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Abstract Traditional pooling-based information retrieval (IR) test collections typically

have n ¼ 50–100 topics, but it is difficult for an IR researcher to say why the topic set size

should really be n. The present study provides details on principled ways to determine the

number of topics for a test collection to be built, based on a specific set of statistical

requirements. We employ Nagata’s three sample size design techniques, which are based

on the paired t test, one-way ANOVA, and confidence intervals, respectively. These topic

set size design methods require topic-by-run score matrices from past test collections for

the purpose of estimating the within-system population variance for a particular evaluation

measure. While the previous work of Sakai incorrectly used estimates of the total vari-

ances, here we use the correct estimates of the within-system variances, which yield

slightly smaller topic set sizes than those reported previously by Sakai. Moreover, this

study provides a comparison across the three methods. Our conclusions nevertheless echo

those of Sakai: as different evaluation measures can have vastly different within-system

variances, they require substantially different topic set sizes under the same set of statis-

tical requirements; by analysing the tradeoff between the topic set size and the pool depth

for a particular evaluation measure in advance, researchers can build statistically reliable

yet highly economical test collections.

1 Introduction

Many modern tracks and tasks at TREC, NTCIR, CLEF and other information retrieval

(IR) and information access (IA) evaluation forums inherit the basic idea of ‘‘ideal’’ test

collections, proposed some 40 years ago by Jones and Van Rijsbergen (1975), in the form

of pooling for relevance assessments. On the other hand, our modern test collections have

somehow deviated substantially from their original plans in terms of the number of topics
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we prepare (i.e., topic set size). According to Jones and Van Rijsbergen, fewer than 75

topics ‘‘are of no real value’’; 250 topics ‘‘are minimally acceptable’’; and more than 1000

topics ‘‘are needed for some purposes’’ because ‘‘real collections are large’’; ‘‘statistically

significant results are desirable’’ and ‘‘scaling up must be studied’’ (Jones and Van Rijs-

bergen 1975, p. 7). In 1979, in a report that considered the number of relevance assess-

ments required from a statistical viewpoint, Gilbert and Jones remarked: ‘‘Since there is

some doubt about the feasibility of getting 1000 requests, or the convenience of such a

large set for future experiments, we consider 500 requests’’ (Gilbert 1979, p. C4). This is in

sharp contrast to our current practice of having 50–100 topics in an IR test collection.

Exceptions include the TREC Million Query track, which constructed over 1800 topics

with relevance assessments by employing the minimal test collection and statAP methods

(Carterette et al. 2008). However, such studies are indeed exceptions: the traditional

pooling approach is still the mainstream in the IR community.

In 2009, Voorhees conducted an experiment where she randomly split 100 TREC topics

in half to count discrepancies in statistically significant results, and concluded that ‘‘Fifty-

topic sets are clearly too small to have confidence in a conclusion when using a measure as

unstable as P(10).1 Even for stable measures, researchers should remain skeptical of

conclusions demonstrated on only a single test collection’’ (Voorhees 2009, p. 807).

Unfortunately, there has been no clear guiding principle for determining the required

number of topics for a new test collection.

The present study provides details on principled ways to determine the number of topics

for a test collection to be built, based on a specific set of statistical requirements.2 We

employ Nagata’s three sample size design techniques, which are based on the paired t test,

one-way ANOVA, and confidence intervals (CIs), respectively. These topic set size design

methods require topic-by-run score matrices from past test collections for the purpose of

estimating the within-system population variance for a particular evaluation measure.

While Sakai (2014a, e) incorrectly used estimates of the total variances, here we use the

correct estimates of the within-system variances, which yield slightly smaller topic set

sizes than those reported by Sakai (2014a, e). Moreover, this study provides a comparison

across the three methods. Our conclusions nevertheless echo those of Sakai (2014a, b, e):

as different evaluation measures can have vastly different within-system variances, they

require substantially different topic set sizes under the same set of statistical requirements;

by analysing the tradeoff between the topic set size and the pool depth for a particular

evaluation measure in advance, researchers can build statistically reliable yet highly

economical test collections.

The remainder of this paper is organised as follows. Section 2 discusses prior art related

to the present study. Section 3 describes the sample size design theory of Nagata (2003) as

well as the associated Excel tools that we have made publicly available online,3 and

methods for estimating the within-system population variance for a particular evaluation

measure. Section 4 describes six TREC test collections and runs used in our analyses, and

Sect. 5 describes the evaluation measures considered. The topic-by-run matrices for all of

1 Precision at the measurement depth of 10.
2 This paper consolidates a Japanese domestic conference paper on the CI-based topic set size design
method (Sakai 2014b), an ACM CIKM 2014 conference paper on the methods based on the t test and one-
way ANOVA (Sakai 2014a), and an EVIA 2014 workshop paper that compared the three methods (Sakai
2014e). While this paper may be regarded as the full-length journal version of the EVIA workshop paper,
here we correct the mistakes in the CIKM and EVIA papers, namely the use of estimates for total variances
rather than those for within-system variances.
3 http://www.f.waseda.jp/tetsuya/tools.html.
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the data sets and evaluation measures used in this study are also available online4; using

our Excel tools, score matrices, and the variance estimates reported in this paper, other

researchers can easily reproduce our results. Section 6 reports on our topic set size design

results, and Sect. 7 concludes this paper and discusses future work.

2 Prior art

2.1 Effect sizes, statistical power, and confidence intervals

In the context of comparative experiments in IR, the p value is the probability of observing

the observed between-system difference or something even more extreme under a null

hypothesis distribution. When it is smaller than a predefined significance criterion a, then

we have observed a difference that is extremely rare under the null hypothesis (i.e., the

assumption that the systems are equivalent), and therefore conclude that the null hypothesis

is probably incorrect. Here, a is the Type I error probability, i.e., the probability of

detecting a difference that is not real. This much is often discussed in the IR community.

Unfortunately, effect sizes and statistical power have not enjoyed the same attention in

studies based on test collections, with a small number of exceptions (e.g., Carterette and

Smucker 2007; Webber et al. 2008b; Nelson 1998).5 A small p value could mean either a

large effect size (i.e., how large the actual difference is, measured for example in standard

deviation units), or a large sample size (i.e., we simply have a lot of topics) (Ellis 2010;

Nagata 2003; Sakai 2014d). For example, suppose we have per-topic performance scores in

terms of some evaluation measure M for systems X and Y with n topics ðx1; . . .; xnÞ and

ðy1; . . .; ynÞ and hence per-topic score differences ðd1; . . .; dnÞ ¼ ðx1 � y1; . . .; xn � ynÞ. For

these score differences, the sample mean is given by �d ¼
Pn

j¼1 dj=n and the sample

variance is given by6 V ¼
Pn

j¼1ðdj � �dÞ2=ðn� 1Þ.
Consider the test statistic t0 for a paired t test:

t0 ¼
�d
ffiffiffiffiffiffiffiffiffi
V=n

p ¼
ffiffiffi
n

p �d
ffiffiffiffi
V

p : ð1Þ

It is clear that if t0 is large and therefore the p value is small, this is either because the

sample effect size �d=
ffiffiffiffi
V

p
is large, or just because n is large. Hence, IR researchers should

report effect sizes together with p values to isolate the sample size effect. The same

arguments apply to other significance tests such as ANOVA (see Sect. 3.2).

The (statistical) power of an experiment is the probability of detecting a difference

whenever there actually is one, and is denoted by 1 � b, where b is the Type II error

probability, i.e., the probability of missing a real difference. For example, when applying a

two-sided paired t test, the probability of rejecting the null hypothesis H0 is given by7

Prft0 � � tinvð/; aÞg þ Prft0 � tinvð/; aÞg ð2Þ

4 http://www.f.waseda.jp/tetsuya/CIKM2014/CIKM2014PACK.tar.gz.
5 Kelly (2009) provides an extensive discussion on effect sizes in the context of interactive IR studies.
6 Using (n� 1) as the denominator of V makes this an unbiased estimate of the population variance (Nagata
2003).
7 The two probabilities represent regions in the left and right tails of a t distribution, respectively.
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where t0 is the test statistic computed from the observed data, and tinvð/; aÞ denotes the

two-sided critical t value for probability a with / degrees of freedom. Under H0 (i.e., the

hypothesis that two system means are equal), t0 obeys a t distribution with / ¼ n� 1

degrees of freedom, where n denotes the topic set size, and Eq. (2) is exactly a. Whereas,

under the alternative hypothesis H1 (i.e., that two population system means are not equal),

t0 obeys a noncentral t distribution (Cousineau and Laurencelle 2011; Nagata 2003), and

Eq. (2) is exactly the power (i.e., 1 � b). By specifying the required a, b and the minimum

effect size for which we want to ensure the power of 1 � b, it is possible to derive the

required topic set size n. Furthermore, this approach can be extended to the case of one-

way ANOVA (analysis of variance), as we shall demonstrate in Sect. 3.

Sakai (2014d) advocates the use of confidence intervals (CIs) along with the practice of

reporting effect sizes and test statistics obtained from significance tests. CIs can be used for

significance testing, and are more informative than the dichotomous reporting of whether

the result is significant or not, as they provide a point estimate together with the infor-

mation on how accurate that estimate might be (Cumming 2012; Ellis 2010). Soboroff

(2014) compared the reliability of classical CI with three bootstrap-based CIs, and rec-

ommends the classical CI and the simple bootstrap percentile CI. The CI-based approach

taken in this paper relies on the classical CI, which, just like the t test, assumes normal

distributions.8

2.2 Statistical power analysis by Webber/Moffat/Zobel

Among the aforementioned studies that discussed the power of IR experiments, the work of

Webber et al. (2008b) that advocated the use of statistical power in IR evaluation deserves

attention here, as the present study can be regarded as an extension to their work in several

aspects. Below, we highlight the contributions of, and the differences between, these

studies:

– Webber et al. (2008b) were primarily concerned with building a test collection

incrementally, by adding topics with relevance assessments one by one while checking

to see if the desired power is achieved and reestimating the population variance of the

performance score differences. In contrast, the present study aims to provide straight

answers to questions such as: ‘‘I want to build a new test collection that guarantees

certain levels of Type I and Type II error rates (a and b). What is the number of topics

(n) that I will have to prepare?’’ Researchers can simply input a set of statistical

requirements to our Excel tools to obtain the answers.

– Webber et al. (2008b) considered evaluating a given pair of systems and thus

considered the t test only. However, test collections are used to compare m (� 2)

systems in practice, and it is generally not correct to conduct t tests independently for

every system pair, although we shall discuss exceptional situations in Sect. 3.1. If t

tests are conducted multiple times, the familywise error rate (i.e., the probability of

detecting at least one nonexistent between-system difference) amounts to

1 � ð1 � aÞmðm�1Þ=2
, assuming that all of these tests are independent of one another

8 It is now known that the t test actually behaves very similarly to distribution-free, computer-based tests,
namely the bootstrap (Sakai 2006) and randomisation (Smucker et al. 2007) tests, even though historically
IR researchers were cautious about the use of parametric tests (Jones and Willet 1997, p. 170; Van Rijs-
bergen 1979, p. 247).
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(Carterette 2012; Ellis 2010).9 In contrast, the present study computes the required

topic set size n by considering both the t test (for m ¼ 2) and one-way ANOVA (for

m� 2), and examine the effect of m on the required n for a given set of statistical

requirements. Moreover, we also consider the approach of determining n based on the

width of CIs, and perform comparisons across these three methods.

– Webber et al. (2008b) examined a few methods for estimating the population variance

of the performance score deltas, which include taking the 95th percentile of the

observed score delta variance from past data, and conducting pilot relevance

assessments. However, it is known in statistics that the population within-system

variance can be estimated directly by the residual variance obtained through ANOVA,

and we therefore take this more reliable approach.10 Furthermore, we pool multiple

variance estimates from similar data sets to enhance the reliability. As for the variance

of the performance score deltas, we derive conservative estimates from our pooled

variance estimates.

– Webber et al. (2008b) considered Average Precision (AP) only; we examine a variety

of evaluation measures for ad hoc and diversified search, with an emphasis on those

that can utilise graded relevance assessments, and demonstrate that some measures

require many more topics than others under the same set of statistical requirements.

2.3 Alternatives to classical statistics

The basis of the present study is classical significance testing (the paired t test and one-way

ANOVA, to be more specific) as well as CIs. However, there are also alternative avenues for

research that might help advance the state of the art in topic set size design. In particular, the

generalisability theory (Bodoff and Li 2007; Carterette et al. 2008; Urbano et al. 2013) is

somewhat akin to our study in that it also requires variance estimates from past data. Alternatives

to classical significance testing include the computer-based bootstrap (Sakai 2006) and ran-

domisation tests (Boytsov et al. 2013; Smucker et al. 2007), Bayesian approaches to hypothesis

testing (Carterette 2011; Kass and Raftery 1995), and prep (probability that a replication of a

study would give a result in the same direction as the original study) as an alternative to

p values (Killeen 2005). These approaches are beyond the scope of the present study.

3 Theory

This section describes how our topic set size design methods work theoretically. Sec-

tions 3.1, 3.2 and 3.3 explain the t test based, ANOVA-based and CI-based methods,

respectively.11 These three methods are based on sample size design techniques of Nagata

9 Ellis (2010) remarks that the Bonferroni correction to counter this familywise error rate problem ‘‘may be
a bit like spending $1000 to buy insurance for a $500 watch.’’
10 Sakai (2014e) compared the 95th percentile approach with the ANOVA-based approaches. While his
ANOVA-based approaches used the total variances instead of residual variances by mistake and therefore
slightly overestimated the population within-system variances, the 95th percentile method of Webber et al.
(2008b) yielded substantially smaller variances, which may result in topic set sizes that are too optimistic.
As Ellis (2010) recommends, we prefer to ‘‘err on the side of oversampling.’’
11 For completeness, Sects. 3.1 and 3.2 repeat the descriptions of the t test-based and ANOVA-based
methods originally presented in Sakai (2014a); Sect. 3.3 repeats the description of the CI-based method
originally presented in Sakai (2014b).
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(2003). As these methods require estimates of within-system variances, Sect. 3.4 describes

how we obtain them from past data. If the reader is not familiar with statistical power and

effect sizes, a good starting point would be the book by Ellis (2010); also, the book

by Kelly (2009) discusses these topics as well as ANOVA in the context of interactive IR.

3.1 Topic set size design based on the paired t test

As was mentioned in Sect. 2.2, if the researcher is interested in the differences between

every system pair, then conducting t tests multiple times is not the correct approach; an

appropriate multiple comparison procedure (Boytsov et al. 2013; Carterette 2012; Nagata

1998) should be applied in order to avoid the aforementioned familywise error rate

problem. However, there are also cases where applying the t test multiple times is the

correct approach to take even when there are more than two systems (m[ 2) (Nagata

1998). For example, if the objective of the experiment is to show that a new system Z is

better than both baselines X and Y (rather than to show that Z is either better than X or

better than Y), then what we want to ensure is that the probability of incorrectly rejecting

both of the null hypotheses is no more than a (rather than that of incorrectly rejecting at

least one of them). In this case, it is correct to apply a t test for systems Z and X, and one for

systems Z and Y.

Let t be a random variable that obeys a t distribution with / degrees of freedom; let

tinvð/; aÞ denote the two-sided critical t value for significance criterion a (i.e.,

Prfjtj � tinvð/; aÞg ¼ a).12 Under H0, the test statistic t0 (Eq. 1 in Sect. 2) obeys a t dis-

tribution with / ¼ n� 1 degrees of freedom. Given a, we reject H0 if jt0j � tinvð/; aÞ,
because that means we have observed something extremely unlikely if H0 is true. (The p

value is the probability of observing t0 or something more extreme under H0.) Thus, the

probability of Type I error (i.e., ‘‘finding’’ a difference that does not exist) is exactly a by

construction. Whereas, the probability of Type II error (i.e., missing a difference that

actually exists) is denoted by b, and therefore the statistical power (i.e., the ability to detect

a real difference) is given by 1 � b. Put another way, a is the probability of rejecting H0

when H0 is true, while the power is the probability of rejecting H0 when H1 is true. In

either case, the probability of rejecting H0 is given by

Prft0 � � tinvð/; aÞg þ Prft0 � tinvð/; aÞg
¼ Prft0 � � tinvð/; aÞg þ 1 � Prft0 � tinvð/; aÞg:

ð3Þ

Under H0, Eq. (3) amounts to a, where t0 (Eq. 1) obeys a (central) t distribution as

mentioned above. Under H1, Eq. (3) represents the power ð1 � bÞ, where t0 obeys a

noncentral t distribution with / ¼ n� 1 degrees of freedom and a noncentrality parameter

kt ¼
ffiffiffi
n

p
Dt. Here, Dt is a simple form of effect size, given by:

Dt ¼
lX � lYffiffiffiffiffi

r2
t

p ¼ lX � lYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
X þ r2

Y

p ð4Þ

where r2
t ¼ r2

X þ r2
Y is the population variance of the score differences. Thus, Dt quantifies

the difference between X and Y in standard deviation units of any given evaluation

measure.

12 T:INV:2Tða;/Þ with Microsoft Excel 2013.
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While computations involving a noncentral t distribution can be complex, a normal

approximation is available: let t0 denote a random variable that obeys the aforementioned

noncentral t distribution; let u denote a random variable that obeys Nð0; 12Þ. Then13:

Prft0 �wg � Pr u�wð1 � 1=4/Þ � kt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ w2=2/

p

( )

: ð5Þ

Hence, given the topic set size n, the effect size Dt and the significance criterion a, the

power can be computed from Eqs. (3) and (5) as (Nagata 2003):

1 � b �Pr u�ð�wÞð1 � 1=4ðn� 1ÞÞ �
ffiffiffi
n

p
Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð�wÞ2=2ðn� 1Þ

q

8
><

>:

9
>=

>;

þ 1 � Pr u�wð1 � 1=4ðn� 1ÞÞ �
ffiffiffi
n

p
Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ w2=2ðn� 1Þ

p

( )
ð6Þ

where w ¼ tinvðn� 1; aÞ. But what we are more interested in is: given ða; b;DtÞ, what is the

required n?

Under H0, we know that Dt ¼ 0 (see Eq. 4). However, under H1, all we know is that

Dt 6¼ 0. In order to require that an experiment has a statistical power of 1 � b, a minimum

detectable effect minDt must be specified in advance: we correctly reject H0 with

100ð1 � bÞ % confidence whenever jDtj �minDt. That is, we should not miss a real dif-

ference if its effect size is minDt or larger. Cohen calls minDt ¼ 0:2 a small effect, minDt ¼
0:5 a medium effect, and minDt ¼ 0:8 a large effect (Cohen 1988; Ellis 2010).14

Let zP denote the one-sided critical z value of uð�Nð0; 12ÞÞ for probability P (i.e.,

Prfu� zPg ¼ P). Given ða; b;minDtÞ, it is known that the required topic set size n can be

approximated by (Nagata 2003):

n �
za=2 � z1�b

minDt

� �2

þ
z2
a=2

2
: ð7Þ

For example, if we let ða; b;minDtÞ ¼ ð:05; :20; :50Þ [i.e., Cohen’s five-eighty convention

(Cohen 1988; Ellis 2010) with Cohen’s medium effect],

n � 1:960 � ð�:842Þ
:50

� �2

þ1:9602

2
¼ 33:3: ð8Þ

As this is only an approximation, we need to check that the desired power is actually

achieved with an integer n close to 33.3. Suppose we let n ¼ 33. Then, by substituting

w ¼ tinvð33 � 1; :05Þ ¼ 2:037 and Dt ¼ minDt ¼ :50 to Eq. (6), we obtain:

1 � b � Prfu� � 4:742g þ 1 � Prfu� � :825g ¼ :795 ð9Þ

which means that the desired power of 0.8 is not quite achieved. So we let n ¼ 34, and the

achieved power can be computed similarly: 1 � b ¼ :808. Therefore n ¼ 34 is the topic set

size we want.

13 Appendix 1 briefly describes how Nagata (2003) obtained this approximation.
14 It should be noted that the effect sizes for paired tests (i.e., the ones discussed in the present study) and
those for unpaired (i.e., two-sample) tests are not directly comparable (Okubo and Okada 2012).
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Our Excel tool samplesizeTTEST automates the above procedure for any given

combination of ða; b;minDtÞ. Table 1 shows the required topic set sizes for the paired t test

for some typical combinations. For example, under Cohen’s five-eighty convention

(a ¼ :05; b ¼ :20),15 if we want the minimum detectable effect to be minDt ¼ :2 (i.e., one-

fifth of the score-difference standard deviation), we need n ¼ 199 topics.

The above approach starts by requiring a minDt, which is independent of the evaluation

method (i.e., the measure, pool depth and the measurement depth). However, researchers may

want to require a minimum detectable absolute difference minDt in terms of a particular

evaluation measure instead (e.g., ‘‘I want high power guaranteed whenever the true absolute

difference in mean AP is 0.05 or larger.’’). In this case, instead of setting a minimum (minDt)

for Eq. (4), we can set a minimum (minDt) for the numerator of Eq. (4): we guarantee a power

of 1 � b whenever jlX � lY j �minDt. To do this, we need an estimate r̂2
t of the variance

r2
t ð¼ r2

X þ r2
YÞ, so that we can convert minDt to minDt simply as follows:

minDt ¼
minDt
ffiffiffiffiffi
r̂2
t

p : ð10Þ

After this conversion, the aforementioned procedure starting with Eq. (7) can be applied.

Our tool samplesizeTTEST has a separate sheet for computing n from

ða; b;minDt; r̂2
t Þ; how to obtain r̂2

t from past data is discussed in Sect. 3.4.

3.2 Topic set size design based on one-way ANOVA

This section discusses how to set the topic set size n when we assume that there are m� 2

systems to be compared using one-way ANOVA. Let xij denote the score of the i-th system

for topic j in terms of some evaluation measure; we assume that fxijg are independent and

that xij �Nðli; r2Þ. That is, xij obeys a normal distribution with a population system mean

li and a common system variance r2. The assumption that r2 is common across systems is

known as the the homoscedasticity assumption16; note that we did not rely on this

assumption when we discussed the paired t test. We define the population grand mean l
and the i-th system effect ai (i.e., how the i-th system differs from l) as follows:

Table 1 Topic set sizes for
ða; b;minDtÞ a minDt b ¼ :10 b ¼ :20

.01 .1 1492 1172

.2 376 296

.5 63 51

1.0 19 16

.05 .1 1053 787

.2 265 199

.5 44 34

1.0 13 107

15 Note that this convention, which implies that a Type I error is four times as serious as a Type II error, is
only a convention (Ellis 2010). Researchers should consider whether this is appropriate for their experi-
ments, and should not follow it blindly.
16 Carterette (2012) demonstrates that the homoscedasticity assumption does not actually hold in the
context of IR evaluation. However, the present study assumes that ANOVA is of some use to IR evaluation,
as it is a fact that it is used by IR researchers (though not as often as the t test).
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l ¼ 1

m

Xm

i¼1

li; ai ¼ li � l ð11Þ

where
Pm

i¼1 ai ¼
Pm

i¼1ðli � lÞ ¼
Pm

i¼1 li � ml ¼ 0. The null hypothesis for the ANOVA

is H0 : l1 ¼ � � � ¼ lm (or a1 ¼ � � � ¼ am ¼ 0) while the alternative hypothesis H1 is that at

least one of the system effects is not zero. That is, while the null hypothesis of the t test is

that two systems are equally effective in terms of the population means, that of ANOVA is

that all systems are equally effective.

The basic statistics that we compute for the ANOVA are as follows. The sample mean

for system i and the sample grand mean are given by:

�xi� ¼
1

n

Xn

j¼1

xij; �x ¼ 1

mn

Xm

i¼1

Xn

j¼1

xij: ð12Þ

The total variation, which quantifies how each xij differs from the sample grand mean, is

given by:

ST ¼
Xm

i¼1

Xn

j¼1

ðxij � �xÞ2: ð13Þ

It is easy to show that ST can be decomposed into between-system and within-system

variations SA and SE (i.e., ST ¼ SA þ SE), where

SA ¼ n
Xm

i¼1

ð�xi� � �xÞ2; SE ¼
Xm

i¼1

Xn

j¼1

ðxij � �xi�Þ2: ð14Þ

The corresponding degrees of freedom are /A ¼ m� 1, /E ¼ mðn� 1Þ. Also, let VA ¼
SA=/A;VE ¼ SE=/E for later use.

Let F be a random variable that obeys an F distribution with ð/A;/EÞ degrees of

freedom; let Finvð/A;/E; aÞ denote the critical F value for probability a (i.e.,

PrfF�Finvð/A;/E; aÞg ¼ a).17 Under H0, the test statistic F0 defined below obeys a

(central) F distribution with ð/A;/EÞ degrees of freedom:

F0 ¼ VA

VE

¼ mðn� 1ÞSA
ðm� 1ÞSE

: ð15Þ

Given a significance criterion a, we reject H0 if F0 �Finvð/A;/E; aÞ. From Eq. (15), it can

be observed that H0 is rejected if the between-system variation SA is large compared to the

within-system variation SE, or simply if the sample size n is large. Again, the p value does

not tell us which is the case.

The probability of rejecting H0 is given by

PrfF0 �Finvð/A;/E; aÞg ¼ 1 � PrfF0 �Finvð/A;/E; aÞg: ð16Þ

Under H0, Eq. (16) amounts to a by construction, where F0 obeys a (central) F distri-

bution as mentioned above. Under H1, Eq. (16) represents the power ð1 � bÞ, where F0

obeys a noncentral F distribution (Nagata 2003; Patnaik 1949) with ð/A;/BÞ degrees of

freedom and a noncentrality parameter k, such that

17 F:INV:RTða;/A;/EÞ with Microsoft Excel 2013.
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k ¼ nD; D ¼
Pm

i¼1 a
2
i

r2
¼
Pm

i¼1ðli � lÞ2

r2
: ð17Þ

Thus D measures the total system effects in variance units.

While computations involving a noncentral F distribution can be complex, a normal

approximation is available: let F0 denote a random variable that obeys the aforementioned

noncentral F distribution; let u�Nð0; 12Þ. Then18:

PrfF0 �wg � Pr u�

ffiffiffiffiffi
w
/E

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/E � 1

p
�

ffiffiffiffi
cA
/A

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/	

A � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA
/A

þ w
/E

q

8
><

>:

9
>=

>;
ð18Þ

where

cA ¼ m� 1 þ 2nD
m� 1 þ nD

; /	
A ¼ ðm� 1 þ nDÞ2

m� 1 þ 2nD
: ð19Þ

Hence, given ðn;D; aÞ, the power ð1 � bÞ can be computed from Eqs. (16)–(19) as (Nagata

2003):

1 � Pr u�

ffiffiffiffiffiffiffiffiffiffiffi
w

mðn�1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðn� 1Þ � 1

p
�

ffiffiffiffiffiffiffi
cA

m�1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/	

A � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA

m�1
þ w

mðn�1Þ

q

8
><

>:

9
>=

>;
ð20Þ

where w ¼ Finvðm� 1;mðn� 1Þ; aÞ. But what we are more interested in is: given ða; b;DÞ,
what is the required n?

Under H0, we know that D ¼ 0 (see Eq. 17). However, under H1, all we know is that

D 6¼ 0. In order to require that an experiment has a statistical power of 1 � b, a minimum

detectable delta minD must be specified in advance. Let us require that we correctly reject

H0 with 100ð1 � bÞ% confidence whenever the range of the population means

(D ¼ maxi ai � mini ai) is at least as large as a specified value (min D). That is, we want to

detect a true difference whenever the difference between the population mean of the best

system and that of the worst system is at least minD. Now, let us define minD as follows:

minD ¼ minD2

2r2
: ð21Þ

Then, since
Pm

i¼1 a
2
i � D2

2
holds,19 it follows that

D ¼
Pm

i¼1 a
2
i

r2
� D2

2r2
� minD2

2r2
¼ minD: ð22Þ

That is, D is bounded below by minD. Hence, although specifying min D does not uniquely

determine D (as D depends on systems other than the best and the worst ones), we can plug

in D ¼ minD to Eqs. (19) and (20) to obtain the worst-case estimate of the power.

Unfortunately, no closed formula similar to Eq. (7) is available for ANOVA. However,

from Eqs. (17) and (21), note that the worse-case estimate of n can be obtained as follows:

18 Appendix 2 briefly describes how Nagata (2003) obtained this approximation.
19 Let A ¼ maxi ai and a ¼ mini ai. Then D2=2 ¼ ðA2 þ a2 � 2AaÞ=2�A2 þ a2 �

Pm
i¼1 a

2
i . The equality

holds when A ¼ D=2; a ¼ �D=2 and ai ¼ 0 for all other systems.
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n ¼ k
minD

¼ 2r2k
minD2

: ð23Þ

To use Eq. (23), we need the k. (How to obtain r̂2, the estimate of r2, is discussed in

Sect. 3.4.) Recall that, under H1, Eq. (16) represents the power ð1 � bÞ where F0 obeys a

noncentral F distribution with ð/A;/EÞ degrees of freedom and the noncentrality param-

eter k. By letting /E ¼ mðn� 1Þ � 1, the power can be approximated by:

PrfF0 �Finvð/A;1; aÞg ¼ Prfv02 � v2
invð/A; aÞg ð24Þ

where v02 is a random variable that obeys a noncentral v2 distribution with /A degrees of

freedom whose noncentrality parameter is k, and v2
invð/;PÞ is the critical v2 value for

probability P of a random variable that obeys a (central) v2 distribution with / degrees of

freedom (i.e., Prfv2 � v2
invð/;PÞg ¼ P). For noncentral v2 distributions, some linear

approximations of k are available, as shown in Table 2 (Nagata 2003). Hence an initial

estimate of n given ða; b;minD; r̂2;mÞ can be obtained as shown below.

Suppose we let ða; b;minD;mÞ ¼ ð:05; :20; :5; 3Þ and that we obtained r̂2 ¼ :52 from

past data so that minD ¼ minD2

2r2 ¼ :52=ð2 	 :52Þ ¼ :5. Then /A ¼ m� 1 ¼ 2 and k ¼
4:860 þ 3:584 	

ffiffiffi
2

p
¼ 9:929 and hence n ¼ k=minD ¼ 19:9. If we let n ¼ 19, then

/E ¼ 3ð19 � 1Þ ¼ 54, w ¼ Finvð2; 54; :05Þ ¼ 3:168. From Eq. (19), cA ¼ 1:826;/	
A ¼

6:298, and from Eq. (20), the achieved power is 1 � Prfu� � :809g ¼ :791, which does

not quite satisfy the desired power of 80 %. On the other hand, if n ¼ 20, the achieved

power can be computed similarly as .813. Hence n ¼ 20 is what we want. Our Excel tool

samplesizeANOVA automates the above procedure for given ða; b;minD; r̂2;mÞ.20

Recall that the H1 for ANOVA says: ‘‘there is a difference somewhere among the

m systems,’’ which may not be very useful in the context of test-collection-based studies:

we usually want to know exactly where the differences are. If the researcher is interested in

obtaining a p value for every system pair, then she should conduct a multiple comparison

procedure from the outset. Contrary to popular beliefs, it is generally incorrect to first

conduct ANOVA and then conduct a multiple comparison test only if the null hypothesis

for the ANOVA is rejected. This practice of sequentially conducting different tests suffers

from a problem similar to that of the aforementioned familywise error rate (Nagata

1998).21 An example of a proper multiple comparison procedure would be Tukey’s HSD

(Honestly Significant Differences) test, its randomised version (Carterette 2012; Sakai

2014d), or the Holm–Bonferroni adjustment of p values (Boytsov et al. 2013); such a test

Table 2 Linear approximation
of k, the noncentrality parameter

of a noncentral v2 distribution
(Nagata 2003)

a b Formula

.01 .10 k ¼ 10:439 þ 5:213
ffiffiffiffiffiffi
/A

p

.01 .20 k ¼ 7:736 þ 4:551
ffiffiffiffiffiffi
/A

p

.05 .10 k ¼ 7:049 þ 4:244
ffiffiffiffiffiffi
/A

p

.05 .20 k ¼ 4:860 þ 3:584
ffiffiffiffiffiffi
/A

p

20 While samplesizeTTEST handles arbitrary values of ða;bÞ, samplezieANOVA can only handle the
four combinations shown in Table 2.
21 Exceptions are when the ANOVA is part of the multiple comparison procedure (Nagata 1998).
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should be applied directly without conducting ANOVA at all. Ideally, we would like to

discuss topic set size design based on a multiple comparison procedure, but this is an open

problem even in statistics. In fact, the very notion of power has several different inter-

pretations in the context of multiple comparison procedures (Nagata 1998). Nevertheless,

since some researchers do use ANOVA for comparing m systems, how the required topic

set size n grows with m probably deserves some attention.

3.3 Topic set size design based on CIs

To build a CI for the difference between systems X and Y, we model the performance

scores (assumed independent) as follows:

xi ¼ lX þ ci þ eXi; eXi �Nð0; r2
XÞ; ð25Þ

yi ¼ lY þ ci þ eYi; eYi �Nð0; r2
YÞ ð26Þ

where ci represents the topic effect and l�; r
2
� represent the population mean and variance

for X, Y, respectively (i ¼ 1; . . .; n). This is in fact just an alternative way of presenting the

assumptions behind the paired t test (Sect. 3.1). To cancel out ci, let

di ¼ xi � yi ¼ lX � lY þ eXi � eYi ð27Þ

so that di �Nðl; r2
t Þ; l ¼ lX � lY ; r

2
t ¼ r2

X þ r2
Y . It then follows that t ¼ �d�lffiffiffiffiffiffi

V=n
p obeys a t

distribution with / ¼ n� 1 degrees of freedom, where �d ¼
Pn

i¼1 di=n and V ¼
Pn

i¼1ðdi �
�dÞ2=ðn� 1Þ as before. Hence, for a given significance criterion a, the following holds:

Prf�tinvð/; aÞ� t� tinvð/; aÞg ¼ 1 � a: ð28Þ

Hence,

Prf�d �MOE�l� �d þMOEg ¼ 1 � a ð29Þ

where the margin of error (MOE) is given by:

MOE ¼ tinvð/; aÞ
ffiffiffiffiffiffiffiffiffi
V=n

p
: ð30Þ

Thus, Eq. (29) shows that the 100ð1 � aÞ % CI for the difference in population means

(l ¼ lX � lY ) is given by ½�d �MOE; �d þMOE
. This much is very well known.

Let us consider the approach of determining the topic set size n by requiring that

2MOE� d: that is, the CI of the difference between X and Y should be no larger than some

constant d. This ensures that experiments using the test collection will be conclusive

whereover possible: for example, note that a wide CI that includes zero implies that we are

very unsure as to whether systems X and Y actually differ. Since MOE (Eq. 30) contains a

random variable V, we actually impose the above requirement on the expectation of

2MOE:

Eð2MOEÞ ¼ 2tinvð/; aÞ
Eð

ffiffiffiffi
V

p
Þ

ffiffiffi
n

p � d: ð31Þ
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Now, it is known that22

Eð
ffiffiffiffi
V

p
Þ ¼

ffiffiffi
2

p
C n

2

� �

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
C n�1

2

� �rt ð32Þ

where rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
X þ r2

Y

p
and Cð�Þ is the gamma function.23 By substituting Eq. (32) to

Eq. (31), the requirement can be rewritten as:

tinvðn� 1; aÞC n
2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p
C n�1

2

� �� d

2
ffiffiffi
2

p
rt
: ð33Þ

In order to find the smallest n that satisfies Eq. (33), we first consider an ‘‘easy’’ case

where the population variance r2
t is known. In this case, the MOE is given by (cf. Eq. 30):

MOEz ¼ za=2

ffiffiffiffiffiffiffiffiffiffi
r2
t =n

q
ð34Þ

where zP denotes the one-sided critical z value for probability P.24 By requiring that

2MOEz � d, we can obtain a tentative topic set size n0:

n0 �
4z2

a=2r
2
t

d2
: ð35Þ

First, the smallest integer that satisfies Eq. (35) can be tested to see if it also satisfies

Eq. (33); n0 is incremented until it does. The resultant n ¼ n0 is the topic set size we want.

Our Excel tool samplesizeCI automates the above procedure to find the required

sample size n, for any given combination of ða; d; r̂2
t Þ. How to obtain the variance estimate

r̂2
t from past data is discussed below.

3.4 Estimating population within-system variances

As was explained above, our t-based and CI-based topic set size design methods require an

estimate of the population variance of the difference between two systems r2
t ¼ r2

X þ r2
Y ,

and our ANOVA-based method requires an estimate of the population within-system

variance r2 under the homoscedasticity assumption.

Let C be an existing test collection and nC be the number of topics in C; let mC be the

number of runs whose performances with C in terms of some evaluation measure are

known, so that we have an nC � mC topic-by-run matrix fxijg for that evaluation measure.

There are two simple ways to estimate r̂2 from such data. One is to use the residual

variance from one-way ANOVA (see Sect. 3.2):

r̂2
C ¼ VE ¼

PmC

i¼1

PnC
j¼1ðxij � �xi�Þ2

mCðnC � 1Þ ð36Þ

22 Note that
ffiffiffiffi
V

p
is not an unbiased estimate of rt while V is an unbiased estimate of r2

t (i.e., EðVÞ ¼ r2
t )

(Nagata 2003; Okubo and Okada 2012).
23 GAMMAð�Þ with Microsoft Excel 2013.
24 NORM:S:INVð1 � PÞ with Microsoft Excel 2013.
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where �xi� ¼ 1
nC

PnC
j¼1 xij (sample mean for system i).25 The other is to use the residual

variance from two-way ANOVA without replication, which utilises the fact that the scores

x�j for topic j correspond to one another:

r̂2
C ¼ VE ¼

PmC

i¼1

PnC
j¼1ðxij � �xi� � �x�j þ �xÞ2

ðmC � 1ÞðnC � 1Þ ð37Þ

where �x�j ¼ 1
mC

PmC

i¼1 xij (sample mean for topic j). Equation (36) generally yields a larger

estimate, because while one-way ANOVA removes only the between-system variation

from the total variation (see Eq. 14), two-way ANOVA without replication removes the

between-topic variation as well. As we prefer to ‘‘err on the side of oversampling’’ as

recommended by Ellis (2010), we use Eq. (36) in this study. Researchers who are inter-

ested in tighter estimates are welcome to try our Excel files with their own variance

estimates.

As we shall explain in Sect. 4, we have two different topic-by-run matrices (i.e., test

collections and runs) for each evaluation measure for every IR task that we consider. To

enhance the reliability of our variance estimates, we first obtain a variance estimate r̂2
C

from each matrix using Eq. (36), and then pool the two estimates using the following

standard formula26:

r̂2 ¼
P

CðnC � 1Þr̂2
CP

CðnC � 1Þ : ð38Þ

As for r2
t ¼ r2

X þ r2
Y , we introduce the homoscedasticity assumption here as well and let

r̂2
t ¼ 2r̂2. While this probably overestimates the variances of the score differences, again,

we choose to ‘‘err on the side of oversampling’’ (Ellis 2010) in this study.

4 Data

Table 3 provides some statistics of the past data that we used for obtaining r̂2’s. We

considered three IR tasks: (a) adhoc news search; (b) adhoc web search; and (c) diversified

web search; for each task, we used two data sets to obtain pooled variance estimates.

The adhoc/news data sets are from the TREC robust tracks, with ‘‘new’’ topics from

each year (Voorhees 2004, 2005). The ‘‘old’’ topics from the robust tracks are not good for

our experiments for two reasons. First, the relevance assessments for the old topics were

constructed based on old TREC adhoc runs, not the new robust track runs. This prevents us

from studying the tradeoff between topic set sizes and pool depths (see Sect. 6.3). Second,

the relevance assessments for the old topics are binary, which prevents us from studying

the benefit of various evaluation measures that can utilise graded relevance assessments.

The web data sets are from the adhoc and diversity tasks of the TREC web tracks

(Clarke et al. 2012, 2013). Note that these diversity data sets have per-intent graded

relevance assessments, although they were treated as binary in the official evaluations at

TREC.

25 The sample system mean discussed in Sect. 3.2 was for a future system evaluated over n topics; the one
discussed here is for an existing system evaluated over the nC topics of an existing collection.
26 Pooled variance is a technical term in statistics, not to be confused with document pools in IR.
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5 Measures

When computing evaluation measures, the usual measurement depth (i.e., document cut-

off) for the adhoc news task is md ¼ 1000; we considered md ¼ 10 in addition for con-

sistency with the web track tasks. Whereas, we consider md ¼ 10 only for the web tasks as

we are interested in the first search engine result page.

Table 4 provides some information on the evaluation measures that were used in the

present study. For the adhoc/news and adhoc/web tasks, we consider the binary Average

Precision (AP), Q-measure (Q) (Sakai 2005), normalised Discounted Cumulative Gain

(nDCG) (Järvelin and Kekäläinen 2002) and normalised Expected Reciprocal Rank

(nERR) (Chapelle et al. 2011), all computed using the NTCIREVAL toolkit.27 For com-

puting AP and Q, we follow Sakai and Song (2011) and divide by minðmd;RÞ rather than

by R in order to properly handle small measurement depths.

For the diversity/web task, we consider a-nDCG (Clarke et al. 2009) and Intent-Aware

nERR (nERR-IA) (Chapelle et al. 2011) computed using ndeval,28 as well as D-nDCG

and D]-nDCG (Sakai and Song 2011) computed using NTCIREVAL. When using

NTCIREVAL, the gain value for each LX-relevant document was set to gðrÞ ¼ 2x � 1: for

example, the gain for an L3-relevant document is 7, while that for an L1-relevant docu-

ment is 1. As for ndeval, the default settings were used: this program ignores per-intent

graded relevance levels.

Table 3 TREC test collections and runs used for estimating r2

Short name Track Topics nC Runs
mC

Pool
depth

Relevance
levels

Documents

(a) Task: adhoc/news

TREC03new 2003
robust

50 (601–650) 78 125 L0–L2 528,155 (disks 4?5 minus
the congressional record)

TREC04new 2004
robust

49 (651–700
minus 672)

78* 100 L0–L2

(b) Task: adhoc/web

TREC11w 2011 web–
adhoc

50 (101–150) 37 25 L0–L3 Approx. one billion
(clueweb09)

TREC12w 2011 web–
adhoc

50 (151–200) 28 20/30 L0–L4

(c) Task: diversity/web

TREC11wD 2011 web–
diversity

50 (101–150) 25 25 L0–L3 per
intent

Approx. one billion
(clueweb09)

TREC12wD 2011 web–
diversity

50 (151–200) 20 20/30 L0–L4 per
intent

The web track relevance grades (Clarke et al. 2012, 2013) were mapped to our relevance levels as follows:
�2 and 0 !L0 (i.e., nonrelevant); 1 !L1; 2 !L2; 3 !L3; 4 !L4 * TREC 2004 description-only runs
excluded; the same set of runs was used in Webber et al. (2008b)

27 http://research.nii.ac.jp/ntcir/tools/ntcireval-en.html.
28 http://trec.nist.gov/data/web/12/ndeval.c.
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We refer the reader to Sakai (2014c) as a single source for mathematical definitions of

the above evaluation measures.

6 Results and discussions

6.1 Variance estimates

Table 5 shows the within-system variance estimates r̂2 that we obtained for each evalu-

ation measure with each topic-by-run matrix. For example, with TREC03new and

TREC04new, r̂2 ¼ :0479 and .0462 according to Eq. (36), respectively, and the pooled

variance obtained from these two data sets using Eq. (38) is r̂2 ¼ :0471 as shown in bold.

Throughout this paper, we use these pooled variances for topic set size design: note that the

variance estimates are similar across the two data sets for each IR task (a1), (a2), (b), and

(c), which suggests that given an existing test collection for a particular IR task, it is not

difficult to obtain a good estimate of the within-system variance for a particular evaluation

measure for the purpose of topic set size design for a new test collection for the same task.

The estimates look reliable especially for tasks (a1) and (a2), i.e., adhoc/news, where we

have as many as mC ¼ 78 runs.

It is less clear, on the other hand, whether a variance estimate from one task can be

regarded as a reliable variance estimate for the topic set size design of a different task. The

pooled variance estimate for AP at md ¼ 10 obtained from our adhoc/news data is .0835;

this would be a highly accurate estimate if it is used for constructing an adhoc/web test

collection, since its actual pooled variance for AP is .0824. However, the variance esti-

mates for Q, nDCG and nERR are not as similar across tasks (a2) and (b). Hence, if a

variance estimate from an existing task is to be used for the topic set size design of a new

task, it would probably be wise to choose one of the larger variances observed by con-

sidering several popular evaluation measures such as AP and nDCG. In particular, note that

variances for the diversity measures such as the ones shown in Table 5(c) cannot be

obtained from past adhoc data that lack per-intent relevance assessments: in such a case,

using a variance estimate of an evaluation measure that is not designed for diversified

search is inevitable. For example, if we know from the TREC11w (i.e., TREC 2011)

adhoc/web task experience that the variances are in the .0477–.1006 range as shown in

Table 4 Evaluation measures used in this study

Task type Measure Used in tasks such as Tool

Adhoc AP TREC adhoc/robust NTCIREVAL

Q NTCIR CLIR/IR4QA/GeoTime NTCIREVAL

nDCG TREC web adhoc NTCIREVAL

nERR TREC web adhoc NTCIREVAL

Diversity a-nDCG TREC web diversity ndeval

nERR-IA TREC web diversity ndeval

D-nDCG NTCIR INTENT NTCIREVAL

D]-nDCG NTCIR INTENT NTCIREVAL
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Table 5(b), then we could let r̂2 ¼ :1006 (i.e., the estimate for the unstable nERR29) for the

topic set size design of a new diversity/web task at TREC 2012. As the actual pooled

variances for the TREC12wD task is in the .0301–.0798 range, our choice of r̂2 would

have overestimated the required topic set size for TREC12wD, which we regard as far

better than underestimating it and thereby not meeting the set of statistical requirements.

6.2 Topic set sizes based on the three methods

In this section, we discuss how the pooled variance estimates shown in Table 5 translates

to the actual topic set sizes, using the aforementioned three Excel tools. For the t test and

ANOVA-based topic set size design methods, we only present results under Cohen’s five-

eighty convention [i.e., ða; bÞ ¼ ð:05; :20Þ] throughout this paper; the interested reader can

easily obtain results for other settings by using our Excel tools.

The left half of Table 6 shows the t test-based topic set size design results under

Cohen’s five-eighty convention for different minimum detectable differences minDt;

similarly, the right half shows the ANOVA-based topic set size design results with m ¼ 2

for different minimum detectable ranges minD. Throughout this paper, the smallest topic

set size within the same set of statical requirements is underlined.

29 Expected Reciprocal Rank is known to be an unstable measure because of its diminishing return property
(Chapelle et al. 2011): every time a relevant document is found in the ranked list, the value of the next
relevant document in the list is discounted. While this user model is intuitive, it makes the measure
unstable as this means that it relies on only a few data points, i.e., highly ranked relevant documents (Sakai
2014c).

Table 5 r̂2 obtained from the topic-by-run score matrices

#Runs (mC) #Topics (nC) (I) Raw scores

(a1) Adhoc/news (md ¼ 1000) AP Q nDCG nERR

TREC03new 78 50 .0479 .0471 .0456 .1140

TREC04new 78 49 .0462 .0459 .0456 .1150

Pooled – – .0471 .0465 .0456 .1145

(a2) Adhoc/news (md ¼ 10) AP Q nDCG nERR

TREC03new 78 50 .0894 .0659 .0726 .1205

TREC04new 78 49 .0774 .0630 .0732 .1208

Pooled – – .0835 .0645 .0729 .1206

(b) Adhoc/web (md ¼ 10) AP Q nDCG nERR

TREC11w 37 50 .0877 .0477 .0540 .1006

TREC12w 28 50 .0770 .0258 .0341 .0720

Pooled – – .0824 .0368 .0441 .0863

(c) Diversity/web (md ¼ 10) a-
nDCG

nERR-
IA

D-
nDCG

D]-
nDCG

TREC11wD 25 50 .0829 .0885 .0379 .0578

TREC12wD 20 50 .0729 .0798 .0301 .0429

Pooled – – .0779 .0842 .0340 .0504
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Note that, when m ¼ 2 (i.e., there are only two systems to compare), minD (i.e., the

minimum detectable difference between the best and the worst systems) reduces to minDt

of the t test. It can be observed that the t test-based and ANOVA-based (m ¼ 2) results are

indeed very similar. In fact, since one-way ANOVA for m ¼ 2 is equivalent to the un-

paired (i.e., two-sample) t test, one would expect the topic set sizes based on the paired t

test to be a little smaller than those based on ANOVA for m ¼ 2 systems, as the former

utilises the fact that the two score vectors are paired. On the contrary, Table 6 shows that

the t test-based topic set sizes are slightly larger. This is probably because of the way we

obtain r̂2
t for the t test-based design: since we let r̂2

t ¼ 2r̂2 (see Sect. 3.4), if our r̂2 for the

ANOVA-based design is an overestimate, then the error is doubled for r̂2
t . Since the topic

set size for a paired t test should really be bounded above by that for the unpaired t test

under the same statistical requirements, we recommend IR researchers to use our ANOVA-

based tool with m ¼ 2 if they want to conduct topic set size design based on the paired t

test. While our t test tool can handle arbitrary combinations of ða; bÞ unlike the ANOVA-

based counterpart, it is unlikely for researchers to consider cases other than a ¼
:01; :05; b ¼ :10; :20 in practice. Our ANOVA-based tool can handle all four combinations

of these Type I and Type II error probabilities (see Sect. 3.2).

The ANOVA-based results in Table 6(a1) show that if we want to ensure Cohen’s five-

eighty convention for a minimum detectable difference of minDt ¼ 0:10 in AP for an

Table 6 Topic set size table: t
test-based versus ANOVA with
m ¼ 2 systems
[ða;bÞ ¼ ð:05; :20Þ]

minDt t test-based minD ANOVA-based (m ¼ 2)

(a1) Adhoc/news, md ¼ 1000 (AP/Q/nDCG/nERR)

.05 298/294/289/721 .05 289/286/280/702

.10 76/75/74/182 .10 73/72/71/176

.15 35/35/34/82 .15 33/33/32/79

.20 21/21/20/47 .20 19/19/18/45

.25 14/14/14/31 .25 12/12/12/29

(a2) Adhoc/news, md ¼ 10 (AP/Q/nDCG/nERR)

.05 527/407/460/760 .05 512/396/447/739

.10 134/104/117/192 .10 129/100/112/185

.15 61/47/53/87 .15 58/45/50/83

.20 35/28/31/50 .20 33/26/29/47

.25 23/19/21/33 .25 21/17/19/30

(b) Adhoc/web, md ¼ 10 (AP/Q/nDCG/nERR)

.05 520/233/279/544 .05 505/226/271/529

.10 132/60/72/138 .10 127/57/68/133

.15 60/28/33/63 .15 57/26/31/60

.20 35/17/20/36 .20 32/15/18/34

.25 23/12/14/24 .25 21/10/12/22

(c) Diversity/web, md ¼ 10 (a-nDCG/nERR-IA/D-nDCG/D]-nDCG)

.05 492/531/216/319 .05 478/516/209/309

.10 125/135/56/82 .10 120/130/53/78

.15 57/61/26/38 .15 54/58/24/35

.20 33/36/16/22 .20 31/33/14/20

.25 22/24/11/15 .20 20/22/9/13
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adhoc/news task (md ¼ 1000), then we would need 73 topics. Similarly, the ANOVA-

based results in Table 6(c) show that if we want to ensure Cohen’s five-eighty convention

for minDt ¼ 0:15 in nERR-IA for a diversity/web task, then we would need 58 topics.

Hence, existing TREC test collections with 50 topics do not satisfy these statistical

requirements. We argue that, through this kind of analysis with previous data, the test

collection design for the new round of an existing task should be improved. Note, however,

that we are aiming to satisfy a set of statistical requirements for any set of systems; our

results do not mean that existing TREC collections with 50 topics are useless for com-

paring a particular set of systems.

Table 7 shows the CI-based topic set size design results at a ¼ :05 (i.e., 95 % CI) for

different CI widths d; it also shows the ANOVA-based topic set size design results for

different minimum detectable ranges minD under ða; b;mÞ ¼ ð:05; :20; 10Þ and

ða; b;mÞ ¼ ð:05; :20; 100Þ.30 Some topic set sizes could not be computed with our CI-based

Table 7 Topic set size table: CI-based versus ANOVA with m ¼ 10; 100 systems (ða;bÞ ¼ ð:05; :20Þ)

d CI-based minD ANOVA-based (m ¼ 10) ANOVA-based (m ¼ 100)

(a1) Adhoc/news, md ¼ 1000 (AP/Q/nDCG/nERR)

.05 588/580/ 569/1427 .05 588/580/569/1427 1520/1501/1472/3695

.10 147/145/143/357 .10 148/146/143/357 381/376/369/924

.15 67/66/65/159 .15 66/65/64/159 170/167/164/411

.20 39/38/37/90 .20 38/37/36/90 96/94/93/232

.25 26/25/25/59 .25 24/24/24/58 62/61/60/148

(a2) Adhoc/news, md ¼ 10 (AP/Q/nDCG/nERR)

.05 1041/ 804/909/1503 .05 1041/804/909/1503 2695/2082/2353/3892

.10 259/201/226/376 .10 261/202/228/376 674/521/589/973

.15 116/91/102/167 .15 116/90/102/168 300/232/262/433

.20 67/52/58/95 .20 66/51/58/95 169/131/148/244

.25 44/34/38/62 .25 42/33/37/61 108/84/95/156

(b) Adhoc/web, md ¼ 10 (AP/Q/nDCG/nERR)

.05 1027/ 459/550/1076 .05 1027/459/550/1076 2659/1188/1424/2785

.10 256/116/138/268 .10 257/115/138/270 665/298/356/697

.15 115/53/63/120 .15 115/52/62/120 296/133/159/310

.20 66/31/36/69 .20 65/29/35/68 167/75/90/175

.25 43/21/24/45 .25 42/19/23/44 107/48/58/112

(c) Diversity/web, md ¼ 10 (a-nDCG/nERR-IA/D-nDCG/D]-nDCG)

.05 971/1050/ 424/629 .05 971/1050/424/629 2514/2717/1098/1627

.10 242/261/107/157 .10 243/263/107/158 629/680/275/407

.15 109/117/49/71 .15 109/117/48/71 280/303/123/181

.20 62/67/29/41 .20 61/66/27/40 158/171/69/102

.25 41/44/19/27 .25 40/43/18/26 101/109/45/66

30 The setting m ¼ 100 is not unrealistic. For example, the TREC 2011 Microblog track received 184 runs
from 59 participating teams (Ounis et al. 2012).
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tool due to a computational limitation in the gamma function in Microsoft Excel31;

however, we observed that the topic set size required based on the CI-based design with

a ¼ 0:05 and d ¼ c is almost the same as the topic set size required based on the ANOVA-

based design with ða; b;mÞ ¼ ð:05; :20; 10Þ and minD ¼ c, for any c. Hence, whenever the

CI-based tool failed, we used the ANOVA-based tool instead with m ¼ 10; these values

are indicated in bold. It can indeed be observed in Table 7 that the CI-based topic set sizes

and the ANOVA-based (m ¼ 10) results are almost the same. Hence, in practice,

researchers who want to conduct topic set size design based on CI-widths can use our

ANOVA-based tool instead, by letting m ¼ 10.

Table 7 also shows that when we increase the number of systems from m ¼ 10 to

m ¼ 100, the required topic set sizes are almost tripled. This suggests that it might be

useful for test collection builders to have a rough idea of the number of systems that will be

compared at the same time in an experiment.

If we compare across the evaluation measures, we can observe the following from

Tables 6 and 7:

– For the adhoc/news tasks at md ¼ 1000, nDCG requires the smallest number of topics;

nERR requires more than twice as many topics as AP, Q and nDCG do;

– For the adhoc/news tasks at md ¼ 10, Q requires the smallest number of topics; again,

nERR requires substantially more topics than AP, Q and nDCG do;

– For the adhoc/web tasks, Q requires the smallest number of topics; AP and nERR

require more than twice as many as topics as Q does;

– For the diversity/web tasks, D-nDCG requires the smallest number of topics; a-nDCG

and nERR-IA require more than twice as many topics as D-nDCG does.

Note that our topic set size design methods thus provide a way to evaluate and compare

different measures from a highly practical viewpoint: as the required number of topics is

generally proportional to the relevance assessment cost, measures that require fewer topics

are clearly more economical. Of course, this is only one aspect of an evaluation measure;

whether the measure is actually measuring what we want to measure (e.g., user satisfaction

or performance) should be verified separately, but this is beyond the scope of the present

study.

Figure 1 visualises the relationships among our topic set design methods. The vertical

axis represents the d for the CI-based, the minDt for the t test-based method, and the minD

for the ANOVA-based method; the horizontal axis represents the number of topics n. We

used the largest r̂2 in Table 5, namely, r̂2 ¼ :1206 for this analysis, but other values of r̂2

would just change the scale of the horizontal axis. As was discussed earlier, it can be

observed that the t test-based results and the ANOVA-based results with m ¼ 2 are very

similar, and that the CI-based results and the ANOVA-based results with m ¼ 10 are

almost identical. Also, by comparing the three curves for the ANOVA-based method, we

can see how n grows with m for a given value of minD.

6.3 Trade-off between topic set sizes and pool depths for the adhoc/news task

Our discussions so far covered adhoc/news, adhoc/web and diversity/web tasks, but

assumed that the pool depth was a given. In this section, we focus our attention on the

adhoc/news task (with md ¼ 1000), where we have depth-100 and depth-125 pools (see

Table 3), which gives us the option of reducing the pool depth. Hence we can discuss the

31 GAMMAð172Þ is greater than 10307 and cannot be computed by Excel.
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total assessment cost by multiplying n by the average number of documents that need to be

judged per topic for a given pool depth pd.

From the original TREC03new and TREC04new relevance assessments, we created

depth-pd (pd ¼ 100; 90; 70; 50; 30; 10) versions of the relevance assessments by filtering

out all topic-document pairs that were not contained in the top pd documents of any run.

Using each set of the depth-pd relevance assessments, we re-evaluated all runs using AP,

Q, nDCG and nERR. Then, using these new topic-by-run matrices, new variance estimates

were obtained and pooled as described in Sect. 3.4.

Table 8 shows the pooled variance estimates obtained from the depth-pd versions of the

TREC03new and TREC04new relevance assessments. It also shows the average number of

documents judged per topic for each pd. For example, while the original depth-125 rele-

vance assessments for TREC03new contain 47,932 topic-document pairs, its depth-100

version has 37,605 pairs across 50 topics; the original TREC04new depth-100 relevance

assessments have 34,792 pairs across 49 topics. Hence, on average, ð37; 605 þ
34; 792Þ=ð50 þ 49Þ ¼ 731 documents are judged per topic when pd ¼ 100. Similarly,

ð4905 þ 4581Þ=ð50 þ 49Þ ¼ 96 documents are judged per topic when pd ¼ 10.

Fig. 1 Effect of d;minDt and minD on topic set sizes

Table 8 Number of relevance assessments versus pooled r̂2 for reduced pool depths with adhoc/news
(md ¼ 1000)

pd TREC03new #judged
(50 topics)

TREC04new #judged
(49 topics)

Average
#judged/topic

Pooled r̂2

AP Q nDCG nERR

125 47,932 – – – – – –

100 37,605 34,792 731 .0470 .0464 .0454 .1145

70 27,816 24,491 528 .0483 .0474 .0455 .1145

50 20,839 18,612 398 .0494 .0483 .0459 .1146

30 13,045 11,968 253 .0523 .0504 .0467 .1146

10 4905 4581 96 .0630 .0569 .0502 .1141
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Based on the t test-based method with ða; b;minDtÞ ¼ ð:05; :20; :10Þ, Fig. 2 plots the

required number of topics n against the average number of documents judged per topic for

different pool depth settings and different evaluation measures. Recall that the results

based on the ANOVA-based method with ða; b;minD;mÞ ¼ ð:05; 20; :10; 2Þ would look

almost identical to this figure. For each pool depth setting, note that the number of topics

multiplied by the number of judged documents per topic gives the estimated total

assessment cost. Similarly, based on the ANOVA-based method with

ða; b;minD;mÞ ¼ ð:05; 20; :10; 10Þ, Fig. 3 visualises the assessment costs for different pool

depth settings. Recall that the results based on the CI-based method with a ¼ :05 would

look identical to this figure.

In Fig. 2, the total cost for AP when pd ¼ 100 (i.e., the default of TREC adhoc tasks) is

55,556 documents (visualised as the area of a pink rectangle); if we use the pd ¼ 10 setting

instead, the cost goes down to 9,696 documents (visualised as the area of a blue rectangle).

That is, while maintaining the statistical reliability of the test collection, the assessment

Fig. 2 Cost analysis with the t test-based topic set size design for the adhoc/news task at md ¼ 1000

Fig. 3 Cost analysis with the ANOVA-based topic set size design for the adhoc/news task at md ¼ 1000
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cost can be reduced to 9; 696=55; 556 ¼ 17:5 %. Similarly, Fig. 3 shows that, if m ¼ 10

systems are to be compared, the assessment cost can be reduced to

18; 912=107; 457 ¼ 17:6 % by letting pd ¼ 10 instead of the usual pd ¼ 100. While it is a

well-known fact that it is better to have many topics with few judgments per topic than to

have few topics with many judgments per topic (e.g., Carterette et al. 2008; Carterette and

Smucker 2007; Webber et al. 2008b), our methods visualise this in a straightforward

manner.

Figures 2 and 3 also show that because nERR is very unstable, it requires about twice as

many topics as the other measures regardless of the choice of pd. Since the required

number of topics is basically a constant for nERR, it would be a waste of assessment effort

to construct a depth-100 test collection if the test collection builder plans to use nERR as

the primary evaluation measure.32 Hence, as was discussed earlier, IR test collection

builders should probably consider several different evaluation measures at the test col-

lection design phase, take one of the larger variance estimates and plug it into our ANOVA

tool, in the hope that the new test collection will meet the set of statistical requirements

even for relatively unstable measures. Then, the test collection design (n, pd) can be re-

examined and adjusted after each round of the task.

While the five test collection designs shown in Fig. 2 (and Fig. 3) are statistically

equivalent, note that IR test collection builders should collect as many relevance assess-

ments as possible in order to maximise reusability, which we define as the ability of a test

collection to assess new systems fairly, relative to known systems. That is, if the budget

available accommodates B relevance assessments, test collection builders can first decide

on a set of statistical requirements such as ða; b;minD;mÞ, obtain several candidate test

collection designs (n, pd) using our ANOVA tool with a large variance estimate r̂2, and

finally choose the design whose total cost is just below B.

7 Conclusions and future work

In this study, we showed three statistically-motivated methods for determining the number

of a new test collection to be built, based on sample size design techniques of Nagata

(2003). The t test-based method and the ANOVA-based method are based on power

analysis; the CI-based method requires a tight CI for the difference between any system

pair. We pooled the residual variances of ANOVA to estimate the population within-

system variance for each IR task and measure, and compared the topic set size design

results across the three methods. We argued that, as different evaluation measures can have

vastly different within-system variances and hence require substantially different topic set

sizes, IR test collection builders should examine several different evaluation measures at

the test collection design phase and focus on a high-variance measure for topic set size

design. We also demonstrated that obtaining a reliable variance estimate is not difficult for

building a new test collection for an existing task, and argued that the design of a new test

collection should be improved based on past data from the same task. As for building a test

collection for a new task with new measures, we suggest that a high variance estimate from

a similar existing task be used for topic set size design (e.g., use a variance estimate from

existing adhoc/web task data for designing a new diversity/web task test collection).

32 Recall that the TREC robust track data used here is for news retrieval (Voorhees 2004), whereas ERR
was developed in the context of web search (Chapelle et al. 2011). That is, the observed mismatch between
nERR and the depth-100 pools is due to our experimental setting; TREC is not to blame here.
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Furthermore, we demonstrated how to study the balance between the topic set size n and

the pool depth pd, and how to choose the right test collection design (n, pd) based on the

available budget. Our approach thus provides a clear guiding principle for test collection

design to the IR community. Note that our approach is also applicable to non-IR tasks as

long as a few score matrices equivalent to our topic-by-run matrices are available.

Our Excel tools and the topic-by-run matrices are available online; the interested reader

can easily reproduce our results using them with the pooled variance estimates shown in

Tables 5 and 8. In practice, since our t test based results are very similar to our ANOVA-

based results with m ¼ 2, while our CI-based results are almost identical to our ANOVA-

based results with m ¼ 10, we recommend researchers to utilise our ANOVA-based tool

regardless of which of our three approaches they want to take.

As for future work, we are currently looking into the use of score standardisa-

tion (Webber et al. 2008a) for the purpose of topic set size design after removing the topic

hardness effect. This requires a whole new set of experiments that involves leave-one-out

tests (Sakai 2014c; Zobel 1998) in order to study how new systems that contributed to

neither the pooling nor the setting of per-topic standardisation parameters can be evaluated

properly. The results will be reported in a separate study.

While our methods rely on a series of approximations (e.g., Eqs. 5 and 18), these tech-

niques have been compared with exact values and are known to be highly accurate (Nagata

2003). Our view is that the greatest source of error for our topic set size design approach is

probably the variance estimation step. Probably the best way to study this effect would be to

implement the proposed topic set size design procedure to TREC tracks or NTCIR tasks,

update the estimates by pooling the observed variances across the past rounds, and see how

the pooled variances fluctuate over time. Our hope is that the variance estimates and the topic

set sizes will stabilise after a few rounds, but this has to be verified. We feel optimistic about

this, as the actual variances across two rounds of the same track were very similar in our

experiments (Table 3).33 Similarly, we hope to investigate the practical usefulness of our

approach for new tasks with new evaluation measures. Can we do any better than just ‘‘learn

from a similar existing task’’ as suggested in the present study?
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Appendix 1

Briefly, Nagata (2003) obtained Eq. (5) (a normal approximation of the noncentral t dis-

tribution) as follows.

Let v2 be a random variable that obeys a v2 distribution with / degrees of freedom. The

first tool we utilise is the following approximation:

33 In contrast, Urbano et al. (2013) report that generalisability theory, which also relies on variance esti-
mates from past data, is very sensitive to the particular sample of systems and queries used. This discrepancy
may also be a worthwhile subject for future research.
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Finally, by using the following approximations for c	 and r	2, Eq. (5) is obtained.35
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35 Johnson and Welch (1940) employ a rougher approximation: c	 � 1; r	2 � 1
2/.
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Appendix 2

Briefly, Nagata (2003) obtained Eq. (18) (a normal approximation of the noncentral

F distribution) as follows.

Let v02A denote a random variable that obeys a noncentral v2 distribution (Patnaik 1949)

with /A degrees of freedom and a noncentrality parameter k; let v2
E denote a random

variable that obeys a (central) v2 distribution with /E degrees of freedom. Then, by

definition, the following F0 obeys a noncentral F distribution with ð/A;/EÞ degrees of

freedom and a noncentrality parameter k:

F0 ¼ v02A =/A

v2
E=/E

: ð48Þ

According to Patnaik (1949), v02A =cA can be approximated by v	2
A that obeys a (central)

v2 distribution with /	
A degrees of freedom, where:

cA ¼ /A þ 2k
/A þ k

; /	
A ¼ ð/A þ kÞ2

/A þ 2k
: ð49Þ

Therefore, the left hand side of Eq. (18) may be rewritten as:
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Using a well-known approximation of a v2 distribution with a normal distribution

provided by Fisher (1922), we can assume that:
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To utilise the above, let us tranform Eq. (50), while preserving the inequality, as follows:

PrfF0 �wg ¼Pr

ffiffiffiffiffiffi
cA

/A

r ffiffiffiffiffiffiffiffiffi
2v	2

A

q
�

ffiffiffiffiffiffi
w

/E

r ffiffiffiffiffiffiffiffi
2v2

E

q	 


¼Pr

ffiffiffiffiffiffi
cA

/A

r ffiffiffiffiffiffiffiffiffi
2v	2

A

q
�

ffiffiffiffiffiffi
w

/E

r ffiffiffiffiffiffiffiffi
2v2

E

q
� 0

	 


:

ð52Þ

whereas, from Eq. (51), we can assume that:
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Therefore, using a random variable u that obeys Nð0; 12Þ, Eq. (18) is obtained. Note that,

by letting /A ¼ m� 1 and k ¼ nD in Eq. (49), Eq. (19) is also obtained.
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