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Abstract This paper presents a Graph Inference retrieval model that integrates structured

knowledge resources, statistical information retrieval methods and inference in a unified

framework. Key components of the model are a graph-based representation of the corpus

and retrieval driven by an inference mechanism achieved as a traversal over the graph. The

model is proposed to tackle the semantic gap problem—the mismatch between the raw data

and the way a human being interprets it. We break down the semantic gap problem into

five core issues, each requiring a specific type of inference in order to be overcome. Our

model and evaluation is applied to the medical domain because search within this domain

is particularly challenging and, as we show, often requires inference. In addition, this

domain features both structured knowledge resources as well as unstructured text. Our

evaluation shows that inference can be effective, retrieving many new relevant documents

that are not retrieved by state-of-the-art information retrieval models. We show that many

retrieved documents were not pooled by keyword-based search methods, prompting us to

perform additional relevance assessment on these new documents. A third of the newly

retrieved documents judged were found to be relevant. Our analysis provides a thorough

understanding of when and how to apply inference for retrieval, including a categorisation

of queries according to the effect of inference. The inference mechanism promoted recall
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by retrieving new relevant documents not found by previous keyword-based approaches. In

addition, it promoted precision by an effective reranking of documents. When inference is

used, performance gains can generally be expected on hard queries. However, inference

should not be applied universally: for easy, unambiguous queries and queries with few

relevant documents, inference did adversely affect effectiveness. These conclusions reflect

the fact that for retrieval as inference to be effective, a careful balancing act is involved.

Finally, although the Graph Inference model is developed and applied to medical search, it

is a general retrieval model applicable to other areas such as web search, where an

emerging research trend is to utilise structured knowledge resources for more effective

semantic search.

Keywords Semantic inference � Medical information retrieval � Health informatics

1 Introduction

The challenge addressed by this paper is how to bridge the semantic gap: the mismatch

between the raw data and the way a human being interprets it. Although the semantic gap

problem is found in all domains, it is particularly prevalent in medical search. For example,

when searching clinical records for patients suffering from kidney disease, a human being

would readily infer that a relevant patient would be one undergoing dialysis. There exists

valuable domain knowledge explicitly represented, yet trapped, in structured knowledge

resources such as ontologies, which could potentially be leveraged to support such infer-

ences. Although some state-of-the-art medical IR systems attempt to exploit these

resources (Zhou et al. 2007; Koopman et al. 2012b; Limsopatham et al. 2013a, c), they

lack the inference mechanisms that promote effective retrieval.

This article presents a Graph Inference model (GIN), which we claim is a novel retrieval

model integrating structured knowledge resources, statistical information retrieval methods

and inference in a unified framework. The integration is provided by a graph-based rep-

resentation of a corpus, with a structured knowledge resource providing the underlying

skeleton. Information Units, be they terms, concepts or entities, are nodes in this graph.

Edges represent relationships between these Information Units and these can be taken

directly from the structured knowledge resource or derived from corpus statistics. Retrieval

is modelled as an inference process and is realised as a traversal over the graph from nodes

representing documents to those representing queries.

Some may view our retrieval as inference approach with surprise given the dearth of

inference driven retrieval models. However, the strength of the retrieval as inference line of

research, which started in the late nineteen eighties (Van Rijsbergen 1986; Nie 1989) and

continued on into the nineties (Crestani and van Rijsbergen 1995), was its ability to

express different retrieval models within a single theoretical framework. This characteristic

holds for the GIN, which can be more precisely viewed as not a single model, but a

framework for expressing different inference based retrieval models. This article will

investigate one such model. In addition, the promise of inference is the ability to infer

relevant terms that are not usually captured by IR mechanisms such as pseudo-relevance

feedback. In this article, we demonstrate how inference-based retrieval can return signif-

icant numbers of relevant documents which standard IR baseline models are blind to. The

converse also holds, namely, inference has the potential to return larger numbers of
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irrelevant documents. This occurred when the inference mechanism utilised structured

domain knowledge that was tenuous or not applicable to the specific context of the query.

Finding the required balance between these two is, in our opinion, the most significant

challenge for the retrieval as inference approach. Whilst we did not surmount this chal-

lenge, the analysis contributed in this article does provide a detailed understanding of when

inference does promote effective retrieval and when it does not. It is our hope that this

understanding will help bring a resolution of this challenge in the future.

In the next section, we categorise the different problems requiring inference. These are

not specific to the medical domain. Therefore, inference is a general requirement for

bridging the semantic gap. At the same time, structured knowledge resources akin to those

used by the GIN are readily available outside the medical domain (for example, DBpedia1

or Freebase2). Thus, the GIN provides a general framework to utilise structured knowledge

resources for more effective semantic search and the lessons learned in the medical domain

could apply more generally.

2 Inference requirements for information retrieval

We break the semantic gap problem into five core issues. For each issue, we provide an

example from the medical domain and then outline the type of inference required to

address it.

2.1 Vocabulary mismatch

Vocabulary mismatch occurs when particular concepts are expressed in a number of dif-

ferent ways, yet have a similar underlying meaning; for example, Hypertension versus high

blood pressure. In addition, there are formal versus colloquial variants for terms, regional

differences and abbreviations and acronyms. These problems are present in all domains but

due the complexity and nature of language in the medical domain there are often multiple

variants for expressing the same concept, thus exacerbating the problem (Ely et al. 2000;

Edinger et al. 2012; Koopman and Zuccon 2014c). The effect in a retrieval scenario is that

a query may have no overlapping terms with a document, yet the document could still be

semantically highly relevant. A keyword-based IR system that returns only documents

containing the query terms would not return these semantically relevant documents.

Two types of inference are required to overcome the vocabulary mismatch problem

(Lancaster 1986). First, statistical or associational inference can be employed to determine

terms that are highly correlated in usage, such as synonyms. Standard IR approaches such

as query expansion take advantage of terms with highly correlated usage; these approaches

are an instantiation of associational inference. Second, and in contrast, deductive inference

may be used in cases where linguistic resources (such as ontologies or thesauri) describe

multiple alternative terms for a concept. The requirement for both association and

deductive inference motivates research into a unified model that integrates structured

ontologies and statistical, data-driven IR methods.

1 http://wiki.dbpedia.org/.
2 http://www.freebase.com/.
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2.2 Granularity mismatch

Queries are formulated using general terms/entities, whereas relevant documents contain

specific instances of the general entities, or child concepts. For example, a query may

contain antipsychotic while relevant documents would contain instances of antipsychotics,

such as the drug Diazepam or the brand name Valium. Granularity mismatch is more

prevalent in medical IR, particularly in searching electronic patient records which contain

detailed descriptions and analyses of a patient’s conditions, diagnoses and treatments,

whereas queries express high-level information needs (Ely et al. 2000; Edinger et al. 2012;

Koopman and Zuccon 2014c). This mismatch between high-level query and low-level

document renders an information retrieval system using keyword matches ineffective in

searching medical data.

Overcoming granularity mismatch involves understanding when concepts are special-

isations or generalisation of other concepts: a requirement that ontologies specifically

model as parent-child or ISA relationships. However, ontologies typically do not provide a

strength of association between parent and child (for example, left kidney is considered as

similar to its parent kidneys as kidney is to its parent organ); thus it is not clear when it is

appropriate to generalise or when to specialise.

The ability to infer more general or more specific concepts is essential for semantic

search. The inference process is typically deductive in nature: determining when one

concept is a parent or child of another. However, this inference mechanism needs to

include a measure of uncertainty or similarity that is lacking in hierarchical ontologies.

Inference with uncertainty is the foundation of probabilistic information retrieval models

that estimate a probability of relevance. Thus this paper proposes a model that integrates

explicit inheritance relationships from ontologies but also includes a necessary statistical

estimation of uncertainty from IR models to address the issue of granularity mismatch.

2.3 Conceptual implication

Although a relevant document may contain no query terms, the document may contain

signs or evidence that drives a conclusion of the query. Specifically, certain terms within

the document may logically infer the query terms and, by extension, relevance of the

document to the query. For example, consider the query Kidney disease and a document

that contains the terms Dialysis machine. For this query, a person reading the document

would deduce Dialysis machine ! Kidney disease. Conceptual implication is different

from vocabulary mismatch, where two concepts are expressed differently but have the

same meaning and different from granularity mismatch, where one concept is general and

the other is specialised. Instead, with conceptual implications the document contains

evidence in the form of a concept that logically infers the conclusion of another concept.

Conceptual implication situations are particularly prevalent when deducing diseases

(Ely et al. 2000; Edinger et al. 2012; Koopman and Zuccon 2014c) where:

– treatment ! disease: the presence of certain treatments implies that the person has a

certain disease; for example certain types of chemotherapy drugs imply the presence of

certain cancers.

– organism ! disease: the presence of certain organisms in laboratory tests imply the

disease; for example Varicella zoster virus ! Chicken pox.

The required mechanism for conceptual implication is deductive inference and logical

deduction is the cornerstone mechanism for reasoning in ontologies (Sowa 2000).
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2.4 Inferences of similarity

While some concepts can be derived by conceptual implication, others are more associ-

ational in nature. In this case, the presence of a certain concept indicates high likelihood of

another, or the two concepts are semantically similar in some way. Disease comorbidities

are an example of this case; comorbidities are the presence of one disease or more in

addition to a primary disease, or the effect of such additional diseases. For example,

anxiety and depression are two commonly co-occurring disorders.

An IR system needs to account for the innate dependence between medical concepts to

be effective. The form of inference required in this case is associational. The types of

relationships and associations required are typically not modelled in ontologies designed

for deductive reasoning. These relationships are more suitably derived by statistical

inference mechanisms typical of data-driven IR models.

2.5 Context-specific semantic gap issues

There are some additional more context-specific semantic gap issues that warrant con-

sideration in the context of this study.

The first issue is the presence of negated language (e.g., denies fever or no fracture) and

references to family history (e.g., history of breast cancer in their family). From an

information retrieval perspective, negation may adversely affect search effectiveness

(Koopman et al. 2010; Limsopatham et al. 2012). Negation is a well understood problem

(Chapman et al. 2001) and there are specific IR methods that have proven effective in

handling negation (Limsopatham et al. 2012; Koopman and Zuccon 2014b). Negated

content is detected by certain negation identifiers: terms such as no, denies, without, etc. If

these negation identifiers are observed, then one can conclude that the concept following

them is negated; therefore, the conclusion is derived deductively and deductive inference is

the mechanism required to handle negation and family history.

Temporality is an important issue in medical IR (Koopman and Zuccon 2014c, a). In

clinical patient records, there are often references to a patient’s past medical history. While

some of this content may be relevant to the patient’s current condition (e.g., chronic

conditions), others may no longer apply (e.g., acute conditions). An IR system may retrieve

a patient record based on the terms found in the past medical history section, but the

relevance of the record is dependent on whether the past conditions or treatments still apply

to the patient or are dependent on the context of the query.

The age and gender of the patient can have an important bearing on relevance (Voor-

hees and Tong 2011; Voorhees and Hersh 2012). Some information needs require specific

age and gender characteristics (e.g., elderly woman). In this case it would be important to

understand that elderly implies age[65 and woman implies female.

Finally, clinical records are often made up of different levels of evidence, often con-

veyed through different types of reports: history and examination reports for initial con-

sultations, laboratory test results during the patient’s treatment, and discharge summaries

authored as a retrospective review of the patient’s care. These different report types convey

different information and therefore affect the way relevance is determined when query

terms are found in each (Zhu and Carterette 2012; Limsopatham et al. 2013b).

In this paper, our focus is on the first four, non context-specific, more general semantic

gap issues—vocabulary mismatch, granularity mismatch, conceptual implication and

inferences of similarity.
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3 The Graph Inference model (GIN)

The GIN comprises two components: (1) a graph-based representation combining struc-

tured domain knowledge with corpus statistics; and (2) an inference mechanism that tra-

verses the graph.

3.1 Graph-based representation of a corpus

The basis of the graph representation is an Information Unit.

Definition 1 Let U denote a non-empty set of Information Units.

An Information Unit u 2 U is an abstract notion, e.g., an entity or concept defined in an

ontology or controlled vocabulary. Alternatively, an Information Unit may be derived as a

result of an information extraction process (e.g., a Person or a Place), or be an n-gram or

term phrase (like those extracted by Bendersky and Croft 2008). In its most basic form, an

Information Unit could be a single term.

Information Units are related to each other in a many-to-many relationship:

Definition 2 Let R � U�U define a non-empty set of Information Relationships.

If the Information Units come from an ontology or thesaurus, the relationships may be

explicitly pre-defined. This is the case for SNOMED CT3, which includes explicit rela-

tionships between concepts. For some other types of Information Unit, such as terms or

n-grams, Information Relationships may be determined by term co-occurrences. Other

implementations may link Information Units that are semantically similar to each other.

The particular implementation will most likely impose further restrictions on R; for

example, if the relationships are taken from SNOMED CT, which can be represented as a

directed acyclic graph, then R would be irreflexive and antisymmetric. In the remainder of

this paper we shall consider Information Relationships as directed. We adopt the notation

uRu0 to denote the existence of an Information Relationship between u and u0.
Information Relationships may belong to one or more Relationship Types.

Definition 3 Let T denote a set of Relationship Types.

A Relationship Type ðt 2 TÞ could be taken from the relationship types found in

medical ontologies such as SNOMED CT (for example, causative agent or active ingre-

dient). Each Information Relationship may belong to one or more Relationship Type

according to a Type relationship.

Definition 4 Let T be a total function which maps Information Relationships to Rela-

tionship Types, T : R ! T.

Based on the above definitions, a graph can be defined where Information Units rep-

resent vertices or nodes4 and Information Relationships represent the edges between

Information Units. If Information Units and Information Relationships are, respectively,

SNOMED CT concepts and relationships, then the resulting graph is simply the SNO-

MED CT ontology represented as a graph. This representation is employed in the

implementation considered in this paper. An Information Graph is defined as follows:

3 SNOMED CT is a widely adopted medical ontology; more details are provided in Sect. 4.1.
4 In the following, Information Units and nodes will be used interchangeably.
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Definition 5 Let G ¼ hU;T; T;Ri denote an Information Graph.

The inclusion of queries and documents into this graph provides a representation that

facilitates retrieval by inference.

Definition 6 A document d (query q) is a sequence of Information Units: d ¼ hu0; . . .; uni
(q ¼ hu0; . . .; umi).

An Information Graph can be used to model an entire corpus by first constructing a

graph with Information Units as nodes and Information Relationships as edges and then

attaching to each node the list of documents or the query in which that Information Unit

appears. An example graph created using this approach is provided in Fig. 1a. In the

remainder of this paper, ‘‘document nodes’’ and ‘‘query nodes’’ refer to Information Units

contained in a document and query respectively.

Rather than just attaching documents and queries to a node, a weight or initial proba-

bility can be assigned. We call this an initial probability because it is assigned prior to

retrieval and is independent of the query. Figure 1b shows how the graph is modified to

store in a node the likelihood of the corresponding Information Unit within a document.

Note that although the figure shows only the initial probability for the document attached to

the node, the initial probability of each Information Unit in each document may be esti-

mated for all documents in the collection if a smoothing process is used. How these

probabilities are estimated is not constrained by the model and is an implementation-

specific decision.

3.2 Diffusion factor

The diffusion factor models the strength of association between two Information Units.

Definition 7 Let d be a recursive function d : U�U ! Rþ (the set of positive real

numbers) that denotes the maximal diffusion between two Information Units, u; u0 2 U

such that:

dðu; u0Þ ¼
1; ifu ¼ u0

d0ðu; u0Þ; ifuRu0

argmaxui2U:uRui
dðu; uiÞ � dðui; u0Þ; otherwise:

8
<

:
ð1Þ

Line 1 represents the case of diffusion between a node and itself; line 2 represents the base

case when there is a direct edge (uRu0) between u and u0; line 3 represents the recursive

u2{d1, d2}u1{d1}

u0{d1}

(a)

P (u2|d1), P (u2|d2)P (u1|d1)

P (u0|d1)

(b)

Fig. 1 Example graph-based corpus representation. a Basic node-document representation. b Representa-
tion with initial probabilities assigned to node
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case whereby diffusion is calculated for other nodes, ui, connected to u.

The definition of b operator is implementation-dependent. However, if the diffusion

factor is implemented using a probability, then the probabilities can be multiplied to

combine diffusion factors:

dðu; u0Þ ¼
1; ifu ¼ u0

d0ðu; u0Þ; ifuRu0

argmaxui2U:uRuidðu; uiÞ � dðui; u0Þ; otherwise

8
<

:
ð2Þ

Other alternative implementations for the b operator could take into account the

actual number of transitions for estimating the diffusion or could implement the overall

diffusion factor as the maximum or minimum value of the individual diffusion factors.

The argmax operator accounts for the case of multiple paths to transition between u and

u0. In this case, the path with the greatest diffusion factor (least effort) is favoured.

Although not imposed by the general definition, the diffusion factor can be calculated

in a number of different ways, both using corpus-based techniques and domain

knowledge. For corpus-based techniques, a semantic similarity measure (e.g., Pointwise

Mutual Information), would capture the strength of association between two connected

Information Units, u and ui�1; we denote this strength simðui�1; uiÞ. For domain

knowledge-based techniques, the Relationship Type would capture some measure of

association; we denote this strength relðui�1; uiÞ. The base case of the recursive diffu-

sion factor (d0) between u and u0 with uRu0 can be estimated as a linear interpolation of

the two functions:

d0ðu; u0Þ ¼ a simðu; u0Þ þ ð1� aÞ relðu; u0Þ 0� a� 1 ð3Þ

where the parameter a is the diffusion mix of the similarity and Relationship Type measure.

3.3 Retrieval model

Given a query q, the GIN models retrieval as an inference process: the relevance of a

document d is determined by the amount of evidence to support the implication Pðd ! qÞ.
This evidence is drawn from Information Units connected to the query nodes. Let C � U

be the set of Information Units connected to the query Information Units by means of one

or more edges. Considering the simplest case of a document containing a single Infor-

mation Unit ud and a query containing a single uq which is only connected to ud (i.e.,

C ¼ fudgÞ, then the relevance of d to q is given by

Pðd ! qÞ ¼ Pðud ! uqÞ / PðudjdÞ dðud; uqÞ:

where PðudjdÞ is the initial probability (strength of the Information Unit ud in the docu-

ment); while dðud; uqÞ is the diffusion factor (how strongly ud and uq are associated).

Having provided a means of evaluating Pðud ! uqÞ, we can now consider the more

general problem of inferring the query from the document, i.e., Pðd ! qÞ. The single

Information Unit inference definition can be extended to that of query and document by

evaluating each combination of query Information Unit uq 2 q and document Information

Unit ud 2 d:

Inf Retrieval J (2016) 19:6–37 13
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P (d → q) =
⊙
uq∈q

�

ud∈d

P (ud → uq)

∝
⊙
uq∈q

�

ud∈d

P (ud|d) δ(ud, uq).
ð4Þ

This is the general retrieval function of the Graph Inference model. It has two placeholders

for operators:
J

, for Information Units in the query and , for Information Units in the

document. Their definitions are left to the specific implementation but we consider two

possible alternatives here. First, if the query Information Units are assumed independent

(as is the case for many retrieval models) and the document Information Units are also

considered independent, then the probabilities are multiplied; therefore
J

¼
Q

and

=
∏

to derive the retrieval status value function:

RSVðd; qÞ ¼
Y

uq2q

Y

ud2d
PðudjdÞ dðud; uqÞ: ð5Þ

In this implementation, the Information Units ui, related to uq, are considered as additional

information regarding the query, with the diffusion factor controlling the strength of

association between the two. This is akin to the query expansion process where additional

query terms are derived. The implementation shown above in Eq. 5 is similar to the

approach used in probabilistic language modelling.

An alternative implementation is still to consider query Information Unit as independent

but to consider the document Information Units as dependent. In this case, the query

placeholder
J

is a product (
J

¼
Q
), thus multiplying the independent query Information

Units, but the related Information Units in the document are summed ( =
∑
). This gives

the retrieval status value function:

RSVðd; qÞ ¼
Y

uq2q

X

ud2d
PðudjdÞ dðud; uqÞ: ð6Þ

In this case, the Information Units related to uq via the graph represent an alternative

representation of the query Information Unit uq and provide an additional source of sup-

porting evidence (albeit a weaker source according to the discounting applied by the

diffusion factor).

The general retrieval function from Eq. 4 can be applied in a number of different ways;

two are presented above but others are possible. Figure 2 shows a number of different

possible implementations. The Graph Inference model intentionally generalises these

operators so a particular implementation is not imposed by the model. This means that the

model can be applied to a number of different scenarios, making it a general model from

which particular inference-based retrieval models can be instantiated.
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3.4 Worked retrieval example

Consider a query q ¼ huqi and three documents d1 ¼ hu1; u2; uqi; d2 ¼ hu3; uqi; d3 ¼ hu4i.
Figure 3 shows the retrieval process and also illustrates the graph representation of this

corpus: uq represents the query and is indicated as a square node; other Information Units

found in documents are elliptical. Documents are attached to the nodes they encompass,

along with an initial probability PðuijdjÞ. The edges between nodes are based on some

source of domain knowledge resource (e.g., ontology relationships). Edges are labelled

with the score that the source node contributes to that document. Each sub-figure represents

the scoring process for the three documents. Grey nodes indicate Information Units not

present in the document and that thus contribute only the background smoothing proba-

bility. Black nodes represent Information Units in the document. For sake of simplicity, we

focus on only those Information Units present in that particular document and their con-

tribution to the retrieval score.

Figure 3a shows the graph traversal used to score d1. The score for d1 is the result of

three sources of evidence (excluding the background smoothing contribution). Firstly, d1
contains the query Information Unit uq, thus receiving the contribution Pðuqjd1Þ. Secondly,
d1 also contains u1, which is related to the query uq: d1 thus receives Pðu1jd1Þ but dis-

counted by the diffusion factor dðu1; uqÞ. Finally, d1 also contains u2, related to uq via u1;

this evidence contributes Pðu2jd1Þ 	 dðu2; u1Þ 	 dðu1; uqÞ to the score of d1. It is the com-

bination (by multiplication) of these three sources of evidence that determines the score of

d1 under the GIN. Most IR models would consider only the first estimate, Pðuqjd1Þ.
Figure 3b illustrates the process for d2. Only two sources contribute to the score of d2:

Pðuqjd2Þ, because the document contains the query; and Pðu3jd2Þ 	 dðu3; uqÞ, because d2
contains one other Information Unit related to the query through the edge u3–uq. Both

documents d1 and d2 contain the query and Information Units related to the query.

However, d1 contains additional evidence in the form of u2.

Figure 3c illustrates the process for d3. This document does not contain any query

Information Units, but it does contain u4, which is related to the query. Most IR

. . .

. . .

P (d → q) ∝
uq∈q ud∈d

P (ud|d) δ(ud, uq).

(a)

. . .
δ(u, u ) =

⎧⎪⎨
⎪⎩

1, if u = u

δ0(u, u ), if uRu

arg maxui∈ :uRui
δ(u, ui) ⊗ δ(ui, u ), otherwise

(b)

Fig. 2 Possible implementation options for the graph Inference model retrieval function and diffusion
factor. a Retrieval function. b Diffusion factor
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P (u2|d1) ∗ δ(u2, u1) ∗ δ(u1, uq)

P (u1|d1) ∗ δ(u1, uq)

P (u3|d2)

P (u2|d1)

P (uq|d1), P (uq|d2)

P (u1|d1) P (u4|d3)

(a)

P (u3|d2) ∗ δ(u3, uq)

P (u3|d2)

P (u2|d1)

P (uq|d1),P (uq|d2)

P (u1|d1) P (u4|d3)

(b)

P (u4|d3) ∗ δ(u4, uq)

P (u3|d2)

P (u2|d1)

P (uq|d1), P (uq|d2)

P (u1|d1) P (u4|d3)

(c)

Fig. 3 Retrieval process for
three example documents using
Graph Inference model.
a Retrieval process for document
d1. b Retrieval process for
document d2. c Retrieval process
for document d3
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models would ignore this document.5 However, d3 is retrieved by the GIN, which

assigns to d3 the score Pðu4jd3Þ discounted by the association between u4 and uq (i.e.,

dðu4; uqÞ).

4 Model implementation

4.1 Domain knowledge resource: SNOMED CT

For our implementation, the definitions of Information Units and Relationships are taken

from the SNOMED CT ontology and this is used as the underlying structure to generate the

graph representation of the corpus. SNOMED CT encodes a wide variety of medical

knowledge within a concept inheritance hierarchy, with relationships (Information Rela-

tionships in our model) connecting concepts (Information Units). While other resources

could have been used, such as the UMLS (another large medical domain knowledge

resource), SNOMED CT was chosen because it contains a wide range of medical

knowledge in a single, self contained resource, whereas UMLS is in fact a conglomeration

of different resources (meta-ontology), each with varying coverage. SNOMED CT also has

a rigorous quality control process.

4.2 Mapping terms to concepts

A method is required to transform the free-text content of documents and queries into the

Information Units (SNOMED CT concepts) of our graph representation. This is achieved

using MetaMap (Aronson and Lang 2010), a medical information extraction system.

MetaMap is widely adopted in medical NLP (Aronson and Lang 2010; Nadkarni et al.

2011) and has proven effective for medical concept identification (Pratt and Yetisgen-

Yildiz 2003). A number of concept-based IR methods have been developed using Meta-

Map; some of these have been shown to outperform pure term-based systems (Koopman

et al. 2012b; Limsopatham et al. 2013a, c). We follow the approach detailed by Koopman

et al. (2012b) for mapping free-text into SNOMED CT concepts using MetaMap.

4.3 Indexing

After mapping the terms to SNOMED CT concepts, the documents are processed using a

standard IR indexer to create an inverted file index. This index forms the input, together

with the chosen structured domain knowledge resource (SNOMED CT), of the GIN’s

indexing process detailed in Algorithm 1. Using this method, each concept in the index

becomes a node in the graph. The graph also contains many additional nodes representing

concepts not in the corpus but related (via the ontology) to concepts that are in the corpus.

These can provide additional domain knowledge at retrieval time and could link two

concepts that appear in the corpus but have no direct edge between them.

5 Theoretically, most IR models do not impose the restriction that only documents containing a query term
should be returned. In practice, however, they typically score only documents that contain at least one query
term.
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Algorithm 1 Pseudo code for efficient GIN indexing.
Input: Idx, Ont � Index, Ontology
Output: G = 〈V, E〉 � Graph (vertices and edges)
1: for ui ∈ Idx do
2: vi = create vertex(ui)
3: for u′ ∈ related concepts(Ont, ui) do
4: v′ = create vertex(u′)
5: diffusion = δ(ui, u′, α) � Calculate diffusion factor
6: ei = create edge(vi, v′, diffusion)
7: serialize graph(path(Idx), G)
8: function create vertex(u)
9: v = vertex(u)
10: if v /∈ V then
11: V = V + �v Add node to graph
12: return v
13: function create edge(v1, v2, diffusion)
14: if (v1, v2, diffusion) /∈ E then
15: e = edge(v1, v2, diffusion)
16: E = E + �e Add edge to graph
17: return e

4.3.1 Diffusion factor

The diffusion factor between two concepts is a linear interpolation of two measures:

semantic similarity and Relationship Type, as shown in Eq. 3. In our implementation,

similarity was estimated as the cosine angle between two concept document vectors, as this

proved to be the most robust and effective method in a study of corpus-based measures for

medical concept similarity (Koopman et al. 2012a).

The second component of the diffusion factor is the Relationship Type weighting.

Relationship Types are taken directly from SNOMED CT, which has explicit relationships

between concepts; for example, ISA, causative agent or finding site. These different

Relationship Types can indicate a strength of association: an ISA relationship might

indicate a strong relationship between two concepts, whereas relationships such as severity

indicate a much weaker association. On initial examination, however, we found that

SNOMED CT contained mostly ISA relationships for the collection used in our experi-

ments (Fig. 4). Thus, Relationship Types were not a discriminating enough feature for

inclusion in the diffusion factor, motivating us to ignore the Relationship Type component

(by setting a ¼ 1 in Eq. 3).
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Fig. 4 Frequency of relationships types that connect TREC MedTrack query concepts to other concepts in
SNOMED CT. ISA relationships are by far the most common relationship type
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4.4 Retrieval

The GIN’s retrieval process traverses the graph created when indexing the corpus. In our

implementation, we use a standard Dirichlet-smoothed language model to estimate the

initial probabilities PðudjdÞ at retrieval time, although alternative weighting measures

could have been used (e.g., BM25, Divergence from Randomness, TF-IDF, etc.).

The retrieval function evaluates the relevance of a particular document d to a query q,

but it does not consider which documents are chosen for scoring. Evaluating all documents

in the collection against a query is infeasible, so a subset of possibly relevant documents is

required for evaluation. In other retrieval models, this is often simply determined by those

documents that contain at least one query term. However, the GIN has the ability to score

potentially relevant documents that do not contain the query but may contain information

related to the query (see document d3 in the example of Sect. 3.4). For feasibility reasons,

an alternative method is therefore required to limit which documents should be scored

using the GIN. The observation can be made that according to Eq. 2 the diffusion factor

decreases rapidly when the node is further from the query. Beyond a certain point, the

diffusion factor is so small that a document is not worth considering because its probability

is insignificant once weighted by the diffusion factor. As a result, we need to consider only

those documents attached to Information Unit nodes k edges away from the query node.

Retrieval can therefore be modelled as a depth-first-search (DFS), originating from the

query node, visiting only nodes k edges away. This process is detailed in Algorithm 2.

Algorithm 2 Pseudo code for depth-first-search retrieval.
Input: Idx, �k,G,Q Index, Query, Graph, Max depth
Output: scores ← {d0, . . . , dn} � Document scores
1: for uq ∈ Q do
2: DFS(uq, 0) � Start traverse from query node, depth 0
3: function DFS(u, depth)
4: if depth ≤ k then
5: for di ∈ Idx.docs(u) do � Docs. containing u
6: scores[di] = scores[di] + P (u|di) ∗ δ(u, uq)
7: for u′ ∈ children(u) do
8: DFS(u′, depth + 1) � Recursively traverse children

When the maximum depth parameter k is set to 0, then the algorithm processes only

query nodes and does not traverse any edges. In this case, if the initial probabilities are

Dirichlet smoothed estimates, then k ¼ 0 represents a standard probabilistic language

model with Dirichlet smoothing, constituting a benchmark for comparison.

The GIN was implemented in C?? with the indexing and retrieval components

implemented using the Indri library6 and constructing graphs using the LEMON library.7

The graph was serialised using LEMON and stored inside the Lemur index directory.

5 Empirical evaluation

We start by describing our experimental setup using the TREC Medical Records Track

(MedTrack).

6 http://lemurproject.org.
7 http://lemon.cs.elte.hu.
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Then Experiments 1 describes the results from the standard TREC Medtrack setup. This

experiment also reveals that the GIN returned many documents never judged by TREC

relevance assessments, which may have significantly affected the evaluation measures. As

a result we describe Experiments 2—additional relevance assessments from medical

professionals to understand to what extent the GIN was retrieving new relevant documents.

For all experimental results, we consider easy and hard queries separately in order to

understand the effect of inference on each.

5.1 Experimental setup

The test collection used in our experiments was the TREC 2011 & 2012 Medical Records

Track (Voorhees and Hersh 2012; Voorhees and Tong 2011). TREC MedTrack contained

100,866 clinical patient records of various types (pathology, radiology, discharge sum-

maries, etc.) from U.S. hospitals. The task description for TREC MedTrack was to identify

cohorts of patients matching a specific query criteria for inclusion in a clinical trial. TREC

MedTrack models the clinical task of cohort identification as an adhoc retrieval task. In this

task, queries are clinical trial inclusion criteria; documents are records representing a

particular patient. Further details about the specific task and data for TREC MedTrack are

provided by Voorhees and Tong (2011) and Voorhees and Hersh (2012). The track

guidelines stipulated that the unit of retrieval was a patient record rather than an individual

report; reports belonging to a single patient’s record were treated as sub-documents and

concatenated into a single document called a patient visit document.8 The resulting corpus

contained 17,198 patient visit documents. Full details of the corpus statistics, after indexing

with the GIN, are provided in Table 1.

The evaluation measures used in MedTrack 2011 were bpref and precision @ 10

(P@10). However, in MedTrack 2012 inferred measures and P@10 were used. Inferred

measures required specific relevance assessments (prels) not available for 2011, but bpref

and P@10 could be used for 2012 as qrels were available. While it is possible to separate

the evaluation into two parts (34 queries for 2011 and 47 for 2012), it is more desirable to

have a single, larger query set for more powerful statistical analysis. Therefore, we

combine the query sets and use bpref and P@10.

The depth parameter k controls how many edges are traversed from the query node. It is

a key parameter underpinning the retrieval process—the higher the k the more the infer-

ence as k represents the length of the path traversed by the GIN. For this reason it is a focal

point in the evaluation. Consequently, k was manipulated at k ¼ 0 (lvl0), k ¼ 1 (lvl1) and

k ¼ 2 (lvl2), reflecting deepening levels of inference from the query node.9 To further

understand how the traversal depth affects retrieval effectiveness, we varied k ¼ ½1; . . .; 10

on a per-query basis.

Lvl0 reflects the situation when only the query nodes are processed, which equates to a

concept-based baseline. For additional comparison, we also include a standard term

baseline—also using a Dirichlet-smoothed language model. All these models—lvl0

baseline, GIN lvl1 and lvl2, and terms—contain the Dirichlet smoothing parameter l. This
parameter was tuned with respect to bpref for the two baselines (lvl0 and terms), per-

forming a linear search of the parameter space [0, 30000] (with increments of 1000) over

8 Collapsing reports to patient visits was a common practise among many MedTrack participants (Voorhees
and Hersh 2012; Voorhees and Tong 2011).
9 Retrieval effectiveness degraded on average for k[ 2.
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the whole query set.10 The GIN at lvl1 and lvl2 shared the same setting of l as lvl0. In this

way, lvl0 represents a strong, tuned baseline, whereas the GIN is not tuned to avoid

overfitting.

5.2 Experiment 1: MedTrack

The goal of this experiment was to demonstrate the effect that different levels of inference

within the GIN had on retrieval effectiveness. In addition, we investigated whether

inference was more effective for ‘‘hard’’ queries: those queries exhibiting poor perfor-

mance across systems participating in MedTrack. To this end, we computed the median

bpref of all submissions in MedTrack (2011 and 2012 combined); hard queries were

defined as half the query set (40 out of 81) with the lowest bpref value.

Table 2 shows the retrieval results for each of the three depth settings and for the term

baseline.Both bpref and P@10 were lower for the GIN (lvl1 and lvl2) compared against the

concept baseline (lvl0). To further understand the differences between the three levels, the

retrieval effectiveness of individual queries is shown in Fig. 5a. Queries are ordered by

decreasing bpref of the lvl0 baseline. The plots show that both lvl1 and lvl2 made gains on

some queries and losses on others. The gains and losses tended to be greater for lvl2 than

for lvl1.Figure 5b shows how the GIN compared with the TREC median performance.

More gains were observed for hard queries. To further quantify this, we considered the

performance of only hard queries shown in Table 2. Even though Table 2 shows marginal

increases in bpref, the query-by-query results of Fig. 5a, b show improvements for the

Table 1 Corpus statistics after
indexing the concept-based
TREC Medtrack collection using
the GIN

Number of documents 17,198

Vocabulary size 36,467

Average document length (tokens) 3906

GIN graph

Number of nodes 49,153

Number of edges 99,161

Average degree (edges per node) 2.02

Serialised graph size 4.4 MB

Table 2 GIN retrieval results using MedTrack

Depth (k) All queries Hard (TREC median)

Bpref P@10 Bpref P@10

Terms 0.3917 0.4975 0.1866 0.2650

lvl0 0.4290 0.5123 0.1985 0.2800

lvl1 0.4229 0.4481y 0.2024 0.2425

lvl2 0.4138 0.4259y 0.2072 0.2275

y Paired t test against lvl0, p\0:05. Hard queries were defined as half the query set with the lowest median
bpref across all teams participating in TREC Medtrack

10 Settings of l were: lvl0, 22,000; terms, 13,000.
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majority of hard queries, some of which exhibit considerable increases. The table confirms

that the GIN made greater improvements on hard queries and that these improvements

were greater when more of the inference mechanism is applied (i.e., for the GIN at lvl2).

5.2.1 Bias in evaluation

Empirically, the GIN did not demonstrate statistically significant improvements over the

concept baseline (lvl0), but this does not constitute the whole story. A large number of

unjudged documents—those never assessed by TREC judges—were retrieved by the GIN.

Considering the top 20 documents returned for a query, the number of unjudged documents

for lvl1 and lvl2 was respectively 2.3 and 3 times greater than that of the term baseline (see
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Table 3). Such a large number of unjudged documents can significantly affect the evalu-

ation measures and underestimate the GIN’s performance. For precision, an unjudged

document is considered not relevant; thus greater numbers of unjudged documents will

lower precision. Our results showed that P@10 was significantly lower for the GIN than

the concept baseline. In contrast, the bpref measure ignores unjudged documents; this was

reflected in our results where bpref differed only slightly between models.

The motivation for using the GIN’s inference mechanism is that it may retrieve addi-

tional relevant documents that are not retrieved by keyword-based approaches. We con-

jecture that part of the unjudged documents retrieved using the GIN were in fact relevant

but were never included in the pool—a pool constructed from largely keyword-based

systems (Voorhees and Tong 2011; Voorhees and Hersh 2012). Therefore, we obtained

additional relevance assessments from medical professionals to understand to what extent

the GIN was retrieving new relevant documents.

5.3 Experiment 2: Additional Qrels

5.3.1 User experimental design

We recruited four 4th-year medical students from the University of Queensland. As part of

their training, they had completed rotations in a number of different medical specialities

and, as such, their expertise was equivalent to medical graduates recruited as assessors in

MedTrack (Voorhees and Tong 2011; Voorhees and Hersh 2012).

For each query we proposed to judge a selection of documents that had not previously

been judged in MedTrack. These documents were selected by pooling the unjudged

documents from the top 20 results of three retrieval runs: (1) the concept baseline model

(lvl0) (2) the GIN lvl1; (3) the GIN lvl2. Using this method, complete judgements were

obtained for the top 20 documents returned for each query by each of the three systems

listed above.

The task description given to assessors was the same as that of the original MedTrack

task. To familiarise the assessors with the judging task, they were first given documents

from two control queries. The control queries contained a selection of both unjudged

documents and those already judged by TREC assessors. In this way, they could be used to

determine inter-coder agreement—both amongst our assessors and against the original

TREC assessors.

A total of 1030 documents were judged. Inter-coder agreement between the four

assessors (based on the two control queries) was 0.85. This is in line with an inter-coder

agreement of 0.8 found by the MedTrack organisers.11 Agreement between the four

assessors and the TREC assessors was 0.80. These new qrels are made available at http://

Table 3 Number of unjudged documents in top 20 positions and P@20 for different retrieval models

Model Unjudged documents in top 20 results P@20

Terms 210 (2.5 docs/query) 0.4244

Concept baseline (lvl0) 257 (3.0 docs/query) 0.4389

GIN lvl1 468 (5.5 docs/query) 0.4086

GIN lvl2 616 (7.2 docs/query) 0.3630

11 Based on personal communication with Bill Hersh, MedTrack organiser, 29 May 2013.
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github.com/ielab/MedIR2014-RelanceAssessment; additional analysis of both the new

qrels and the actual assessment task are detailed in Koopman and Zuccon (2014c).

Of the 1030 documents judged, 29 % were found to be relevant. In comparison, the

original relevance assessments provided by TREC contained only 18 % relevant docu-

ments. Therefore, the pool of documents from our systems (lvl0, lv1 and lv2) contained

more relevant documents than the pool of documents provided by systems participating in

TREC.

5.3.2 Results

Table 4 presents the retrieval results of the GIN (lv1, lv2) and the concept baseline (lvl0)

using the old qrels (TREC) and the new qrels (TREC??). The percentages indicate how

the measure has changed between the old and new qrels. Considering bpref, there was little

change in overall effectiveness using the new qrels. This is not surprising as bpref con-

siders only judged documents so the large number of unjudged documents in the TREC

qrels did not significantly affect this evaluation measure. However, for P@10 and P@20,

all three systems were found more effective when evaluated with the new qrels. The

effectiveness was underestimated for all three systems (lvl0, lvl1 and lvl2) but was sig-

nificantly more so with the GIN. Furthermore, lvl2, which leverages more of the GIN

inference mechanism, was underestimated more than lvl1. This means that lvl2 was

returning a larger number of unjudged but relevant documents.

Considering only P@20, Fig. 6 shows how the performance of individual queries

changed between the old and new qrels. A significant number of queries had improved

performance using the new qrels, with only a handful showing degradation. Additionally, a

greater number of improvements was observed in hard queries (righthand side of the plot).

This highlights that hard queries were the ones where performance was most

underestimated.

Overall, when considering P@20, the GIN at lvl1 outperformed the lvl0 baseline for

hard queries; although this results was not found to be statistically significant and

improvements were only observed for hard queries not all queries (from Table 4). To

understand why this is the case, and to reveal deeper insights into when inference was

working or not, we provide a detailed query-by-query analysis in the section that follows.

Table 4 GIN retrieval results using old (TREC) and combined (TREC??) qrels

Qrel set Sys All queries Hard queries

P@10 P@20 P@10 P@20

TREC lvl0 0.5123 0.4389 0.2800 0.2150

lvl1 0.4481 0.4086 0.2425 0.2025

lvl2 0.4259 0.3630 0.2275 0.1988

TREC?? lvl0 0.5415y (?6 %) 0:4732y (?8 %) 0.3025y (?6 %) 0.2387y (?11 %)

lvl1 0.5037y (?12 %) 0.4604y (?12 %) 0.2850y (?18 %) 0.2475y (?22 %)

lvl2 0.4878y (?15 %) 0.4220y (?16 %) 0.2775y (?22 %) 0.2438y (?23 %)

The percentages and y indicate how the measure changed using the two different qrels (y paired t test
p\0:05)
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6 Analysis

To understand the effect of the depth parameter, retrieval effectiveness using different

settings of k ¼ ½1; . . .; 10
 was examined on a per-query basis. The heatmap in Fig. 7 shows

the change in bpref compared to the lvl0 baseline for different settings of k. Dark areas

indicate that effectiveness improved for that setting of k when compared to lvl0 (k ¼ 0),

while light areas indicate that effectiveness degraded when compared to lvl0. There is

considerable variation between queries. Some queries had a constant improvement over

lvl0 for different depth settings, for example queries 108, 140 and 171. Other queries

degraded as the depth increased, for example 104, 109 and 161. Some queries improved

over lvl0 in the first few levels but then degraded at greater levels, for example 113, 119

and 135. Generally, the best improvements were observed for k ¼ 1–3. Finally, the optimal

value of k varied considerably based on the query.

The heatmap was used to group queries according to the performance results that they

exhibit at different depth settings. Next, we analyse such groupings to understand how

inference in the GIN works and under which conditions.

6.1 Consistent improvement

A number of queries exhibited a consistent improvement over the baseline for different

depth settings (see Fig. 8 for the performance of two example queries). These types of

queries tended to have relevant related concepts traversed by the GIN at levels greater than

0. For example, Fig. 9 shows the partial traversal graph (with associated annotations for

explanation) for query 171, which seeks patients with a specific disease (Thyrotoxicosis).

The GIN was able to infer other relevant documents that contained the cause of Thyro-

toxicosis (Hyperthyroidism) and the part of the body affected (Thyroid structure).

Including these relevant related concepts always improved performance over the lvl0

baseline. In addition, the diffusion factors were effective at limiting the introduction of

noise for greater levels and as a result no degradation was seen for levels up to 10.

Queries like 171 tended to suffer from the Conceptual Implication problem (Sect. 2). It

was the deductive inference mechanism of the GIN that addressed the Conceptual

Implication problem by traversing valuable SNOMED CT relationships; thus, the GIN was
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171 Patients with thyrotoxicosis treated with beta blockers

Fig. 8 Queries with consistent improvements. Note that depth = 0 denotes the performance of the concept
baseline
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able to infer concepts that implied the query concepts and as a consequence promoting

documents that contained these implied concepts.

6.2 Consistent degradation

A number of queries exhibited decreasing performance at greater depth levels. These were

queries that did not require inference and tended to have a small number of relevant

documents and an unambiguous query definition (Fig. 10). For example, the ‘‘Robot’’

concept (query 104) and the ‘‘Adult respiratory distress syndrome’’ concept (query 161)

provided all that was required to retrieve and rank relevant documents. Using the lvl0

query concepts, most relevant documents were ranked effectively. At greater levels, there

were a large number of very general concepts that tended to degrade retrieval performance.

6.3 Improving precision due to reranking

Queries that benefitted from reranking tended to suffer from the granularity mismatch

problem (three example queries are provided in Fig. 11). Granularity mismatch was

Thyrotoxicosis with or without goiter  (6/6) #12

Thyrotoxicosis  (6/6) #12

Is a  (1)

Thyroid structure  (5/11) #1929

Finding site  (0.145163)

Finding site  (0.145163)

Hyperthyroidism  (4/10) #140

Is a  (0.335019)

Query nodes (lvl0) are red

lvl1 node

Relationship type

Diffusion factor

Document frequency

Number of relevant documents
containing this concept

Number of relevant documents containing this 
concept but not containing the query concept

Fig. 9 Partial traversal graph for query 171
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104: Patients diagnosed with localized prostate cancer and treated with robotic
surgery

161: Patients with adult respiratory distress syndrome

Fig. 10 Queries that exhibited decreasing performance at greater depth levels
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addressed by the GIN’s deductive inference mechanism, realised as traversals over ISA

relationships. For example, query 135 (Fig. 12) contained a very specific query concept

(shown in red). A number of documents contained this specific query concept, however,

these documents also contained a number of more general concepts related to the query

concept via a ISA relationship. By traversing the ISA relationships to these more general

concepts the attached documents were scored again for these related concepts, thus

increasing their relevance score and effectively reranking them.

In addition, queries that benefit from reranking also tended to have two dependent

aspects to the query; e.g., query 113 had a procedure (‘‘colonoscopy’’) and diagnosis

(‘‘Adenocarcinoma’’) and query 119 had a symptom (‘‘anion gap acidosis’’) and a disease

(‘‘insulin dependent diabetes’’).

6.4 Improving recall due to inference of new relevant documents

In contrast to improved precision due to reranking, the effectiveness of some queries

improved by retrieving relevant documents not retrieved by the lvl0 baseline but provided

by the inference mechanism (Fig. 13). For example, for query 154 (Fig. 14) only 2 relevant

documents were found at lvl0 because the ‘‘Primary open angle glaucoma’’ query concept

is too specific. At lvl1, the more general concept ‘‘Open angle glaucoma’’ is traversed,

resulting in 3 additional relevant documents being retrieved. At lvl2, the ‘‘Glaucoma’’

concept is traversed, resulting in 83 additional relevant documents.

These queries exhibited both granularity and vocabulary mismatch. In this case, the GIN

traversed concepts related to the query, identifying the valuable information in
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113: Adult patients who received colonoscopies during admission which revealed
adenocarcinoma

119: Adult patients who presented to the emergency room with with anion gap acidosis
secondary to insulin dependent diabetes

135: Cancer patients with liver metastasis treated in the hospital who underwent a
procedure

Fig. 11 Queries with effective reranking using the GIN

Secondary malignant neoplasm of liver  (50/50) #158

Is a  (0.1)

Malignant neoplasm of liver  (1/9) #58

Is a  (0.227376)

275266006

Is a  (0.1)

Neoplasm, metastatic  (9/59) #6447

Associated morphology  (0.407046)

Liver structure  (9/58) #3966

Finding site  (0.326051)

Fig. 12 Partial traversal graph for query 135 (Color figure online)
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SNOMED CT required to retrieve additional relevant documents not found using just the

query concepts. The GIN was always more effective than the concept baseline, no matter

the depth setting (although the best performance was found for depth settings 1–3).

Granularity mismatch was addressed by deductive inference, realised as traversals over ISA

relationships. Vocabulary mismatch was addressed through the use of the concept-based

representation. Inferences of similarity was addressed by the diffusion factor, which

controlled the uncertainty of the inference.

6.5 Unaffected queries

Some queries exhibited a near constant performance for different depth settings (two

examples are shown in Fig. 15). Unaffected queries were those that: (i) were particularly

challenging, such as query 137, which had very poor performance for term, concept, GIN

and TREC systems (where the median bpref was 0.000 for all automated systems); (ii) had

little or no information attached to the query concepts in SNOMED CT (Fig. 16); thus,

there were no documents attached to lvl1 nodes and the GIN was essentially behaving as

the concept baseline model (lvl0).
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147: Patients with left lower quadrant abdominal pain

154: Patients with Primary Open Angle Glaucoma

Fig. 13 Queries where the GIN retrieved new relevant documents

Primary open angle glaucoma  (2/2) #2

Open-angle glaucoma  (3/5) #5

Is a  (0.477473)

Structure of eye proper  (70/71) #7308

Finding site  (0.104483)

Finding site  (0.050933)

Glaucoma  (83/85) #331

Is a  (0.0798608)

Eye region structure  (70/71) #7310

Is a  (0.104035)

Entire head  (49/49) #7805

Part of  (0.03302)

281831001

Part of  (0.0104483)

Side  (44/44) #6469

Laterality  (0.0224048)

Fig. 14 Partial traversal graph for query 154
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6.6 Selectively applying inference

The analysis so far highlights that inference is required for some queries but not for others

(or varying degrees are required). Practically, this equates to adaptively controlling the

depth of traversal on a per-query basis. To understand the potential gains that this might

provide, we selected the bpref value for the best depth setting for each query and averaged

this across all queries; this represents an oracle upper bound for an adaptive depth method.

The results are shown in Table 5, along with the fixed depth approaches for comparison.

As suspected, the adaptive method demonstrates the best performance. More important

though is what characteristics or conditions might indicate the optimal depth setting. We
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Query 139

Depth

bp
re

f

137: Patients with inflammatory disorders receiving TNF inhibitor treatments
139: Patients who presented to the emergency room with an actual or suspected

miscarriage

Fig. 15 Queries that exhibited constant performance for different depth settings

Termination of pregnancy  (22/22) #959

386637004

Is a  (0.1)

360239007

Method  (0.1)

128927009

Is a  (0.1)

Abortion  (22/22) #214

Disorder of pregnancy  (0/0) #1

Is a  (0.1)

Fig. 16 Partial traversal graph for query 139

Table 5 Graph Inference model retrieval results using the best depth setting per-query

Depth approach All queries Hard (TREC median)

Bpref P@10 Bpref P@10

Fixed—lvl0 0.4290 0.5123 0.1985 0.2800

Fixed—lvl1 0.4229 0.4481 0.2024 0.2425

Fixed—lvl2 0.4138 0.4259 0.2072 0.2275

Adaptive depth, 0–10
(Oracle)

0:4731 ðþ10%Þy 0:5741 ðþ12%Þy 0:2572 ðþ30%Þy 0:3475 ðþ24%Þy

This represents an oracle upper bound for an adaptive depth method. The percentages show the improve-

ments of this method against the lvl0 baseline. y indicates statistical significant differences with fixed
approaches (paired t test, p\0:05)

30 Inf Retrieval J (2016) 19:6–37

123



have already commented that hard queries required inference and that the Graph Inference

model was more effective for these. (Indeed, Table 5 shows that large gains were made for

the adapative approach on hard queries.) In contrast, easy queries do not require inference.

Therefore, a query performance predictor might inform whether it is worth traversing

beyond level 0.

Inference can be risky. For hard queries, there is nothing to lose and adding domain

knowledge can bring substantial benefits. For easy queries, adding domain knowledge is

not required and can introduce noise. The analysis provided here points to an adaptive

approach, where inference is applied on a per-query basis, as more appropriate. Future

work can be directed toward the development such an an adaptive depth method.

6.7 Computational complexity

The computational complexity of the GIN retrieval (Algorithm 2) is based on the number

of documents scored each time a node is visited (score function on line 8). At each depth

level l ¼ ½0; . . .; k
, there are el nodes, where e is the average number of edges (degree) for

nodes in the graph G. Assuming an average of d̂ documents are attached to each node, then

eld̂ documents are processed at each depth level. When traversing multiple levels for a

single query concept, the number of documents processed is
Pk

l¼0 e
ld̂. For a query of size

|Q| concepts, the number of documents processed is jQj
Pk

l¼0 e
ld̂.

As stated previously, at a certain depth the diffusion factor becomes so small that

documents scored at this level will not change the overall ranking; thus, we need consider

only the documents k edges away from the query node.12 The size of d̂ is determined by the

average inverse document frequency of the collection. The size of e (average number of

edges per node) is the average degree of G (for SNOMED CT the average degree is 2.02).

The size of the query, |Q|, is typically small for a retrieval scenario. With e; l and |Q| all

small, the retrieval method is computationally feasible.

The computational complexity analysis shows that the most influential factor is the

depth level l (where l ¼ ½0; . . .; k
). We empirically investigate this by measuring the

number of nodes traversed and the retrieval time in seconds for each depth level k; this is

shown in Fig. 17.13 The number of nodes traversed increases exponentially with the depth

k. However, the execution time did not increase exponentially, with the rate of increase

tapering off for k[ 7. This was because less documents were scored at these greater depth

levels and because of caching that avoids recomputing statistics for nodes that have already

been visited.

7 Understanding when inference works

A number of issues arose from the underlying representation (SNOMED CT). The analysis

of the SNOMED CT Relationship Types showed that the GIN traversed far more ISA

relationships than any other (Fig. 4). These relationships are valuable for overcoming

granularity mismatch (Zuccon et al. 2012) but do not help address the aspects underlying

the other semantic gap problems. For these, different types of relationships are required,

12 The empirical evaluation revealed k ¼ ½0� 3
 was preferred.
13 Experiments were conducted on a Dell PowerEdge R710 Rack Mount Server with Dual Intel 3.33GHz
processors, 96GB RAM and running Ubuntu 10.04 (64-bit).
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such as treatment ! disease and organism ! disease. The former relationships are not

modelled in SNOMED CT as they are not definitional.14 For the latter, the coverage in

SNOMED CT is lacking (Spackman 2008). In addition, coverage may also vary consid-

erably for ISA relationships: some concepts may inherit from very specific parent concepts

(for example, ‘‘Right ventricle’’ �!ISA ‘‘Cardiac ventricle’’), while others may inherit from

very general parent concepts (for example, ‘‘Vertebral Unit’’ �!ISA ‘‘Body Structure’’). This

affects the GIN as some ISA relationships may provide valuable information, while others

are too general for inference that promotes effective retrieval. Section 6.2 showed that

performance degraded when very general concepts were traversed. To address this, work

by Boudin et al. (2012), which attempts to identify the granularity of concepts in a medical

query, might be applied. More generally, poor performance in the GIN was found in

queries where there was little valuable information at levels greater than 0 (Sects. 6.2, 6.5).

These issues highlight that SNOMED CT as the underlying representation, rather than the

traversal mechanism, is a limiting factor for the GIN.

The effect of the underlying representation raises the wider issue of using for retrieval

an ontology originally designed for knowledge representation. The purpose of SNO-

MED CT (or many other such domain knowledge resources) is to represent the concepts

belonging to that domain; the information regarding these concepts is definitional

(Spackman 2008). The conclusions possible using this definitional information are valid

from a conceptual point of view; however, these conclusions may not be valuable from an

IR perspective. For example, it is logically true that ‘‘Vertebral Unit’’ is indeed a ‘‘Body

Structure’’ but this is unlikely to be of any value when encountering ‘‘Vertebral Unit’’ in a

retrieval scenario. Two types of inference are at play here: definitional inference, used in

knowledge representation to understand the concepts belonging to that domain, and re-

trieval inference, used to determine whether some evidence (e.g. found in a document)

may entail relevance to a statement (e.g., a query). A consequence of the differing

requirements between these two types of inference is that many relationships that are

definitional are not useful for retrieval. The strain between definitional and retrieval

0
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Number of nodes visited
Retrieval execution time (seconds)

Fig. 17 The number of nodes
traversed and the retrieval time in
seconds for each depth level k,
calculated across the full 81
queries. The number of nodes
traversed increases exponentially
with the depth k. However, the
execution time degrades at a
much slower rate

14 Opinions may differ on the best treatment for a disease and may change over time.
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inference has been highlighted as one of the challenges in utilising conceptual represen-

tations and alternative representations are currently under investigation (Frixione and Lieto

2012).

In the GIN, inference is realised as a traversal over the graph. The depth parameter

k controls how many edges are traversed from the query node and reflects how much

additional information the model draws on (or how inference is applied) to score docu-

ments. Section 6 highlighted that the best performance was achieved for depth 1–3

(Fig. 7). Beyond this, the related concepts were too peripheral to the query concepts and

often introduced noise. (For some cases, this was mitigated by the diffusion factor, which

decreases rapidly the further the concept is from the query concept.) The analysis also

showed that different amounts of inference are required for different queries and that a

static setting of the depth parameter k may not be optimal. An adaptive approach that

determines the depth on a per-query basis would be more appropriate. This is left to future

work.

8 Related work

The theoretical inspiration for the GIN comes from previous work in logic-based IR (Van

Rijsbergen 1986), where relevance is modelled as Pðd ! qÞ, i.e., the likelihood that a

document implies the query. The Logical Uncertainty Principle (Van Rijsbergen 1986)

provides a means of evaluating Pðd ! qÞ: if d ! q cannot be immediately evaluated, e.g.

not all query terms appear in d, then some other document d0 is considered, such that

d0 ! q is true. The measure of the uncertainty is determined by the distance between d and

d0. Nie (1989) used a graph analogy to describe the distance measure as a sequence of steps

from d to d0. The distance measure is akin to the diffusion factor in the GIN: the com-

bination of a sequence of transitions from document nodes to query nodes. A key differ-

ence in the GIN is that the diffusion factor is determined between Information Units rather

than documents and that the diffusion factor is informed by both a similarity (i.e., distance)

and domain knowledge. The GIN also bears a resemblance to the Logical Imaging tech-

nique for IR (Crestani and van Rijsbergen 1995), where the truth of the logical implication,

Pðd ! qÞ, is evaluated as a function of the expected mutual information between terms.

Similar to the GIN, at retrieval time, Logical Imaging scores a document by producing a

probability kinematics that moves probability mass from terms that are not in the document

to (query) terms that are in the document. Unlike the GIN, in Logical Imaging the prob-

ability kinematics is driven solely by statistical similarity (expected mutual information)

and there are no multiple levels of transfers (i.e., levels of inference in the GIN).

The GIN makes use of structured knowledge resources. Early work by Voorhees (1994)

used WordNet for query expansion, while Ravindran and Gauch (2004) developed a

conceptual search engine based on a manually constructed concept hierarchy and Egozi

et al. (2011) developed the ESA model, which used Wikipedia articles as concepts.

Empirically, these general concept-based approaches struggled to outperform keyword-

based systems; however, biomedical applications—which use domain specific ontolo-

gies—do demonstrate consistent improvements (Zhou et al. 2007; Liu and Chu 2007;

Koopman et al. 2012b; Limsopatham et al. 2013a). Contrary to the GIN, most of these

approaches only use concepts for augmenting the query [often in query expansion (Liu and

Chu 2007)]; those that do use concepts for document representation, do not take advantage

of relationships between concepts (Koopman et al. 2012b; Limsopatham et al. 2013a).
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The GIN shares the same intuition as Turtle and Croft (1991) in that effective IR

systems have to ‘‘infer probable relationships between documents and queries’’. The

proposal of Turtle and Croft (1991) also realises inference through a graph traversal.

However, the GIN differs in that it uses a unified graph representation for documents and

queries, whilst Turtle and Croft (1991) construct separate graphs for each.

Within the area of genomic information retrieval there has been a number of lines of

relevant research. A number of specific query expansion methods are proposed (Stokes

et al. 2008; Dinh and Tamine 2011), some that exploit concept-based representations

(Trieschnigg 2010); however, few exploit the relationships between concepts to drive any

inference mechanism. An exception is work by Zhou et al. (2007) that infers concepts

‘‘implicitly related’’ to the query, via domain knowledge, and thus incorporates inference

into a retrieval method. (This method proves effective on the TREC Genomics test col-

lection.) However, the genomic domain in which all these methods are applied is a very

specific and constrained IR scenario: all queries adhere to a \biological object, rela-

tionship, biological process[ template, where an object could be a gene and a process

could be a disease. This clearly identifies the type of inferences that are required (e.g., the

relationships between genes and diseases). Therefore, many of the methods proposed,

including the inference mechanism of Zhou et al. (2007), cannot be applied outside of

genomics domain to medical IR in general.

State-of-the-art approaches used in TREC MedTrack feature well explored statistical IR

models (e.g. Mixture of Relevance Models (Zhu and Carterette 2012), Divergence from

Randomness and voting models (Limsopatham et al. 2013a, b) along with thorough

engineering tailored to the MedTrack task (e.g., age and gender processing, document type,

etc.). While these approaches do provide strong empirical results compared to the GIN, a

key difference is that the GIN retrieves relevant documents that are not findable with these

models; this was shown in Experiment 2 where many documents retrieved by the GIN but

not included in the MedTrack pool turned out to be relevant.

The GIN is proposed to address the four semantic gap problems: vocabulary mismatch,

granularity mismatch, conceptual implication and inferences of similarity; these problem

were outlined in Sect. 2. There is empirical evidence showing that IR systems are ham-

pered by these problems. Edinger et al. (2012) conducted a failure analysis of the teams

participating in TREC Medical Records tracks. Their categorisation of IR system failures

revealed the same issues around vocabulary, granularity and contextually already high-

lighted in this paper. In addition, they show many cases where the query terms ‘‘must be

inferred’’, highlighting the requirement for an inference mechanism advocated in our

paper.

9 Conclusion

Our implementation of the GIN addressed the four semantic gap problems. Regarding

vocabulary mismatch, the GIN utilised the same concept-based representation as the

concept baseline and thus inherited its benefits for overcoming vocabulary mismatch

(Koopman et al. 2012b; Limsopatham et al. 2013a). The GIN addressed granularity mis-

match by traversing parent-child (ISA) relationships. The semantic gap problem of Con-

ceptual Implication is where the presence of certain terms in the document infer the query

terms. Where these associations were encoded in SNOMED CT, the GIN addressed

Conceptual Implication by traversing these types of relationships. Finally, the problem of
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Inference of Similarity, where the strength of association between two entities is critical,

was addressed by the diffusion factor, which assigned a corpus-based measure of similarity

to the domain knowledge-based relationship. The empirical results have shown that the

inference mechanism promoted recall by retrieving new relevant documents not found by

previous keyword-based approaches. In addition, it promoted precision by an effective

reranking of documents. When inference is used, performance gains can generally be

expected on hard queries. However, inference should not be applied universally: for easy,

unambiguous queries and queries with few relevant documents, inference did adversely

affect effectiveness. These conclusions reflect the fact that for retrieval as inference to be

effective, a careful balancing act is involved. The need for this balancing fundamentally

derives from the observation that inferences that may be valid at the level of concepts may

not lead to the inference of relevant documents. For this reason, future research should be

directed at query analysis which can reliably predict which queries are amenable to

retrieval as inference.

Although developed and applied within medical search, the GIN is a general retrieval

model. For example, the GIN can be applied to web search using Freebase as the structured

domain knowledge resource; the GIN can be tested in this domain using the Freebase

annotated version of the entire ClueWeb12 collection made available by Google.15 These

annotated resources are the mapping of the free-text web documents and queries to

structured Freebase entities, and represent the companion of what MetaMap provided for

the experiments of this paper. Compared to SNOMED CT, Freebase also provides a

different type of underlying representation, one that is less definitional and more associ-

ational. Therefore, applying the GIN to web search also evaluates the model using a

potentially more suited knowledge resource (Freebase). Preliminary work on exploiting

Freebase annotations for web search have shown promise (Dalton et al. 2014). Applying

the GIN to web search is, therefore, a natural avenue of future work.
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