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Abstract Query logs contain rich feedback information from users interacting with search

engines. Therefore, various click models have been developed to interpret users’ search

behavior and to extract useful knowledge from query logs. However, most existing models

are not designed to consider novelty bias in click behavior. The underlying hypothesis

behind this paper is that given the previously clicked documents, a user tends to choose

documents which provide novel relevant information to satisfy her information need, rather

than redundant relevant information. Moreover, the prior click models have been mainly

tested on frequently occurring queries, hence, leaving a large proportion of sparse queries

uncovered. In this paper, we propose to predict users’ click behavior from the perspective

of utility theory (i.e., utility and marginal utility). In particular, as a complement to the

examination hypothesis, we introduce a new hypothesis called marginal utility hypothesis

to characterize the effect of novelty bias on users’ click behavior by exploring the semantic
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divergence among documents in a result list. Moreover, to cope with sparse or unseen

queries that have not been observed in the training set, we use a set of descriptive features

to quantify the probability of a document being relevant and probability of a document

providing marginally (novel) useful information. Finally, a series of experiments are

conducted on a real-world data set to validate the effectiveness of the proposed methods.

The experimental results verify the effectiveness of interpreting users’ click behavior based

on the marginal utility hypothesis, especially when query sessions contain sparse queries or

unseen query-document pairs.

Keywords Click model � Query session � Novelty bias � Marginal utility

1 Introduction

Query logs constitute recorded user activities and interactions with search results pages.

Many studies Silvestri (2010), Lucchese et al. (2013), Zhang and Nasraoui (2006), Baeza-

Yates and Tiberi (2007) have demonstrated the high value of the feedback information

contained in query logs. In this work, we focus on the class of models called click models,

which simulate users’ click behavior on search results. Click models have many appli-

cations. They can be used for predicting click behaviors, inferring documents’ perceived

relevance, or improving ranking functions. A successful click model allows to simulate

real users’ click behavior at a very low cost Radlinski et al. (2008). Moreover, we can

predict the degree of a user’s satisfaction by constructing a click model Guo et al. (2009),

Liu et al. (2010), Wang et al. (2010) based on a large amount of real click data.

However, effective modeling of user search behavior and decoding of feedback infor-

mation hidden in query logs are still an open research problem. One common issue is the

so-called position bias, observed by eye-tracking experiments such as Granka et al. Granka

et al. (2004). It refers to a phenomenon where users tend to click documents at higher

positions of a ranked list, even if such documents provide less relevant information than

the ones at lower positions.

The examination hypothesis Craswell et al. (2008), Richardson et al. (2007) has been

typically applied to cope with the position bias. It assumes that a click depends on both the

relevance and examination. If a surrogate of retrieved document is examined, then only its

relevance determines the user click. The position bias is then reflected via the probability

of user examining document at a given rank position, which merely depends on the rank.

Follow-up studies have further extended the capabilities of the examination hypothesis.

Specifically, cascade model Craswell et al. (2008) assumes that a user examines search

results sequentially and stops examining once a relevant document is clicked. The prob-

ability of examination in the cascade model depends on the rank of the target document

and on the relevance of all the documents ranked above. Another popular click model,

dynamic Bayesian network model Chapelle and Zhang (2009), distinguishes between the

perceived relevance (the relevance of the snippet presented by a search engine) and the

actual relevance (the relevance of the landing page). The authors of dynamic Bayesian

network model argue that a user can not examine the content of a document until she clicks

on the corresponding url. Thus the decision to click on a document is determined based on

its perceived relevance rather than based on its actual relevance.
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Recent click models have built on more complex assumptions by incorporating addi-

tional knowledge or data about user behavior to better understand users’ click behavior.

For example, a number of studies Hu et al. (2011), Chuklin et al. (2013) tried to improve

click models by exploring the intent diversity, which refers to the fact that users may

submit the same query with different search intents. Take Harry Potter as an example of a

common query. Users’ search intention behind this query might be about a book, movie, or

character. Hu et al. (2011) proposed the intent hypothesis to capture intent bias among

different users to overcome the intent problem. Chuklin et al. (2013) studied how to

combine the intent and layout information to improve a click model, where each query was

assumed to have a number of categories or intents associated with it. Instead of exploring

users’ click behaviors based on individual queries, Zhang et al. (2011) proposed to char-

acterize user behavior at a task level, which involved multiple queries and browsing

actions that users performed to satisfy their search intents. Huang et al. (2012) explored

how to use mouse movements and page scrolls to facilitate the detection of users’

examination events. Their experimental results demonstrated that such additional data can

improve the performance of click models in predicting user click behavior.

Another line of work to enhance click models is to use document features Wang et al.

(2013), Zhu et al. (2010), Richardson et al. (2007), Zhang et al. (2014). A significant

advantage of these feature-based models is that they can predict click behavior for unseen

query-document pairs. Although feature-based models tend to involve additional compu-

tational costs to analyze documents’ contents, such features can be extracted from indexing

processes of search engines.

Despite the success achieved by the state-of-the-art models, they still have significant

limitations. Before detailing these limitations, we first need to distinguish three key

notions in click modeling: relevance, diversity and novelty by drawing lessons from the

studies on search result diversification Clarke et al. (2008), Radlinski et al. (2009), Yu

and Ren (2014). Relevance denotes how well a document meets the information need

underlying a query. Note that, for simplicity, in many studies (e.g., Craswell et al. 2008;

Dupret and Piwowarski 2008; Dupret and Liao 2010), the relevance between a query and

a document is formulated as a constant parameter. Diversity indicates the necessity to

resolve ambiguity. Since there is often a latent intent bias among different users issuing

the same query, the corresponding click behaviors are expected to vary according to

diverse intents Hu et al. (2011), Chuklin et al. (2013). Finally, novelty highlights the

effect of redundancy on users’ click behavior. Traditionally, search results are returned

as a ranked list. When users sequentially examine the result list, the usefulness of an

individual document is dependent on the previously ranked documents. The most

extreme case is documents that are duplicates (this is actually a common phenomenon on

the Web, e.g., a web page reprints the whole information or the main part of another web

page).

Suppose two duplicate documents di and dj are highly relevant to a query, and di is

ranked higher than dj. If a user has examined and clicked di, we assume that she would not

click on dj any more. In this paper, we call it novelty bias. It can be defined as follows

(formalization of this bias will be given in Sect. 3).

Given the previously clicked documents, a user tends to click on documents that

provide marginally useful information to satisfy her information need, rather than

on the ones that provide redundant information (even when this information is

relevant).
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However, most prior researches (e.g., models based on the examination hypothesis

Chapelle and Zhang 2009; Dupret and Piwowarski 2008; Craswell et al. 2008 and ones

based on the intent hypothesis Hu et al. 2011; Chuklin et al. 2013) suffer from the inability

of correctly capturing the novelty bias. Specifically, Sect. 3.2 details the shortcomings of

the examination hypothesis in modeling novelty bias. As a result, the models Chapelle and

Zhang (2009), Dupret and Piwowarski (2008), Craswell et al. (2008) building on the

examination hypothesis can degrade the performance of click modeling. The intent bias

based model Hu et al. (2011) does not consider the effect of redundancy on a single user’s

click behavior within a query session (which refers to the search behaviors related to a

single query, cf. Sect. 2), either.

Another limitation of existing work is that the previous click models have been tested

and proven to work on frequently occurring queries. However, since query frequency is

known to follow the power law distribution Baeza-Yates et al. (2007), Petersen et al.

(2016), a large proportion of queries, namely, sparse queries, have not been considered in

the evaluation.

The aforementioned limitations motivated us to develop a new model to predict users’

click behavior. Our proposed method is designed to decode click behaviors from the

perspective of utility theory. In particular, utility and marginal utility are introduced to

denote whether a document is relevant or marginally relevant, respectively. We propose

the marginal utility hypothesis to characterize the novelty bias.

Essentially, our proposed click model binds the probability of clicking on a document to

not only the internal utility of this document (e.g., relevance) but also to its marginal

utility. The latter represents the degree to which the document contains novel content with

respect to the documents previously clicked by a user. We test our model on a real world

query log containing multi-click query sessions and we prove its superiority over the state-

of-the-art models in terms of simulating click behaviour and estimating relevance under the

novelty bias.

The main contributions of this paper are as follows:

1. We propose the concept of novelty bias to motivate the need of considering semantic

redundancy in click modeling, which has not been explored in depth by previous

studies.

2. We propose the marginal utility hypothesis to characterize the effect of novelty bias on

predicting users’ click behavior. In particular, the probability that a document has a

positive marginal utility value is quantified by exploring the semantic divergence

among documents within a result list.

3. We demonstrate how to incorporate the marginal utility hypothesis into a click model

both theoretically and empirically.

4. Based on a real-world data set consisting of both frequent queries and sparse queries

with more than one click, a series of experiments are conducted to verify the benefit of

the proposed method that considers novelty bias in click modeling.

In the next section, we survey the major click models developed for predicting users’

search behavior. Section 3 details the proposed click model based on the concept of

marginal utility. In Sect. 4, we describe the data set and the evaluation metrics as well as

the baseline methods used in the experiments. Section 5 details the experimental results. In

Sect. 6, some additional discussions are conducted to help understand the benefit of

considering novelty bias as well as the advantages and limitations of this work. Finally, we

conclude our work in Sect. 7.
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2 Background

In this section, we give a brief survey of the typical models for interpreting users’ search

behavior. For a detailed review, please refer to the recent work by Chuklin et al. (2015).

We begin by introducing some notations and background that will be used throughout this

paper. Note that we focus here on the setting of organic search, thus, we omit the case of

the ads-centric user behavior.

When a user submits a query to the search engine, she will get a ranked list of results,

denoted by L ¼ fd1; . . .; dng, where d represents a document, and 1; . . .; n represent rank

positions. The user then examines the result snippets, and clicks some or none of them. The

following binary random variables are used respectively to represent the examination,

relevance and click events when users interact with a search engine system,

– Ei: whether the user examines the i-th document,

– Ri: whether the i-th document is relevant,

– Ci: whether the user clicks on the i-th document.

Moreover, PðEi ¼ 1Þ denotes the probability of examining the i-th document, PðRi ¼ 1Þ
denotes the probability of the document being relevant, and PðCi ¼ 1Þ denotes the prob-

ability of clicking the i-th document. The parameter aq;di is used to represent the relevance

probability of the i-th document w.r.t. the query q, i.e.,

PðRi ¼ 1Þ ¼ aq;di ð1Þ

Following the work by Chen et al. (2012), we use query session to refer to the search

behaviors related to a single query, and we use search session to refer to the process that

contains all the behaviors a user undertakes to perform a specific search task, which may

span one or more query sessions. Given a query session or a search session in the query

log, the events of examination and relevance are hidden, so only the click event is

observable, since the clicked documents are recorded.

Before detailing the click models, an explanation of the typical assumptions (e.g.,

examination hypothesis, cascade hypothesis and intent hypothesis) is necessary, since they

play a fundamental role within the state-of-the-art click models. The examination

hypothesis Craswell et al. (2008), Richardson et al. (2007) refers to the assumption that a

user clicks on a document iff this document has been examined and is relevant. It is

formulated as

Ei ¼ 1;Ri ¼ 1 , Ci ¼ 1 ð2Þ

Given a query q and a document di, Eq. 2 can be equivalently expressed as

PðCi ¼1jEi ¼ 1;Ri ¼ 1Þ ¼ 1 ð3Þ

PðCi ¼1jRi ¼ 0Þ ¼ 0 ð4Þ

PðCi ¼1jEi ¼ 0Þ ¼ 0 ð5Þ

After summation over Ri and Ei, the probability of a click can be given as
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PðCi ¼ 1Þ

¼
X

a2f0;1g

X

e2f0;1g
PðCi ¼ 1jRi ¼ a;Ei ¼ eÞPðRi ¼ aÞPðEi ¼ eÞ

¼ PðRi ¼ 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Component-1

PðEi ¼ 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Component-2

ð6Þ

In particular, component-1 captures document relevance, which is independent of its

position and of the above ranked documents. Component-2 reflects the position bias, i.e.,

the probability of examining a document merely depends on position. If a document is

examined, then we have

PðCi ¼ 1jEi ¼ 1Þ ¼ aq;di ð7Þ

The cascade hypothesis Craswell et al. (2008) assumes that: a user browses documents

from top to bottom without skips, and the first document is always examined. All the

following documents after the top-ranked one will not be examined if she stops examining.

It is expressed as:

PðE1 ¼ 1Þ ¼1 ð8Þ

PðEiþ1 ¼1jEi ¼ 0Þ ¼ 0 ð9Þ

The intent hypothesis Hu et al. (2011) emphasizes that the submitted query partially

reflects a user’s search intent, thus, there is a gap between the query and a user’s intent. It is

formulated as

Ei ¼ 1;Ni ¼ 1 , Ci ¼ 1 ð10Þ

PðNi ¼ 1jRi ¼ 0Þ ¼ 0 ð11Þ

PðNi ¼ 1jRi ¼ 1Þ ¼ ls ð12Þ

where a latent event Ni is introduced to denote whether a relevant document is really

needed by a user. ls represents the intent bias, namely, how well the query matches a user’s

intent.

There are also some other interesting assumptions for click modeling that are not

explained here. The readers are encouraged to refer to Zhang et al. (2011), Chuklin et al.

(2015) for detailed information.

Depending on whether click models utilize features (e.g., features extracted from a

document), they can be classified into two categories: feature-based click models and non-

feature-based click models. In the following sections, we first introduce the typical non-

feature-based click models, and then we show some representative feature-based click

models.

2.1 Non-feature-based click models

For non-feature-based click models (e.g., Dupret and Piwowarski 2008; Chapelle and

Zhang 2009; Dupret and Liao 2010), the relevance probability aq;di is commonly initialized

with a pre-defined value. This prior value is jointly adjusted by taking into account the

observed events of examinations, skips, clicks, etc. We introduce the models separately
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based on the aforesaid examination hypothesis, cascade hypothesis and intent hypothesis. It

should be noted that these hypotheses are not limited to non-feature-based click models as

many feature-based click models are also build based on them.

2.1.1 Click models under examination hypothesis

The cascade model Craswell et al. (2008) builds on both the examination hypothesis and

the cascade hypothesis. The click decision is made by taking into account previously

examined documents,

PðCi ¼ 1Þ ¼ PðRi ¼ 1Þ
Yi�1

j¼1

ð1 � PðRj ¼ 1ÞÞ ð13Þ

where PðRi ¼ 1Þ depends on a document itself. This model suffers from the strong

assumption that the user abandons the query session after the first click. Thus, it can not

deal with query sessions characterized by multiple clicks.

To deal with query sessions that contain multiple clicks, the dynamic Bayesian network

(DBN) model Chapelle and Zhang (2009) distinguishes perceived relevance and actual

relevance. Moreover, the binary variable Si is introduced to represent whether a user is

satisfied at the i-th position or not,

PðEiþ1 ¼ 1jEi ¼ 1; Si ¼ 1Þ ¼ 0 ð14Þ

PðEiþ1 ¼ 1jEi ¼ 1; Si ¼ 0Þ ¼ c ð15Þ

where c is a pre-defined parameter. If the user is not satisfied by the current result, there is a

probability c that she examines the next document. The experimental results in Chapelle

and Zhang (2009) showed that DBN outperforms other click models based on the cascade

hypothesis. For inferring the model parameters, various methods Zhang et al. (2010), Zhu

et al. (2010) have been proposed.

The user browsing model (UBM) follows the examination hypothesis, but it does not

rely on the cascade hypothesis. The examination event Ei is determined by the current

position i and by the distance from the current position to the rank of previous click

d ¼ i� maxj\ifCj ¼ 1g (i.e., Eq. 16). Particularly, UBM model is defined as

PðEi ¼ 1jC1:i�1Þ ¼ cid ð16Þ

PðCi ¼ 1jEi ¼ 0Þ ¼ 0 ð17Þ

PðCi ¼ 1jEi ¼ 1Þ ¼ PðRi ¼ 1Þ ¼ aq;di ð18Þ

where aq;di is interpreted as the attractiveness of the document di w.r.t. the query q rather

than as relevance. In fact, many follow-up click models Hu et al. (2011), Huang et al.

(2012), Chuklin et al. (2013) directly extend the UBM model and the DBN model by

adding new parameters or incorporating additional knowledge.

2.1.2 Click models under intent hypothesis

Under the intent hypothesis, Hu et al. (2011) investigated the effect of intent bias in

decoding users’ click behavior. By combining Eqs. 1, 10, 11 and 12, we can get
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PðCi ¼ 1jEi ¼ 1Þ ¼ ls � aq;di ð19Þ

Compared with Eq. 7 of the examination hypothesis, Eq. 19 of the intent hypothesis

essentially uses the coefficient ls to discount the relevance.

Chuklin et al. (2013) explored the intent bias in a different way. Specifically, they use

the intent distribution under a query, which is assumed to be known beforehand. Moreover,

the presentation-type information of the result page is also incorporated.

2.1.3 Click models under non-sequential examination assumption

The eye-tracking study by Wang et al. (2015) showed that many query sessions (22.8 %)

contain non-sequential (revisiting or duplicate) search behaviors. Furthermore, Wang

et al. (2015) and Xu et al. (2012) investigated how to include non-sequential behaviors

into click models and justified through the experimental results the benefit of incorpo-

rating non-sequential search behavior. The session utility model (SUM) Dupret and Liao

(2010) maintains the click sequence in the chronological order. Under this model, each

clicked document dk provides some utility uk (a positive real value) to the user. After

clicking on a set of documents, the probability that a user stops a query session depends

monotonely on the cumulative utility (i.e., the total utility that a user gathered from the

clicked documents represented as a value between 0 and infinity). The underlying

assumption is that users search and click on documents until their information needs are

satisfied.

Although the effectiveness of the above-mentioned click models have been demon-

strated through a series of experiments, a key shortcoming is that they can not handle

unseen query-document pairs. Most of the models try to choose an appropriate prior to

mitigate this problem, which needs enough evidence. Since query logs tend to be sparse

and noisy, the performance of a non-feature-based click model is negatively impacted

when dealing with sparse queries. We then next show how feature-based models can solve

this problem and how they can model user search behavior.

2.2 Feature-based click models

As indicated in previous studies, the non-feature-based click models (e.g., Dupret and

Piwowarski 2008; Chapelle and Zhang 2009; Dupret and Liao 2010) can demonstrate their

effectiveness only when there are sufficient observations for given queries and documents.

The capability of combining a large number of features is an advantage of feature-based

click models, which enables them to deal with new and sparse queries and documents.

Such a capability is highly needed, since it is almost impossible to precisely decode the

complex search behaviors by only using a few factors.

Among the previous studies, a broad range of features have been explored. For

example, some works have used the content information of queries and documents

Richardson et al. (2007), the user-specific information (e.g., age and location) Wang

et al. (2013), etc. A common way of linking model parameters and a set of features is to

use the feature-based logistic model. For example, Richardson et al. (2007) proposed to

predict the clickthrough rate (CTR) as: PðCi ¼ 1Þ ¼ rðwTfdiÞ, where rðxÞ ¼ 1
1þexpð�xÞ, w

is the weight vector and fdi denotes a feature vector. Their experimental results show that

this model predicts CTR better than the random click model (cf. Sect. 3.1 in the book

Chuklin et al. 2015).
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Under the bayesian sequential state (BSS) model Wang et al. (2013), the dependencies

among sequential search events (e.g., examination and click) are captured via a set of

features. For instance, the conditional click probability is given as

PðCi ¼ 1jRi;Ei; qÞ ¼
0 if Ei ¼ 0

rðwC
R¼0

T f Cdi ;qÞ if Ei ¼ 1;Ri ¼ 0

rðwC
R¼1

T f Cdi ;qÞ if Ei ¼ 1;Ri ¼ 1

8
><

>:
ð20Þ

where f Cd;q represents the features corresponding to the click event, and wC
R¼0 as well as

wC
R¼1 are weight vectors. The experimental results in Wang et al. (2013) show that the

model achieves a poor perplexity value, but outperforms the DBN and UBM models in

terms of relevance prediction.

To incorporate post-click behaviors (e.g., the dwelling time on a clicked document),

Zhong et al. (2010) used a feature-based way to capture the satisfaction probability. In the

general click model (GCM), Zhu et al. (2010) characterized the model parameters by using

user-specific and URL-specific features. By deploying appropriate features and distribu-

tions over features, they showed that a number of click models (e.g., DBN) can be con-

sidered as special cases of this model.

2.3 Summary

In the above sections, we have shown how the main click models work to interpret users’

click behavior. Different ways have been proposed to cope with the position bias, the intent

bias, the non-sequential examination behavior, etc. Moreover, a number of feature-based

click models have been designed to enhance the generalization capability. However, we

have found that few works have attempted to investigate the effect of novelty bias on users’

click behavior. Although the studies Zhang et al. (2011), Wang et al. (2013) have explored

to certain extent the effect of redundancy, there are key differences between these works

and ours. For example, Wang et al. (2013) have taken into account the case that a docu-

ment may be skipped due to the content redundancy. The unigram and bigram segments of

each document are used to compute the similarity of a pair of documents. Several features,

such as the average value and variance, are then derived based on the similarity values to

capture the redundancy effect. In contrast, we explore the effect of redundancy at a fine-

grained granularity via a tensor-based approach. The dimensional semantic divergences are

investigated in different ways to capture the novelty bias. Moreover, the rules defined for

capturing the dependencies among users’ click behaviors in this study are different from

those in Wang et al. (2013). For example, the case of observing a click on an examined

document that is not relevant is not allowed in our model, whereas it is possible in Wang

et al. (2013). In another work, the duplicate bias Zhang et al. (2011) has been studied

across multiple query sessions. The authors however have only focused on the case of

duplicate documents. Hence, the effect of fine-grained granularity of redundancy has not

been investigated. In this work, we investigate the effect of novelty bias on users’ click

behaviors by exploring the semantic divergence among documents co-occurring in a result

list.

Moreover, we note that most of the prior click models (e.g., Hu et al. 2011; Wang et al.

2013; Dupret and Piwowarski 2008; Chapelle and Zhang 2009) have been tested and

proven to work well on the frequent or ‘‘head’’ queries. This leaves a large fraction of

sparse queries not investigated due to the fact that query frequency approximately follows

Inf Retrieval J (2017) 20:25–52 33

123



the power law distribution Petersen et al. (2016). In this paper, the experiments are con-

ducted on both sparse queries and on frequent queries.

3 Using marginal utility for click modeling

In this paper, we propose to interpret click behaviors from the perspective of marginal

utility. In the following sections, we first give the definition of marginal utility in the

context of information retrieval. Then we show how to decode users’ search behavior

based on marginal utility. Finally, we illustrate how to incorporate marginal utility into

click models.

3.1 Utility and marginal utility

Analogous to the utility theory in economics Carl (2007), we use the concept of utility to

refer to the satisfaction or contentment a user gets from a document in isolation from other

documents. The factors for assessing a document’s utility could include among others,

topical relevance, authority of the site and the quality of display. On the other hand, we use

marginal utility to refer to the satisfaction or contentment a user gets from a document by

taking into account the previously browsed documents. Thus the utility of an individual

document, say dj, depends on the document itself, while its marginal utility is a context-

dependent factor, which relies not only on the document itself but also the previous j� 1

documents. Suppose two duplicate documents di and dj are highly relevant to a query q,

and di is ranked ahead of dj. Although they have the same utility, the marginal utility of dj
is assumed to be zero, because dj merely provides redundant information. Furthermore, we

assume that: for a specific document di, its utility and marginal utility, say ui and mi, take

values between 0 and infinity, i.e., ui 2 ½0;þ1Þ and mi 2 ½0;þ1Þ. The utility of a doc-

ument is always equal to or greater than its marginal utility, i.e., ui �mi. Namely, if a

document contains redundant information given the previously browsed documents, its

marginal utility would be smaller than its utility. If ui ¼ 0, then mi ¼ 0. On the contrary, if

mi ¼ 0, ui may not be zero. The aforesaid case of duplicate documents is an example.

In this paper, we do not explore how to determine the exact values of the utility and

marginal utility of a document leaving it as future work. Instead, we focus on two prob-

abilities. One is the probability that a document, say di, has a positive utility value. We

assume that it is equivalent to the probability of being relevant, i.e., PðRi ¼ 1Þ. The

feature-based expression of PðRi ¼ 1Þ is given as

PðRi ¼ 1Þ ¼ rðwT
u f

u
q;di

Þ ð21Þ

where f uq;di represents the feature vector for capturing utility and wu is the importance

weight vector. To differentiate it from Eqs. 1, 21 is referred to content-aware parame-

terization, since the core composing features rely on the content information. The second

probability is the probability that the document di provides marginally useful information,

which is assumed to be equivalent to the probability of providing novel relevant infor-

mation. It is expressed as

PðMi ¼ 1Þ ¼ rðkiwT
u f

u
q;di

þ ð1 � kiÞwT
mf

m
q;di

Þ ð22Þ

where the binary variable Mi indicates the event whether di provides marginally useful

information or not. The part wT
u f

u
q;di

is used to capture the utility, and wT
mf

m
q;di

is used to
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capture the semantic divergence between di and the previously clicked useful documents,

where f mq;di is the feature vector and wm is the weight vector. Finally, a linear combination of

the two parts (ki is the coefficient) is used to capture the marginal utility. When ki ¼ 1,

Eq. 22 characterizes utility in the same way as Eq. 21. This will actually be the key point

to understand the setting of Eq. 23 (explained in the next section). Section 3.3.1 discusses

how to obtain the feature vectors f uq;di and f mq;di .

Using utility and marginal utility enables us to characterize the effect of redundancy on

users’ click behavior, which will be detailed in the following sections.

3.2 Marginal utility oriented click modeling

For interpreting users’ click behavior, we propose the marginal utility hypothesis.

Specifically, given a list of ranked results for a submitted query, we assume that a user

sequentially examines this result list from the top to bottom. She would remember the

previously examined and clicked documents when moving onto lower positions. A doc-

ument must be examined before being clicked. If a document is not relevant or useful, the

user will not click it. Given the previously clicked documents, the user will click a doc-

ument if and only if this document has been examined and it provides marginally useful

information.

Let X ¼ fx1; :::; xmg represent the sequence of observed clicks on the result list L, where

xj denotes the j-th click, and the value of xj denotes the rank position of the document being

clicked, thus 1� x1\x2\:::\xm � n. The marginal utility hypothesis can be formally

formulated as:

k1 ¼ k2 ¼ ::: ¼ kx1
¼ 1 ð23Þ

kx1þ1 ¼ kx1þ2 ¼ ::: ¼ kn ð24Þ

PðCi ¼ 1jEi ¼ 1;Mi ¼ 1Þ ¼ 1 ð25Þ

PðCi ¼ 1jEi ¼ 0Þ ¼ 0 ð26Þ

PðCi ¼ 1jMi ¼ 0Þ ¼ 0 ð27Þ

As explained in Sect. 3.1, Eq. 22 is characterizing utility in the same way as Eq. 21 when

ki ¼ 1. Based on this setting, Eq. 23 means that: when determining the usefulness of a

document, marginal utility is equivalent to utility if there are no relevant documents

clicked above. If some relevant documents were previously found, users consider the

document’s marginal utility rather than utility. In other words, within a query session,

marginal utility is equivalent to utility if no relevant documents were found above.

Equation 24 means that the same coefficient k (set to 0.1 in experiments) is used for

representing the marginal utility of any document below the first clicked document. To

sum up, in the current setting k is equal to 1 for every document ranked till the first clicked

one (including the first clicked one), while it has the same fixed value (0.1 in the exper-

iments) for each document ranked below. We leave the more complex setting with

dynamically optimized k values as future work.

Figure 1 illustrates the graphical models of the examination hypothesis and the marginal

utility hypothesis, where the shaded nodes indicate observed variables, and the non-shaded

nodes indicate hidden variables.
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By viewing the variable Ri in the examination hypothesis as an indicator of utility (i.e.,

ui ¼ 0 or ui [ 0), it is straightforward to capture the distinction between the examination

hypothesis and the marginal utility hypothesis. Namely, from the rank position 1 to x1, the

marginal utility hypothesis is equivalent to the examination hypothesis. When modeling

users’ search behavior on documents ranked below x1 under the examination hypothesis,

the usefulness of a document is considered independent of other documents. A non-clicked

document, say dkðk[ x1Þ, would be viewed as irrelevant or useless. On the other hand,

under the marginal utility hypothesis, the usefulness of a document is dependent on the

previously clicked documents. A non-clicked document dkðk[ x1Þ can be relevant, yet, it

may provide no marginally useful information. Therefore, the marginal utility hypothesis

can be essentially regarded as an improved version of the examination hypothesis.

3.3 Incorporating marginal utility hypothesis into click model

In this section, we theoretically show how to design a click model based on the marginal

utility hypothesis. First, we explain the proposed ways to obtain the feature vectors for

quantifying utility and marginal utility oriented probabilities. Then we detail how to

incorporate the marginal utility hypothesis when implementing a click model.

3.3.1 Obtaining feature vectors f uq;di and f mq;di

The 2nd row in Table 1 shows the features composing f uq;di . For a particular document di,

TF, IDF, TF � IDF and BM25 are computed by using 3 data fields of di (i.e., the URL, title

and body content) respectively, which generates 12 features. Following the studies on

testing learning-to-rank algorithms (e.g., the benchmark collection LETOR1), the slash

number in a URL is used as a feature indicating the depth or hierarchy of a webpage within

a website. A total of 13 features are finally used.

1 http://research.microsoft.com/en-us/um/beijing/projects/letor/.

(a) (b)

Fig. 1 The graphical models of the examination hypothesis and the marginal utility hypothesis

Table 1 Features for capturing utility and marginal utility

Features Description

f uq;di TF (term frequency), IDF (inverse document frequency), TF*IDF, BM25, Slash number in URL

f mq;di Topic divergence, Text divergence
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For quantifying the semantic divergence between a pair of documents, we compute their

topic divergence and text divergence separately between each field (i.e., the aforemen-

tioned 3 data fields). Thus, a total of 6 features is generated. Specifically, the topic

divergence is computed based on the implicit subtopic distribution of the input objects. For

example, given the body content information ti and tj of documents di and dj, it is cal-

culated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kðPðzkjtiÞ � PðzkjtjÞÞ2

q
, where PðzkjtjÞ is the subtopic probability computed

using LDA model Blei et al. (2003). On the other hand, the text divergence is calculated as

the cosine dissimilarity between the weighted term vectors, 1 � ti�tj
ktikktjk, where ti and tj

represent the weighted term vectors of a single field w.r.t. di and dj using TF � IDF
weighting scheme.

Assuming d1, d3, and d5 are the clicked documents in the result list fd1; :::; dng, we

compute the semantic divergence between d6 and all the three clicked documents when

calculating the marginal utility of d6 under the marginal utility hypothesis. Inspired by the

tensor-based techniques for search result diversification Zhu et al. (2014) and relational

learning Nickel (2013), we use a tensor-based method to capture the semantic divergence

between the document di and the previously clicked documents in the result list. In par-

ticular, T 2 Rn�n�h is 3-way tensor that represents the pairwise divergence among n

documents. The component Ti stands for the matrix of semantic divergence between di and

other documents, Tij denotes the divergence vector between di and dj. ðTij1; :::; TijhÞ rep-

resents the 6 divergence features (i.e., h ¼ 6) computed based on di and dj. Given the

previously clicked documents, the feature vector f mq;di is extracted via a specific function,

f mq;di ¼ DðT ;Xi�1Þ, where Xi�1 represents the sequence of observed clicks at the rank

positions from 1 to ði� 1Þ. Essentially, DðT;Xi�1Þ defines the semantic divergence

between a single document and a set of documents. In this paper, DðT ;Xi�1Þ is computed

in the following three different ways:

DðT ;Xi�1Þ ¼ min
xj2Xi�1

Tixj1; :::; min
xj2Xi�1

Tixjh

� �
ð28Þ

DðT ;Xi�1Þ ¼ 1

jXi�1j
X

xj2Xi�1

Tixj1; :::;
1

jXi�1j
X

xj2Xi�1

Tixjh

0
@

1
A ð29Þ

DðTi;Xi�1Þ ¼ max
xj2Xi�1

Tixj1; :::; max
xj2Xi�1

Tixjh

� �
ð30Þ

Under Eq. 28, the target features rely on each dimensional minimum divergence between a

document and the previously clicked documents. Under Eq. 29, they rely on the average

divergence per dimension between a document and the previously clicked documents.

Using Eq. 30, the features rely on the max divergence per dimension between a document

and the previously clicked documents.

For a basic click model M, the resulting model is denoted as MU-M when we extend

M by incorporating the marginal utility hypothesis. Moreover, to investigate the effec-

tiveness of the ways for characterizing marginal utility (i.e., Eqs. 28, 29 and 30), the

suffixes Min, Avg and Max are used to distinguish the variants of MU-M that differ in

obtaining the feature vector f mq;di , namely MU-M-Min, MU-M-Avg and MU-M-Max.
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3.3.2 Click model implementation

Given a click model and its parameters H, the goal is to find the optimal parameter setting

H� that optimizes the log-likelihood of the model given the training query sessions S:

H� ¼ arg max
H

X

s2S
logð

X

H

PðH;XðsÞjHÞÞ ð31Þ

where H is the vector of hidden variables, XðsÞ is the vector of observed clicks in a query

session s. In fact, it is hard to optimize Eq. 31 due to the necessity of summing over all

hidden variables. To cope with this problem, the Expectation Maximization algorithm is

used to learn the optimal parameter setting as shown in Eq. 32,

H� ¼ arg max
H

X

s2S

X

H

PðHjCðsÞ;HÞ logðPðH;XðsÞjHÞÞ ð32Þ

Specifically, in the E-step, the posterior distribution PðHjCðsÞ;HðtÞÞ is computed for hidden

variables H under the current model HðtÞ. In the M-step, we derive the new parameter

setting Hðtþ1Þ by maximizing the expectation of the complete log-likelihood under

PðHjCðsÞ;HðtÞÞ.
For a click model M that follows the examination hypothesis, it is straightforward to

switch from the examination hypothesis to the marginal utility hypothesis. The required

step is to replace Eqs. 3, 4, 5 with Eqs. 23, 24, 25, 26, and 27. When the marginal utility

hypothesis is adopted, the resulting click model is referred to as MU-M. Let H be the

parameters of the original model M. Algorithm-1 illustrates how to infer the parameters of

MU-M, where two additional weight vectors wu and wm have to be estimated.

In Phase-C, given the estimated probabilities of being marginally relevant, we use the

L-BFGS algorithm Liu and Nocedal (1989) to obtain the optimal weight vectors wu and

wm.

4 Experimental setup

In this section, we first describe the adopted data set. Its characteristics are specified from

different dimensions (e..g, basic statistics, click distribution, query frequency, etc), which

helps to better understand the experimental results. Then, we explain in detail the evalu-

ation metrics and baseline methods.
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4.1 Data set

To accelerate the research related to search logs, a number of publicly available data sets

have been released, e.g., the AOL query log (2006)2, the SogouQ data3 and the query logs

published as part of the Web Search Click Data (WSCD) workshop series in 20094, 20125,

20136, and 20147. In regards to our study, a common limitation of these data sets is that

they do not contain all documents (or URLs) displayed to a user. This makes it impossible

to completely capture the semantic divergence among documents in a result list, since we

have little information about the original content of documents. In view of this, the pub-

licly available data sets are not adopted in this study.

We collected a 7-day (April 1–7, 2013) query log from a major web search engine,

which contains 3, 802, 127 query sessions, 1, 473, 723 unique queries, 10, 847, 540

unique documents, and 1, 905, 104 clicks. The associated search activities include the

anonymized user ID, requesting time, query string, the result list shown to a user, the

corresponding clicks, etc. To train and evaluate the models, we have done the following

pre-processing work on this query log: (1) Only query sessions having at least two clicks

were considered. This step is motivated by prior studies Tyler and Teevan (2010), Teevan

et al. (2007), Jiang et al. (2014), Lee et al. (2014) which demonstrated that a large per-

centage of queries are submitted with very simple search intents (e.g., finding or re-finding

a specific homepage or locating a specific fact with known keywords). Search intents

underlying such queries are usually satisfied through a single click. Among our adopted

data set, there are 1,546,705 single-click query sessions (i.e., a ratio of 40.68 %). This high

ratio is also confirmed to some extent in the previous studies Tyler and Teevan (2010),

Teevan et al. (2007), Jiang et al. (2014), Lee et al. (2014). Since the effect of redundancy

on click behaviors for this kind of queries is rather negligible, we decided to focus only on

multi-click query sessions. The total number of multi-click query sessions is 129,043,

which attains a ratio of 3.39 % of the entire data set. (2) Queries including characters

outside a-zA-Z0-9 and the white spaces were filtered out. (3) Like Chapelle and Zhang

(2009), we restrict ourselves to the top 10 search results of each query session. (4) Based

on the URLs (both skipped and clicked) that were shown to search engine users, we

downloaded the source files of these URLs for conducting content analysis such as

extracting features to estimate document relevance probability. After these pre-processing

steps, the final data set contains 10,778 unique query sessions, i.e., 8.35 % of the entire

multi-click query sessions. It is summarized in Table 2.

Furthermore, Fig. 2 illustrates the number of clicks at each rank position. This fig-

ure again verifies the aforementioned position bias, i.e., users tend to click documents at

higher positions.

Given the obtained data set, we perform 4-fold cross validation and report the average

performance. The features are standardized using the Z-score normalization8. Particularly,

in one round of cross-validation, the whole data set is split into the training set and the

2 http://www.gregsadetsky.com/aol-data/.
3 http://www.sogou.com/labs/dl/q-e.html.
4 http://research.microsoft.com/en-us/um/people/nickcr/wscd09/.
5 http://research.microsoft.com/en-us/um/people/nickcr/wscd2012/.
6 http://research.microsoft.com/en-us/um/people/nickcr/wscd2013/datasets.htm
7 http://research.microsoft.com/en-us/um/people/nickcr/wscd2014/.
8 https://en.wikipedia.org/wiki/Standard_score.
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testing set at a ratio of 3:1. As for the testing set, it should be noted that a subset of query

sessions are previously seen in the training set (i.e., each query-document pair within a

query session has been observed in the training set). The other complementary subset of

query sessions are unseen. In other words, each query session in such subset includes at

least one query-document pair that has not been observed in the training set. When

evaluating the performance based on the testing set, two ways of testing are conducted.

One way is only using the subset of query sessions that have been observed in the training

set (referred to as Test-On-Seen). The other way is using the entire testing set (referred to

as Test-On-Entire). Using Test-On-Entire, we can only compare feature-based models,

since the non-feature based models can not effectively deal with unseen query-document

pairs. On the other hand, based on Test-On-Seen, we can perform a fair comparison among

the non-feature based models and feature-based models. Table 3 shows the average number

of testing query sessions when performing the 4-fold cross-validation.

Moreover, Table 4 illustrates the distribution of queries, documents and query sessions

corresponding to query frequency.

Tables 3 and 4 clearly reflect the problem of query sparsity w.r.t. a query log.

Specifically, Table 3 shows that a large portion of query sessions include unseen query-

document pairs when we test a click model. From Table 4, we observe that a large number

of queries are sparse queries. To investigate in depth the effectiveness and robustness of

click models, these statistics suggest the necessity of conducting experiments on both

frequent queries and sparse queries.

Table 2 The summary of data set

#Unique query #Unique clicked document /#Unique document #Click/#Document #Query session

9,995 27,400/105,756 28,891/118,203 10,778
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Fig. 2 The click distribution of data set
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4.2 Evaluation metrics

4.2.1 Log-likelihood

The metric of log-likelihood evaluates a click model’s performance by looking at the

likelihood of held-out test data. For each query session in the testing data s 2 Stest, the

likelihood of this session under a click model M is computed as LðsÞ ¼ PMðCs
1; :::;C

s
nÞ,

where Cs
1; . . .;C

s
n is the click events observed in s. Assuming the independence of query

sessions, the log-likelihood of the test data is given as

LLðMÞ ¼
X

s2Stest
logPMðCs

1; . . .;C
s
nÞ ð33Þ

Furthermore, let jStestj be the total number of query sessions, the average log-likelihood per

query session is given as

Avg� LLðMÞ ¼ LLðMÞ
jStestj

ð34Þ

The higher log-likelihood (or average log-likelihood) a model has, the better perfor-

mance it achieves.

4.2.2 Perplexity

The perplexity metric used in the previous work Dupret and Piwowarski (2008) is defined

as

pk ¼ 2
�1

N

PN

j¼1
ðd½C j

k
¼1� log

q
j

k
2

þd½C j

k
¼0� log

ð1�q
j

k
Þ

2
Þ ð35Þ

where C
j
k is a binary value that indicates an observed click on the k-th position of the j-th

query session, and d is the indicator function (i.e., [true]=1 and [false]=0). q
j
k is the

predicted probability of a click on the k-th position of the j-th query session given the

previously observed clicks. Perplexity measures how ‘‘surprised’’ the model is on

Table 3 The average number of testing query sessions when performing four-fold cross-validation

Testing way Average number of testing query sessions

Test-On-Seen 58.75

Test-On-Entire 2,676.5

Table 4 The distribution of
queries, documents and query
sessions w.r.t. query frequency

#Query frequency #Query #Document #Query session

1 9,503 103,949 9,503

2 391 8,799 782

3 61 2,005 183

� 4 40 3,450 310
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observing the clicks in test data. The lower perplexity a model achieves, the better its

performance is. In particular, perplexity of a naive model (predicting each click with a

probability of 0.5) equals 2, and perplexity of a perfect model is 1. Across different rank

positions, the average perplexity value is given as: pavg ¼ 1
10

P10
k¼1 pk. A standard way of

comparing perplexity values is to compute the perplexity gain of a model A over a model

B, i.e., pB�pA
pB�1

. In the analysis, we use a mean average perplexity, which is a mean of average

perplexity over query sessions, unless otherwise stated.

4.2.3 nDCG and MAP

In order to evaluate the quality in estimating relevance, the popular metrics for measuring

ranking algorithms such as nDCG (Normalized Discounted Cumulative Gain) Burges et al.

(2005) and MAP (Mean Average Precision) (see Manning et al. 2008 for the detailed

definition) are used with different cutoff values 5 and 10. In view of the inherent sensitivity

that a single metric has Radlinski and Craswell (2010), two metrics are adopted to ensure

the reliability of the evaluation. Following Wang et al. (2013), the logged user clicks are

regarded as binary relevance annotations. Particularly, if a documented is clicked, it is

viewed as relevant, otherwise, it is non-relevant. If relevant documents are ranked at higher

positions, the nDCG or MAP value will be large. Otherwise, the nDCG or MAP value will

be small. The larger the nDCG or MAP value is, the more effective a click model is in

estimating relevance.

4.3 Baseline methods

The UBM model and the DBN model are two widely compared click models that

follow the examination hypothesis. The studies Hu et al. (2011), Chuklin et al. (2013)

show that the UBM model outperforms the DBN model in terms of both perplexity and

nDCG Järvelin and Kekäläinen (2002) (i.e., measuring the accuracy of relevance

estimation). We thus decided to use the UBM model as the basis to study the effect of

applying the marginal utility hypothesis. In the following, UBM refers to the original

model proposed in Dupret and Piwowarski (2008), which is a non-feature based model.

There are two types of logistic regression models for click modeling, one is expressed

as PðC ¼ 1jdi; iÞ ¼ rðadi þ biÞCraswell et al. (2008), i.e., a function of the document and

the position. The other is built on features, e.g., Richardson et al. (2007) discussed in

Sect. 2.2. In this paper, we use the feature based logistic regression model (denoted as

LR) to show the effect of using features for capturing document relevance without

considering other factors (e.g., rank position). Moreover, the content-aware model BSS

introduced in Sect. 2.2 is also used as a baseline method (the code provided by the first

author has been utilized). Due to the unavailability of the originally used data, we

compare it based on our data set instead. In order to perform fair comparison, the

features for estimating relevance are the same as in other methods compared in this

paper. The features for estimating examination and click are generated in the same way

as the original paper.

The proposed click models building on the marginal utility hypothesis are implemented

by modifying the UBM model. The resulting click models are denoted as MU-UBM-Min,

MU-UBM-Avg, and MU-UBM-Max, respectively.
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5 Experimental results

In this section, we investigate the effectiveness of the marginal utility hypothesis oriented

click models by comparing them with the examination hypothesis based UBM model and

with the feature based models. In particular, we first use the testing set consisting of only

seen query-document pairs (referred to Test-On-Seen), so as to perform a fair comparison

between UBM and the proposed UBM variants that incorporates marginal utility. Then, we

test the feature based models based on the entire testing set (Test-On-Entire) which con-

tains both seen and unseen query-document pairs. Finally, we investigate the feature based

models in terms of relevance estimation.

5.1 Results on seen query sessions

Table 5 shows the performance of four click models based on the Test-On-Seen set. UBM

represents a non-feature based click model that relies on the examination hypothesis. MU-

UBM-Min, MU-UBM-Avg and MU-UBM-Max are three variants of UBM, which builds

upon the marginal utility hypothesis.

From Table 5, we can observe that MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max

outperform UBM in terms of Average log-likelihood. In terms of Avg-perplexity, MU-

UBM-Min and MU-UBM-Max outperform UBM. This demonstrates the advantage of

marginal utility based models over the baseline model on click modeling. Specifically, the

advantage of MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max over UBM stems from

the following key aspect: MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max use feature-

based method to modeling the usefulness of a document. Moreover, the marginal utility

hypothesis is adopted rather than the examination hypothesis, which helps to capture the

effect of novelty bias.

We can also observe that the performance varies across the three implementations of

marginal utility based models, although all outperform the baseline. MU-UBM-Min, which

is based on the minimum divergence from previously clicked documents in the ranked list,

performs best both in log-likelihood and average perplexity. This suggests that the way the

marginal utility is calculated can affect the performance, and thus, a careful consideration

is required for implementation.

To further investigate the behavior of the proposed models, we looked at the effect of

query frequency on the performance. Here, the query frequency refers to the number of

times that a testing query of a query session appears in the training data. The results are

shown in Fig. 3.

Table 5 Performance comparison through the testing way: Test-On-Seen

Models Average log-likelihood Avg-perplexity

UBM �10:66� 3:69�

MU-UBM-Min �6:69 2:24

MU-UBM-Avg �9:13� 4:12�

MU-UBM-Max �8:17� 3:06�

For each metric, the best result is indicted in bold

* Indicates statistically significant difference to the best result under each metric (t test with p\0:01)
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We can observe that the effect of the query frequency is strong on UBM. In other words,

the performance of UBM depends on the frequency of seen queries. In particular, UBM

performs poorly on low frequency queries which constitute a large proportion of long tail

distribution. On the other hand, MU-UBM-Min outperforms the baseline model at low

frequency queries (i.e., Threshold = 1, 2). Average perplexity echoes a similar pattern, but

the performance of marginal utility based models are more stable and robust against the

change of query frequency than the baseline model.

In this section, we aim to show what would happen if we extend UBM by incorporating

the marginal utility hypothesis. Since UBM is a non-feature based model, we perform more

fair comparisons by comparing the proposed models to the state-of-the-art feature based

models in the next section, where the Test-On-Entire set is used.

5.2 Results on entire query sessions

Next, we examine the performance of proposed models using the Test-On-Entire set, where

a large number of unseen query-document pairs is included (cf., Table 3). Since the

original UBM is not designed to handle unseen queries, we devised an extended UBM by

using features to quantify the relevance probability. In particular, by replacing Eq. 18 with

Eq. 21, we built the content-aware version of UBM (denoted as CA-UBM), which make it

suitable to deal with unseen query-document pairs. Moreover, the feature based models LR

and BSS described in Sect. 2.2 are also compared.

Table 6 shows the performance of the feature based click models, namely LR, BSS, CA-

UBM, MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max based on the Test-On-Entire

set.

From Table 6, we can observe that the proposed methods outperform LR, BSS and CA-

UBM significantly. The perplexity gain over LR, BSS and CA-UBM for MU-UBM-Min,

MU-UBM-Avg and MU-UBM-Max are 36.0, 22.9 and 11.1 %, 31.0, 16.9 and 4.2 %, 34.0,

20.5 and 8.3 %, respectively. This provides a further evidence to support the advantage of

marginal utility to capture novelty bias in click modeling. Since the position bias is

prominent during users’ search process, the lack of coping with position bias impacts the

performance of LR to a large extent. For capturing the effect of redundancy, the content-

oriented features of BSS depend on the pairwise similarity values of documents, such as
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Fig. 3 Performance variation w.r.t. the frequency threshold of testing queries
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the average value and variance (please refer to Table1 in Wang et al. (2013) for detailed

information). The similarity of a pair of documents is calculated based on the unigram and

bigram segments of each document. In contrast, we appeal to the dimensional semantic

divergence by exploring the minimum, average and maximum combinations. The way of

capturing redundancy is a reasonable reason for explaining the different results achieved

by BSS and the proposed methods. Moreover, the original work Wang et al. (2013) also

showed that UBM can achieve a better performance than BSS in terms of perplexity

(Table 3 in Wang et al. 2013). Therefore, it is not surprising to observe that in Table 6 CA-

UBM (i.e., content-ware version of UBM) outperforms BSS in terms of avg-perplexity.

Contrasting to CA-UBM, the exact reason for explaining why MU-UBM-Min, MU-

UBM-Avg and MU-UBM-Max perform better is the deployment of the marginal utility

hypothesis. In addition, a comparison of the results in Tables 5 and 6 shows that the

performance of MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max improved on the

Test-On-Entire set.

Furthermore, we examine the effect of rank positions on the performance of proposed

models. This is because users’ clicks are known to vary across rank positions, as shown in

Fig. 2. Therefore, we investigate the effectiveness of the feature based models in char-

acterizing the click behaviors at specific rank positions. Figure 4 shows the average per-

plexity values of each model at different rank positions based on the testing way Test-On-

Entire.

From Fig. 4, we can observe that the average perplexity value of LR is always around 2.

Its performance can be approximately regarded as one of a naive model that predicts the

click of each document with a probability 0.5. Conversely, it shows the necessity of

considering position bias. Figure 4 again shows that CA-UBM, an extended version of

UBM model, is more effective in modeling the click behaviors than BSS, even though BSS

utilizes a more complex dependency framework to model click behaviors. Furthermore,

both CA-UBM and BSS perform better at lower rank positions than higher positions. For

MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max, Fig. 4 shows a noticeably better

performance than the baseline models at the first rank position. For click behaviors at the

2nd and lower rank positions, these models show comparable performance. We will dis-

cuss the implications of these results in the Sect. 6.

5.3 Quality of relevance estimation

In this section, we investigate the performance of the aforementioned feature-based models

in terms of relevance estimation, where the Test-On-Entire set is used. We rank candidate

documents according to the estimated relevance given by each click model, and compare

the ranked result against the true user clicks. The higher position a click model ranks a

Table 6 Comparison based on
the testing way: Test-On-Entire

For each metric, the best result is
indicted in bold

*Indicates statistically significant
difference to the best result under
each metric (t test with p\0:01)

Models Average log-likelihood Avg-perplexity

LR �6:48� 2:00�

BSS �5:75� 1:83�

CA-UBM �5:09� 1:72�

MU-UBM-Min �4:64 1:64

MU-UBM-Avg �4:92� 1:69�

MU-UBM-Max �4:78� 1:66�
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clicked document, the better performance it achieves. Table 7 shows the results achieved

by LR, BSS, CA-UBM, MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max, respectively.

By independently analyzing the results in Table 7, it is reasonable to say that the

marginal utility oriented click models MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max

significantly outperform the other baseline methods in estimating relevance in terms of

both nDCG and MAP.

However, a joint analysis of the results in both Tables 6 and 7 helps to understand well

the pros and cons of each click model. For example, since MU-UBM-Min, MU-UBM-Avg

and MU-UBM-Max builds upon UBM, the only difference between CA-UBM and a

marginal utility oriented click model (MU-UBM-Min or MU-UBM-Avg or MU-UBM-
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Fig. 4 Average perplexity values of each model at different rank positions

Table 7 The quality of estimating relevance based on the testing way: Test-On-Entire

Models nDCG@5 nDCG@10 MAP@5 MAP@10

LR 0:455� 0:610� 0:178� 0:125�

BSS 0:462� 0:614� 0:181� 0:126�

CA-UBM 0:453� 0:608� 0:176� 0:125�

MU-UBM-Min 0:665 0:769 0:298 0:179

MU-UBM-Avg 0:650� 0:759� 0:289� 0:176�

MU-UBM-Max 0:657� 0:764� 0:293� 0:178�

For each metric, the best result is indicted in bold

*Indicates statistically significant difference to the best result under each metric (t test with p\0:01)
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Max) is the modeling of relevance. The effectiveness in estimating relevance makes it easy

to understand why MU-UBM-Min, MU-UBM-Avg and MU-UBM-Max outperform CA-

UBM in terms of average log-likelihood and avg-perplexity in Table 6. Another interesting

observation is that: BSS outperforms CA-UBM in estimating relevance, but underperforms

CA-UBM in terms of average log-likelihood and avg-perplexity. this is because computing

average log-likelihood and avg-perplexity involves several factors jointly (e.g., the prob-

ability of examining, the probability of being relevant, or the distance to the last click, etc)

rather than relevance itself. Therefore, a probable reason is that BSS fails to effectively

modeling other factors, and, in result, it achieves a lower performance than CA-UBM in

Table 6.

As an interesting exploration, Table 8 shows a subset of learned weights w.r.t. the

features for estimating relevance, where CA-UBM, MU-UBM-Min, MU-UBM-Avg and

MU-UBM-Max are used as example models.

From Table 8, we observe that: for the same feature, different weights are learned by

different models. Moreover, for the models build on marginal utility hypothesis, the weight

vectors for any pair of models are not consistent. This implies different ways of estimating

relevance. Another interesting observation is that the weight vector learned by CA-UBM is

consistent with the weight vector learned by MU-UBM-Min (i.e., with the same positive

and negative sign). Due to the fact that MU-UBM-Min jointly learns the weight vector for

estimating relevance and the weight vector for estimating marginal utility, the relative

values are different from CA-UBM. We leave the in-depth exploration of this consistence

as well as the effectiveness of different feature combinations as a future work.

Furthermore, Table 9 shows a subset of learned weights by models building upon

marginal utility hypothesis w.r.t. the semantic divergence features.

Table 8 Learned weights for estimating relevance

Model TF*IDF BM25

URL Title Body URL Title Body

CA-UBM -0.198 0.584 -0.050 0.417 -0.285 0.116

MU-UBM-Min -0.791 0.180 -0.012 0.395 -0.339 0.068

MU-UBM-Avg 0.181 -0.055 -0.516 -0.552 0.014 0.384

MU-UBM-Max -0.672 -0.730 0.058 0.390 0.389 0.414

TF*IDF and BM25 are the ways of computing feature scores. URL, Title and Body indicate the corre-
sponding fields of a document for computing feature scores

Table 9 Weights w.r.t. the semantic divergence features

Model Topic divergence Text divergence

URL Title Body URL Title Body

MU-UBM-Min -0.313 1.338 -0.237 -0.348 0.411 1.381

MU-UBM-Avg -0.278 -0.029 0.593 1.545 -0.029 0.162

MU-UBM-Max 0.855 -0.084 0.303 0.322 1.09 -0.601

Topic divergence and Text divergence denote the feature types. URL, Title and Body indicate the corre-
sponding fields of a document for computing feature scores
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From Table 9, we can observe that the weight vectors for any pair of models are not

consistent. In other words, the way of balancing marginal utility features underlying each

model differs from one another. For example, for the topic divergence based on the body

field, feature values smaller than the mean value are preferred by MU-UBM-Min. On the

other hand, for the text divergence based on the body field, feature values higher than the

mean values are preferred.

6 Discussion

Our work was motivated by the intuition that users would prefer to click an URL which is

likely to provide novel relevant information than redundant relevant information Tefko

(1997) in multi-click sessions. A framework of utility and marginal utility hypothesis was

employed to construct three new click models (MU-UBM-Min, MU-UBM-Avg and MU-

UBM-Max) designed to capture novelty information from the contents of retrieved doc-

uments. We also extended UBM Model Dupret and Piwowarski (2008) to a feature-based

model as part of our work. These models were evaluated by a total of 10,778 unique multi-

click query sessions taken from a major Web search engine. This section discusses our

major findings and implications on the development of effective click behavior models.

We also discuss the limitations of our work.

6.1 Major findings and implications

The experimental results from the seen query-document set (Test-On-Seen) and mixed set

(Test-On-Entire) demonstrated the advantage of the proposed models by outperforming

baseline models Dupret and Piwowarski (2008) in terms of average log-likelihood, mean

average-perplexity and relevance estimation (See Tables 5, 6, 7). This justifies our

approach of considering novelty information in click modeling. It also demonstrates that

the framework of marginal utility is an effective method to incorporate novelty properties

into the modeling of click behavior.

Further analyses identified three aspects of strength in the proposed models. One was

the robustness against the change of query frequency. Head queries are submitted very

frequently, while the large number of tail queries are submitted much less frequently.

Therefore, it is desirable for a model to accurately predict click behavior for those low

frequency tail queries. Our analysis (Fig. 3) shows that the proposed model can perform

well on those queries, while UBM needs enough evidences (i.e., the observed events of

examinations, skips, clicks, etc.) to jointly adjust its prior parameter values. When the

training data includes extremely low-frequency queries and documents, some parameter

values, e.g., the relevance probability of a document w.r.t. a query, will be extremely small

if no click is observed in the training data. Therefore, UBM shows poor performance on

low-frequency queries.

The second strength was the robustness against the rank position. In particular, our

result (Fig. 4) shows that the proposed marginal utility based models have a high prediction

accuracy at the top ranked position. The difference between CA-UBM and MU-UBM can

be explained as follows. The weight vector wu for computing utility under the marginal

utility based click models is different from the weight vector wu of CA-UBM. The dif-

ference is that wu of the marginal utility based click models was learnt jointly with the

weight vector wm for capturing marginal utility. Therefore, outperforming CA-UBM at the
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1st rank position by a marginal utility based click model verifies the effectiveness of the

jointly learnt importance weight vector wu for computing utility. Meanwhile, outper-

forming CA-UBM at a rank position lower than 1 by a marginal utility based click model

justifies the potential value of considering novelty bias via marginal utility.

The third strength was the effectiveness in estimating relevance. Different from the

typical feature based model like BSS that relies on pairwise similarity values to detect

redundancy, we explore the effect of redundancy at a fine-grained granularity via a tensor-

based method. The dimensional semantic divergences are investigated in different ways to

capture the novelty bias. Our analysis in Table 7 shows that the proposed models signif-

icantly outperform other baseline methods in terms of relevance estimation.

Finally, as for the comparison of three marginal utility based models, MU-UBM-Min

outperformed MU-UBM-Avg and MU-UBM-Max. This indicates that relying on the

dimensional minimum divergence seems to be the best choice when characterizing mar-

ginal utility. It also suggests that users are likely to click a novel but relatively similar

relevant (i.e., low marginal utility value) document as subsequent search in multi-click

sessions. This seems to echo the implications of Berry-Picking Model Bates (1989) where

searchers are expected to learn little by little in the course of multiple queries and docu-

ment reading. However, further studies are needed to clarify the relationship between the

marginal utility measurements and user click behavior.

6.2 Limitations

The following practical issues have not been addressed well in this work. First, for

preparing the data set, we downloaded the original documents (i.e., web pages) according

to the displayed URLs in a result list in August and September, 2015. Some documents are

however not available any more. The query sessions including unavailable documents have

been then filtered out. In addition, we have used query sessions with more than one click,

hence, the experiments were essentially conducted on a subset of the entire query sessions,

which actually involves novelty bias. Second, for some documents on the Web, their

content changes over time. Thus the utility and marginal utility would change corre-

spondingly. This factor is not taken into account due to its inherent complexity. Third, for

quantifying the probability (i.e., Eq. 21) that a document is relevant and the probability

(i.e., Eq. 22) that a document provides marginally useful information, we appeal to the

feature based method. Thus the quality of the adopted features is crucial to the final

performance. To disentangle the underlying factors for representing both utility and

marginal utility, it is worthy to investigate other alternative methods, e.g., using the

technique of distributed representation Hinton et al. (1986), Paccanaro and Hinton (2001).

Fourth, modern search engines sometimes provide federated search results. That is, some

vertical results (such as image and video) from multiple specialized search engines tend to

be incorporated Wang et al. (2013), Hong and Si (2013). The effect of the novelty bias on

this kind of result pages is also not considered.

7 Conclusions and future work

This paper proposed a new approach to modeling click behavior based on marginal utility

hypothesis. The proposed method was designed to capture novelty information among

retrieved documents to predict users’ click behavior. Experiments with over 10 K multi-
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click query sessions demonstrated that (1) the proposed method can handle unseen query-

document pairs for click prediction; (2) the proposed method can outperform the state-of-

the-art models; and (3) the performance of our model is robust against tail queries with low

frequency of submission.

Overall, our work shows that it is possible and useful to capture novelty information of

retrieved documents to model users’ click behavior. Also, marginal utility was found to be

an effective framework to implement novelty information for user click behavior

modeling.

There are several future directions. One is to extend our work to predict click on

advertisements in search results. Although we focused on the setting of organic search, in

principle, there is no reason that the proposed method is not applicable to users’ click

behaviors on advertisements. Another is to deploy the learnt parameters for document

ranking. Specifically, while in Sect. 5.3 we only evaluated the ranked documents from the

perspective of relevance, the effect of novelty is not thoroughly explored. It would be

interesting to use the estimated utility and marginal utility as signals for machine learning

methods in search result diversification (e.g., Zhu et al. 2014; Xia et al. 2015). In addition,

the studies Liu et al. (2015), Borisov et al. (2016) have demonstrated the potential values

of using technique of deep-learning for click prediction. For example, Borisov et al.

Borisov et al. (2016) explored the way of using distributed representations to represent the

user’s information need and search behaviors. Furthermore, the underlying dependencies

among click behaviors and the information need are captured through the proposed models

rather than a set of hand-crafted rules (e.g., Eq. 2). We also plan to investigate these

approaches, as it is a good direction to further improve our model.
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