled by design in

the 1R approach, as far as the metric value range is concerned, by just setting the number

of sampled non-relevant candidate items: for a fixed t, Fig. 4 shows the metric range

remains much the same when varying the test density level. This means 1R precision

values could be made to some extent comparable across datasets. If we keep reducing the

rating density towards zero, eventually more and more users would not even have a single

test rating for the 1R approach to be put in place, and the metric value rather than

becoming unreliable, would become undefined. The anomaly might be less evident in the

AR approach, which does not necessarily check for the availability of test ratings for all

users: the metric comparison between systems would keep shrinking until losing statistical

significance and ultimately becoming random for lack of data.

We omit further graphs for other metrics besides precision, but we briefly comment

their behaviour here. The sparsity bias is similarly displayed by metrics such as MRR and

nDCG@n, for which we have observed an analogous empirical behaviour to the trends in

Fig. 4. Normalised metrics such as recall, nDCG and MAP are however not this directly

affected by the sparsity bias, particularly in the usual low density situations (at extremely

high densities even these metrics start saturating and converging towards the ratio of

positive versus negative ratings, obviously). Whereas recall seems quite unaffected by

sparsity below e.g. the MovieLens 1M density level (i.e., in the range of the x axis of Fig. 4

0

0.04

0.08

0.12

0.16

0% 30% 60% 90%

P@
10

AR

Removed test ratings

0

0.02

0.04

0.06

0.08

0.1

0% 30% 60% 90%

1R

Removed test ratings

0

0.02

0.04

0.06

0.08

0.1

100 400 700 1,000

Target set size t

1R

 Popularity MF Random

 pLSA kNN

Fig. 4 Evolution of the precision of different recommendation algorithms on MovieLens 1M, for different
degrees of test sparsity. The x axis of the left and centre graphs shows different amounts of removed test
ratings. The x axis in the right graph is the size of the target item sets

Inf Retrieval J (2017) 20:606–634 619

123

left), MAP and nDCG (without cutoff) are still slightly sensitive to the sparsity bias,

possibly because of the interaction between rank-sensitivity and averaging over users: as

density increases, the probability to rank relevant items at higher positions increases as

well. Possibly because the rank discount in these metrics is not linear, this results in a slight

increase in the average metric values. The sensitivity is even clearer in nDCG@n, espe-

cially for short values of n: the normalisation does not quite neutralise the bias, since

IDCG@n reaches its maximum when a user has more than n relevant items while DCG@n

keeps growing with density. Overall the slope of the dependency is slightly flatter for

nDCG@n than for P@n, but just as steady.

In all the cases discussed so far, the sparsity effects thus mainly affect the range of the

metric values, but not—except in sparsity extremes—the comparison between systems. We

find however other biases in precision measurements which do directly affect the com-

parison of recommenders even in most ordinary circumstances, as we study in the next

section.

5 Popularity bias

Sparsity is not the only bias the metric measurements are affected by. The high observed

values for a non-personalised method such as recommendation by popularity raise the

question of whether this really reflects a virtue of the recommender, or some other bias in

the metric. We seek to shed some light on the question by a closer study.

5.1 Popularity-driven recommendation

Even though they contradict the personalisation principle, the good results of popularity

recommendation can be given an intuitive explanation. By averaging over all users, pre-

cision metrics measure the overall satisfaction of the user population. A method that gets to

satisfy a majority of users is very likely to perform well under such metrics. In other words,

average precision metrics tend to favour the satisfaction of majorities, regardless of the

dissatisfaction of minorities, whereby algorithms that target majority tastes will expectably

yield good results on such metrics. This implicitly relies on the fact that on a random item

split, the number of test ratings for an item correlates with its number of training ratings,

and its number of positive ratings correlates with the total number of ratings. More for-

mally, the advantage of popularity-oriented recommendation comes from the fact that in a

random rating split, E PRtest ið Þj j½ � / PR ið Þj j / E PRtrain ið Þj j½ � / Rtrain ið Þj j, which means that

the items with many training ratings will tend to have many positive test ratings, that is,

they will be liked by many users according to the test data. We analyse this next, more

formally and in more detail.

In a popularity recommender i
u;POP
k is the k-th item in the target set with most ratings in

the training set—i.e., the system ranks items by decreasing order of Rtrain i
u;POP
k

� ��
�
�

�
�
�. This

ranking is almost user-independent (except for those, statistically negligible, user items

already in training which are excluded from the ranking) and therefore, for an AR

experimental design, Eq. (3) applies. Since we have
Pn

k¼1

PR i
u;POP
k

� ��
�
�

�
�
� ¼ maxs

Pn

k¼1

PR i
u;s
k

� ��
�

�
�

(as far as E PRtest ið Þj j½ � / Rtrain ið Þj j for a random training-test split), the popularity

620 Inf Retrieval J (2017) 20:606–634

123

recommendation is the best possible non-personalised system, maximising E Ps@n½ �.
Popularity thus achieves a considerably high precision value, just for statistical reasons.

For a 1R experimental design, using Eq. (2) (lemma) we have:

Uj jE Ps@n½ �
PRtestj j �E 1RPs@n½ � �

P
u E muP

u
s@mu Tuð Þ

� �

n PRtestj j

Now, since Ps@n and Pu
s@mu above are computed by AR, we may elaborate from

Eq. (3) for a non-personalised recommender, and we get:

Ij j
nt PRj j avgu2U

Xn

k¼1

PR i
u;s
k

� ��
�

�
��E 1RPs@n½ � � Cj j

nt PRj j avgu2U

Xmu

k¼1

PR i
u;s
k

� ��
�

�
�

This experimental approach is thus equally biased to popular items, since the latter

optimise
Pn

k¼1

PR i
u;s
k

� ��
�

�
�.

Note that the advantage of popularity over other recommenders is highly dependent on

the skewness in the distribution of ratings over items: if all items were equally popular, the

popularity recommender would degrade to random recommendation—in fact slightly

worse, as PRtest ið Þj j / Rtest ið Þj j ¼ Rj j= Ij j � Rtrain ið Þj j, so popular items would have fewer

positive test ratings. On the other extreme, if a few items (less than n) are liked by most

users, and the rest are liked by very few, then popularity approaches the maximum pre-

cision possible.

5.2 Effect of popularity distribution on the popularity bias

In order to illustrate how the dependence between the popularity precision and the back-

ground popularity distribution evolves, we simulate different degrees of skewness in rating

distributions. As a simulated distribution pattern we use a shifted power law

R ikð Þj j ¼ c1 þ b c2 þ kð Þ�a
, where a determines the skewness (e.g. a� 1.4 for MovieLens

0

0.02

0.04

0.06

0.08

0.1

0 0.4 0.8 1.2 1.6 2

P@
10

1R on simulated data

 Popularity
 pLSA
 MF
 kNN
 Random

0

0.2

0.4

0.6

0.8

1

Items

Simulated ratings

0

0.2

0.4

0.6

0.8

1

Items

Real datasets

Fig. 5 Effect of popularity distribution skewness on the popularity bias. The left graph shows the
cumulated popularity distribution of artificial datasets with simulated ratings, with skewness ranging from
a = 0 to 2. The x axis represents items by popularity rank, and the y axis displays the cumulative ratio of
ratings. The central graph shows the precision of different recommendation algorithms on each of these
simulated datasets. The right graph shows the cumulative distribution of positive ratings in real datasets

Inf Retrieval J (2017) 20:606–634 621

123

1M). Figure 5 (left) shows the shape of generated distributions ranging from uniform

(a = 0) to a very steep long-tailed popularity distribution (a = 2), and (centre) how the

measured precision evolves in this range. The artificial data are created with the same

number of users, items, and ratings (therefore the same rating density) as in MovieLens

1M, setting c1 and c2 by a fit to this dataset, and enforcing these constraints by adjusting b.
The rating values are assigned randomly on a 1-5 scale, also based on the prior distribution

of rating values in MovieLens.

The results in Fig. 5 (centre) evidence the fact that the precision of popularity-based

recommendation is heavily determined by the skewness of the distribution. It benefits from

steep distributions, and degrades to slightly below random (0.0077 versus 0.0100) when

popularity is uniform. This slightly below-random performance of popularity recommen-

dation at a = 0 is explained by the fact that E PRtest ið Þj j½ � / E Rtest ið Þj j½ � ¼ R ið Þj j �
E Rtrain ið Þj j½ � is inverse to the popularity ranking by Rtrain ið Þj j when R ið Þj j is uniform, as

predicted at the end of the previous section. kNN and MF stay essentially around random

recommendation. This is because the data are devoid of any consistent preference pattern

(as collaborative filtering techniques would assume) in this experiment, since the ratings

are artificially assigned at random, and the results just show the ‘‘pure’’ statistical

dependency to the popularity distribution. pLSA does seem to take advantage of item

popularity, as it closely matches the effectiveness of popularity recommendation. We show

only the 1R design, but the effect is the same in AR. The popularity bias is quite similarly

displayed empirically by other metrics we have tested, including recall, nDCG, MAP and

MRR, with and without cutoff.

This observation also explains the difference between datasets from IR and those from

recommendation with regards to the popularity bias. Figure 5 (right) shows the cumu-

lative distribution of positive user interaction data per item in three datasets: Netflix,

MovieLens, and Last.fm. The shapes of the curves are typical of long-tailed distributions,

where a few popular items accumulate most of the preference data (Celma 2010; Celma

and Cano 2008). This contrasts with the distribution of positive relevance judgments over

documents in TREC data (same figure)—where we have aggregated the judgments (as if,

so to speak, we appended the relevance judgment files) from 30 tracks, as made available

in the TREC relevance judgment list,4 obtaining a set of 703 queries, 129,277 docu-

ments, and 149,811 positive judgments. The TREC distribution is considerably flatter,

not far from uniform: 87.2% of documents are relevant to just one query, and the

maximum number of positive assessments per document is 25 (3.6% of queries), whereas

the top popular item in Netflix, MovieLens, and Last.fm, is liked by 20.1, 32.7 and 73%

of users, respectively. If we took, for instance, a full Web search log from a commercial

engine, we might find that the number of queries for which documents are relevant might

no longer have such a flat distribution, since we may expect certain documents to be

much more often the object of search than others. However, we use this aggregated view

here to illustrate what the IR researcher typically has in hands in common offline

evaluation practice—it would in fact be interesting to explore to what extent and how

our research might apply to large-scale search scenarios. We may expect to find a lower

limit to the bias strength in search data though: a document cannot be relevant to any

query, whereas an item (a song, a movie, a book), could be potentially liked by any

person.

4 http://trec.nist.gov/data/qrels_eng.

622 Inf Retrieval J (2017) 20:606–634

123

http://trec.nist.gov/data/qrels_eng

5.3 Sources of bias: IR versus RS

Several reasons account for this difference between retrieval and recommender datasets.

First, in IR queries are selected by design, intending to provide a somewhat varied testbed

to compare retrieval systems. Hence, including similar queries with overlapping relevance

would not make much sense. Second, queries in natural search scenarios are generally

more specific and narrower than global user tastes for recommendation, whereby the

corresponding relevant sets have much less intersection. Furthermore, the TREC statistics

we report are obtained by aggregating the data of many tracks, in order to seek any

perceptible popularity slant. The typical TREC experiments are actually run on separate

tracks comprising typically 50 queries, where very few documents, if any, are relevant to

more than one query. Note also that even though we have filtered out over 0.7 million non-

relevant plus nearly 5 million unlabelled documents in the TREC statistics, the non-

relevant documents actually remain as input to the systems, contrarily to experiments in the

recommender domain, thus making up an even flatter relevance distribution. Moreover, in

the usual IR evaluation setting, the systems have no access to the relevance data—thus,

they have no means to take a direct bias towards documents with many judgments—

whereas in recommendation, this is the primary input the systems (particularly collabo-

rative filtering recommenders) build upon. The popularity phenomenon has therefore never

been an issue in IR evaluation, and neither the metrics nor the methodologies have had to

even consider this problem, which arises now when bringing them to the recommendation

setting—where the overlap between user preferences is not only common, but actually

needed by collaborative filtering algorithms.

In contrast, the data on which recommender systems are evaluated are collected through

natural interaction with users, where the item selection for rating is subject to several kinds

of natural biases. For instance, the MovieLens datasets, probably the most popular in

recommender systems research, include movie ratings and other data collected from real

users in the MovieLens website. The 1M subset (for which we reported results in previous

sections) includes all the ratings entered from April 2000 to February 2003 by all users

(with a minimum of 20 ratings each) who registered into the system during the year 2000

(Harper and Konstan 2016). Users reached items in the MovieLens application through

several means including searching and browsing at the user’s initiative, as well as system’s

recommendation and front pages (e.g. top hits, recent releases). Item selection—and the

resulting popularity distribution—was therefore exposed to both user and system biases.

User bias factors include the probability that a random user has seen a movie (an assumed

precondition for entering a rating), and preference biases in the will to enter a rating (e.g.

people are typically more prone to rate movies they like than ones they do not, and the

opposite can be true in other, e.g. complaint-driven domains). The system may add its own

biases in the selection of front page items, and the overall biases may be subject to

reinforcement by a feedback loop with the recommendation algorithm itself (Fleder and

Hosanagar 2007). Similarly, the Last.fm dataset includes the complete music play history

of nearly 1000 users from February 2005 to May 2009 (Celma and Herrera 2008). Again,

how users reach music tracks and decide to listen to them is the result of a complex

combination of factors where some items have a higher prior probability to be reached than

others. No further data sampling bias was there beyond that in neither of these two datasets

other than selecting a period of time of observation.

We tend to believe that the popularity biases observed in these datasets have for the

most part a source outside the system: one would think the biases of culture, marketing,

Inf Retrieval J (2017) 20:606–634 623

123

commercial distribution channels, or mouth-to-mouth, should dominate over the potential

deviations introduced by the system, as far as the latter can be expected not to strongly take

the user away from his natural, personal view of the world. The direction we research here

is nonetheless independent from that concern. Understanding and dissecting the factors that

come into play in giving rise to popularity biases is beyond the reach of our current

research (see e.g. Cañamares and Castells (2014) for preliminary steps in that direction). In

our present work, we aim to prove that such biases interfere in the outcome of offline

experiments in potentially drastic ways: the offline evaluation procedure rewards the

recommendation of items for which many observations are available, regardless of whether

the wealth—or scarcity—of observations corresponds to an actual abundance—or lack—of

positive appreciation by the user. In light of this realisation, we seek to provide principled

procedures for removing the popularity-bias variable from the experiment as far as pos-

sible, as we propose in the next section.

6 Overcoming the popularity bias

After analysing the effects of popularity in precision metrics, the issue remains: to what

extent do the good results of popularity recommendation reflect only a spurious bias in a

metric, or any degree of actual recommendation quality? The same question should be

raised for pLSA, which seems to follow the popularity trends quite closely. We address the

question by proposing and examining alternative experimental configurations, where the

statistical role of popularity gets reduced.

6.1 Percentile-based approach (P1R)

We propose a first approach to neutralise the popularity bias, which consists in partitioning

the set of items into m popularity percentiles I k � I , breaking down the computation of

accuracy by such percentiles, and averaging the m obtained values. By doing so, in a

common long-tailed popularity distribution, the margin for the popularity bias is consid-

erably reduced, as the difference Dk in the number of positive test ratings per item between

the most and least popular items of each percentile is not that high. The popularity rec-

ommender is forced to recommend as many unpopular as popular items, thus levelling the

statistical advantage to a significant extent. It remains the optimal non-personalised

algorithm, but the difference—and thus the bias—is considerably reduced. The technique

is illustrated in Fig. 6a.

A limitation of this approach is that it restricts the size of the target sets by Tuj j � Ij j=m.
For instance, for m = 10 in MovieLens 1M, this imposes a limit of Tuj j � � 370, which

seems acceptable for 1R. The restriction can be more limiting in the AR approach, e.g. the

TI and AI options cannot be applied (except within the percentiles). For this reason, we

will only apply the percentile technique in the 1R design, a configuration to which we shall

refer as P1R.

6.2 Uniform test item profiles (UAR, U1R)

We now propose a second technique consisting of the formation of data splits where all

items have the same amount of test ratings. The assumption is that the items with a high

number of training ratings will no longer have a statistical advantage by having more

624 Inf Retrieval J (2017) 20:606–634

123

positive test ratings. That is, the relation E PRtest ið Þj j½ � / Rtrain ið Þj j described in Sect. 5.1

breaks up. The approach consists of splitting the data by picking a set T of candidate items,

and a number g of test ratings per item so that Tj jg= Rj j ¼ r. For this to be possible, it is

necessary that 1� eð Þ R ið Þj j 	 g; 8i 2 T , where e is a minimum ratio of training ratings per

item we consider appropriate. In particular, in order to allow for n-fold cross-validation, we

should have e	 1=n. The selection of T can be done in several ways. We propose to do so

in a way that it maximises Tj j, i.e., to use as many different target test items as possible,

avoiding a biased selection towards popular items. If we sort ik 2 I by popularity rank,

it can be seen that this is achieved by picking T ¼ ik 2 Ijk� ff g with

f ¼ max kj 1� eð Þ R ikð Þj jk= Rj j 	 rf g, so that g ¼ 1� eð Þ R ifð Þj j. Figure 6b illustrates this

procedure.

The expected effect of this approach is that the statistical relation E PRtest ið Þj j½ � /
PR ið Þj j no longer holds, and neither should hold now, as a consequence, the rationale

described in Sect. 5.1 for popularity being the optimum non-personalised recommender. In

fact, since E PRtest ið Þj j½ � ¼ g � PR ið Þj j= R ið Þj j for any i 2 T , and g ¼ r � Rj j= Tj j, it can be

seen that if C ¼ T (TI policy) Eq. (3) for AR yields:

E Ps@n½ � ¼ r Rj j
nt Uj j

Xn

k¼1

avg
u2U

PR i
u;s
k

� ��
�

�
�

R i
u;s
k

� ��
�

�
�

for any non-personalised recommender. If the ratio PR i
u;s
k

� ��
�

�
�= R i

u;s
k

� ��
�

�
� of positive ratings

does not depend on k, we have E Ps@n½ � ¼ E PRND@n½ � ¼ rd. This means that popularity

recommendation may get some advantage over other recommenders only if—and to the

extent that—popular items have a higher ratio of positive ratings than unpopular items, and

popularity recommendation will degrade to random precision otherwise. On the other hand,

it can be seen that if C)T (i.e., the TI policy is not adhered to), then E PRND@n½ � would get

reduced by a factor of Tj j= Cj j.
For a non-personalised recommender in a 1R design, elaborating from Eqs. (2) and (3)

we get:

Rj j
nt PRj j avgu2U

Xn

k¼1

PR i
u;s
k

� ��
�

�
�

R i
u;s
k

� ��
�

�
� �E 1RPs@n½ � � Rj j

nt PRj j avgu2U

Xmu

k¼1

PR i
u;s
k

� ��
�

�
�

R i
u;s
k

� ��
�

�
� ;

N
r.

ra
tin

gs

all ratings
test ratings

all ratings
test ratings
split ratio

N
r.

ra
tin

gs

(a) Percentile-based partition (b) Uniform test item profiles

Fig. 6 Rating splits by a a popularity percentile partition (left), and b a uniform number of test ratings per
item (right). On the left, the red dashed split curve represents the expectation E Rtest ið Þj j½ �—i.e., the random
split ratio needs not be applied on a per-item basis—whereas on the right it represents the actual exact value
of Rtest ið Þj j

Inf Retrieval J (2017) 20:606–634 625

123

an equivalent situation where the measured precision of popularity recommendation is

bound by the potential dependence between the ratio of positive ratings and popularity.

Figure 7 shows this ratio as PR ið Þj j= R ið Þj j with respect to the item popularity rank in

MovieLens 1M. It can be seen that indeed the ratio grows with popularity in this dataset,

which does lend an advantage for popularity recommendation. Even so, we may expect the

bias to be moderate—but this has to be tested empirically, as it depends on the dataset.

Note also that in applications where all ratings are positive (as, e.g. in our Last.fm setup),

popularity—and any non-personalised recommender—would drop exactly to random

precision (E Ps@n½ � ¼ rd in AR and 1=t in 1R).

A limitation of this approach is that the formation of T may impose limits on the value

of r, and/or the size of T . If the popularity distribution is very steep, T may turn out small

and therefore biased to a few popular items. Moreover, there is in general a solution for T

only up to some value of r—it is easy to see (formally, or just visually in Fig. 6b) that as

r ! 1 there is no item for which 1� eð Þk R ikð Þj j= Rj j 	r, unless the popularity distribution

was uniform, which is never the case in practice. We have however not found these

limitations to be problematic in practice, and common configurations turn out to be feasible

without particular difficulty. For instance, in MovieLens 1M we get Tj j = 1703 for r ¼
0.2 with e = 0.2 (allowing for a 5-fold cross-validation), resulting in g = 118 test ratings

per item.

This method can be used, as noted, in both the AR and 1R approaches. We shall refer to

these combinations as UAR and U1R respectively, where ‘U’ stands for the ‘‘uniform’’

number of item test ratings. In U1R it is important to set C ¼ T in order to sample non-

relevant items within T (i.e., Nu � T , for the TI policy). Otherwise, popularity would have

a statistical advantage over other recommenders, as it would systematically rank irrelevant

items in NunT below any relevant item in T , whereas other algorithms might not. The same

can be considered in UAR, unless the experimental setup requires Tuj j[Tj j, as, e.g. in the

AI design. In that case a slight popularity bias would arise, as we shall see next.

6.3 Experimental results

Figure 8 compares the results measured by 1R, AR and their corresponding popularity-

neutralising variants. The setup is the same as in previous sections, except that for AR, we

take TI-NN with Nuj j = 1700, to level with UAR in random precision. All the results

correspond to MovieLens 1M except Last.fm where indicated. It can be seen that P1R,

U1R and UAR effectively limit the popularity bias. The techniques seem to be more

0

0.1

0.2

0.3

0.4

0.5Fig. 7 Positive ratings ratio
versus popularity rank of each
item i in MovieLens 1M. The
graph plots PR ið Þj j= R ið Þj j, where
items are ordered by decreasing
popularity. We display averaged
values for 100 popularity
segments, for a smoothed trend
view

626 Inf Retrieval J (2017) 20:606–634

123

effective on 1R than AR: U1R and (even more) P1R actually place the popularity algo-

rithm by the level of random recommendation, whereas the measured popularity precision

decreases in UAR, but remains above kNN. The advantage of popularity over randomness

in U1R and P1R is explained by the bias in the ratio of positive ratings in popular items

(Fig. 7). This ratio is constant in Last.fm, whereby popularity drops to random in U1R, as

predicted by our analysis in the previous section, proving that the popularity bias remaining

in the uniform-test approach is caused by this factor. This residual bias is higher in U1R

than P1R, because in the former, Nu is sampled over a larger popularity interval

(Tj j = 1703 versus Ij j /10 = 370 items), giving a higher range for advantage by popu-

larity, which also explains why the latter still overcomes kNN in UAR. We may observe

the importance of using the TI policy in UAR, without which (in AI-UAR) a higher bias

remains. We also show the effect of removing the 10% most popular head items from the

test data (and also from C, i.e., they are excluded from Nu sampling) in 1R, as a simple

strategy to reduce the popularity bias (Cremonesi et al. 2010). We see that this technique

reduces the measured precision of popularity, but it is not quite as effective as the proposed

approaches.

It is finally worth emphasising how the percentile and uniform-test approaches dis-

criminate between pure popularity-based recommendation and an algorithm like pLSA,

which does seem to take popularity as one of its signals, but not the only one. The proposed

0

0.02

0.04

0.06

0.08

1R U1R U1R
Last.fm

P1R
m = 10

1R
-10% head

TI - AR
|Nu| = 1700

P@
10

 Popularity
 pLSA
 MF
 kNN
 Random

0.12

0.18

0

0.1

0.2

0.3

0.4

0.5

0.6

TI - UAR AI - UAR

1R U1R U1R
Last.fm

P1R
m = 10

1R
-10% head

TI - AR
|Nu| = 1700

TI - UAR AI - UAR

nD
C

G
@

10

 Popularity
 pLSA
 MF
 kNN
 Random

Fig. 8 Precision and nDCG of recommendation algorithms on MovieLens 1M (and Last.fm only where
indicated) using the 1R, U1R, P1R (m = 10 percentiles), AR, and UAR methodologies. The ‘‘-10% head’’
bars show the effect of removing the 10% most popular items from the test data (Cremonesi et al. 2010)

Inf Retrieval J (2017) 20:606–634 627

123

approaches allow uncovering the difference, neutralising popularity but not pLSA, which

remains the best algorithm in all configurations.

As we mentioned in Sect. 3, we have taken precision as a simple and common metric

for our study, but all the proposed alternatives can be used straightforwardly with other

standard IR metrics, such as MAP, nDCG, or MRR. Their application is direct in the AR

setting; and they can be applied in 1R by simply introducing them in place of precision in

the internal summation of Eq. (1). Figure 8 shows results for nDCG, where we see that the

analysed patterns hold just the same (we use the rating values above the relevance

threshold as relevance grades for the computation of this metric). Results in terms of recall,

MAP and MRR show quite the same trends. The AR approach provides room for a slightly

wider metric variety than 1R, in the sense that some metrics reduce to each other in 1R. For

instance, for a single relevant item, MAP is equivalent to Mean Reciprocal Rank (MRR

¼ 1=k where k is the rank of the first relevant item). And nDCG becomes insensitive to

relevance grades in 1R (the grade of the single relevant item cancels out by the metric

normalisation), whereas grades do make a difference in AR.

7 Related work

To the best of our knowledge, the sparsity bias in recommender system evaluation has not

been explicitly studied and analysed formally before. The development of algorithms that

are able to cope with the sparsity of data is indeed a prominent research problem addressed

in the literature, in the context of cold-start situations (being able to recommend new items

and/or work with new users, see e.g. Kluver and Konstan 2014). However, as we have

presented in the paper, the data sparsity also affects the behaviour of the evaluation

metrics, mainly as a statistical bias that does not reflect any actual variation of the true

recommendation accuracy, but a perturbation on the range of the evaluation metric values.

This perspective, as far as we know, has not been explored in depth in the field.

The popularity bias and its effects on recommendations started to be reported in recent years

as an explicit issue, aside from the novelty/diversity problem or the existence of niche items

(Jannach et al. 2015; Fleder and Hosanagar 2007; Celma and Cano 2008; Levy and Bosteels

2010). In (Cremonesi et al. 2010), the authors acknowledged the fact that recommending

popular items is trivial; hence, to successfully assess the accuracy of the recommendation

algorithms presented in that paper, the authors partitioned the test data in two subsets: one only

including very popular items (short-head) and another with the rest of the items (long-tail). For

the second subset, the very popular items were excluded from the test set, a strategy followed

by other authors to discriminate between pure popularity-based and personalised recom-

mendations (Shi et al. 2011, 2012; Chen and Pan 2013). As we have presented in Fig. 8, this

method is not as effective as the approaches we propose while, at the same time, our methods

allow a more realistic setting where all the available information is used.

A different perspective was studied by Jannach et al. (2015), who explored several

variations of recommendation algorithms and analysed how they affect the popularity bias

and, as an obvious trade-off in offline experiments, their final performance in terms of

accuracy. They observed that less popular items could be recommended with only small

compromises on accuracy, although this may result in overfitted models, and hence, less

generic and adjustable to any context. Upon a probabilistic reconstruction of memory-

based collaborative filtering, Cañamares and Castells (2017) found deeper, structural

reasons why neighbour-based algorithms are biased towards recommending popular items.

628 Inf Retrieval J (2017) 20:606–634

123

Such findings thus confirm the fact that collaborative filtering algorithms are indeed biased

towards popular items, and some techniques are proposed (by Jannach et al.) to somewhat

straighten the bias. Research in this strand therefore addresses the problem at the algo-

rithmic level. Our work is thus complementary in the perspective that we focus instead on

the metrics and methodology that evaluate the algorithms.

In the IR field, metrics have been proposed with the specific purpose of better dealing

with situations where relevance judgments are far from complete, such as bpref (Buckley

and Voorhees 2004) and infAP (Yilmaz and Aslam 2006). The former can be thought of as

the inverse of the fraction of judged irrelevant documents that are retrieved before relevant

ones, whereas the latter is based on subsampling from the judgment pool and estimating

the average precision from the subsample directly.

bpref uð Þ ¼ avg
i2PRtest uð Þ

1�
j 2 NR uð Þjsus jð Þ\sus ið Þ
	
�
�

�
�

min PRtest uð Þj j; NR uð Þj jð Þ

� �

infAP uð Þ ¼ avg
i2PRtest uð Þ

1

sus ið Þ þ
sus ið Þ � 1

sus ið Þ
d100uj j

sus ið Þ � 1
�

rel u; sus ið Þ
� �

rel u; sus ið Þ
� �

þ nrel u; sus ið Þ
� �

 !

where we recall that sus ið Þ is the rank position of item i by system s for user u, NR uð Þ ¼
Rtest uð ÞnPR uð Þ represents the set of judged non-relevant items for a specific user u, and

rel u; kð Þ ¼ j 2 PRtest uð Þjsus jð Þ� k
	
�
�

�
� and nrel u; kð Þ ¼ j 2 NR uð Þjsus jð Þ\k

	
�
�

�
� denote the

number of relevant and not-relevant items presented above position k in the ranking.

For the sake of comparison, we present in Fig. 9 the behaviour of these metrics for the

same configurations we showed in Fig. 2. If we compare the two figures, we observe that

bpref and infAP do counter the popularity bias in the AR option for MovieLens. To this

extent, these metrics could be seen as a good alternative to our proposed approaches.

However, bpref and infAP seem to drag down pLSA along with popularity, whereas our

methods clearly distinguish pLSA from popularity, ranking the former above all systems.

Moreover, contrary to our approaches, popularity is still ranked first by bpref and infAP in

Last.fm (AR option) Furthermore, the metrics seem to overestimate the performance of the

random recommender in AR, to the point that random recommendation is the top system in

Last.fm according to bpref, tied with popularity (and the third system by infAP, above MF

and kNN), which we might regard as a shortcoming of these metrics.

We should also note that bpref does not make sense in the 1R configuration as the non-

relevance judgments are removed in this option, and bpref returns 1 for all systems because

a single relevant item is sampled per run (we therefore omit 1R for bpref in the figure). In

fact, so-called implicit feedback datasets (the most common for recommender systems in

real applications) such as Last.fm do not consider negative relevance at all, and bpref

mostly loses meaning and becomes rather a measure of coverage (how many relevant items

the system is able to compute a score for, related to the fact that the ranking function of

most collaborative filtering algorithms is undefined for some user-item pairs), which

explains the high metric value for random recommendation and popularity in Last.fm (as

they reach full coverage). On 1R, infAP seems to display a similar bias for popularity as

P@10 was shown to have in Fig. 2, contrary to our proposed approaches, which are more

consistent across all configurations.

Some bias-aware metrics have been proposed in the RS field as well. A first example

can be found in (Shani et al. 2008), where a modified exponential decay score (a metric

similar to nDCG proposed in Breese et al. 1998) was introduced so that higher scores are

Inf Retrieval J (2017) 20:606–634 629

123

given to less popular items, by introducing an item factor in the metric that accounts for the

inverse item popularity. A more principled variation was proposed in (Steck and Xin 2010)

and (Steck 2011), where the authors defined a popularity-stratification weight for the recall

metric to account for the fact that ratings are missing not at random. The authors modify

 Popularity

 pLSA

 MF

 kNN

 Random

0

0.1

0.2

0.3

0.4

0.5

AI - AN TI - AN

bp
re

f
AR

MovieLens

0

0.2

0.4

0.6

|Nu| = 2,500

0

0.1

0.2

0.3

0.4

0.5

in
fA

P

AR

MovieLens

0

0.05

0.1

0.15

0.2

|Nu| = 2,500
0

0.2

0.4

0.6

0.8

MovieLens Last.fm

1R

0

0.001

0.002

0.003

|Nu| = 2,500

Last.fm (TI - NN)

Last.fm (TI - NN)

Last.fm (TI - NN)

0

0.05

0.1

AI - AN TI - AN

AI - AN TI - AN

st
ra

tif
ie

d
re

ca
ll@

10

AR

MovieLens

0

0.2

0.4

0.6

0.8

1

MovieLens Last.fm

1R

Fig. 9 bpref (top), infAP (middle) and stratified recall with c ¼ 1 (bottom) of recommendation algorithms
on MovieLens 1M and Last.fm using AR and 1R configurations. The displayed configurations are the same
as in Fig. 2 for P@10, for comparison

630 Inf Retrieval J (2017) 20:606–634

123

the recall metric by introducing weights based on the probability of observing a relevant

rating for an item, these probabilities being a smooth function of the items’ probabilities

(more specifically, a polynomial relationship is assumed by the authors, allowing to

consider different degrees depending on the missing data mechanism). In terms of our own

notation used along the paper, the metric has the following definition:

stratified - recall u; sð Þ@n ¼
X

i2topus Tu;nð Þ\PRtest uð Þ
PR ið Þj j�

c
cþ1=

X

i2PRtest uð Þ
PR ið Þj j�

c
cþ1

0

@

1

A

The parameter c sets how aggressive the popularity compensation should be, ranging

from c ¼ 0, for which stratified recall is equal to plain recall, to c ¼ 1, for which the

popularity penalization is linear to the number of positive ratings. Stratified recall can be

seen as a reversed equivalent of relevance-aware long-tail novelty metrics proposed by

Vargas and Castells (2011), which consider the option to weight novelty metrics (such as

item ‘‘unpopularity’’) by the item relevance—whereas stratified recall weights relevance

by unpopularity.

Steck (2011) reports experimental results for c ¼ 1 and 1. We show in Fig. 9 (bottom)

the results with this metric for c ¼ 1 as an intermediate value, on the same configuration as

in Fig. 2 for P@10. We can see that except in AR for Last.fm, stratified recall does not

differ much from precision as far as the popularity bias is concerned: popularity remains

the second best algorithm according to the metric. In AR on Last.fm, stratified recall highly

overemphasises the performance of random recommendation to the point of ranking it as

the top system. It thus seems that, in these tests, the metric either falls short in penalising

popularity, or overdoes it. A more balanced middle ground might likely be found from

some appropriate, domain and configuration-dependent, value of c. Besides the burden of

tuning, choosing the appropriate parameter value would seem like a somewhat arbitrary

decision for which we do not find straightforward criteria.

8 Conclusions

The application of Information Retrieval methodologies to the evaluation of recommender

systems is not necessarily as straightforward as it may seem. Hence, it deserves close

analysis and attention to the differences in the experimental conditions, and their impli-

cations on the explicit and implicit principles and assumptions on which the metrics build.

We have proposed a systematic characterisation of design alternatives in the adaptation of

the Cranfield paradigm to recommendation tasks, aiming to contribute to the convergence

of evaluation approaches. We have identified assumptions and conditions underlying the

Cranfield paradigm which are not granted in usual recommendation experiments. We have

detected and examined resulting statistical biases, namely test sparsity and item popularity,

which do not arise in common test collections from IR, but do interfere in recommendation

experiments. Sparsity is clearly a noisy variable that is meaningless with respect to the

value of a recommendation. Whether popularity is in the same case is less obvious; we

propose experimental approaches that neutralise this bias, leaving way to an unbiased

observation of recommendation accuracy, isolated from this factor. With a view to their

practical application, we have identified and described the pros and cons of the array of

configuration alternatives and variants analysed in this study.

Inf Retrieval J (2017) 20:606–634 631

123

In general we have found that evaluation metrics computed in AR and 1R approaches

differ in how they are averaged. This means, more specifically, that precision obtained by

approaches following a 1R design is bound linearly by precision of AR approaches.

Moreover, we have observed that a percentile-based evaluation considerably reduces the

margin for the popularity bias, although the main limitation of this approach is that it

specifies a constraint on the size of the possible target sets. Additionally, a uniform-test

approach removes any statistical advantage provided by having more positive test ratings.

Furthermore, we have found that both approaches discriminate between pure popularity-

based recommendation and an algorithm like pLSA.

Popularity effects have started to be reported recently in recommender systems research

and practice. Our research complements such findings by seeking principled theoretical

and empirical explanations for the biases, and providing solutions within the frame of IR

evaluation metrics and methodology—complementarily to the potential definition of new

special-purpose metrics (Steck 2011). The extent to which popularity is a noisy signal may

be further analysed by developing more complete metric schemes incorporating gain and

cost dimensions, where popular items would expectably score lower. Such metrics may,

e.g. account for the benefits (to both recommendation consumers and providers) drawn

from novel items in typical situations (Vargas and Castells 2011), as a complement to plain

accuracy. Online tests with real users should also be valuable for a comparative assessment

of offline observations, and the validation of experimental alternatives. Finally, we think

further central questions could be properly addressed and answered by the construction of

new collections under appropriate conditions, e.g. devoid of certain biases in the data. Such

an endeavour is most possibly out of the reach of a single research group, and certainly

requires solving new practical problems, but we think it is feasible. In such an initiative it

should be wise to tap into the knowledge, experience and lessons learned over more than

two decades around the TREC community.

Acknowledgements This work was partially supported by the national Spanish Government (Grants Nr.
TIN2013-47090-C3-2 and TIN2016-80630-P). We wish to express our gratitude to the anonymous
reviewers whose insightful and generous feedback guided us in producing an enhanced version of the paper
beyond the amendment of flaws and shortcomings.

References

Armstrong, T. G., Moffat, A., Webber, W., & Zobel, J. (2009a). Has ad-hoc retrieval improved since 1994?
In Proceedings of the 32nd ACM conference on Research and development in Information Retrieval,
SIGIR’09. ACM, pp. 692–693.

Armstrong, T. G., Moffat, A., Webber, W., & Zobel, J. (2009b). Improvements that don’t add up: Ad hoc
retrieval results since 1998. In Proceedings of the 18th ACM conference on Information and knowledge
management, CIKM’09. ACM, pp. 601–610.

Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern information retrieval: The concepts and technology
behind search (2nd ed.) (ACM Press Books). Addison-Wesley Professional.

Barbieri, N., Costa, G., Manco, G., & Ortale, R. (2011). Modeling item selection and relevance for accurate
recommendations: a bayesian approach. In Proceedings of the 5th ACM conference on recommender
systems, RecSys’11. ACM, pp. 21–28.

Basu, C., Hirsh, H., & Cohen, W. W. (1998). Recommendation as classification: Using social and content-
based information in recommendation. In Proceedings of AAAI/IAAI’98, pp. 714–720.

Bellogı́n, A., Castells, P., & Cantador, I. (2011). Precision-oriented evaluation of recommender systems: an
algorithmic comparison. In Proceedings of the 5th ACM conference on recommender systems, Rec-
Sys’11. ACM, pp. 333–336.

632 Inf Retrieval J (2017) 20:606–634

123

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collab-
orative filtering. In Proceedings of the 14th annual conference on uncertainty in artificial intelligence,
UAI’98, pp. 43–52.

Buckley, C., Dimmick, D., Soboroff, I., & Voorhees, E. M. (2007). Bias and the limits of pooling for large
collections. Information Retrieval, 10(6), 491–508.

Buckley, C., & Voorhees, E. M. (2004). Retrieval evaluation with incomplete information. In Proceedings
of the 27th ACM conference on research and development in information retrieval, SIGIR’04. ACM,
pp. 25–32.

Cañamares, R., & Castells, P. (2014). Exploring social network effects on popularity biases in recommender
systems. In Proceedings of the 6th workshop on recommender systems and the social web, RSWeb’14,
at the 8th ACM conference on recommender systems, RecSys’14.

Cañamares, R., & Castells, P. (2017). A probabilistic reformulation of memory-based collaborative filter-
ing—Implications on popularity biases. In Proceedings of the 40th annual international ACM SIGIR
conference on research and development in information retrieval, SIGIR’17. ACM.

Celma, O. (2010).Music recommendation and discovery: The long tail, long fail, and long play in the digital
music space (1st ed.). Berlin: Springer.

Celma, O., & Cano, P. (2008). From hits to niches? Or how popular artists can bias music recommendation
and discovery. In NETFLIX’08: Proceedings of the 2nd KDD workshop on large-scale recommender
systems and the netflix prize competition. ACM, pp. 1–8.

Celma, O., & Herrera, P. (2008). A new approach to evaluating novel recommendations. In Proceedings of
the 2nd ACM conference on recommender systems, RecSys’08. ACM, pp. 179–186.

Chen, L., & Pan, W. (2013). Cofiset: Collaborative filtering via learning pairwise preferences over item-sets.
In Proceedings of the 13th SIAM international conference on data mining, pp. 180–188.

Cremonesi, P., Koren, Y., & Turrin, R. (2010). Performance of recommender algorithms on top-n recom-
mendation tasks. In Proceedings of the 4th ACM conference on recommender systems, RecSys’10.
ACM, pp. 39–46.

Fleder, D. M. and Hosanagar, K. (2007). Recommender systems and their impact on sales diversity. In
Proceedings 8th ACM conference on electronic commerce (EC’07), pp. 192–199.

Harper, F. M., & Konstan, J. A. (2016). The movielens datasets: History and context. ACM Transactions on
Interactive Intelligent Systems, 5(4), 19.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems, 22(1), 5–53.

Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions on Information
Systems, 22(1), 89–115.

Jambor, T., & Wang, J. (2010a). Goal-driven collaborative filtering—A directional error based approach. In
C. Gurrin, Y. He, G. Kazai, U. Kruschwitz, S. Little, T. Roelleke, S. Rüger, & K. Rijsbergen (Eds.),
Advances in information retrieval (vol. 5993, chapter 36, pp. 407–419). Springer.

Jambor, T., & Wang, J. (2010b). Optimizing multiple objectives in collaborative filtering. In Proceedings of
the 4th ACM conference on recommender systems, RecSys’10. ACM, pp. 55–62.

Jannach, D., Lerche, L., Kamehkhosh, I., & Jugovac, M. (2015). What recommenders recommend: an
analysis of recommendation biases and possible countermeasures. User Modeling and User-Adapted
Interaction, 25(5), 427–491.

Kluver, D., & Konstan, J. A. (2014). Evaluating recommender behavior for new users. In Proceedings of the
8th ACM conference on recommender systems, RecSys’14. ACM, pp. 121–128.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems.
Computer, 42(8), 30–37.

Levy, M., & Bosteels, K. (2010). Music recommendation and the long tail. In 1st workshop on music
recommendation and discovery, WOMRAD’10, at the 4th ACM conference on recommender systems,
RecSys’10.

Pradel, B., Usunier, N., & Gallinari, P. (2012). Ranking with non-random missing ratings: Influence of
popularity and positivity on evaluation metrics. In Proceedings of the 6th ACM conference on rec-
ommender systems, RecSys’12. ACM, pp. 147–154.

Shani, G., Chickering, D. M., & Meek, C. (2008). Mining recommendations from the web. In Proceedings of
the 2nd ACM conference on recommender systems, RecSys’08. ACM, pp. 35–42.

Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In F. Ricci, L. Rokach, B.
Shapira, & P. B. Kantor (Eds.), Recommender systems handbook (chapter 8, pp. 257–297). Springer.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., & Hanjalic, A. (2012). Climf: Learning to
maximize reciprocal rank with collaborative less-is-more filtering. In Proceedings of the 6th ACM
conference on recommender systems, RecSys’12. ACM, pp. 139–146.

Inf Retrieval J (2017) 20:606–634 633

123

Shi, Y., Serdyukov, P., Hanjalic, A., & Larson, M. (2011). Personalized landmark recommendation based on
geotags from photo sharing sites. In Proceedings of the 5th international conference on weblogs and
social media.

Steck, H. (2011). Item popularity and recommendation accuracy. In Proceedings of the 5th ACM conference
on recommender systems, RecSys’11. ACM, pp. 125–132.

Steck, H., & Xin, Y. (2010). A generalized probabilistic framework and its variants for training top-
k recommender system. In Proceedings of the workshop on the practical use of recommender systems,
algorithms and technologies, PRSAT’10, pp. 35–42.

van Rijsbergen, C. J. (1989). Towards an information logic. SIGIR Forum, 23(SI), 77–86.
Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender

systems. In Proceedings of the 5th ACM conference on recommender systems, RecSys’11. ACM,
pp. 109–116.

Voorhees, E. M. (2001). The philosophy of information retrieval evaluation. In Evaluation of cross-lan-
guage information retrieval systems, 2nd workshop of the cross-language evaluation forum, CLEF’01,
revised papers, pp. 355–370.

Voorhees, E. M., & Harman, D. K. (Eds.). (2005). TREC: Experiment and evaluation in information
retrieval. Cambridge: MIT Press.

Yilmaz, E., & Aslam, J. A. (2006). Estimating average precision with incomplete and imperfect judgments.
In Proceedings of the 15th ACM conference on information and knowledge management, CIKM’06.
ACM, pp. 102–111.

634 Inf Retrieval J (2017) 20:606–634

123

	Statistical biases in Information Retrieval metrics for recommender systems
	Abstract
	Introduction
	Applying Information Retrieval methodologies to the evaluation of recommender systems
	Characterisation of design alternatives in IR methodologies for recommender systems
	Target item sampling
	AR versus 1R precision
	Preliminary experimental comparison
	Analytical relation between AR and 1R precision

	Sparsity bias
	Measuring the expected precision
	Testing the sparsity bias

	Popularity bias
	Popularity-driven recommendation
	Effect of popularity distribution on the popularity bias
	Sources of bias: IR versus RS

	Overcoming the popularity bias
	Percentile-based approach (P1R)
	Uniform test item profiles (UAR, U1R)
	Experimental results

	Related work
	Conclusions
	Acknowledgements
	References

