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Abstract How to understand intents behind user queries is crucial towards improving the

performance of Web search systems. NTCIR-11 IMine task focuses on this problem. In this

paper, we address the NTCIR-11 IMine task with two phases referred to as Query Intent

Mining (QIM) and Query Intent Ranking (QIR). (I) QIM is intended to mine users’

potential intents by clustering short text fragments related to the given query. (II) QIR

focuses on ranking those mined intents in a proper way. Two challenges exist in handling

these tasks. (II) How to precisely estimate the intent similarity between user queries which

only consist of a few words. (2) How to properly rank intents in terms of multiple factors,

e.g. relevance, diversity, intent drift and so on. For the first challenge, we first investigate

two interesting phenomena by analyzing query logs and document datasets, namely

‘‘Same-Intent-Co-Click’’ (SICC) and ‘‘Same-Intent-Similar-Rank’’ (SISR). SICC means that

when users issue different queries, these queries represent the same intent if they click on

the same URL. SISR means that if two queries denote the same intent, we should get

similar search results when issuing them to a search engine. Then, we propose similarity

functions for QIM based on the two phenomena. For the second challenge, we propose a

novel intent ranking model which considers multiple factors as a whole. We perform

extensive experiments and an interesting case study on the Chinese dataset of NTCIR-11

IMine task. Experimental results demonstrate the effectiveness of our proposed approaches

in terms of both QIM and QIR.
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1 Introduction

Most queries are short, ambiguous and multifaceted. For example, the query ‘‘jaguar’’ may

refer to the animal, the car or the software. Actually people frequently issue queries with

more than one unspecified intent (Hu et al. 2012; Sakai et al. 2013; Qian et al. 2013).

Besides, users’ information needs are multifaceted, exploratory, and a same query may

imply different information needs of users. For the query ‘‘swine flu’’, doctors may be

interested in the pathogenesis and treatment solutions, while patients may look for the

transmissions and preventive measures.

Recently understanding the intents behind users’ queries has attracted significant

attention in information retrieval (IR) (Dou et al. 2011a; Dang and Croft 2012, 2013). It is

one of the most fundamental problems in IR systems. For desktop users, it can help to

diversify the search results to cover as many intents as possible in the first page in order to

satisfy most users’ information needs. For mobile users, it can help to infer a user’s exact

intent to personalize the search results in the limited screen (Beg and Ahmad 2007; Jiang

and Tan 2009). Besides, it is also a crucial issue in many IR problems such as query

suggestion and expansion (Hu et al. 2012; Qian et al. 2013; Liao et al. 2011; Biancalana

et al. 2013).

In this study, we focus on the NTCIR-11 IMine task. Our efforts are made in two

phases: (I) Query Intent Mining (QIM) and (II) Query Intent Ranking (QIR). For a given

query, QIM tries to discover a two-level intent hierarchy with a clustering process from

candidate text fragments1 of the query. QIR tries to rank each layer of the two-level intent

hierarchy in terms of relevance, diversity and intent drift.

In particular, in Phase (I), we first investigate two interesting phenomena by analyzing

query logs and document datasets, namely ‘‘Same-Intent-Co-Click’’ (SICC) and ‘‘Same-

Intent-Similar-Rank’’ (SISR). SICC means that when users issue different queries, these

queries may represent the same intent if they click on the same URL. SISR means that if

two strings denote the same intent, we should get similar search results when issuing them

to a search engine. Then we define similarity functions based on the two phenomena as

well as syntactic and semantic characteristics. After that, we obtain an integrated similarity

function with a supervised learning approach. Finally, we propose an affinity propagation-

based clustering algorithm (Frey and Dueck 2007) for discovery of the intents and con-

struction of the two-level intent hierarchy to interpret a query. In Phase (II), we propose

ranking models for each layer of the two-level intent hierarchy by considering multiple

factors, e.g. relevance, diversity, novelty, time. We further prove that our ranking model is

a monotone and submodular function, and thus we can get an approximation of ð1� 1
e
Þ

with a greedy algorithm (ALGORITHM 2) (Cornuejols et al. 1977; Nemhauser et al.

1978).

1 In this paper, we use the dataset from NTCIR-11 IMine. IMine offers query suggestions, related queries
and so on (from multiple commercial search engines) as the candidate text fragments for the query whose
intents are to be mined. But technically, a candidate text fragment can be any text fragment related to the
query.
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We perform extensive experiments and an interesting case study on the dataset of

NTCIR-11 IMine task.2 Experimental results demonstrate the effectiveness of our pro-

posed approaches in terms of both intent mining and ranking.

To sum up, our main contributions are listed as follows.

• We investigate two significant phenomena by analyzing user behavior data in depth,

based on which effective similarity functions are proposed to mine a two-level intent

hierarchy.

• We propose a supervised learning approach rather than traditional heuristic approaches

to integrate similarity functions into a general function for clustering.

• We present ranking models to order the two-level intent hierarchy considering multiple

factors, including relevance, diversity and time, etc.

• We prove that our ranking model is a monotone and submodular function, and thus we

can get an approximation of ð1� 1
e
Þ with a greedy algorithm.

The rest of this paper is organized as follows. Section 2 surveys the related work.

Section 3 formulates the intent mining and intent ranking problems. Sections 4 and 5

present the clustering-based intent mining approach and intent ranking models respec-

tively. Section 6 reports the experimental results and a case study. Section 7 concludes the

paper and discusses our future work.

2 Related work

2.1 Query intent mining

Existing literature about query intent mining can be classified into two categories: Clus-

tering/Classifying Search Results or URLs and Clustering/Classifying Query Related

Terms. We will discuss them respectively.

Clustering/Classifying Search Results or URLs.

Given a query, this category of approaches consider each intent behind the query as a set of

search results or URLs, which can be straightforwardly discovered with clustering or

classification algorithms.

Chen and Dumais classified search results into predefined hierarchical categories such

as Yahoo! or LookSmart’s Web directory (Chen and Dumais 2000). Wen et al. clustered

similar queries according to their contents and user logs. They proposed a similarity

function based on query and search results content to compare two queries (Wen et al.

2001). Carlos Cobos et al. introduced a new description-centric algorithm for the clustering

of web results, called WDC-CSK, which is based on the cuckoo search meta-heuristic

algorithm, k-means algorithm, Balanced Bayesian Information Criterion, split and merge

methods on clusters, and frequent phrases approach for cluster labeling (Cobos et al.

2014). Zeng et al. (2004) clustered search results into different groups with highly readable

names. Given a query and the ranked list of titles and snippets, they first extracted salient

phrases as candidate cluster names with a regression model learned from human labeled

training data. Then, the documents were assigned to relevant salient phrases to form

candidate clusters. Wang and Zhai first learned a given query’s aspects from users’ query

2 http://www.thuir.org/IMine/.
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logs with the star clustering algorithm. Then they categorized and organized the search

results according to the learned aspects (Wang and Zhai 2007).

Beeferman and Berger first built a bipartite graph with the click through data consisting

of user queries and clicked URLs. Then, they applied an agglomerative clustering to the

graph to group related queries and URLs (Beeferman and Berger 2000). Hu et al. (2012)

first found two interesting phenomena from user behavior: One Subtopic Per Search and

Subtopic Clarification By Keyword. The former means that if a user clicks multiple URLs

in one query, then the clicked URLs tend to represent the same facet. The latter means that

users often add additional keywords to expand the query in order to clarify their search

intent. Based on the two phenomena, they clustered all the clicked URLs and corre-

sponding queries, where each cluster represents an intent. Qian et al. (2013) first classified

query intents into two types according to their variation over time line: constant and bursty.

Then they regarded query logs as a constantly data stream and divided it into variable-

length partitions. Finally, they clustered each partition into different groups of URLs which

represent intents. Cao et al. (2008) summarized similar queries into concepts by clustering

the click-through bipartite of queries and URLs recorded from query logs. Fujita et al.

(2010) used a random walk approach on query-URL bipartite graph to discover facet

attributes of queries. Radlinski et al. (2010) discovered intents of queries using query logs.

For a given query, they first identified a set of possibly related queries, and then used the

random walk similarities algorithm to find intent clusters. Sadikov et al. (2010) clustered

the refinements of user queries to mine underlying user intents. They modeled user

behavior as a Markov graph combining document click and session co-occurrence infor-

mation. And then they performed multiple random walks on the graph to get clusters.

Clustering/Classifying Query Related Terms.

Existing work belonging to this direction considers the intent of a query as a set of

candidate sub-intents, i.e. query related terms (Xue et al. 2011). These candidate sub-

intents may come from many sources such as query suggestions from search engines,

related search queries from user query logs and so on. Currently, this domain is one of the

hot topics in query intent mining (Aiello et al. 2011).

Moreno et al. (2014) proposed an algorithm called Dual C-Means to cluster search

results in dual-representation spaces with query logs. Radlinski et al. (2010) first found

similar queries as candidates for a given query from query logs. Then they used a click-

through bipartite graph to refine these similar queries. Finally they grouped the candidates

into the same clusters. Dang et al. (2011) generated reformulations which represent pos-

sible intents of a query by clustering reformulated queries generated from publicly

available resources as candidates, e.g., anchor text. Wang et al. (2013) suggested using

surrounding text of query terms in top retrieved documents to mine intents and rank them.

They first extracted text fragments containing query terms from different parts of docu-

ments as candidates. Then they grouped similar candidates into clusters and generate a

readable string for each cluster. Roy et al. (2014) took a deeper look at query intent,

zooming in on individual words as possible indicators of user intent. They provided a

taxonomy of intent words derived through rigorous manual analysis of large query logs.

Recently, this problem has been stressed by NTCIR,3 which has a task for intent mining

and ranking [INTENT-1 of NTCIR-9,4 INTENT-2 of NTCIR-10,5 IMine of NRCIR-11

3 http://research.nii.ac.jp/ntcir/index-en.html.
4 http://www.thuir.org/intent/ntcir9/.
5 http://research.microsoft.com/en-us/people/tesakai/intent2.aspx.
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(see footnote 2)]. The task consists of two phases: intent mining and ranking. Participants

of the task propose many methods (Sakai et al. 2013). Xue et al. (2011) proposed a method

which achieves the best performance in English data in terms of D#-nDCG. They first

extracted candidate sub-intents from query recommendation, Wikipedia and the click

through data. Then they evaluated the similarity of every two sub-intents based on the click

through data. If the similarity is larger than a predefined threshold, the two sub-intents are

judged to belong to the same intent. Yu and Ren (2013) presented a method which gets the

best performance in Chinese data in terms of D#-nDCG. Specifically, they first classified

intents into two types: role-explicit topic and role-implicit topic. For the role-explicit

topics, they constructed a modifier graph based on the set of co-kernel-object strings. Then,

the modifier graph was decomposed into clusters with strong intra-cluster interaction and

relatively weak inter-cluster interaction. Each modifier cluster intuitively reveals a possible

intent. For the role-implicit topics which generally express single information needs, they

directly used the extracted sub-intents as intents.

2.2 Intent ranking

Related work on intent ranking coexists with intent mining and is mainly included in

INTENT/IMine task of NTCIR (see footnote 3).

Wang et al. ranked queries’ sub-intents by optimizing both their relevance and diversity.

They first estimated a relevance score for a sub-intent considering three aspects: (1) the

relevance of sub-intents to the given query; (2) the importance of sub-intents, which

partially reflects popularity; and (3) the readability of sub-intents. Then they ranked sub-

intents by balancing relevance and diversity. They tried to achieve the goal that major sub-

intents were ranked higher and top sub-intents could cover as many different intents as

possible (Wang et al. 2013). Xue et al. (2011) extracted and ranked sub-intents at NTCIR-

9 INTENT-1 Task. When sub-intents were extracted from the query recommendation of

search engines, they ranked them according to the number of search engines which rec-

ommend the sub-intents. When sub-intents were selected from the bipartite graph of query

logs, they ranked them according to the number of common clicked URLs when user

search the query and its sub-intents. Finally they re-ranked these sub-intents by their term

frequencies in the clicked titles and snippets. Yu and Ren (2013) classified intents into two

types: role-explicit topic and role-implicit topic. For the ranking of sub-intents in role-

explicit topic, they defined a quality function of the list with top-k sub-intents which

consists of three parts: popularity of topic, probability distribution of modifiers, and

effectiveness of a sub-intent string expressing a sub-intent. For the ranking of sub-intents in

role-implicit topics, they directly generated the ranked list through semantic similarities

leveraging on lexical ontologies.

In summary, although there is a growth in researches investigating users’ intents of

queries recently, there are still some issues to resolve. Firstly, most of current similarity

metrics for sub-intents are usually constructed based on a single perspective, i.e. either

from query logs only or from documents collections only. In addition, the combination of

different similarity functions from multiple resources are usually defined heuristically. This

can not precisely estimate the similarity between sub-intents because of their short text

characteristics. Secondly, existing approaches consider query intent mining and ranking

from a static viewpoint. They ignore the issue of intent drift that some new intents might

emerge and some old intent might become unpopular. Besides, diversity and redundancy

issues are not carefully studied in sub-intent ranking with respect to the coverage of the

intents.
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3 Task formulation

3.1 NTCIR-11 IMine task

In the NTCIR-11 IMine Task (see footnote 2), participants are expected to generate a two-

level hierarchy of underlying intents by analysis into the provided document collection,

user behavior data set or other kinds of external data sources. Besides the hierarchy of

intents, a ranking list of all first-level intents and a separate ranking list of all second-level

intents should also be returned for each query.

A list of query suggestions/completions collected from popular commercial search

engines are provided as possible intent candidates, including query suggestions collected

from Bing, Google, Sogou, Yahoo! and Baidu,6 query dimensions generated by (Dou et al.

2011b) from search engine result page,7 related Web search queries generated by (Liu

et al. 2011) from Sogou log data.8

3.2 Task reformulation

In this section, we reformulate the NTCIR-11 IMine task with a more general

formalization.

A candidate Text Fragment can be any text fragment related to the query. Candidate

sub-intents represent the text fragments from which the intents of a query are mined. An

example is shown in the upper part of Fig. 1. Intent Hierarchy represents the tree structure

of a given query’s intents. An two-level intent hierarchy example is shown in the lower

part of Fig. 1. The first-layer of intent hierarchy consists of Intents and the second-layer

consists of Sub-intents.

Based on above terminologies, the two main tasks of our work can be formulated as

follows.

Task 1 (Query intent mining (QIM)) Given a query q associated with a set of Candidate

Sub-intents (text fragments related to q) C ¼ fSI1; SI2; . . .; SIng, QIM task attempts to

generate a two-level intent hierarchy, expressed as I q ¼ fI1; I2; . . .g. Each node of the first
layer is referred to as an Intent Il ¼ f. . .; SIi; SIj; . . .g, while each node of the second layer

is a Sub-intent SIi.

After QIM, each query can be interpreted as a two-level intent hierarchy. An instance of

a two-level intent hierarchy is shown in Fig. 1, which is composed of two levels: the intent

level and the sub-intent level. The intents represent specific objects or events of the query,

where four intents (objects) of the Chinese query ‘‘ (Prophet)’’ are listed: ‘‘

(Prophets in religion)’’, ‘‘ (The Chinese name of an actor in Dota game)’’, ‘‘

(Prophet electronic dog)’’ and ‘‘ (Movies about prophets)’’. Each intent can be

described as a set of sub-intents. The sub-intents indicate the properties of the objects or

events. For example, users may be interested in specific ‘‘prophets in religion’’ like ‘‘Jesus

Christ’’ or ‘‘Abraham’’, or they may look for some properties of the movie ‘‘Knowing’’ like

‘‘actor Nicolas Cage’’ and ‘‘director Alex Proyas’’.

6 http://www.thuir.cn/imine/IMine.QuerySuggestion.7z.
7 http://www.thuir.cn/imine/IMine.QueryDimensions.7z.
8 http://www.thuir.cn/imine/IMine.RelatedQueries.7z.
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In our study, it should be noted that: (1) Not all candidate sub-intents are assigned to

intents (or become sub-intents), i.e., S ¼
Sk

l¼1 Il � C. Actually, only candidate sub-intents

ranked in the top list of each intent set become sub-intents. (2) Each sub-intent cannot

belong to any two different intents, i.e., Il \ Im ¼£ for Il; Im 2 Iq and l 6¼ m.

Similar to other clustering tasks, for QIM, the central problem is to design an effective

similarity function to measure the similarity between each pair of candidate sub-intents.

Task 2 (Query intent ranking (QIR)) Given a query q and its two-level intent hierarchy

I q ¼ fI1; I2; . . .; Ikg. The QIR task attempts to give a proper rank of (1) all of the intents in

I q and (2) all of the sub-intents S ¼
Sk

l¼1 Il.

According to our definition, QIR task involves two ranking sub-tasks: rankings at the

intent level and at the sub-intent level. Furthermore, ranking at the intent level should be

handled firstly, as the ranking of the sub-intents depends on their intents: (1) A sub-intent

could be important if its intent is important; (2) The sub-intents ranked in top positions

should be diversified over intents.

4 Query intent mining

As discussed previously, designing an effective similarity function is the central problem in

the QIM task. In this session, we measure the similarity between each pair of candidate

sub-intents with consideration of three feature classes: Click Through-based Similarity,

Search Result-based Similarity, and Query-based Similarity.

4.1 Click through-based similarity

Many text fragments are queries issued by users, and thus their similarity can be reflected

from their users’ click-through behaviors. Specially, the queries are likely to share a same

intent if same URLs associated with these queries are clicked. In this study, we refer to

such phenomenon as ‘‘Same-Intent-Co-Click (SICC)’’ as shown in Fig. 2. The SICC

phenomenon can be interpreted as: most documents usually focus on a main topic. Thus

Fig. 1 An example of the two-level intent hierarchy for the query ‘‘Prophet’’
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different queries submitted by multiple users reflect the same intent if most users click on

the same URL to look for a same topic.

We experimentally validate the assumption of the SICC phenomenon based on the

SogouQ dataset.9 SogouQ is a dataset of 1-month Chinese query logs collected from the

Chinese commercial search engine Sogou10 in June 2012. It is officially offered by NTCIR

INTENT-1, INTENT-2 and IMine task as a part of the Chinese dataset. Because it contains

user queries that are not a part of the NTCIR-11 IMine task, we firstly filtered out 4270

queries (each query is a superset of the corresponding query of IMine) and 17232 URLs.

Then, we manually labeled intents of these queries.11 Finally, we analyzed the number of

intents and the number of different queries for per URL, as shown in Fig. 3.

Figure 3a shows the distribution of the number of intents (vertical axis) with respect to

the number of different queries (horizontal axis) that users click the same URL. We can see

that there is a quite low positive correlation between them: the number of intents for one

URL does not increase obviously with the growth of the number of different queries. That

is, though different users use different queries when clicking a same URL, but the average

number of intents for the clicked URL is less than 3. Figure 3b shows the percentage of

URLs (vertical axis) with respect to the number of different queries (horizontal axis) per

URL. We can see that, for more than 92.7 % URLs, users issue less than seven different

queries when clicking the same URL. Combining Fig. 3a, b, we can conclude that, for

more than 92.7 % URLs, the average number of intents behind user queries is less than 1.5,

which is a strong statistical support for SICC phenomenon.

Our first similarity function is based on SICC phenomenon. Let SIi and SIj be any pair of

candidate sub-intents. Let UDt
SIi

and UDt
SIj

be the click-through vectors of SIi and SIj during

time Dt respectively. Each of them is composed of a vector of URLs that users clicked with

the text fragments as queries. Thus the similarity between SIi and SIj can be measured as

the similarity between UDt
SIi

and UDt
SIj

. A frequently used metric is Cosine:

W1ðSIi; SIj;DtÞ ¼
UDt>

SIi
UDt

SIj

jjUDt
SIi
jj � jjUDt

SIj
jj

ð1Þ

Fig. 2 The SICC phenomenon.
Note Q, U and I represent query,
URL and intent respectively. The
U represents the user clicked
URL returned by search engines

9 http://www.sogou.com/labs/dl/q-e.html.
10 http://www.sogou.com/.
11 Because not all queries in Sogou logs are labeled in the official annotation results, we manually annotated
the remaining queries according to the official annotation.
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where ‘‘>’’ is the transpose operator for a given vector or matrix, and ‘‘jj � jj’’ is the 2-norm

of a given vector. According to Eq. (1), the higher the W1ðSIi; SIj;DtÞ is, the more likely SIi
and SIj belong to a same intent.

We also adopt the approach proposed by Craswell and Szummer as another similarity

W2ðSIi; SIj;DtÞ (Craswell and Szummer 2007). W2ðSIi; SIj;DtÞ is computed as follows.

First, we build the Query-URL bipartite graph and transition probability matrix. Then, we

extend it by adding self-transitions to the nodes. Finally, we perform the random walk and

use the convergent transition probability between SIi and SIj as the similarity.

4.2 Search result-based similarity

The next three similarity functions are based on another common phenomenon that different

queries associated with similar search results may imply the same intent. In this study, we

refer to such phenomenon as ‘‘Same-Intent-Similar-Rank (SISR)’’ as shown in Fig. 4.

We also conducted experimental analysis on SogouQ (see footnote 9) for this phe-

nomenon. First, we labeled intents of the corresponding queries in the Sogou logs and

submitted them to the Google Search Engine.12 Then for each pair of queries, we count the

number of common documents among their top-N search results, where N varies from 5 to

100, as shown in Fig. 5. From the figure we can see that queries belonging to the same

intent tend to have much more common documents in the search results than those

belonging to different intents.

Given a query (a candidate sub-intent), its search results generally involve two aspects:

(1) the contents of retrieved documents, and (2) the ranking of retrieved documents.

Correspondingly, we define three search result-based similarity functions, of which the first

two similarity functions are defined based on the content of retrieved documents, and the

last one is based on the ranking of the documents.

Similarity based on the contents of retrieved documents For a pair of queries (candidate

sub-intents) SIi and SIj, let DDt
i and DDt

j be the sets of their retrieved documents with time

constraint Dt. In our experiments, we just used the snapshots of the top-N documents in the

Google Search Engine (see footnote 12) instead of the full list of the documents for

simplification.

Fig. 3 Same-Intent-Co-Click (SICC) phenomenon analyzed with SogouQ (see footnote 9). a Average
number of intents of the queries per URL. b Average number of different queries per URL

12 https://www.google.com.
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Vector Space Model (VSM) and Language Model (LM) are two well-known repre-

sentations of the documents. VSM regards each document as a bag of words and thus the

document can be represented as a vector of word occurrences. Then, the similarity between

two documents is evaluated with the Cosine metric. VSM performs well on tasks that

involve measuring the similarity between words, phrases, and documents (Pantel and Lin

2002; Rapp 2003; Turney et al. 2003; Manning et al. 2008). LM recognizes each document

as a sequence of words and assigns a probability to each permutation of the words. LM is

also frequently used to evaluating the similarity between texts (Metzler et al. 2007; Erkan

2006; Kurland 2006). But different from VSM, LM evaluates the similarity of two doc-

uments from the perspective of probability distributions, i.e., the similarity or distance of

two documents’ language models.

From the perspective of VSM, the sets of the retrieved documents DDt
i and DDt

j during

time Dt of SIi and SIj can be represented as vectors of words WDt
Di

and WDt
Dj

respectively,

and the similarity between SIi and SIj can be measured as the similarity between WDt
Di

and

WDt
Dj

, which can be calculated with the cosine metric:

Fig. 4 The SISR phenomenon.
Note Q, S, and I represent query,
search result and intent
respectively. The R represents the
search results returned by search
engines (regardless of whether
users click it or not)

Fig. 5 Same-Intent-Similar-Rank (SISR) phenomenon analysis. The horizontal axis top-N denotes the top
N search results, the vertical axis denotes the average number of common documents between all query-
pairs’ search results
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W3ðSIi; SIj;DtÞ ¼
W

Dt>
Di

WDt
Dj

jjWDt
Di
jj � jjWDt

Dj
jj

ð2Þ

From the perspective of LM, through considering the common documents DDt
i \ DDt

j ,

the similarity between SIi and SIj can be measured by the cross entropy between their

probability distributions Pðd j SIiÞ and Pðd j SIjÞ.

W4ðSIi; SIj;DtÞ ¼ �
X

d2DDt
i
\DDt

j

Pðd j SIiÞ � lnPðd j SIjÞ ð3Þ

where Pðd j SIÞ can be calculated with the language model (Manning et al. 2008).

Similarity based on the ranking of retrieved documents Given a pair of candidate sub-

intents (queries) SIi and SIj, still let DDt
i and DDt

j be the sets of their retrieved documents,

and let pDti and pDtj be the rankings on their common document set DDt
i \ DDt

j . From the

angle of the document ranking, the similarity between SIi and SIj can be measured as the

similarity between pDti and pDtj , which is generally calculated based on the Kendall’s s rank

correlation coefficient (Kendall 1938; Marden 1996) on DDt
i \ DDt

j .

W5ðSIi; SIj;DtÞ ¼
1

2
þ 1

2
sðpDti ; pDtj Þ ¼

1

2
þ Nc � Nd

NðN � 1Þ ð4Þ

where sðpDti ; pDtj Þ is the value of the Kendall’s s correlation coefficient between two rankings

pDti and pDtj , Nc and Nd are the numbers of their concordant pairs and discordant pairs

respectively, and N ¼ jDDt
i \ DDt

j j ¼ Nc þ Nd is the cardinality of the common document set

DDt
i \ DDt

j . Obviously, W5ðSIi; SIj;DtÞ varies from 0 to 1. In particular, W5ðSIi; SIj;DtÞ ¼ 0 if

pDti \ pDtj ¼ ; or pDti is a reverse ranking of pDtj and thus Nc ¼ 0 and Nd ¼ 1
2
NðN � 1Þ, while

W5ðSIi; SIj;DtÞ ¼ 1 if pDti is the same as pDtj and thus Nc ¼ 1
2
NðN � 1Þ and Nd ¼ 0.

4.3 Query-based similarity

We further explore more similarity functions which directly measure the similarity of two

text fragments (candidate sub-intents).

Syntactic similarity Syntactic similarity describes the string match between two sub-

intents. W6 is such metric that takes exact term match and term sequence into account.

W6ðSIi; SIjÞ ¼
SCðSIi; SIjÞ þ SCðSIj; SIiÞ

2
ð5Þ

where

SCðSIi; SIjÞ ¼
1

jSIij
XjSIij

p¼1

jSIjj �min fjSIjj; jp� p0j : p0 2 PosðSIj; SIpi Þg
jSIjj

where SI
p
i represents the term at position p of sub-intent SIi. If SIj contains the term SI

p
i ,

PosðSIj; SIpi Þ is the set of all positions of SI
p
i in SIj, otherwise PosðSIj; SIpi Þ is null. If

PosðSIj; SIpi Þ is null, then jp� p0j is null too.

W7 is another syntactic similarity that computes the cosine similarity of the term vectors

of the sub-intents. Different from W6, it ignores term sequence.
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W7ðSIi; SIjÞ ¼
WSIi �WSIj

jjWSIi jj � jjWSIj jj
ð6Þ

where WSI is the term vector of the sub-intent SI.

Semantic similarity While the sub-intents may not have direct term overlap, they may be

similar semantically. To address this, we also define some semantic similarities. Different

from measuring the semantic similarity of two documents, Language Model-like metrics

are not suitable for the short text characteristics. The first similarity function we defined is

based on the experience that words of the same intent are more frequently co-occur than

that of different intents.

W8ðSIi; SIjÞ ¼
P

w12SIi ;w22SIj;w1 6¼w2
cooccurðw1;w2Þ

P
w1;w22SIi[SIj[q;w1 6¼w2

cooccurðw1;w2Þ
ð7Þ

where cooccurðw1;w2Þ is the frequency when w1 and w2 co-occur in the same sentence of

search result snapshots or same queries in the search logs.

The next two similarity functions are based on HowNet.13 HowNet is a Chinese lexical

database similar to WordNet.14 A variety of semantic similarities are implemented based

on information found in the lexical database. The following two similarities are adopted in

this paper, of which SIMLiuðwm;wnÞ and SIMXiaðwm;wnÞ are based on algorithms proposed

by Liu (Liu and Li 2002) and Xia (Xia 2007) respectively.

W9ðSIi; SIjÞ ¼ maxfSIMLiuðwm;wnÞjwm 2 SIinq;wn 2 SIjnq;wm 6¼ wng
W10ðSIi; SIjÞ ¼ maxfSIMXiaðwm;wnÞjwm 2 SIinq;wn 2 SIjnq;wm 6¼ wng

ð8Þ

4.4 Learning-based similarity integration

Among above ten similarity functions, the first click-through-based and three search result-

based functions are time-dependent, while the other functions are time-independent. Dt
may refer to different time granularity such as ‘day’, ‘week’, ‘month’, ‘year’ or time

intervals automatically segmented according to events period detection (Qian et al. 2013).

All of the similarity functions have a same scope of values from 0 to 1. With the proposed

ten similarity functions, the final similarity function can be straightforwardly obtained in a

linear integration. Generally, most existing work utilized heuristic methods to design the

coefficients of the functions, because they usually use less than three functions for inte-

gration, which is relatively easy to decide the best values heuristically (Wen et al. 2001;

Xue et al. 2011; Hu et al. 2012; Qian et al. 2013). In our study, we consider ten similarity

functions, which is much more difficult to optimize coefficients heuristically.

We propose a learning-based integration method. Specially, given two candidate sub-

intents SIi and SIj, let WðSIi; SIj;DtÞ ¼ ½w1ðSIi; SIj;DtÞ; . . .;w10ðSIi; SIj;DtÞ�
>

be the vector

of the similarity metrics, where the elements are the ten similarity metrics respectively.

Thus the linearly integrated similarity metric can be defined as follows:

SIMðSIi; SIj;DtÞ ¼ h>WðSIi; SIj;DtÞ ð9Þ

13 http://www.keenage.com.
14 http://wordnet.princeton.edu.
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where h ¼ ½#1; . . .; #10�> is the coefficient vector, 0�#1; . . .; #10� 1 and
P10

m¼1 #m ¼ 1

hold. Since 0�wmðSIi; SIj;DtÞ� 1 for m ¼ 1; . . .; 10, the integrated similarity

0� SIMðSIi; SIj;DtÞ� 1.

Let Q be the training dataset, which is comprised of a set of queries. Each query q 2 Q

has a set of intents Iq, and each intent Il is comprised of a set of sub-intents. In our

learning-based integration method, given a query q, we try to maximize the similarity

between the sub-intents in same intents while minimize the similarity between the sub-

intents in different intents. Thus the loss function can be defined as follows:

arg minh FðhÞ

s:t:
P10

m¼1

#m ¼ 1

#m� 0; m ¼ 1; 2; . . .; 10

ð10Þ

where

FðhÞ ¼ � log
Y

q2Q

Y

Il2Iq

P
SIi ;SIj2Il ;i 6¼j SIMðSIi; SIj;DtÞP

Il2Iq
P

SIi2Il ;SIj2Il ;i 6¼j SIMðSIi; SIj;DtÞ

0

@

1

Aþ g
2
h>h

¼ �
X

q2Q

X

Il2Iq
log

P
SIi;SIj2Il ;i 6¼j h

>WðSIi; SIj;DtÞ
P

Il2Iq
P

SIi2Il;SIj2Il;i 6¼j h
>WðSIi; SIj;DtÞ

 !

þ g
2
h>h

¼
X

q2Q

X

Il2Iq
log

X

Il2Iq

X

SIi2Il;SIj2Il;i 6¼j

h>WðSIi; SIj;DtÞ

0

@

1

A

2

4

3

5

�
X

q2Q

X

Il2Iq
log

X

SIi ;SIj2Il;i 6¼j
h>WðSIi; SIj;DtÞ

0

@

1

A

2

4

3

5þ g
2
h>h

ð11Þ

We use the Lagrange multiplier method to solve the constrained optimization problem.

Let

Lðh; kÞ ¼ FðhÞ þ kð1�
X10

m¼1

#mÞ

Then we can straightforwardly solve it with the gradient descent method (Calamai and

Moré 1987). The gradient of the Lðh; kÞ with respect to h and k is as follows:

5hLðh; kÞ ¼
P

q2Q

P

Il2Iq

P
Il2Iq

P
SIi2Il;SIj2Il;i 6¼j WðSIi; SIj;DtÞ

P
Il2Iq

P
SIi2Il;SIj2Il;i 6¼j h

>WðSIi; SIj;DtÞ

 !

�
P

q2Q

P

Il2Iq

P
SIi;SIj2Il;i6¼j WðSIi; SIj;DtÞ

P
SIi;SIj2Il;i6¼j h

>WðSIi; SIj;DtÞ

 !

þ gh� k110

o

ok
Lðh; kÞ ¼ 1�

P10

m¼1

#m

8
>>>>>>>>>><

>>>>>>>>>>:

where 110 is a 10-dimensional vector of which all of the elements are 1. Thus the update

formula of h and k are as follows:
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h h� a5h Lðh; kÞ

k k� a
o

ok
Lðh; kÞ

ð12Þ

Note that we have another constraint #m� 0 for m ¼ 1; 2; . . .; 10. Thus, in each itera-

tion, just simply set #m ¼ 0 if any #m\0 happens for m ¼ 1; . . .; 10 after updating the

values of h.

4.5 Clustering algorithm

With the integrated similarity function, we generate a two-level intent hierarchy for a given

query with an affinity propagation(Frey and Dueck 2007)-based clustering method. We

choose this clustering approach because affinity propagation does not need to predefine the

number of clusters and it recently has received tremendous attentions from different areas,

including image (Wang et al. 2013), text (Sun and Guo 2014), stream (Zhang et al. 2014),

and hierarchical (Kazantseva and Szpakowicz 2014) clustering tasks for its effectiveness.

The intent mining algorithm is shown in Algorithm 1, where the parameter � ¼ 0:5 (which

is the best performance setting in our QIM experiments). Each cluster represents one intent

of the query.

5 Query intent ranking

Given a query associated with a set of intents and sub-intents, it is crucial to order them

properly, so that search engines are able to adjust the search results or make query sug-

gestion/expansion for fulfillment of users’ information needs. In this section, we present

ranking models for the intent and sub-intent levels respectively.

5.1 Intent ranking

In intent ranking, the main challenge is the intent drift problem, that the importance of the

intents is time-sensitive and evolves over time. Some new intents emerge and receive great

attentions while some old ones become unpopular. However, existing studies mostly focus

on understanding user intents from a static viewpoint.

In this study, we construct a time-sensitive importance function sðIl; q;DtÞ:I q ! R to

calculate the ranking scores of the intents for the given query q at Dt.
Intent ranking objective function The importance of the intents involves two issues:

cluster quality and intent relevance, as follows:

sðIl; q;DtÞ ¼ qðIl;DtÞ � rTðq; Il;DtÞ ð13Þ
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where qðIl;DtÞ measures the clustering quality of intent Il, rTðq; Il;DtÞ is the temporal

relevance metric of intent Il to the query q at Dt.
Clustering quality of intents Since each intent is actually a cluster of sub-intents, the

quality of an intent can be measured with the metric of the clustering algorithms, i.e., the

more close the sub-intents in the intent are, the higher the intent quality is. Specially, given

an intent Il ¼ fSIl1 ; SIl2 ; . . .; SIlbg composed of lb sub-intents, the quality metric of an intent

is defined as follows:

qðIl;DtÞ ¼ ZQ �
P

SIlm ;SIln2Il;m 6¼n SIMðSIlm ; SIln ;DtÞ
lbðlb � 1Þ ð14Þ

where ZQ is a normalization factor which normalizes the value of the intent quality into the

scale from 0 to 1.

Temporal relevance of intents We define the temporal relevance of the intents from the

perspectives of the TF-IDF model and the language model respectively.

TF-IDF model (Manning et al. 2008) is a standard weighting scheme for weighting the

relevance of the terms in information retrieval, which is calculated as product of the term

frequency and the inverse document frequency. The term frequency tf(w, d) of word w in

document d is defined as (the logarithm of) the number of times that w occurs in d. It

positively contributes to the relevance of d to w. The inverse document frequency idf

(w, D) of word w in corpus D measures the rarity of w in D, which is defined as (the

logarithm of) the inverse of the document frequency df(w, D), i.e., the number of docu-

ments that w occurs in the corpus D. If w is rare, then the documents containing w are more

relevant to w.

Given a query q and an intent Il, let Wl be the set of words in Il, and Dðq;DtÞ be the set

of the documents retrieved by q with time constraint Dt. In our experiments, we just used

the snapshots of the top-N documents in the Google Search Engine (see footnote 12). Thus

from the perspective of the TF-IDF model, the temporal relevance of the intents

rTðq; Il;DtÞ can be calculated as the average TF-IDF weighting scores of the words in Il
and the corpus Dðq;DtÞ. Formally,

rTðq; Il;DtÞ ¼ ZT �
P

w2Wl
tf ðw;Dðq;DtÞÞ � idf ðw;Dðq;DtÞÞ

jWlj
ð15Þ

where ZT is a normalization factor which normalizes the value of rTðq; Il;DtÞ into the scale

from 0 to 1, tf ðw;Dðq;DtÞÞ and idf ðw;Dðq;DtÞÞ utilize their logarithm formulations

(Manning et al. 2008).

5.2 Sub-intent ranking

Sub-intents represent users’ detailed information needs, such as the properties of the

objects and events. Thus discovery of top-k important sub-intents is a central problem for

many applications in information retrieval, e.g. query suggestion and search diversification.

Sub-intent ranking objective function Given a query q, all of its intents Iq and sub-

intents S ¼
S

Il2Iq Il, the sub-intent ranking task aims to generate a top-k ranking list p � S
according to their importance at Dt with consideration of temporal issues and diversity

issues. The objective function is defined as follows:

arg max
p�S;jpj¼k

Lðp; I q; q;DtÞ ¼ arg max
p�S;jpj¼k

X

Il2Iq
sðIl; q;DtÞ � Uðp; Il; q;DtÞ ð16Þ
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where sðIl; q;DtÞ is the importance of intent Il defined in Formula 13; Uðp; Il; q;DtÞ
evaluates the extent to which the ranking list p covers intent Il. Thus, the explanation for

our objective (Formula16) is, we try to maximize the coverage of intents in terms of their

importance in top-k sub-intents ranking list p. Uðp; Il; q;DtÞ is defined as follows:

Uðp; Il; q;DtÞ ¼ 1�
Y

SIi2p
ð1� PðSIi; p; Il; q;DtÞÞ ð17Þ

PðSIi; p; Il; q;DtÞ is the probability that sub-intent SIi covers intent Il at Dt.

PðSIi; p; Il; q;DtÞ ¼ impðSIi; Il; q;DtÞ � novðSIi; p;DtÞ ð18Þ

Thus 1� PðSIi; p; Il; q;DtÞ is the probability that SIi fails to cover Il. According to the

independence assumption of Naı̈ve Bayes,
Q

SIi2pð1� PðSIi; p; Il; q;DtÞÞ represents the

probability that all sub-intents in p fail to cover Il. Then, 1�
Q

SIi2pð1� PðSIi; p; Il; q;DtÞÞ
is the probability that at least one sub-intent in p covers intent Il.

Temporal relevance of sub-intents In Formula 18, impðSIi; Il; q;DtÞ is the temporal

relevance of SIi at Dt, which involves two aspects: the temporal importance of SIi for its

intent Il, and the relevance of SIi for the query q. Formally,

impðSIi; Il; q;DtÞ ¼ simðSIi; q;DtÞ � simðSIi; Il;DtÞ ð19Þ

where simðSIi; q;DtÞ is the temporal importance of SIi for the query q, which can be

evaluated using term frequency of SIi in the set of retrieved documents Dðq;DtÞ by q at Dt.
Similar to previous settings, we used the snapshots of the top-N documents in the Google

Search Engine (see footnote 12). Formally,

simðSIi; q;DtÞ ¼
P

w2SIi tf ðw;Dðq;DtÞÞ
jSIij � jDðq;DtÞj

ð20Þ

simðSIi; Il;DtÞ is the relevance of SIi to Il, which can be calculated as the similarity

between SIi and its intent Il, i.e., the average similarity between SIi and each sub-intent in

Il:

simðSIi; Il;DtÞ ¼
1

jIlj
X

SIj2Il
SIMðSIi; SIj;DtÞ ð21Þ

where SIMðSIi; SIj;DtÞ is calculated with Formula 9, and jIlj is the number of sub-intents in

Il.

Novelty of sub-intents novðSIi; p;DtÞ in Formula 18 is to measure the novelty of

choosing SIi into p, which is defined as the difference between SIi and the other sub-intents

in p. Formally,

novðSIi; p;DtÞ ¼ 1� ð1� fÞmax
SIj2p

SIMðSIi; SIj;DtÞ ð22Þ

where f is a very small positive number to make sure that the minimal value of

novðSIi; p;DtÞ is f 6¼ 0 and thus PðSIi; p; Il; q;DtÞ 6¼ 0. In our experiments, we set

f ¼ 1E�4.

The intuition of novðSIi; p;DtÞ is that p should cover as many intents as possible and

simultaneously not contain similar sub-intents. For example, if p already includes the sub-

intent ‘‘ (‘Knowing’ starring Nicolas Cage)’’, it should not contain the

similar sub-intents like ‘‘
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(the movie ‘Knowing’)’’ any more.

Optimization As shown in Theorem 1, we prove that our objective function 16 is non-

negative, monotone and sub-modular.

Theorem 1 Lðp; Iq; q;DtÞ is a non-negative, monotone and sub-modular function.

Proof It is obvious that Lðp; I q; q;DtÞ is non-negative. Let p1, p2 be two arbitrary list of

sub-intents related by p1 	 p2. Let SI be a sub-intent satisfying p2 ¼ p1 [ fSIg.

Lðp2; Iq; q;DtÞ � Lðp1; I q; q;DtÞ
¼
X

Il2Iq
KðIl; q;DtÞ � ðUðp2; Il; q;DtÞ � Uðp1; Il; q;DtÞÞð Þ

¼
X

Il2Iq
KðIl; q;DtÞ � ðVðSIÞ �

Y

SIi2p1

ð1� VðSIiÞÞÞ
 !

where VðSIÞ ¼ VðSIiÞ ¼ impðSIi; Il; q;DtÞ � novðSIi; pÞð Þ 2 ½0; 1�, KðIl; q;DtÞ� 0. So

Lðp2; Iq; q;DtÞ�Lðp1; Iq; q;DtÞ which means Lðp; I q; q;DtÞ is monotone.

Let p3 be any arbitrary list of sub-intents satisfying p1 	 p3. Let SI0 be a sub-intent not

in p3. Denote p1 [ fSI0g with p1
0 and similarly p3 [ fSI0g with p3

0.

f1 ¼Lðp1
0; I q; q;DtÞ � Lðp1; I q; q;DtÞ

¼
X

Il2Iq
KðIl; q;DtÞ � ðVðSI0Þ �

Y

SIi2p1

ð1� VðSIiÞÞÞ
 !

Similarly, we can establish
f2 ¼Lðp3

0; I q; q;DtÞ � Lðp3; I q; q;DtÞ

¼
X

Il2Iq
KðIl; q;DtÞ � ðVðSI0Þ �

Y

SIi2p3

ð1� VðSIiÞÞÞ
 !

Note that VðSIiÞ 2 ½0; 1� and p1 	 p3, we have
Q

SIi2p1
ð1� VðSIiÞÞ�Q

SIi2p3
ð1� VðSIiÞÞ. Therefore, we conclude that f1� f2, i.e., the function Lðp; I q; q;DtÞ is

submodular. h

The value of Theorem 1 reflects in two aspects. First, according to the work done by

Cornuejols et al. (1977) and Nemhauser et al. (1978), if an objective function is proved to

be non-negative, monotone and sub-modular (which Theorem 1 does), then we can make a

conclusion that the Greedy algorithm will achieve at least a ð1� 1
e
Þ approximation of the

optimal solution. Because the parameter values (i.e., Dt; f) are given before we run the

Greedy algorithm, they will not influence above conclusion. The Greedy algorithm is

shown in Algorithm 2. Initially the ranking p is empty, and iteratively select a sub-intent

SIi from Snp that maximizes the Formula 16 at step i, and set its ranking position as

i. Second, the practical running time of Greedy for this problem can be alleviated by CELF

(Leskovec et al. 2007) and CELF?? (Goyal et al. 2011). For details of the two algo-

rithms, we refer the readers to the papers (Leskovec et al. 2007; Goyal et al. 2011).
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6 Experiment

6.1 Experimental setup

Data sets To evaluate the performance of our method, we used the Chinese dataset of

NTCIR-11 IMine (see footnote 2). We choose this dataset because this is the only available

dataset with real query logs, to the best of our knowledge. The official dataset contains: (1)

50 Chinese queries. (2) Query logs SogouQ (see footnote 9). (3) The candidate sub-intents:

Query suggestions collected from Sogou (see footnote 10), Google (see footnote 12),

Yahoo!,15 Bing16 and Baidu;17 Query dimensions generated by (Dou et al. 2011b) from

search engine result pages; Related queries generated by (Liu et al. 2011) from SogouQ

(see footnote 9).

For each candidate sub-intent, we collected Google search results belonging to the time

span from January 2004 to July 2013. Specially, for each month, we issued each candidate

sub-intent to Google Search with the condition of time range, and collected the top 500

results in the ranking list. For example, ‘‘Adobe’’ was submitted with the time condition ‘‘1

Jan, 2004–31 Jan, 2004’’ which can be specified in ‘‘Google Search Tools’’. The number of

snapshots in the document dataset used in the experiment is about 8.5 million.

Evaluation measures Average accuracy is used to measure the quality of the hierar-

chical structure by whether the sub-intent is correctly assigned to the appropriate intent.

Accuracy ¼
PjIqj

l¼1 CorrectðIlÞ
jI qj

ð23Þ

where jI qj is the number of mined intents for a certain query. Il denotes the lth intent.

CorrectðIlÞ is the percentage of correctly-assigned sub-intents for intent Il. If intent Il is not

relevant to the query (annotated manually), then CorrectðIlÞ should be 0.

D#-nDCG, a frequently-used measure for ranking diversification, is used to evaluate the

quality of the intent/sub-intent ranking list by judging whether all important intents/sub-

intents are found and ranked correctly (Sakai and Song 2011).

D#-nDCG@k ¼ q � I-rec@k þ ð1� qÞ � D-nDCG@k ð24Þ

where q is set to 0.5 in this paper. I-rec@k is the intent recall at top k, i.e. percentage of

intents found (for intent ranking) or covered by sub-intents (for sub-intent ranking).

D-nDCG@k is computed by replacing the raw gain of nDCG with the global gain:

15 https://www.yahoo.com/.
16 https://www.bing.com/.
17 http://www.baidu.com/.
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GGðrÞ ¼
X

Il

PðIljqÞgrðIlÞ ð25Þ

where grðIlÞ is the gain value of intent/sub-intent at position r for intent Il (ground truth).

H-measure2 (Liu et al. 2014) is used to evaluate the performance of intent mining,

intent ranking as well as sub-intent ranking.

H-measure ¼ Accuracy � ðs � D#-nDCG@I þ ð1� sÞ � D#-nDCG@SIÞ ð26Þ

where D#-nDCG@I is the D#-nDCG of all intents in the ranking list, similarly,

D#-nDCG@SI is the D#-nDCG of all sub-intents in the ranking list, and s is set to 0.5.

Baseline Our first baseline is TUTA1 (Yu and Ren 2013), which is the best Chinese run

in NTCIR-10 INTENT-2 task. We implement the approach according to their paper and

apply it to the NTCIR-11 IMine dataset. In order to find out whether the proposed SICC

and SISR features are actually useful, we use another baseline, namely CONTENT-BASED,

which uses Cosine of the queries as the similarity and the proposed clustering approach in

this paper. As for sub-intent ranking, we use IA-Select (Agrawal et al. 2009) and PM2

(Dang and Croft 2012) as baselines. We also choose the official results of IMine for

comparison which includes 11 baselines (Liu et al. 2014). Note that our work is the first

considering intent drift issue in intent and sub-intent ranking, to the best of our knowledge.

However, we can not measure our study due to the lack of available data, baseline methods

and evaluation measures. So we have to set Dt to full time (from Jan. 2004 to Dec. 2013 in

this paper) in order to compare our methods with the baseline. Additionally, we make an

interesting case study with intent drift in Sect. 6.3 to demonstrate the effectiveness of our

study.

Parameter setting Fivefold cross validation is adopted to train the parameters of our

approach with INTENT-118 and INTENT-219 data. Cross-validation is widely used in

learning approaches to choose the values of parameters (Tibshirani and Tibshirani 2009).

First, we randomly split the data into five pieces. Then, the parameters were estimated

using fivefold cross-validation. Finally, the parameters were computed as the median of the

five estimations (Chapelle et al. 2002). The final coefficient vector h for these ten similarity

metrics with fivefold cross-validation is h ¼ ½0:12; 0:05; 0:11; 0:11; 0:14; 0:13; 0:12;
0:07; 0:08; 0:07�. We also consider heuristical h which treats these 10 similarity metrics

equally in the experiment.

6.2 Experiment results

The experiment results are shown in Tables 1, 2, 3 and 4. The first three tables compare our

methods with TUTA1, and the last table compares our methods with the other baselines.

OurMethod1 represents our method with heuristical h; OurMethod2 represents our method

with learned h.

The intent mining result in Table 1 shows that both OurMethod1 and OurMethod2

outperform TUTA1, and OurMethod2 achieves the best performance. There are three

reasons for the improvement: (1) Our methods consider three feature classes: click

through-based similarity, search result-based similarity, and query-based similarity, while

18 http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings9/NTCIR/Evaluations/INTENT/ntc9-
INTENT-eval.htm.
19 http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/NTCIR/Evaluations/INTENT/ntc10-
INTENT2-eval.htm.
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TUTA1 mainly utilizes query-based features. (2) Our methods define ten similarity func-

tions while TUTA1 only defines four. (3) OurMethod2 learns h from data for the integration

of the 10 similarity functions while TUTA1 assigns the same weight to their similarity

functions. Besides, because CONTENT-BASED uses the same clustering approach as

OurMethod, the comparison with CONTENT-BASED indicates that the proposed SICC and

SISR features are actually useful.

The intent ranking result in terms of D#-nDCG in Table 2 indicates that both

OurMethod1 and OurMethod2 surpass TUTA1. This is because TUTA1 only considers

frequency of words to model the popularity of each intent, while we also consider the

intent quality and the intent relevance with respect to the query. Word frequency of intents

only reflects the popularity of the intent to some extent. However, a popular intent might

not be accurately clustered and is not necessarily very relevant to the given query. In

another word, a popular but non-relevant or not well clustered intent should not be ranked

in the top results. This issue is ignored by TUTA1.

Table 1 Accuracy of intent mining

Accuracy

TUTA1 0.417;

CONTENT-BASED 0.148;

OurMethod1 0.526;

OurMethod2 0.568

; indicates OurMethod2 is statistically significantly (p value\ 0.05 with two-tailed t test) better than this
method. The bold face indicates the best performance

Table 2 D#-nDCG of intent ranking

D#-nDCG

@1 @2 @3 @4 @5

TUTA1 0.483; 0.453; 0.341; 0.419; 0.396;

OurMethod1 0.605;; 0.601; 0.551; 0.503; 0.576;

OurMethod2 0.669 0.637 0.609 0.673 0.634

# indicates OurMethod2 is statistically significantly (p value\ 0.05 with two-tailed t test) better than this
method. The bold face indicates the best performance

Table 3 D#-nDCG of sub-intent ranking

D#-nDCG

@1 @5 @10 @20 @50

TUTA1 0.343; 0.486; 0.564 0.417 0.470;

IA-Select 0.213; 0.398; 0.571 0.573 0.597

PM2 0.201; 0.297; 0.483 0.495; 0.512;

OurMethod1 0.380; 0.491; 0.542; 0.579; 0.638

OurMethod2 0.411 0.545 0.576 0.609 0.637

; indicates OurMethod2 is statistically significantly (p value\ 0.05 with two-tailed t test) better than this
method. The bold face indicates the best performance
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The sub-intent ranking results are shown in Table 3. TUTA1 quantifies the quality of the

list with the top k sub-intents R using definitions inspired by the metric D#-nDCG, i.e.

qualðRÞ ¼ bNðRÞ=I q þ ð1� bÞ
XjRj

r¼1

ðpopðIðSIiÞÞ= logðr þ 1ÞÞ ð27Þ

where N(R) denotes the number of distinct clusters (intents) to which the current sub-

intents R belong. NðRÞ=Iq is used to approximate I-rec in D#-nDCG. IðSIiÞ is the intent

that the sub-intent SIi belongs to. popðIðSIiÞÞ is the metric used to rank intents as talked

above, which is estimated using word frequency of the intent.
PjRj

r¼1 ðpopðIðSIiÞÞ= log

ðr þ 1ÞÞ aims at ranking sub-intents indicating major intents in higher positions, which is

used to approximate D-nDCG in D#-nDCG.

Both our methods outperform TUTA1 for three reasons. First, we achieve better intent

mining results, which is fundamental for sub-intent ranking both in TUTA1 and our work.

Second, TUTA1 simply defines the gain value of a sub-intent at rank r as the importance of

its intent, i.e. popularityðIðSIiÞÞ, which is not appropriate because even in the perfect

Table 4 Comparison with the official result of NTCIR-11 IMine task

Participants Intent mining
(Accuracy)

Intents ranking
(D#-nDCG)

Sub-intents ranking
(D#-nDCG)

Overall performance
(H-measure)

KLE-S-C-1A 0.5306 0.5666; 0.6360 0.3190

KLE-S-C-2A 0.5413 0.5736 0.6339: 0.3268

KLE-S-C-3A 0.5072; 0.4817; 0.6718: 0.2925;

KLE-S-C-4A 0.5148; 0.4986; 0.6640: 0.2993;

THUSAM-S-C-1A 0.5527 0.5537; 0.4634; 0.2811;

THUSAM-S-C-2A 0.4347; 0.4498; 0.4633; 0.1985;

THUSAM-S-C-3A 0.3284; 0.3744; 0.3981; 0.1268;

THUSAM-S-C-4A 0.3284; 0.3744; 0.3993; 0.1270;

THUSAM-S-C-5A 0.4287; 0.5040; 0.4626; 0.2072;

CNU-S-C-1A 0.5353 0.5867 0.2045; 0.2118;

CNU-S-C-2A 0.5789 0.5569; 0.1932; 0.2171;

CNU-S-C-3A 0.5086; 0.4708; 0.1626; 0.1611;

CNU-S-C-4A 0.4611; 0.6073 0.1910; 0.1840;

FRDC-S-C-1A 0.2931; 0.7191: 0.3110; 0.1510;

FRDC-S-C-2A 0.3257; 0.5045; 0.2381; 0.1209;

FRDC-S-C-3A 0.2897; 0.7191: 0.3214; 0.1507;

FRDC-S-C-4A 0.5436 0.4782; 0.2715; 0.2038;

FRDC-S-C-5A 0.5377 0.5004; 0.3139; 0.2189;

TUTA1-S-C-1A 0.2419; 0.3242; 0.4391; 0.0923;

OurMethod1 0.5260; 0.5761 0.5371; 0.2928;

OurMethod2 0.5681 0.6344 0.5716 0.3426

The official detailed results of each team for each query are available online2

; indicates OurMethod2 is statistically significantly (p value\ 0.05 with two-tailed t test) better than this
method

: indicates this method is statistically significantly (p value \ 0.05 with two-tailed t test) better than
OurMethod2. The bold face indicates the best performance and the underline indicates the second best
performance
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clustering results, the sub-intents in the same cluster are not necessarily the same impor-

tant. Third, redundancy is not considered in TUTA1 which results in many redundant sub-

intents. E.g., for the two sub-intents ‘‘Prophet movie’’ and ‘‘Movie about prophet’’, our

method will only rank one of them at the top and filter out the other one. However, TUTA1

ranks both of them at the top. Finally, the learned h helps improve the results significantly,

which confirms our arguments in Sect. 4.4. As for the ranking, we also compare our sub-

intent ranking approach with IA-Select and PM2. The results indicate that our approach

outperforms IA-Select and PM2, which means that our proposed sub-intent ranking algo-

rithm is effective.

The comparison of our methods with NTCIR-11 IMine official results is shown in

Table 4. The bold face indicates the best performance for each evaluation measure and

underline indicates the second best performance for each evaluation measure. As we can

see, the performance of our intent mining approach is only a little worse than CNU-S-C and

our intent ranking approach is only a little worse than FRDC-S-C and KLE-S-C.20 How-

ever, our approaches achieve the best performance in terms of H-measure with a 1.58 %

improvement compared with the second best approach.

6.3 A case study of intents drift understanding

Unfortunately, no existing dataset and evaluation metrics are fit for measuring the

effects of intent drift in intent and sub-intent ranking, we make a case study under this

circumstances (Berberich and Bedathur 2013; Hu et al. 2012; Jones and Diaz 2007).

Figure 6 shows the intents evolution over a timeline of the Chinese query ‘‘ ’’ mined by

our approach. The vertical axis shows the relative popularity of four intents at that time

computed with the Function 13. Table 5 shows the top five sub-intents at different time

units. The results in Fig. 6 are consistent with actual facts and reflect users’ intents drift.

Two most popular intents ‘‘Game’’ and ‘‘Movie’’ are more popular than the other two

intents over almost all the time. Before the year 2010, the movie ‘‘Knowing’’ starring

Nicolas Cage was the most popular intent. Then, ‘‘Dota Game’’ became the most popular

intent which is reasonable because ‘‘Dota’’ became popular and many people searched the

information about the ‘‘Prophet Hero (an actor in the Dota game)’’. The results in Table 5

are satisfactory since the ranking changes with time to satisfy the evolving intents. Before

the famous movie ‘‘Knowing’’ was on in 2009, ‘‘Prophet electronic dog’’ is ranked as the

first. When the movie was popular in 2009, ‘‘Movies about prophet’’ is ranked as the first.

After ‘‘Dota’’ became popular, ‘‘Playing tips of Dota prophet’’ is ranked as the first.

Besides, the top results are diversified with different intents.

7 Conclusions and future work

In this paper, we have studied the problem of query intent mining and ranking. We

implemented our approaches and baseline methods, and experimentally verified that sig-

nificant improvements were achieved by our approach in terms of three popular evaluation

metrics. We also demonstrated how our work helps understand user intents drift through an

interesting case study.

20 Approach details and experiment results details are not available, so we cannot carry out more experi-
ments, analysis as well as significant test.
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There are several issues we want to further explore to enhance our current work. First,

we plan to investigate the use of other similarity functions to further improve the accuracy.

Second, we would like to study how to integrate the similarity functions nonlinearly.

Finally, we also plan to consider more factors when ranking the intents and sub-intents to

further improve the ranking results.

Acknowledgments This work is supported by the Natural Science Foundation of China (61272240,
61103151, 71402083), the Doctoral Fund of Ministry of Education of China (20110131110028), the
Academy of Finland (268078), the Natural Science foundation of Shandong province (ZR2012FM037), the
Excellent Middle-Aged and Youth Scientists of Shandong Province (BS2012DX017) and the Fundamental
Research Funds of Shandong University.

References

Agrawal, R., Gollapudi, S., Halverson, A., & Ieong, S. (2009). Diversifying search results. In Proceedings of
the second ACM international conference on web search and data mining, ACM, New York, NY,
USA, WSDM ’09 (pp. 5–14).

Table 5 Instance of Sub-intents Diversification Corresponding to Fig. 6

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

I4 I3 I2 I1

Fig. 6 The drift of four intents, I1–I4, behind the query ‘‘Prophet’’ over the time from 2004 to 2014. I1–I4
are ‘‘Movie’’, ‘‘Game’’, ‘‘Prophets in Religion’’ and ‘‘Prophet Electronic Dog’’ respectively. The horizontal
axis represents the time, and the vertical axis denotes the relative popularity of the four intents computed
with Function 13

526 Inf Retrieval J (2015) 18:504–529

123



Aiello, L. M., Donato, D., Ozertem, U., & Menczer, F. (2011). Behavior-driven clustering of queries into
topics. In Proceedings of the 20th ACM international conference on information and knowledge
management, ACM, CIKM’11 (pp. 1373–1382).

Beeferman, D., & Berger, A. (2000). Agglomerative clustering of a search engine query log. In Proceedings
of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, ACM
(pp. 407–416).

Beg, M. S., & Ahmad, N. (2007). Web search enhancement by mining user actions. Information Sciences,
177(23), 5203–5218.

Berberich, K., & Bedathur, S. (2013). Temporal diversification of search results. In Proceedings of the
SIGIR 2013 workshop on time-aware information access.

Biancalana, C., Gasparetti, F., Micarelli, A., & Sansonetti, G. (2013). Social semantic query expansion.
ACM Transactions on Intelligent Systems and Technology, 4(4), 60:1–60:43.
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