
INFORMATION RETRIEVAL EFFICIENCY

Efficient distributed selective search

Yubin Kim1
• Jamie Callan1 • J. Shane Culpepper2 •

Alistair Moffat3

Received: 27 May 2016 / Accepted: 1 November 2016 / Published online: 25 November 2016
� Springer Science+Business Media New York 2016

Abstract Simulation and analysis have shown that selective search can reduce the cost of

large-scale distributed information retrieval. By partitioning the collection into small

topical shards, and then using a resource ranking algorithm to choose a subset of shards to

search for each query, fewer postings are evaluated. In this paper we extend the study of

selective search into new areas using a fine-grained simulation, examining the difference in

efficiency when term-based and sample-based resource selection algorithms are used;

measuring the effect of two policies for assigning index shards to machines; and exploring

the benefits of index-spreading and mirroring as the number of deployed machines is

varied. Results obtained for two large datasets and four large query logs confirm that

selective search is significantly more efficient than conventional distributed search archi-

tectures and can handle higher query rates. Furthermore, we demonstrate that selective

search can be tuned to avoid bottlenecks, and thus maximize usage of the underlying

computer hardware.

Keywords Selective search � Distributed search � Load balancing � Efficiency

This is an extended version of work first presented as a short paper at the 2016 ACM-SIGIR International
Conference on Research and Development in Information Retrieval (Kim et al. 2016b).

& Yubin Kim
yubink@cmu.edu

Jamie Callan
callan@cs.cmu.edu

J. Shane Culpepper
shane.culpepper@rmit.edu.au

Alistair Moffat
ammoffat@unimelb.edu.au

1 Carnegie Mellon University, Pittsburgh, PA, USA

2 RMIT University, Melbourne, Australia

3 The University of Melbourne, Melbourne, Australia

123

Inf Retrieval J (2017) 20:221–252
DOI 10.1007/s10791-016-9290-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-016-9290-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-016-9290-6&amp;domain=pdf


1 Introduction

A selective search architecture divides a document corpus or corpus tier into P topic-based

partitions (shards), and assigns them to C processing cores, typically with P � C� 1.

When a query arrives, a resource ranking algorithm (also known as ‘‘resource selection’’ or

‘‘shard ranking’’) selects a small number of shards to be interrogated for that query. The

search results from those shards are combined to produce the final results for the query.

Selective search has been shown to provide similar effectiveness to exhaustive search

when measuring early precision, and can provide additional efficiency-effectiveness trade-

offs when working in low resource environments (Kulkarni and Callan 2010a, b; Kulkarni

2013; Aly et al. 2013; Kulkarni and Callan 2015).

Previous investigations argued that selective search is substantially more efficient than a

typical distributed search architecture based on the number of postings processed when

evaluating a small, single query stream. While this metric is suitable for comparing the

work done between different architectures, it does not consider how work is divided across

processors, or behavior when multiple query streams are evaluated in parallel. The tradi-

tional distributed search architecture using a random assignment of documents to shards

tends to spread the workload evenly, and is relatively immune to bottlenecks. In contrast, a

selective search architecture, which deliberately concentrates similar documents into a few

index shards, might be vulnerable to uneven workloads, and hence leave processing

resources idle. Selective search might also be more sensitive to tuning parameters.

Here we use an event-based simulator to investigate the efficiency of selective search,

the details of which are discussed in Sect. 4. A simulator makes it possible to investigate a

wider range of machine configurations than would be practical in a live system; in our case,

we provide realistic measurements of query waiting times, query processing costs, query

latency, system throughput, and hardware utilization under a query processing environment

representative of a practical real-world implementation. Our investigation extends prior

work by defining a more realistic experimental methodology for studying efficiency that

employs similarly sized index shards, long query streams extracted from web search logs,

and varying query arrival rates. In particular, we present a detailed study of the compu-

tational costs, load distribution, and throughput of selective search so as to address four

research questions:

RQ 1 Is selective search more efficient than exhaustive search in a parallel query pro-

cessing environment? (Sect. 5.1)

RQ 2 How does the choice of resource selection algorithm affect throughput and load

distribution in selective search, and how can any imbalances originating from resource

selection be overcome?(Sect. 5.2)

RQ 3 How do different methods of allocating shards to machines affect throughput and

load distribution across machines? (Sect. 5.3)

RQ 4 Does selective search scale efficiently when adding more machines and/or shard

replicas? (Sect. 5.4)

This paper includes and extends work initially presented in preliminary form in a short

conference paper (Kim et al. 2016b), and also provides greater detail in regard to the

experimental conditions, so as to make the experiments reproducible by others. Although

the primary focus is on search efficiency, this work also describes simple improvements

222 Inf Retrieval J (2017) 20:221–252

123



that deliver improved search accuracy compared to prior results (Kulkarni 2013; Kulkarni

and Callan 2015), meaning that the system we study is more similar to what would be used

in practice. Experiments that report search efficiency include information about how

queries are affected at the 50, 75 and 99% percentiles, and how much time a typical query

spends in different parts of the system. Experiments with different resource selection

algorithms show the average utilization of machines in environments discussed by prior

research (Kulkarni 2013; Kulkarni and Callan 2015), and investigate the load imbalances

that can arise. Experiments that investigate the policies for assigning shards to machines

include information about the average loads on different machines for varying query

arrival rates, the overall throughput for different shard assignment policies, and how log-

based shard assignment compares to ten different instances of the more common random

assignment policy. Finally, this paper includes an investigation of how selective search

behaves as a system is scaled to a larger number of machines, which the preliminary work

did not address.

Prior to our investigation, selective search efficiency was reported presuming that

queries are evaluated sequentially. The investigation reported here provides a thorough

study of the efficiency and load balancing characteristics of selective search in a parallel

processing environment, to both broaden and deepen our understanding of this retrieval

architecture.

2 Related work

Selective search integrates ideas and techniques from cluster-based retrieval, distributed

retrieval, and federated search into a new architecture with distinct characteristics, some of

which have not yet been explored in depth. We begin by describing these roots, and then

summarize the state-of-the-art in selective search research.

2.1 Cluster-based retrieval

Cluster-based retrieval systems organize a corpus into hierarchical or flat clusters during

indexing. When a query is received, the most appropriate clusters are selected using

various methods. For example, cluster selection can be done by comparing the cosine

similarity of the query to cluster centroids. Systems using small collections and clusters

may return all of the documents in selected clusters; systems using larger clusters that

contain many more documents than a user would browse rank the documents in the

selected clusters and return just the highest-scoring documents. Early cluster-based

retrieval systems aimed to improve the accuracy of search, but were unable to achieve

consistent improvements in effectiveness (Croft 1980; Voorhees 1985; Griffiths et al.

1986; Willett 1988).

Typically cluster-based retrieval systems have many small clusters. For example, Can

et al. (2004) used clusters with average sizes of 8–128 documents per cluster across five

datasets, and Altingovde et al. (2008) used average cluster sizes of 128–313 documents per

cluster across three datasets. When clusters are small, many must be selected to maintain

acceptable accuracy; Can et al. searched 10% of the clusters, a heuristic threshold that was

also used in earlier investigations.

Clusters are stored in a single index, because so many must be searched for each query.

Cluster membership information is stored in inverted list data structures, and postings are

Inf Retrieval J (2017) 20:221–252 223

123



grouped by cluster membership so that large portions of an inverted list may be skipped

during query processing (Can et al. 2004; Altingovde et al. 2008). This architecture must

bear the I/O costs of reading complete inverted lists, and the computational costs of

processing them (albeit, efficiently). Can et al. (2004) note that storing each cluster in its

own index would reduce the computational costs of processing long inverted lists, but incur

prohibitive I/O costs (primarily disk seeks) due to the large number of clusters selected if

the data collection cannot fit in memory.

2.2 Distributed retrieval

When the index becomes too large to search quickly with a single machine, the index is

partitioned, and each partition is assigned to a distinct machine.

In term-based partitioning, each partial index is responsible for a non-overlapping

subset of the terms in the vocabulary (Moffat et al. 2006; Lucchese et al. 2007; Zhang and

Suel 2007; Cambazoglu et al. 2013). When the collection is searched, only indexes that

contain the query terms are searched. Because queries are typically short, only a few

indexes are required for each query, allowing multiple queries to be evaluated in parallel.

This style of index has largely fallen out of favor because it is prone to load imbalances

(Moffat et al. 2007). Cambazoglu et al. (2013) provide more details about term-based

partitioning approaches.

In document-based partitioning, each partial index is responsible for a non-overlapping

subset of the documents in the collection. There are two major approaches to creating the

document subsets: tiering and sharding. Tiering creates partitions that have different pri-

orities. Search begins at the top tier, and progresses to lower tiers only if necessary (Risvik

et al. 2003; Baeza-Yates et al. 2009b; Cambazoglu et al. 2010; Brefeld et al. 2011). Tiers

can be defined based on document characteristics such as geographic location, popularity,

or assessed quality. The alternative approach, sharding, creates partitions that have the

same priority and are searched in parallel (Tomasic and Garcia-Molina 1993; Cahoon et al.

2000; Puppin et al. 2006; Badue et al. 2007). Documents are usually assigned to shards

randomly or in a round-robin approach. However, the assignment can also be based on

document characteristics such as source (for example, URL).

Tiering and sharding are complementary methods that can be combined. For example,

the corpus might be divided into tiers based on document popularity or authority, and then

each tier divided into shards, with the shards distributed across a cluster of computers

(Orlando et al. 2001; Barroso et al. 2003; Baeza-Yates et al. 2007, 2009a; Brefeld et al.

2011; Francès et al. 2014). A tiered document-partitioned index is the most common

architecture for web search and other large-scale search tasks.

A variety of work has explored the efficiency of sharded search systems, covering topics

including: reducing the communications and merging costs when large numbers of shards

are searched (Cacheda et al. 2007); load balancing in mirrored systems (Macdonald et al.

2012; Freire et al. 2013); query shedding under high load to improve overall throughput

(Broccolo et al. 2013); and query pruning to improve efficiency (Tonellotto et al. 2013).

Other work focuses on addressing the load imbalances that arise when non-random shards

are used, including the development of techniques for strategic assignment of index

postings to shards, and strategic replication of frequently-accessed elements (Moffat et al.

2006, 2007). A common theme is that when a tier is searched, all of the tier’s shards are

searched.

224 Inf Retrieval J (2017) 20:221–252

123



2.3 Federated search

Sharded indexes and their search engines are a special case of federated search systems,

which integrate heterogeneous search services (for example, vertical search engines) or

search engines controlled by different organizations into a single service (Shokouhi and Si

2011). Usually the goal of federation is to send queries to as few of the underlying search

services as possible, so a resource selection algorithm is used. Three types of resource

selection have been proposed for federated search: term-, sample-, and classification-based

algorithms.

In term-based methods, each search service is represented as a bag of words, with

document ranking algorithms adapted to the task of ranking resources or services; GlOSS

(Gravano et al. 1999), CORI (Callan 2000), and the query likelihood model (Si and Callan

2004a) are all examples of this approach. The simplest term-based resource selection

algorithms are not very different from the cluster selection algorithms used for cluster-

based retrieval. Algorithms developed specifically for resource ranking usually model the

distribution of vocabulary across search services (Yuwono and Lee 1997; Hawking and

Thistlewaite 1999; Callan et al. 1999; Aly et al. 2013). Term-based algorithms typically

only support bag-of-words queries, but some also support corpus-level or cluster-level

preferences, or Boolean constraints (Gravano et al. 1999; Xu and Croft 1999; Callan 2000;

Liu and Croft 2004). A recent survey by Markov and Crestani (2014) provides a detailed

analysis of several popular term-based methods.

Each search service can also be represented by a small sample of its documents. The

samples from all search services are combined to create a centralized sample index, or CSI.

When a query is received, the CSI is searched, and each top-ranked document found in the

CSI is treated as a vote for the resource from which it was sampled. Many different

methods for weighting votes from different resources have been described (Si and Callan

2003, 2004b, 2005; Shokouhi 2007; Paltoglou et al. 2008; Thomas and Shokouhi 2009;

Kulkarni et al. 2012).

Classification-based algorithms represent each search service using a model combining

various features and trained through supervised learning. Examples of features include the

presence of specific words in the query, the scores of term-based and sample-based

algorithms, and the similarity of the query to a resource-specific query log (Arguello et al.

2009; Kang et al. 2012).

Sample-based algorithms have been regarded as being a little more effective than term-

based algorithms (Shokouhi and Si 2011); however, recently Aly et al. (2013) argued that

the term-based Taily algorithm is more effective than the best sample-based algorithms.

Term-based and sample-based algorithms are effective when the search engines are mostly

homogeneous. Both types of algorithm are unsupervised, meaning that training data is not

required. Supervised classification-based algorithms can be more effective than unsuper-

vised methods; however, their main advantage is their ability to select among heteroge-

neous resources (for example, ‘‘vertical’’ search engines), and exploit a wide range of

evidence.

Our focus in this paper is on the use of resource selection algorithms to select a few (of

many) search engines for a particular query. However, some resource selection algorithms

are very general and have been applied to a variety of other tasks, such as blog search,

desktop search, and personal metasearch (Seo and Croft 2008; Elsas et al. 2008; Kim and

Croft 2010; Thomas and Hawking 2009).

Inf Retrieval J (2017) 20:221–252 225

123



2.4 Selective search

Selective search is an architecture for large-scale search that combines ideas from cluster-

based retrieval, document-partitioned distributed search, and federated search architectures

(Kulkarni and Callan 2010a, b; Kulkarni 2013; Kulkarni and Callan 2015). The corpus is

divided into topic-based shards that are stored in separate indexes and distributed across

the processing resources. When a query arrives, a resource selection algorithm identifies a

subset of shards that are most likely to contain many of the relevant documents. The

selected shards are then searched and their answer lists merged to form an overall answer.

Puppin et al. (2006) and Cacheda et al. (2007) were among the first to study the

combination of topic-based partitioning and resource selection to improve distributed

search. They showed that partitioning a corpus into just a few large topics (11 and 17

topics, respectively) stored in separate indexes produced more efficient search than a

traditional replicated distributed system. Kulkarni and Callan (2010a, b) increased the

number of clusters (for example, 50–1000), placed greater emphasis on resource selection

due to the larger number of index shards, and named the architecture selective search. They

suggested that the desired number of topics is not an inherent property of a corpus, but

instead a parameter to be set based upon efficiency considerations.

Classic cluster-based retrieval systems produce many small clusters. Selective search

systems produce and search a smaller number of large topic-based clusters. For example,

Kulkarni (2013) and Aly et al. (2013) used clusters that contained approximately 500,000

documents, and queries typically searched 3–5 clusters. This difference makes it practical

to store each cluster in its own index, which has two important implications. First, selective

search systems have much lower I/O and computational costs than cluster-based retrieval

systems because they read from disk only a small fraction of each term’s total postings.

Second, index shards can be assigned to different machines, as is typical for distributed

retrieval systems.

Previous studies showed that selective search systems and typical distributed retrieval

architectures have similar accuracy, but that selective search systems are much more effi-

cient because they search only a few index shards (Kulkarni and Callan 2010a, b; Aly et al.

2013; Kulkarni 2013; Kulkarni and Callan 2015). The topic-based indexes used for selective

search are also more compatible with query processing optimizations such as WAND than

are the randomly-partitioned indexes often used for distributed retrieval (Kim et al. 2016a;

Kulkarni and Callan 2015). However, those studies determined the computational cost by

counting the number of postings processed (Aly et al. 2013; Kulkarni and Callan 2015), or

by measuring execution time on proof-of-concept implementations that were deployed on

just one or two multi-core machines and processed queries sequentially (that is, just a single

query active at any time) (Kulkarni 2013). Cacheda et al. (2007) compared the efficiency of

a cluster-based retrieval system to a traditional replicated distributed system, but the cluster-

based system had many fewer shards than a typical selective search system, and the

experiments did not consider the cost of resource selection.

The fact that selective search systems search only a few shards for each query creates

architectural choices that received little attention in prior research. When any single query

will access only a few shards, it is practical for each processor to service query traffic for

multiple shards. Kulkarni and Callan (2015) studied an environment in which dozens or

hundreds of index shards were assigned to 16 processors. However it is an open question how

many shards to assign to each processor, how to assign shards to processors, and how to

balance computational loads when different index shards attract different amounts of query

226 Inf Retrieval J (2017) 20:221–252

123



traffic. In addition, it is unclearwhether selective search architectures are prone to bottlenecks

or load imbalances, especially when deployed across a larger number of machines.

2.5 Resource selection for selective search

Selective search uses resource selection algorithms similar to algorithms used for federated

search. Our investigation makes use of the Taily and Rank-S resource selection mecha-

nisms that were developed for selective search, thus we provide additional detail about

these algorithms.

In Rank-S, the query is used to rank documents in the centralized sample index (CSI),

which is a small, random sample of the total document collection. Document scores are

decayed exponentially and then treated as votes for the shards the documents were sampled

from Kulkarni et al. (2012). The exponentially-decayed vote of a document for its parent

resource is computed as:

VoteðdÞ ¼ ScoreCSIðdÞ � base�RankCSIðdÞ

where ScoreCSIðdÞ and RankCSIðdÞ are the document score and rank obtained by

searching the CSI; and base is a configurable parameter. The final score of a resource is
Pk

i¼1 VoteðdiÞ, the sum of the votes of the top-k documents retrieved from that resource.

Resources with a total score above 0.0001 are then selected, as originally described by

Kulkarni et al. (2012).

Taily assumes that the distribution of document scores for a single query term is

approximated by a Gamma distribution. The allocation algorithm uses two parameters, nc
and v, where nc is roughly the depth of the final ranked list desired, and v is the number of

documents in the top nc that a resource must be estimated as contributing in order to be

selected. Term scores are calculated from simple corpus statistics and fitted to a Gamma

distribution for each shard-term pair. Taily’s resource selection database records these

fitted Gamma distributions for each term t in resource i, describing the term’s score

distribution in that shard. Gamma distributions are represented by two parameters, the

shape parameter kti and the scale parameter hti. At query time, the cumulative distribution

function of the Gamma distribution is used to estimate the number of documents from each

resource that will have a score above a threshold derived from nc. Each resource that

provides v or more documents is selected (Aly et al. 2013).

When a query is received, Taily looks up two floating point numbers (the parameters of

the fitted Gamma distribution) for each index shard per query term, whereas Rank-S must

retrieve an inverted list for each query term. Taily’s computational costs are linear in the

number of index shards |S|, and nearly identical for each query of length |q|. The com-

putational costs for Rank-S vary depending on the document frequency (df ) of each query

term in the centralized sample index. The Rank-S approach is more efficient only when

df t\jSj for query term t. That is, for most applications Taily is faster to compute than

Rank-S (Aly et al. 2013).

3 Simulation model

Our goal is to study the computational characteristics of selective search in more realistic

and varied distributed processing environments than have been reported previously.

However, acquiring, configuring, and producing repeatable experiments with a variety of

Inf Retrieval J (2017) 20:221–252 227

123



real hardware configurations is expensive and time-consuming (Webber and Moffat 2005).

Simulation is recognized as a viable way of modeling computational costs for complex

systems, and simulation has played an important role in a wide range of IR-related

investigations (Burkowski 1990; Cahoon et al. 2000; Ribeiro-Neto and Barbosa 1998;

Cacheda et al. 2007; Tonellotto et al. 2013).

3.1 Simulation parameters

We developed a selective search simulator1 based on DESMO-J2 a discrete event modeling

framework. The simulator has the benefit of allowing us to model a range of hardware

configurations, and provides precise estimates of a broad suite of performance indicators.

The implementation models a selective search system that incorporates a cluster of multi-

core machines, and mimics parallel query execution across those machines. Figure 1

describes the computational model embedded in the simulator and Table 1 lists the

quantities that are manipulated. The hardware is assumed to consist of M machines, with

the i th of those, machine mi, providing ci CPU cores (ci ¼ 8 throughout the paper).

Machines may be configured to act as a broker, a searcher, or to handle both roles.

A broker machine holds a copy of the resource selection database and performs two

tasks: resource selection, and result merging. For resource selection, the machine has

access to a shared central query queue, from which it extracts incoming queries, deter-

mines which shards need to be searched, and then assigns shard search tasks to other

machines. Each broker machine also has a job queue for pending result merge processes.

This queue contains results returned by the searcher machines, now waiting to be merged

to produce a final result list for some query.

A machine mi is a searcher if it is allocated pi [ 0 shards. A searcher also has a job

queue that holds shard search requests pertinent to the shards hosted on that machine. Each

of the available cores on the machine can access any of the shards assigned to the machine,

and hence can respond to any request in that machine’s search queue. When a search job is

finished, the result is returned to the result merge queue of the originating broker. The

assignment of shards and copies of the resource selection database to machines is assumed

to be fixed at indexing time, and machines cannot access shards that are not hosted locally.

A key factor for success is thus the manner in which the P shards are partitioned across the

M machines.

3.2 Selective search process

Algorithm 1 describes the actions that take place in each of the machines. First, if the

machine is a broker, the local result merge queue is checked for queries for which all shard

searches are complete, and merged output lists are generated if any queries can now be

finalized. Otherwise, if the machine is a searcher, the local shard queue is checked to see if

there are any searches pending; if so, the next one is actioned, and the results directed to

the merge queue for the machine that acted as broker for that query, which might be the

same machine. A process on machine mi can search any shard assigned to that machine.

If neither of these two activities are required, and if the machine is a broker, the next

query (if one exists) is taken from the central queue and resource selection carried out. The

result is a list of shards to be searched in order to resolve the query; that list is mapped to a

1 http://boston.lti.cs.cmu.edu/appendices/jir17-yubink/.
2 http://desmoj.sourceforge.net/.

228 Inf Retrieval J (2017) 20:221–252

123

http://boston.lti.cs.cmu.edu/appendices/jir17-yubink/
http://desmoj.sourceforge.net/


set of machine identifiers, and the query q is added to the shard search queues for those

machines. Query completion is prioritized over query initiation, minimizing the processing

time for each query, and ensuring that no query has an an infinite time to completion.

Result 
Set

Search Queue

CPU ci

CPU 3
CPU 2

CPU 1

Resource 
Selector 

DB Shard pi

Shard 3

Shard 2

Shard 1

Query 
Stream

Central Queue

Resource
Selection

Task
Merge
Task

Search
Task

Merge Queue

mi

Fig. 1 Architecture of the selective distributed search system. The i th of the M machines mi has ci cores,
each of which can be used for resource selection and result merging, or for shard search across any of the pi
shards allocated to this machine. Only a defined subset of the machines are able to perform resource
selection

Table 1 Simulation parameters

M Number of machines; mi is the i th of these

ci Number of cores on mi; the default is ci ¼ 8

C Total number of cores,
PM

i¼1 ci

pi Number of shards assigned to mi

P Total number of shards. When each shard is assigned to just one machine, P ¼
PM

i¼1 pi

B Number of broker machines

S Number of searcher machines

T Query arrival rate described by an exponential distribution with mean 1 / T

ts Seek plus latency access time, msec/postings list, ts ¼ 4 throughout

tp Processing cost, msec/posting, tp ¼ 9� 10�4 throughout

tm Merging cost, msec/item, tm ¼ 5� 10�5 throughout

Inf Retrieval J (2017) 20:221–252 229

123



The simulation assumes that queries arrive at the central queue at random intervals

determined by an exponential distribution governed by a mean query arrival rate T. The

number of machines permitted to host broker processes may be less than M, the total

number of machines, but is always at least one. Query processing costs at the shards are

computed based on the number of postings read from disk, plus an overhead cost to

account for initial latency for a disk seek. The number of postings processed and system

response times are known to have a strong correlation (Macdonald et al. 2012). While

more accurate methods exist (Wu and Fang 2014), the main advantage comes from cor-

rectly estimating the postings pruned from the total postings of a query.

A postings list of ‘ postings is thus presumed to require ts þ ‘ � tp milliseconds, where

ts ¼ 4 milliseconds3 and tp ¼ 9� 10�4 milliseconds per posting. The processing rate—

around a million postings per second—is based on measurement of the cost of handling

posting lists in the open source Indri search engine (http://lemurproject.org/) on a machine

with a 2.44 GHz CPU, and encompasses I/O costs as well as similarity calculation costs.

These parameters can be varied to explore different hardware architectures. For

example, ts can be set to zero and tp can be reduced to investigate behavior when the index

is stored in RAM or on a solid state device. Selective adjustment of tp can also be used to

mimic caching of postings lists. For example, when the experiments in this paper were

done with ts ¼ 0 and tp ¼ 9� 10�5 milliseconds per posting, to mimic an architecture with

indexes stored in RAM and a hardware/software architecture that processed inverted lists

an order of magnitude faster, queries were processed more quickly, but the relationships

between different types of systems were unchanged.

3.3 Resource selection and result merging

Resource selection costs differ according to the approach used. For sample-based algo-

rithms such as Rank-S, the cost is dominated by the need to process postings from the

central sample index (CSI). For these approaches, the same computational model is used as

for shard search, and a cost of ts þ ‘ � tp milliseconds is assumed for a list of ‘ postings. On

3 http://www.anandtech.com/show/3636/western-digitals-new-velociraptor-vr200m-10k-rpm-at-450gb-and-
600gb, accessed 29/10/14.

230 Inf Retrieval J (2017) 20:221–252

123

http://lemurproject.org/
http://www.anandtech.com/show/3636/western-digitals-new-velociraptor-vr200m-10k-rpm-at-450gb-and-600gb
http://www.anandtech.com/show/3636/western-digitals-new-velociraptor-vr200m-10k-rpm-at-450gb-and-600gb


the other hand, term-based algorithms such as Taily process statistics from each shard that

contains a query term. The cost for term-based approaches is thus equivalent to processing

a posting list of length equal to the number of shards that contain the query term, which is

always less than or equal to P, the number of shards.

Result merging requires network transfer if the results are returned to a broker that is not

located within the same machine. This requires transferring of up to k hdoc� id; scorei
results from each shard searched, where k is either fixed on a system-wide basis, or is

determined as part of the resource selection step. Network messages are also generated

when brokers request searches for shards that are not stored within the same machine. To

ensure that the simulation was accurate, the cost of network communication over a Gigabit

switched network was modeled as described by Cacheda et al. (2007). The cost of merging

was measured on the same 2.44 GHz machine, and an allocation of tm ¼ 5� 10�5 mil-

liseconds per document was found to be appropriate.

3.4 System output

The simulation models a system that returns the top-ranked 1,000 documents, thereby

supporting applications such as learning to rank algorithms, text-mining applications, and

TREC evaluations. Cacheda et al. (2007) showed that when shards are formed randomly,

only a small number of documents need to be returned from each shard for the true top-k

documents to be returned with a high probability. Therefore, in the exhaustive search

system used as a baseline, each shard only returns the number of documents that results in

a 10�5 probability of missing a result in the top 1,000. For example, this equates to

returning 102 documents per shard for a 16 shard configuration and 19 documents per

shard for 512 shards. The assumption that documents are distributed randomly across

shards does not apply to the topical indexes used by selective search; clustering concen-

trates similar documents in a small number of shards. Thus, Cacheda’s technique cannot be

used with selective search and each search shard selected returns the full k ¼ 1;000 doc-

uments. Since the exhaustive search baseline accesses all shards, whereas selective search

typically accesses 3–5 shards, the number of documents that must be merged by the two

architectures remains roughly comparable. In our experiments, the total number of docu-

ments merged by the two architectures varied between 1600 and 9700, depending upon the

number of machines (exhaustive search) and query (selective search). Generally,

exhaustive search merges fewer documents than selective search in configurations with

fewer randomly-assigned shards, and more documents than selective search in configu-

rations with more random shards.

Overall, the simulator takes as input a list of queries, the resource selection cost for each

query, the shards to be searched for the query, and the search cost for each shard. The cost

is described by the sum of the lengths of the posting lists retrieved for all query terms for

the shards specified by the resource selection method. The simulator then converts these

posting list costs into ‘‘simulator milliseconds’’. The overall elapsed time required to

process each query is taken as the difference between the arrival time of that query in the

central queue, and the moment at which all processing of that query is completed. This cost

includes time spent waiting in queues, network delays, and computation time. The median

end-to-end elapsed query processing time is used as an aggregate measure of query latency.

The median was preferred over the mean because it is less affected by the very small

number of slow queries, but the conclusions of the paper remain the same with both

metrics. In addition to the median latency, we also show the latency distributions in some

Inf Retrieval J (2017) 20:221–252 231

123



key cases. The primary variable in the simulator is the query arrival rate, which determines

the load in the system, and hence the extent to which query response times are affected by

queuing delays.

The load on each simulated machine is also tracked. The fraction of available processors

utilized is measured at simulation event boundaries and summarized in a time-weighted

average. This statistic is used to evaluate the evenness of load across the modeled hardware

setup.

3.5 Other factors

The simulator models the main components of distributed and selective search architec-

tures. However, in order to manage the complexity of the investigation (and hence this

paper), it does not include every possible optimization for large-scale search, for example:

dynamic pruning during query evaluation; postings list caching; and other network and

connectivity arrangements. Indeed, it is unclear how to simulate some of these opti-

mizations, for example dynamic pruning techniques, without fully implementing important

parts of the search engine. What we can be assured of is that results presented in this paper

are a reliable upper bound on the total processing cost for each method, because all

postings in the selected shards contribute to the final computation. Actual processing costs

in an optimized system would be somewhat lower than what we report.

As one step towards understanding these interactions, we note that recent work by the

authors has demonstrated that the WAND dynamic pruning technique (Broder et al. 2003)

retains its advantages when searching within topical shards; indeed, WAND was found to

be somewhat more efficient on topic-based shards than randomly-assigned shards, meaning

that selective search has a somewhat larger advantage over exhaustive search in a more

optimized system (Kim et al. 2016a). Investigations into the effects of other optimizations

typical of large-scale search environments would be a welcome addition to the literature,

but are outside the scope of this paper.

4 Experimental methodology

The simulator was applied to two large experimental collections. This section describes

those data resources, including a revised partitioning scheme that constructs approximately

equal-sized sized partitions; and gives details of the effectiveness baselines we compare

against.

4.1 Document collections

Two web datasets, ClueWeb09-A English (abbreviated to ClueWeb09 in all of the tables)

and Gov2 were used in the experimentation. These are large collections, covering more

than 500 million and 25 million web pages respectively. The selective search configura-

tions applied to them are derived from the shard definitions for ClueWeb09 and Gov2

generated as part of the investigation carried out by Kulkarni (2013).

One issue with the ClueWeb09 shard map produced by Kulkarni is that the shard sizes

are not uniform. Figure 2 plots the distribution of shard sizes in decreasing order and

reveals a large skew. The largest shard contained 7.8 M documents, 12 times the average

size of 620 k documents per shard. This imbalance is problematic for two reasons. Firstly,

232 Inf Retrieval J (2017) 20:221–252

123



there is a moderate correlation between the size of the shard and the frequency at which it

is selected for querying (Pearson correlation of 0.5). That is, the larger the shard, the more

likely it is to be selected for querying, which a well-known bias of many resource selection

algorithms. Secondly, when they do get selected, large shards typically take longer to

process queries, because of their size. In combination, these two effects produce an

imbalance in computation load which is not present in the Gov2 shards. To address the

imbalance of shard sizes in ClueWeb09, the largest shards in the original shard partitioning

of Kulkarni were divided; split via a random assignment if the resulting sub-shards would

be closer to the average shard size (by number of documents) than the original one. Note

that while smaller-than-average shards exist, they do not need to be explicitly combined;

instead, many small shards can be assigned to the same machine to combine their load. A

total of 51 shards were split into two or more smaller shards, resulting in an increase of 77

shards, for a total of 884.

A range of other statistics for the two datasets are listed in Table 2.

4.2 Resource selection parameter settings

As noted above, two resource selection techniques were used in our experiments: the

sample-based Rank-S method (Kulkarni et al. 2012); and the term-based Taily approach

(Aly et al. 2013). Both require that values be set for two system parameters. For Rank-S

the two key parameters are the size of the document sample for the centralized index (the

CSI), and the quantity base used for the exponential discounting. Taily requires values for

n, conceptually the depth of the result list used for estimating relevant document counts;

and for v, the score cut-off. The parameters used in our experiments are as recommended

by Aly et al. (2013) and Kulkarni (2013), and are summarized in Table 3.

4.3 Confirming retrieval effectiveness

Tables 4 and 5 list the overall effectiveness of selective search using the default param-

eters, spanning multiple years of the TREC Terabyte and Web Tracks. Note that these

effectiveness results are independent of the simulation process used to measure efficiency,

in that there is no influence on them of the number of machines, and of how shards are

assigned to machines—once the assignment of documents to shards has been completed,

and the resource selection parameters determined, selective search generates the same final

ranked list regardless of machines or shard allocations. The effectiveness reported for

exhaustive search was achieved using structured queries and the sequential dependency

0 200 400 600 800

106

107

Shard

S
ha

rd
 s

iz
e 

(n
um

be
r 

of
 d

oc
um

en
ts

)Fig. 2 Sizes of ClueWeb09
shards used in experiments of
Kulkarni (2013)

Inf Retrieval J (2017) 20:221–252 233

123



model (SDM) (Metzler and Croft 2005), removing spam documents at a Waterloo Fusion

spam score threshold of 50%, similar to Aly et al. (2013). The selective search runs used a

similar set-up whenever possible. For Rank-S, the CSI was created using a random sample

of the document collection and was searched using SDM queries. For both Taily and Rank-

S, the selected shards were searched using SDM queries and retrieval scores were calcu-

lated using global term frequency data; this produces scores that are comparable across

shards, thus simplifying the result list merging process. The final result list was filtered for

spam. Note that the spam filtering was only performed for the effectiveness results in order

to generate results comparable to prior work and was not done for the efficiency experi-

ments. These arrangements give rise to effectiveness better than was attained by Kulkarni

(2013), and comparable to the levels reported by Aly et al. (2013).

Results for the four Web Track query sets are listed separately rather than combined

across query sets, in order to distinguish the effects of different tasks on selective search. In

the results reported by Kulkarni (2013) and Aly et al. (2013), effectiveness was averaged

Table 2 Datasets and shards used in the experiments, with ‘‘M’’ standing for million, ‘‘B’’ standing for
billion, and document lengths measured in words

Dataset # of docs. # of words Vocab. size Avg. doc. length # of shards

Gov2 25M 24B 39M 949 50

ClueWeb09 504M 381B 1,226M 757 884

Table 3 Resource selection parameter settings, based on TREC Terabyte Track and TREC Web Track
queries for which relevance judgments are available, as developed by Kulkarni et al. (2012) and Aly et al.
(2013). Those investigations used a variety of CSI sizes for Gov2, ranging from 0.5 to 4%. We use 1%, for
consistency with ClueWeb09. The final column lists the average number of shards per query selected by the
listed parameter settings

Dataset Algorithm Parameters Avg. shards

Gov2 Taily n ¼ 400, v ¼ 50 3.0

Rank-S CSI ¼ 1%, base ¼ 3 4.7

ClueWeb09 Taily n ¼ 400, v ¼ 50 3.3

Rank-S CSI ¼ 1%, base ¼ 5 4.2

Table 4 Effectiveness of selective search with various resource selection algorithms on the Gov2 dataset,
using three available pairings of queries and relevance judgments

Algorithm Terabyte Track 2004 Terabyte Track 2005 Terabyte Track 2006

P@10 NDCG@30 P@10 NDCG@30 P@10 NDCG@30

Baseline 0.56 0.43 0.62 0.49 0.57 0.48

Rank-S 0.57 0.42 0.59 0.45 0.54 0.44

Taily 0.51 0.37 0.48 0.35 0.50 0.42

Oracle 0.64 0.47 0.64 0.51 0.61 0.51

The ‘‘Baseline’’ method is an exhaustive search of all shards. The ‘‘Oracle’’ shard ranking assumes that the
most useful four shards are selected for each query

234 Inf Retrieval J (2017) 20:221–252

123



across the 2009 and 2010 Web Track query sets; unpacking them as we have done here

reveals that selective search is not as uniformly competitive as previously reported, par-

ticularly for the 2009 queries. On the other hand, on the 2010 queries a partitioned index

and good resource selection are more effective than exhaustive search, supporting an

observation originally made by Powell et al. (2000). When the 2010 results are averaged

with the 2009 results, selective and exhaustive search have comparable performance.

While the accuracy results are reported with our modified shard maps, these relationships

also occur when using the original shard maps. Selective search is also less effective than

exhaustive search across the two newer query sets from 2011 and 2012.

The effectiveness results reported in Tables 4 and 5 suggest that the parameters used for

Taily and Rank-S might not be optimal. To address that concern, we performed a

parameter sweep to check for better settings, but were unable to identify parameters that

both yielded accuracy comparable to exhaustive search and also searched a moderate

number of shards. We also experimented with a clairvoyant ‘‘oracle’’ shard ranking, in

which the four shards containing the greatest number of relevant documents were pre-

sumed to always be selected, a number of shards similar to the average searched by Rank-S

and Taily. Those hypothetical results are shown in the final row of each of Tables 4 and 5.

The substantial gap between the oracle, and Rank-S and Taily, reinforces that the accuracy

of selective search depends heavily on the resource selection process, and makes it clear

that further algorithmic improvements may be possible. However, our emphasis here is on

efficiency, and we leave that prospect for future work.

4.4 Query streams

A key purpose of the simulation is measurement of the performance of selective search

under realistic query loads, including determination of the point at which each configu-

ration saturates. For these experiments a much larger query log is needed than the Web

Track and Terabyte Track query sets used in the effectiveness validation shown in Tables 4

and 5. The main experiments that are reported in Sect. 5 make use of the AOL query log

and the TREC Million Query Track query set. These query logs are from a different time

period than the two collections, but we used the queries (only) to measure efficiency and

not effectiveness, so the discrepancy in their temporal coverage is not a concern.

In order to simulate a live query stream, the AOL log was sorted by timestamp, and

deduplicated to only contain unique queries. Deduplication has the effect of simulating a

large answer cache, and more closely reflects what would happen in a production server.

For ClueWeb09, the first 1,000 queries were used as training data, to set configuration

parameters such as the number of brokers (Sect. 5.2), and assignments of shards to

Table 5 As for Table 4, but for the ClueWeb09 dataset, using four available pairings of queries and
relevance judgments

Algorithm Web Track 2009 Web Track 2010 Web Track 2011 Web Track 2012

P@10 NDCG@30 P@10 NDCG@30 P@10 NDCG@30 P@10 NDCG@30

Baseline 0.30 0.21 0.27 0.19 0.36 0.28 0.27 0.15

Rank-S 0.28 0.19 0.32 0.20 0.30 0.21 0.25 0.14

Taily 0.28 0.18 0.31 0.20 0.24 0.16 0.23 0.13

Oracle 0.37 0.25 0.45 0.32 0.42 0.35 0.33 0.20

Inf Retrieval J (2017) 20:221–252 235

123



machines (Sect. 5.3). The next 10,000 queries were used for testing. Together, the queries

cover a time period of 2006-03-01 00:01:03 to 2006-03-01 01:31:45. For Gov2, the

timestamp-sorted AOL query stream was further filtered selecting only queries that had at

least one .gov-domain result click recorded. The first 1000 queries were again used as

training data, and the next 10,000 queries used for testing, covering the time period 2006-

03-01 00:01:08 to 2006-03-01 20:09:09. Two further test query sets were also extracted

from the AOL log: 10,000 queries starting from 2006-03-08, one week after the main query

stream (TestW ); and another 10,000 queries commencing 2006-04-01, one month after the

main query stream (TestM). These query sequences were used in the experiments described

in Sect. 5.3.

Two final query streams were created from the TREC Million Query Track (MQT). The

MQT queries have no timestamps and were used in the order they appear in the files

provided by NIST. For Gov2, the first 1000 queries of the 2007 query set were used for

training, and 10,000 queries from the 2008 query set were used for testing. For

ClueWeb09, both the 1000 training and 10,000 testing queries were extracted from the

TREC 2009 MQT sequence.

In total, 84,000 queries were used at various stages of the evaluation, split across the

categories summarized in Table 6.

5 Experimental results

We now use the query execution simulator to investigate the efficiency and load charac-

teristics of the selective search architecture under a variety of conditions. The first set of

experiments evaluates an environment similar to the one considered by Kulkarni (2013),

but allows parallel execution of queries and tasks (Sect. 5.1). The second suite of exper-

iments explores resource selection costs, resource selection algorithms, and how to over-

come computational load imbalances arising from resource selection (Sect. 5.2). The third

round of experiments investigate the load and throughput effects of two different policies

for assigning shards to machines (Sect. 5.3). The last experiment compares index-

spreading and mirroring strategies when using additional computational resources

(Sect. 5.4). We reiterate that retrieval effectiveness remains constant, as reported in

Tables 4 and 5, and that the simulation is used to determine execution times only, based on

long streams of actual queries for which relevance judgments are not available.

Table 6 Sizes of query logs

Dataset Log Train Test TestW TestM

Gov2 AOLG 1K 10K 10K 10K

Gov2 MQTG 1K 10K

ClueWeb09 AOLW 1K 10K 10K 10K

ClueWeb09 MQTW 1K 10K

The ‘‘Train’’ column indicates queries used to set parameters; the ‘‘Test’’ column queries used for reporting
results. The ‘‘TestW ’’ and ‘‘TestM’’ queries were sampled starting one week and one month after the Train
queries, respectively

236 Inf Retrieval J (2017) 20:221–252

123



5.1 Selective search efficiency

Research Question 1 asks Is selective search more efficient than exhaustive search in a

parallel query processing environment? We start by comparing the two architectures in

small-scale environments similar to those examined by Kulkarni (2013) and Kulkarni and

Callan (2010a). The test collections were divided into topical shards and the shards ran-

domly distributed across all machines, with each machine receiving the same number of

shards. The same collections were also used to build an exhaustive search baseline by

constructing C (the total number of cores) evenly sized shards via a random assignment of

documents, and then allocating one shard per core to each machine; ci ¼ 8 in our exper-

iments, thus eight shards were assigned to each machine. This allows exhaustive search to

make use of all cores for every query and hence maximize throughput. In both configu-

rations, all machines accepted search tasks, but only one machine (B ¼ 1) accepted broker

tasks, so as to emulate previous arrangements as closely as possible. Table 7 summarizes

the average number of shards selected by the resource selection algorithms with parameters

as discussed in Sect. 4.

The high variance in the number of ClueWeb09 shards selected by Taily for the AOL

query set is because the distribution of Taily shard scores levels off quickly and becomes

flat, which makes it difficult for Taily to distinguish between shards. The AOL query set

used with Gov2 does not experience the same issues; these queries are cleaner due to the

filtering process that was applied. Even with these variances affecting behavior, selective

search examines only a small fraction of the shards, and produces significant efficiency

gains regardless of the resource selection method deployed.

Figure 3 shows the simulated throughput of two selective search variants, compared to

exhaustive search. The vertical axis shows the median time to process a single query,

plotted as a function of the query arrival rate on the horizontal axis. Alternative summary

metrics such as the mean or the 95% percentile processing times were also explored, and

produced similar patterns of behavior. The two frames correspond to the two collections,

with each curve representing one combination of query set and processing regime. The

right-hand end of each plotted curve is truncated at a point at which the system configu-

ration is approaching saturation, defined as occurring when the median processing time for

queries exceeds twice the median processing time for queries in a corresponding unloaded

system (at an arrival rate of 0.01 queries per second, at the left-hand end of each curve).

Query arrival rates were chosen dynamically for each curve, so that the region of greatest

gradient can be clearly distinguished. Configurations in which the curve is lower have

Table 7 Average number of shards selected by Taily and Rank-S for the two Test logs, measured using the
same system configurations as are depicted in Fig. 3

Queries Res. sel. Gov2 ClueWeb09

avg. sddev. avg. sddev.

MQT Taily 2.5 1.4 3.6 2.9

Rank-S 4.2 1.8 4.4 1.7

AOL Taily 2.9 1.6 11.9 31.3

Rank-S 4.6 1.9 4.2 1.7

Inf Retrieval J (2017) 20:221–252 237

123



lower latency under light load; configurations with elbows that are further to the right

require fewer resources per query, and attain higher throughput rates when the system is

approaching saturation.

To describe the variation of query processing times, Table 8 lists the 50th, 75th and 99th

percentile, mean, and max values of query processing time for several configurations of

selective search. The values reported are all taken at the last points in the plotted curves of

Fig. 3—the point where each system is deemed to have approached saturation. Table 9

Table 8 Dispersion of per-query processing times for selected configurations, at the last point on each of
the corresponding curves in Fig. 3

Collection Queries Method T(q/s) Percentile Mean Max

50% 75% 99%

Gov2 MQT Exhaustive 0.28 2,268 4,409 11,676 2,936 20,868

Rank-S 3.20 1,632 2,651 6,206 1,883 10,229

Taily 5.50 1,189 1,901 4,579 1,366 8,145

AOL Exhaustive 0.42 250 1,126 5,016 768 9,135

Rank-S 7.50 397 865 2,606 590 5,352

Taily 12.00 265 612 1,868 407 4,329

ClueWeb09 MQT Exhaustive 0.04 5,819 26,510 110,232 17,784 206,595

Rank-S 3.20 1,468 3,537 13,082 2,516 32,888

Taily 9.00 510 1,012 3,340 719 6,709

AOL Exhaustive 0.03 21,736 50,525 172,978 34,019 427,116

Rank-S 1.80 3,263 6,220 18,351 4,208 76,103

Taily 0.75 902 3,869 21,350 3,032 46,770

Columns display the 50th, 75th, 99th percentiles, the mean, and the maximum value of individual query
processing times, where time is measured in simulation milliseconds. In these experiments, M ¼ 2. Recall
that the simulation was tuned to model the costs associated with Indri, a research search engine; a com-
mercial system would be likely to have lower processing times

10−2 10−1 100 101
102

103

104

105

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s) AOL Exhaustive
AOL Rank−S
AOL Taily
MQT Exhaustive
MQT Rank−S
MQT Taily

10−2 10−1 100 101
102

103

104

105

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s) AOL Exhaustive
AOL Rank−S
AOL Taily
MQT Exhaustive
MQT Rank−S
MQT Taily

(a) (b)

Fig. 3 Exhaustive search and selective search using ClueWeb09 and Gov2 datasets and the AOLW Test,
MQTW Test, AOLG Test, and MQTG Test query sets, which are shown as AOL and MQT in the labels for
brevity. The shards were randomly assigned to each machine. In these experiments, M ¼ 2, B ¼ 1, and
S ¼ 2. Note that both scales are logarithmic

238 Inf Retrieval J (2017) 20:221–252

123



breaks down the average costs at the same set of system saturation points. As expected of a

system under load, queries spend a significant fraction of their time in the central query

queue, and in queues internal to each system; network and merging costs are minimal. Note

the differences in the time spent in resource selection between Rank-S and Taily, partic-

ularly on ClueWeb09. This is what causes the higher latency for Rank-S systems, evident

in Fig. 3, and is as expected—sample-based resource selection methods are more expen-

sive than term-based methods. This topic is explored further in Sect. 5.2.

Selective search outperforms exhaustive search by a factor of more than ten on the

ClueWeb09 dataset (Fig. 3b), because only a small fraction of the 884 shards are searched

for each query. Query latency is also lower in selective search, despite the two-step process

of resource selection followed by shard search. This is due to fewer resources being used

Table 9 Breakdown of elapsed query time, in percentages, at the last point on each of the corresponding
curves in Fig. 3

Collection Queries Method T (q/
s)

Central
queue
(%)

Network
(%)

Internal
queues
(%)

Resource
selection
(%)

Merge
(%)

Gov2 MQT Exhaustive 0.28 21.88 0.06 14.91 – 0.09

Rank-S 3.20 32.16 \0.01 3.35 13.38 0.01

Taily 5.50 30.38 \0.01 3.44 1.58 0.01

AOL Exhaustive 0.42 21.41 0.07 16.92 – 0.01

Rank-S 7.50 25.67 0.01 2.58 14.67 0.04

Taily 12.00 20.55 0.01 2.68 2.50 0.03

ClueWeb09 MQT Exhaustive 0.04 31.57 \0.01 25.24 – \0.01

Rank-S 3.20 25.55 \0.01 1.72 53.44 0.01

Taily 9.00 26.36 0.01 5.10 1.66 0.02

AOL Exhaustive 0.03 30.86 \0.01 31.08 – \0.01

Rank-S 1.80 22.40 \0.01 1.93 59.67 \0.01

Taily 0.75 36.77 \0.01 7.54 0.46 0.02

Central queue indicates the percentage of time spent in the central query queue; network indicates the delays
caused by network congestion; internal queues indicates time spent in system queues such as a machine’s
shard search queue or merge queue; resource selection indicates time spent performing resource selection;
and merge is time spent performing the final merge operation. The balance was spent in shard search

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Query Arrival Rate (queries/sec)

A
ve

ra
ge

 L
oa

d

m
1
 load

m
2
 load

Fig. 4 Average utilization of
machines using Rank-S, the
ClueWeb09 dataset, the AOLW

Test queries, M ¼ 2, B ¼ 1 and
S ¼ 2. Each point is the mean
over 10 sequences of 1000
queries; error bars represent 95%
confidence intervals

Inf Retrieval J (2017) 20:221–252 239

123



by selective search, and the fact that at low query loads, latency is largely determined by

the slowest partition that is polled. Topical shards are smaller than random shards, thus

they can be searched more quickly. A larger fraction of the fifty possible shards are

searched in the Gov2 collection (Fig. 3a), so the performance improvement is not as large.

Even so, selective search of Gov2 handles four to five times the rate of queries as

exhaustive search before saturating.

Taily has better throughput and latency than Rank-S for the majority of settings tested.

The only exception is for the AOLW Test queries on ClueWeb09, where the larger number

of shards searched by Taily eclipses the lower resource selection costs, resulting in better

at-load throughput for Rank-S. More broadly, selective search delivers markedly better

performance characteristics than exhaustive search in all of the configurations investigated,

extending the findings of Kulkarni (2013) and Kulkarni and Callan (2010a) that selective

search improves the efficiency of parallel query processing.

5.2 Resource allocation

The difference between Rank-S and Taily is a direct consequence of the two approaches to

resource selection (Aly et al. 2013). In response, we turn to Research Question 2: How

does the choice of resource selection algorithm affect throughput and load distribution in

selective search, and how can any imbalances originating from resource selection be

overcome?

0 1 2 3 4
0

1000

2000

3000

4000

5000

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

B=1

B=2

0 1 2 3 4
0

1000

2000

3000

4000

5000

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s) B=1

B=2

(a) (b)

Fig. 5 Varying the resources assigned to broker processes using Rank-S, with M ¼ 2, and random shard
assignment

0 20 40 60 80
100

101

102

103

Shard index sorted by frequency

T
ot

al
 n

um
be

r 
of

 ti
m

es
 s

el
ec

te
d

 

 
AOL

W
 Train

MQT
W

 Train

Fig. 6 Popularity of the most-
frequently accessed 10% of
ClueWeb09 shards for the two
training query sets, as determined
by Rank-S. The vertical axis
indicates the total number of
times a shard is selected by that
query set

240 Inf Retrieval J (2017) 20:221–252

123



In the experiments illustrated in Fig. 3, only one machine acted as broker, and the

shards were evenly distributed across the two machines (B ¼ 1; S ¼ 2). This is similar to

the configuration described by Kulkarni (2013). However, this configuration is not optimal

for selective search, and produces an uneven machine load, especially when using Rank-S

to select shards. Figure 4 plots the machine utilization of this configuration, using Rank-S,

M ¼ 2 machines, and searching ClueWeb09 with the AOLW Test query set. All broker

tasks are handled by machine m1, which is also a searcher. Consequently, m1 is heavily

loaded compared to m2, with more than 70% of the load caused by resource selection when

the query arrival rate is 2.5 queries per second. Similar imbalances are observed when

other simulator parameters such as query streams, collections, and hardware are varied.

The situation changes if more broker processes are permitted. Figure 5 compares the

previous B ¼ 1 outcomes to B ¼ 2, that is, a configuration in which both machines perform

resource selection. The change results in a moderate gain in throughput on the Gov2

collection with the MQTG queries, and a marked improvement in throughput on

ClueWeb09 with the AOLW queries; with the difference in behavior due to the size of the

corresponding CSIs. Rank-S uses a 1% sample of the corpus to make decisions, and for

Gov2, a 1% sample is about half the size of an average shard. But for ClueWeb09, the 1%

CSI is about eight times the size of an average shard, and hence a greater fraction of the

search time is spent on shard selection, as is also shown in Table 9.

Taily requires far less computation for resource selection than does Rank-S, and the best

setting was B ¼ 1 for both datasets and all query logs. At M ¼ 2 and B ¼ 1, resource

selection for Taily accounted for less than 2% of m1’s processing capability. reinforcing

the natural advantage of term-based algorithms. As is shown in Fig. 3b, the resulting

performance gains can be large. On the other hand, sample-based algorithms have other

advantages, including the ability to run structured queries.

5.3 Shard assignment

With two machines (M ¼ 2), random assignment of shards to machines distributes query

traffic evenly across machines, since there are many more shards than machines (P � M).

That natural balance is eroded as M increases, because selective search deliberately creates

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Query Arrival Rate (queries/sec)

A
ve

ra
ge

 L
oa

d

 

 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Query Arrival Rate (queries/sec)

A
ve

ra
ge

 L
oa

d

 

 

m
1
 load

m
2
 load

m
3
 load

m
4
 load

(a) (b)

Fig. 7 Utilization of machines for selective search on Gov2, using Taily, the MQTG Test queries, M ¼ 4,
B ¼ 1, S ¼ 4, and two methods of assigning shards to machines. Each point is the mean over 10 sequences
of 1000 queries; error bars represent 95% confidence intervals. The broker resides on m1 in both
configurations

Inf Retrieval J (2017) 20:221–252 241

123



shards that have skewed term distributions and topical coverage. This section examines

Research Question 3: How do different methods of shard allocation affect throughput and

load distribution across multiple machines?

Figure 6 shows the relative popularity of the 88 most frequently-accessed ClueWeb09

shards. For example, when the Rank-S resource selection algorithm is used to select topic-

based shards for the Gov2 queries from AOLG Train, the five most popular shards account

for 29% of all shards selected—1302 out of 4491 shard selections. The MQT query set

displays a similar, but more moderate, skew. This unevenness of access has the potential to

Table 10 Average loadi and range (max loadi �min loadi) on the test query set, where loadi is the time-
averaged CPU load of machine mi, for two shard allocation policies and a range of query arrival rates, using
M ¼ 4, B ¼ 1, and S ¼ 4, and with Taily resource selection throughout

Dataset Queries Allocation method Average loadi and range of loadi for each query arrival rate T

avg. rnge. avg. rnge. avg. rnge. avg. rnge.

6 qry/s 8 qry/s 10 qry/s 12 qry/s

Gov2 MQTG Random 0.32 0.30 0.42 0.40 0.53 0.49 0.61 0.58

Log-based 0.32 0.10 0.42 0.14 0.53 0.17 0.63 0.21

20 qry/s 30 qry/s 40 qry/s 50 qry/s

Gov2 AOLG Random 0.40 0.19 0.59 0.28 0.73 0.34 0.78 0.36

Log-based 0.40 0.14 0.59 0.20 0.73 0.25 0.78 0.26

10 qry/s 15 qry/s 20 qry/s 25 qry/s

CW09 MQTW Random 0.36 0.08 0.53 0.11 0.70 0.15 0.81 0.17

Log-based 0.36 0.05 0.53 0.07 0.70 0.09 0.82 0.10

1.5 qry/s 2.0 qry/s 2.5 qry/s 3.0 qry/s

CW09 AOLW Random 0.39 0.07 0.52 0.10 0.65 0.12 0.76 0.14

Log-based 0.39 0.01 0.52 0.02 0.65 0.02 0.77 0.03

CW09 stands for ClueWeb09

Table 11 Average loadi and range (max loadi �min loadi) as the training data ages, using the Log-based
shard allocation policy, and all other simulation settings as for Table 10

Dataset Query log Average loadi and range of loadi for each query arrival rate T

avg. rnge. avg. rnge. avg. rnge. avg. rnge.

20 qry/s 30 qry/s 40 qry/s 50 qry/s

Gov2 AOLG Test 0.40 0.14 0.59 0.20 0.73 0.25 0.78 0.26

AOLG TestW 0.38 0.13 0.56 0.19 0.71 0.24 0.76 0.25

AOLG TestM 0.32 0.14 0.47 0.20 0.62 0.26 0.72 0.30

1.5 qry/s 2.0 qry/s 2.5 qry/s 3.0 qry/s

CW09 AOLW Test 0.39 0.01 0.52 0.02 0.65 0.02 0.77 0.03

AOLW TestW 0.39 0.01 0.51 0.02 0.63 0.02 0.75 0.02

AOLW TestM 0.40 0.02 0.53 0.02 0.66 0.02 0.77 0.03

The Test queries begin immediately after the training queries; the TestW queries begin one week after the
training queries; and the TestM queries begin one month after the training queries. The MQT queries do not
have timestamps. CW09 stands for ClueWeb09

242 Inf Retrieval J (2017) 20:221–252

123



overload the machines that are responsible for popular shards, and thereby create bottle-

necks that starve other machines of work.

The next set of experiments compare the performance of the usual Random shard

assignment and an alternative Log-based mechanism, which uses training queries to

estimate and balance the average load across machines. The training queries are fed

through the resource selection process, so that the sum of the posting list lengths for each

shard can be computed and used as an estimate of the shard’s workload. Shards are then

ordered from most to least loaded, and assigned to machines one by one, in each case

choosing the machine that currently has the lowest estimated load. Any remaining shards

that were not accessed by the training queries are assigned similarly, based on their size. In

these experiments, four sets of 1000 training queries were employed, AOLG Train, MQTG

Train, AOLW Train and MQTW Train, as described in Sect. 4.4. Using Taily’s shard

selections, Gov2 had no unaccessed shards for either query set, and for the ClueWeb09

collection, 7 and 4% of shards were unaccessed by AOLW Train and MQTW Train

respectively.

Figure 7 shows the effect of shard assignment policy on workload across M ¼ 4 hosts

for the Gov2 dataset, as query arrival rates are varied, with the vertical axis showing

machine utilization in the range 0.0 and 1.0. The wide spread of loads in the left-hand pane

shows that the Random policy produces an uneven utilization of machines, and saturates

0

0.2

0.4

0.6

0.8

1

20 30 40 50

Query Arrival Rate (queries/sec)

Lo
ad

 S
pr

ea
d

 

 
Log−based

0

0.2

0.4

0.6

0.8

1

30 35 40 45

Query Arrival Rate (queries/sec)

Lo
ad

 S
pr

ea
d

 

 
Log−based

(a) (b)

Fig. 9 As for Fig. 8, but with M ¼ 8 and B ¼ 8

0

0.2

0.4

0.6

0.8

1

20 30 40 50

Query Arrival Rate (queries/sec)

Lo
ad

 S
pr

ea
d

 

 
Log−based

0

0.2

0.4

0.6

0.8

1

10 15 20 25

Query Arrival Rate (queries/sec)

Lo
ad

 S
pr

ea
d

 

 
Log−based

(a) (b)

Fig. 8 Distribution of load spread (max loadi �min loadi) for ten Random shard allocations, with M ¼ 4
and B ¼ 1. The mid-line of the box is the median, the outer edges the 25th and 75th percentile values, and
the whiskers extend to the most outlying values. The load spread for Log-based shard allocation is also
plotted, as a reference point. Note the different horizontal scales in the panes.

Inf Retrieval J (2017) 20:221–252 243

123



relatively quickly due to a bottleneck on m4. In comparison, the Log-based policy mark-

edly reduces the load variance, and allows higher query throughput rates to be attained.

Numeric results for this and other configurations are given in Table 10, with Log-based

assignment consistently producing more uniform resource utilization than Random

assignment. Results for Rank-S resource selection are similar, and are omitted.

The risk of using Log-based allocations is that the learned attributes may become dated

as a result of changes in the query stream. Table 11 investigates this potential shortcoming

by showing machine usage for three time-separated query sets each containing 10,000

queries: one from immediately after the training queries; a second set from one week after

the training queries; and a third set from one month after the training queries. Average

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 

MQT Random
MQT Log−based
AOL Log−based 1 month
AOL Log−based 1 week
AOL Random
AOL Log−based

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 

MQT Random
MQT Log−based
AOL Log−based 1 month
AOL Log−based 1 week
AOL Random
AOL Log−based

0 0.5 1 1.5 2
0

200

400

600

800

1000

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 

AOL Log−based 1 month

AOL Log−based 1 week
AOL Random

AOL Log−based

0 1 2 3 4
0

200

400

600

800

1000

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 

AOL Log−based 1 month

AOL Log−based 1 week

AOL Random

AOL Log−based

0 5 10 15 20 25
0

100

200

300

400

500

600

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 

MQT Random

MQT Log−based

0 10 20 30 40 50
0

100

200

300

400

500

600

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 

MQT Random

MQT Log−based

(a) (b)

(c) (d)

(e) (f)

Fig. 10 The effect of shard assignment policies on throughput of selective search, using Taily with M ¼ 4,
B ¼ 1 (all left column panes) and M ¼ 8, B ¼ 8 (all right column panes). Note the differing horizontal
scales in each pair

244 Inf Retrieval J (2017) 20:221–252

123



utilization is similar in each case, and variance increases marginally as the query stream

evolves, but the changes are generally small. Results for the AOL log for Gov2 one month

after assignment are an exception and have a markedly lower utilization due to a burst of

shorter queries that occurred at this time (2.18 words on average versus 2.41 and 2.44 for

TestW and Test queries respectively), meaning that at any given arrival rate less total work

is required; but the variance still remains similar. Shard assignments should be periodically

revised to maximize throughput, but it is not necessary to do it frequently, and the cost of

refreshing shard assignments can be amortized.

To demonstrate that the random assignment results shown in Fig. 7 and Table 10 are

not due to outliers, ten different allocations were generated per combination of collection

10
−2

10
−1

10
0

10
1

10
2

10
3

102

103

104

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 
AOL Exhaustive
AOL Rank−S
AOL Taily
MQT Exhaustive
MQT Rank−S
MQT Taily

Fig. 11 Selective search and exhaustive search for ClueWeb09 and the AOLW Test and MQTW Test
queries (shown as AOL and MQT in the legend), with M ¼ 64 and B ¼ 64, and Log-based shard
assignments

1 2 4 8 16 32 64
100

101

102

103

104

105

106

Number of Machines

T
ot

al
 T

im
e 

(s
)

 

 
AOL Exhaustive
AOL Rank−S
AOL Taily
MQT Exhaustive
MQT Rank−S
MQT Taily
Ideal

Fig. 12 Total time required to process 10,000 queries as a function ofM, the number of machines, assuming
an infinite query arrival rate and B ¼ M. The two query streams used are MQTG Test and AOLG Test,
denoted as MQT and AOL respectively. The dash-dot line represents the gradient expected for ideal linear
speedup, where throughput is doubled with doubled machine capacity

Inf Retrieval J (2017) 20:221–252 245

123



and query stream, and variance of the loading measured. Figure 8 presents the results for

the AOLG Test query set of Gov2 and the MQTW Test query set of ClueWeb09. The load

spread of the Log-based allocation is also plotted. While there was at least one Random

allocation that produced a load spread comparable to that of the Log-based method, the

median values were all well above it. Figure 9 shows that when the number of machines is

increased to M ¼ 8, Log-based allocation produces the best load distribution even when

compared to ten different Random allocations. That is, the Log-based method reliably

picks shard allocations with low load spread, and hence leads to consistent utilization

across machines.

Balanced assignment of shards and higher utilization of machines can lead to higher

query throughput, as shown in Fig. 10. The Random policies shown in this figure are the

median performing assignment from Figs. 8 and 9. When M ¼ 4, in the left column, the

Log-based policies are measurably better than the Random policy for the Gov2 dataset.

The difference widens when M ¼ 8 machines are used. The gap between the allocation

strategies for ClueWeb09 are smaller, due to the smaller differences in load variance

between the Random and Log-based assignment, as already noted in connection with

Table 10, and Figs. 8 and 9. Correcting larger load imbalances leads to more substantial

throughput gains.

Finally, in most of the settings explored the Log-based assignment continues to yield

better utilization than Random allocation even after a one month interval, further sup-

porting the stability of the assignment. It is clear that the method of allocating shards to

machines has an impact in load distribution of selective search, and hence throughput.

5.4 Scalability

The main focus of this paper is on low-resource environments, typically involving two to

eight multi-core machines. But one advantage of a simulation model is that other con-

figurations can also be explored, and we have examined larger-scale environments too.

Distributed IR systems typically achieve scalability in two ways: by shard replication, and/

or by increasing the number of machines available in the cluster so that each is responsible

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

Query Arrival Rate (queries/sec)

M
ed

ia
n 

P
ro

ce
ss

in
g 

T
im

e 
(m

s)

 

 
Rank−S AOL mirrored
Rank−S AOL
Taily AOL mirrored
Taily AOL
Rank−S MQT mirrored
Rank−S MQT
Taily MQT mirrored
Taily MQT

Fig. 13 Throughput achieved for ClueWeb09, with M ¼ 64, B ¼ 64, and Log-based shard assignment. The
mirrored configuration is a doubled M ¼ 32, B ¼ 32 system, including disk space. The two query streams
are MQTG Test and AOLG Test.

246 Inf Retrieval J (2017) 20:221–252

123



for a smaller volume of data. We explore the scalability of selective search using these two

approaches, and consider Research Question 4: Does selective search scale efficiently

when adding more machines and/or shard replicas? Note that the experiments in this

section are for ClueWeb09 alone, because Gov2 only has 50 shards.

Figure 11 compares selective search and exhaustive search when M ¼ 64 machines are

used, with load balancing as described in Sects. 5.2 and 5.3. With more machines in use,

the latency of exhaustive search is greatly decreased, because the shards are all smaller.

Selective search’s latency remains the same because the number of topical shards searched

is not a function of M. In the configuration shown there are 512 random shards and 884

topical shards, and the query terms’ posting lists are now shorter on average in the random

shards than in the topical shards selected by Taily or Rank-S. Note, however, that selective

search still provides substantially higher throughput than exhaustive search; that is, while

selective search takes longer to search each accessed shard, it continues to process a much

smaller total volume of index data.

Figure 12 further demonstrates the throughput advantage held by selective search. In

this experiment, the total time required to process 10,000 queries is measured as a function

of the number of machines available. In all configurations, selective search remains a better

option for throughput, requiring less elapsed time to process a fixed number of queries.

This experiment also shows that selective search scales nearly linearly with the number of

machines available. Both exhaustive and selective search are approximately parallel to the

dash-dot line, plotted to show the gradient that would be observed in an ideal case where

throughput is doubled with doubled machine capacity.

In Figs. 11 and 12 an index spreading strategy is assumed, in which the shards are

distributed across the larger number of machines, and then the number of machines

allocated to resource selection and shard search are adjusted to make the best use of the

new hardware. When there are more machines than shards, index spreading is no longer

feasible and a different method must be used. One alternative is to increase throughput by

using additional space and adopting a mirrored architecture. For example, if the number of

machines is doubled, two copies of each shard, twice as many resource allocation cores,

and twice as many shard search cores can be used. Either approach can roughly double

throughput.

Figure 13 compares the effect of index spreading and mirroring whenM ¼ 64 machines

are employed, again plotting median query latency as a function of query arrival rate. In

most configurations, mirroring has a small throughput advantage, derived from the fact that

as the number of machines increases, it becomes increasingly less likely that an evenly

balanced shard assignment will occur. For example, at T ¼ 280, the standard deviation of

the machine load in the ClueWeb09 MQT Test queries is 5.2% for 64 machines, and 3.9%

for a 32 machine mirrored configuration using the index spreading strategy with Log-based

allocation. While mirroring requires double the disk space of index spreading and the

throughput differences are small, mirroring provides additional benefits, such as fault

tolerance in case of failure. Furthermore, some amount of replication is necessary when

there are more available machines than total shards.

The best overall solution in environments with high query traffic, or many machines

may be a mix of index spreading and strategic shard mirroring (replication), an option also

noted by Moffat et al. (2006). This is may be an interesting topic for future work.

Inf Retrieval J (2017) 20:221–252 247

123



6 Conclusion

Selective search is known to be substantially more efficient than the standard distributed

architecture if computational cost is measured by counting postings processed in a one-

query-at-a-time environment (Kulkarni and Callan 2010a, b; Kulkarni 2013). We have

confirmed and extended those findings via a simulator that models a realistic parallel

processing environment and a wide range of hardware configurations; using two large

datasets and long query streams extracted from the logs of web search engines.

Previous investigations also demonstrated that selective search is as effective as

exhaustive search (Kulkarni and Callan 2010a, b; Aly et al. 2013; Kulkarni 2013).

Although our work here has focused primarily on efficiency, we refined the experimental

methodology used to measure effectiveness, and achieved stronger baseline results for the

ClueWeb09 dataset. One consequence of these changes was the discovery that in some

cases selective search is less effective than exhaustive search, regardless of which resource

selection algorithm is used. Effectiveness was not our focus in this work, but our findings

are recorded to benefit other researchers that wish to pursue this topic.

Our investigation makes it clear that selective search is more efficient than conventional

distributed query-processing architectures. For many hardware configurations the two-step

selective search architecture—resource selection followed by shard access—delivers

greater total throughput (number of queries processed per time interval) as well as lower

latency (faster response time) than conventional exhaustive architecture. This somewhat

surprising outcome is a consequence of the small size of the shards used by selective

search, about 500 K documents each in our experiments. When many machines are

available, exhaustive search latency decreases relative to selective search and it may

become the faster of the two approaches, but selective search always has substantially

higher throughput.

Other studies have shown that sample-based and term-based resource selection algo-

rithms have different advantages and costs (Aly et al. 2013). Our experiments investigated

the effects of the resource selection algorithm on load distribution, latency, and throughput.

We found that Rank-S was more accurate than Taily, but also usually resulted in higher

latency and lower throughput. Moreover, if Rank-S is chosen because of its greater

effectiveness, the computational costs cause workload skews that must be corrected by

replicating resource selection (and the CSI) on multiple machines.

Selective search uses topical shards that are likely to differ in access rate. Typical

random assignments of shards produce imbalances in machine load, even when as few as

M ¼ 4 machines are in use. A Log-based assignment policy using training queries pro-

vided higher throughput and more consistent query processing times than the previous

random assignment approach. The Log-based assignment is also resilient to temporal

changes, and even after a delay of a month, throughput degradation was slight.

Previous studies investigated selective search in computing environments with a rela-

tively small number of machines. With the aid of the simulator we also examined the

behavior of selective search using clusters of up to M ¼ 64 machines, each with eight

processing cores. We found that selective search remains a viable architecture with high

throughput in these larger-scale computing environments. When additional processing

resources are available, mirroring (replicating all index shards) provides slightly better

throughput than index spreading. Replication also has other advantages such as fault-

tolerance and the ability to use more machines than there are shards. Replication of just a

few high-load shards (rather than the entire index) might also be attractive, potentially

248 Inf Retrieval J (2017) 20:221–252

123



saving on storage costs without eroding throughput. We reserve this interesting problem

for future work.

After investigating the efficiency of selective search architectures, we conclude that it is

highly attractive in low resource environments typical of academic institutions and small

businesses, and that the load imbalances of a naive configuration can be readily addressed.

At larger scale, the latency advantages are lost unless smaller shards are formed, but even

using the original shards, selective search continues to provide substantially higher

throughput than exhaustive search.

Acknowledgments We thank the three referees for their detailed and helpful input. This work was sup-
ported by the National Science Foundation (IIS-1302206); and by the Australian Research Council
(DP140101587 and DP140103256). Shane Culpepper is the recipient of an Australian Research Council
DECRA Research Fellowship (DE140100275). Yubin Kim is the recipient of the Natural Sciences and
Engineering Research Council of Canada PGS-D3 (438411). Any opinions, findings, conclusions or rec-
ommendations expressed in this paper are those of the authors, and do not necessarily reflect those of the
sponsors.

References

Altingovde, I. S., Demir, E., Can, F., & Ulusoy, O. (2008). Incremental cluster-based retrieval using
compressed cluster-skipping inverted files. ACM Transactions on Information Systems, 26(3),
15:1–15:36.

Aly, R., Hiemstra, D., & Demeester, T. (2013). Taily: Shard selection using the tail of score distributions. In
Proceedings of the 36th international ACM SIGIR conference on research and development in
information retrieval (pp. 673–682)

Arguello, J., Callan, J., & Diaz, F. (2009). Classification-based resource selection. In Proceedings of the
18th international ACM conference on information and knowledge management (pp. 1277–1286)

Badue, C. S., Baeza-Yates, R., Ribeiro-Neto, B., Ziviani, A., & Ziviani, N. (2007). Analyzing imbalance
among homogeneous index servers in a web search system. Information Processing and Management,
43(3), 592–608.

Baeza-Yates, R., Castillo, C., Junqueira, F., Plachouras, V., & Silvestri, F. (2007). Challenges on distributed
web retrieval. In Proceedings of the 23rd IEEE international conference on data engineering (pp.
6–20)

Baeza-Yates, R., Gionis, A., Junqueira, F., Plachouras, V., & Telloli, L. (2009a). On the feasibility of multi-
site web search engines. In Proceedings of the 18th international ACM conference on information and
knowledge management (pp. 425–434)

Baeza-Yates, R., Murdock, V., & Hauff, C. (2009b). Efficiency trade-offs in two-tier web search systems. In
Proceedings of the 32nd annual international ACM SIGIR conference on research and development in
information retrieval (pp. 163–170)

Barroso, L. A., Dean, J., & Hölzle, U. (2003). Web search for a planet: The Google cluster architecture.
IEEE Micro, 23(2), 22–28.

Brefeld, U., Cambazoglu, B. B., & Junqueira, F. P. (2011). Document assignment in multi-site search
engines. In Proceedings of the 4th ACM international conference on web search and data mining (pp.
575–584)

Broccolo, D., Macdonald, C., Orlando, S., Ounis, I., Perego, R., Silvestri, F., & Tonellotto, N. (2013). Query
processing in highly-loaded search engines. In Proceedings of the 20th international symposium on
string processing and information retrieval (pp. 49–55)

Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., & Zien, J. (2003). Efficient query evaluation using a
two-level retrieval process. In Proceedings of the 12th international ACM conference on information
and knowledge management (pp. 426–434)

Burkowski, F. J. (1990). Retrieval performance of a distributed database utilising a parallel process docu-
ment server. In Proceedings of the 2nd international symposium on databases in parallel and dis-
tributed systems (pp. 71–79)

Cacheda, F., Carneiro, V., Plachouras, V., & Ounis, I. (2007). Performance analysis of distributed infor-
mation retrieval architectures using an improved network simulation model. Information Processing
and Management, 43, 204–224.

Inf Retrieval J (2017) 20:221–252 249

123



Cahoon, B., McKinley, K. S., & Lu, Z. (2000). Evaluating the performance of distributed architectures for
information retrieval using a variety of workloads. ACM Transactions on Information Systems, 18(1),
1–43.

Callan, J. (2000). Distributed information retrieval. In Advances in information retrieval (pp. 127–150)
Callan, J., Connell, M., & Du, A. (1999). Automatic discovery of language models for text databases. In

Proceedings of the 1999 ACM SIGMOD international conference on management of data (pp.
479–490)

Cambazoglu, B. B., Kayaaslan, E., Jonassen, S., & Aykanat, C. (2013). A term-based inverted index
partitioning model for efficient distributed query processing. ACM Transactions on the Web, 7(3),
15:1–15:23.

Cambazoglu, B. B., Varol, E., Kayaaslan, E., Aykanat, C., Baeza-Yates, R. (2010). Query forwarding in
geographically distributed search engines. In Proceedings of the 33rd international ACM SIGIR
conference on research and development in information retrieval (pp. 90–97)

Can, F., Altingövde, I. S., & Demir, E. (2004). Efficiency and effectiveness of query processing in cluster-
based retrieval. Information Systems, 29(8), 697–717.

Croft, W. B. (1980). A model of cluster searching based on classification. Information Systems, 5(3),
189–195.

Elsas, J. L., Arguello, J., Callan, J., & Carbonell, J. G. (2008). Retrieval and feedback models for blog feed
search. In Proceedings of the 31st annual international ACM SIGIR conference on research and
development in information retrieval (pp. 347–354)

Francès, G., Bai, X., Cambazoglu, B. B., & Baeza-Yates, R. (2014) Improving the efficiency of multi-site
web search engines. In Proceedings of the 7th ACM international conference on web search and data
mining (pp. 3–12)

Freire, A., Macdonald, C., Tonellotto, N., Ounis, I., & Cacheda, F. (2013). Hybrid query scheduling for a
replicated search engine. In Proceedings of the 35th European conference on information retrieval (pp.
435–446)

Gravano, L., Garcı́a-Molina, H., & Tomasic, A. (1999). GlOSS: Text-source discovery over the internet.
ACM Transactions on Database Systems, 24, 229–264.

Griffiths, A., Luckhurst, H., & Willett, P. (1986). Using inter-document similarity information in document
retrieval systems. Journal of the American Society for Information Science, 37, 3–11.

Hawking, D., & Thistlewaite, P. (1999). Methods for information server selection. ACM Transactions on
Information Systems, 17(1), 40–76.

Kang, C., Wang, X., Chang, Y., & Tseng, B. (2012). Learning to rank with multi-aspect relevance for
vertical search. In Proceedings of the 5th ACM international conference on web search and data
mining (pp. 453–462)

Kim, J., & Croft, W. B. (2010). Ranking using multiple document types in desktop search. In Proceedings of
the 33rd international ACM SIGIR conference on research and development in information retrieval
(pp. 50–57)

Kim, Y., Callan, J., Culpepper, J. S., & Moffat, A. (2016a). Does selective search benefit from WAND
optimization? In Proceedings of the 38th European conference on information retrieval (pp. 145–158)

Kim, Y., Callan, J., Culpepper, J. S., & Moffat, A. (2016b) Load-balancing in distributed selective search. In
Proceedings of the 39th international ACM SIGIR conference on research and development in
information retrieval (pp. 905–908)

Kulkarni, A. (2013). Efficient and effective large-scale search. PhD thesis, Carnegie Mellon University
Kulkarni, A., & Callan, J. (2010a). Document allocation policies for selective searching of distributed

indexes. In Proceedings of the 19th ACM international conference on information and knowledge
management (pp. 449–458)

Kulkarni, A., & Callan, J. (2010b). Topic-based index partitions for efficient and effective selective search.
In SIGIR workshop on large-scale distributed information retrieval

Kulkarni, A., & Callan, J. (2015). Selective search: Efficient and effective search of large textual collections.
ACM Transactions on Information Systems, 33(4), 17:1–17:33.

Kulkarni, A., Tigelaar, A., Hiemstra, D., & Callan, J. (2012). Shard ranking and cutoff estimation for
topically partitioned collections. In Proceedings of the 21st ACM international conference on infor-
mation and knowledge management (pp. 555–564)

Liu, X., & Croft, W. B. (2004). Cluster-based retrieval using language models. In Proceedings of the 27th
annual international ACM SIGIR conference on research and development in information retrieval
(pp. 186–193)

Lucchese, C., Orlando, S., Perego, R., & Silvestri, F. (2007). Mining query logs to optimize index parti-
tioning in parallel web search engines. In Proceedings of the 2nd international conference on scalable
information systems (pp. 43:1–43:9)

250 Inf Retrieval J (2017) 20:221–252

123



Macdonald, C., Tonellotto, N., & Ounis, I. (2012). Learning to predict response times for online query
scheduling. In Proceedings of the 35th annual international ACM SIGIR conference on research and
development in information retrieval (pp. 621–630)

Markov, I., & Crestani, F. (2014). Theoretical, qualitative, and quantitative analyses of small-document
approaches to resource selection. ACM Transactions on Information Systems, 32(2), 9:1–9:37.

Metzler, D., & Croft, W. B. (2005). A Markov random field model for term dependencies. In Proceedings of
the 28th annual international ACM SIGIR conference on research and development in information
retrieval (pp. 472–479)

Moffat, A., Webber, W., Zobel, J. (2006). Load balancing for term-distributed parallel retrieval. In Pro-
ceedings of the 29th annual international ACM SIGIR conference on research and development in
information retrieval (pp. 348–355)

Moffat, A., Webber, W., Zobel, J., & Baeza-Yates, R. (2007). A pipelined architecture for distributed text
query evaluation. Information Retrieval, 10(3), 205–231.

Orlando, S., Perego, R., & Silvestri, F. (2001). Design of a parallel and distributed web search engine. In
Proceedings of the international conference on parallel computing (pp. 197–204)

Paltoglou, G., Salampasis, M., & Satratzemi, M. (2008). Integral based source selection for uncooperative
distributed information retrieval environments. In Proceedings of the 2008 ACM workshop on large-
scale distributed systems for information retrieval (pp. 67–74)

Powell, A. L., French, J. C., Callan, J., Connell, M., & Viles, C. L. (2000). The impact of database selection
on distributed searching. In Proceedings of the 23rd annual international ACM SIGIR conference on
research and development in information retrieval (pp. 232–239)

Puppin, D., Silvestri, F., & Laforenza, D. (2006). Query-driven document partitioning and collection
selection. In Proceedings of the 1st international conference on scalable information systems (p. 34)

Ribeiro-Neto, B. A., & Barbosa, R. A. (1998). Query performance for tightly coupled distributed digital
libraries. In Proceedings of the 3rd ACM conference on digital libraries (pp. 182–190)

Risvik, K. M., Aasheim, Y., & Lidal, M. (2003). Multi-tier architecture for Web search engines. In Pro-
ceedings of the 1st Latin American web congress (pp. 132–143)

Seo, J., & Croft, W. B. (2008). Blog site search using resource selection. In Proceedings of the 17th
international ACM conference on information and knowledge management (pp. 1053–1062)

Shokouhi, M. (2007). Central-rank-based collection selection in uncooperative distributed information
retrieval. In Proceedings of the 29th European conference on information retrieval (pp. 160–172)

Shokouhi, M., & Si, L. (2011). Federated search. Foundations and Trends in Information Retrieval, 5(1),
1–102.

Si, L., & Callan, J. (2003). Relevant document distribution estimation method for resource selection. In
Proceedings of the 26th annual international ACM SIGIR conference on research and development in
informaion retrieval (pp. 298–305)

Si, L., & Callan, J. (2004a). The effect of database size distribution on resource selection algorithms. In
Distributed multimedia information retrieval (pp. 31–42). LNCS volume 2924

Si, L., & Callan, J. (2004b). Unified utility maximization framework for resource selection. In Proceedings
of the 13th international ACM conference on information and knowledge management (pp. 32–41)

Si, L., & Callan, J. (2005). Modeling search engine effectiveness for federated search. In Proceedings of the
28th annual international ACM SIGIR conference on research and development in information
retrieval (pp. 83–90)

Thomas, P., & Hawking, D. (2009). Server selection methods in personal metasearch: A comparative
empirical study. Information Retrieval, 12(5), 581–604.

Thomas, P., & Shokouhi, M. (2009). SUSHI: Scoring scaled samples for server selection. In Proceedings of
the 32nd annual international ACM SIGIR conference on research and development in information
retrieval (pp. 419–426)

Tomasic, A., & Garcia-Molina, H. (1993). Caching and database scaling in distributed shared-nothing
information retrieval systems. In Proceedings of the 1993 ACM SIGMOD international conference on
management of data (pp. 129–138)

Tonellotto, N., Macdonald, C., & Ounis, I. (2013). Efficient and effective retrieval using selective pruning.
In Proceedings of the 6th ACM international conference on web search and data mining (pp. 63–72)

Voorhees, E. M. (1985). The effectiveness and efficiency of agglomerative hierarchic clustering in docu-
ment retrieval. Technical report, Cornell University

Webber, W., & Moffat, A. (Dec. 2005). In search of reliable retrieval experiments. In Proceedings of the
10th Australasian document computing symposium (pp. 26–33)

Willett, P. (1988). Recent trends in hierarchic document clustering: A critical review. Information Pro-
cessing and Management, 24(5), 577–597.

Inf Retrieval J (2017) 20:221–252 251

123



Wu, H., & Fang, H. (2014). Analytical performance modeling for top-k query processing. In Proceedings of
the 23rd ACM international conference on information and knowledge management (pp. 1619–1628)

Xu, J., & Croft, W.B. (1999). Cluster-based language models for distributed retrieval. In Proceedings of the
22nd annual international ACM SIGIR conference on research and development in information
retrieval (pp. 254–261)

Yuwono, B., & Lee, D. L. (1997). Server ranking for distributed text retrieval systems on internet. In
Proceedings of the 5th international conference on database systems for advanced applications (pp.
41–49)

Zhang, J., & Suel, T. (March 2007). Optimized inverted list assignment in distributed search engine
architectures. In Parallel and distributed processing symposium (pp. 1–10)

252 Inf Retrieval J (2017) 20:221–252

123


	Efficient distributed selective search
	Abstract
	Introduction
	Related work
	Cluster-based retrieval
	Distributed retrieval
	Federated search
	Selective search
	Resource selection for selective search

	Simulation model
	Simulation parameters
	Selective search process
	Resource selection and result merging
	System output
	Other factors

	Experimental methodology
	Document collections
	Resource selection parameter settings
	Confirming retrieval effectiveness
	Query streams

	Experimental results
	Selective search efficiency
	Resource allocation
	Shard assignment
	Scalability

	Conclusion
	Acknowledgments
	References




