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Abstract Latent Dirichlet allocation defines hidden topics to capture latent semantics in

text documents. However, it assumes that all the documents are represented by the same

topics, resulting in the ‘‘forced topic’’ problem. To solve this problem, we developed a

group latent Dirichlet allocation (GLDA). GLDA uses two kinds of topics: local topics and

global topics. The highly related local topics are organized into groups to describe the local

semantics, whereas the global topics are shared by all the documents to describe the

background semantics. GLDA uses variational inference algorithms for both offline and

online data. We evaluated the proposed model for topic modeling and document clustering.

Our experimental results indicated that GLDA can achieve a competitive performance

when compared with state-of-the-art approaches.

Keywords Topic modeling � Latent Dirichlet allocation � Group � Variational inference �
Online learning � Document clustering

1 Introduction

Large text document collections have recently become readily available online. Systematic

analyses of these collections are significantly meaningful to various domains. Consider, for
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example, scientific article archives. (1) We want to organize the articles by subject, and

help users explore the archives. This is commonly a substantial multi-label classification

task. (2) We want to analyze the article browsing histories of researchers, and build a

recommendation system that can list all the interesting and relevant articles. (3) In terms of

the submitted journal/conference manuscripts, we want to design a system that can rec-

ommend the most professional reviewers.

Although these problems have been well studied, they are still significantly challenging

problems in machine learning research. This is because: (1) the text document collections

commonly have a high dimensionality, and (2) it is difficult to learn a document’s

semantics and any correlations between documents. Statistical modeling research has

addressed these challenges and developed various approaches for analyzing text docu-

ments (Koller and Friedman 2009). In particular, topic modeling approaches (Blei 2012)

have provided a realizable avenue for expressing the latent semantics and hidden structures

of documents. As a result, these approaches have been widely used in different application

domains.

Latent Dirichlet allocation (LDA) (Blei et al. 2003) is acknowledged as one of the most

successful topic modeling approaches. In LDA, each document is represented by a dis-

tribution over latent topics, and each topic is described by a distribution over words. It

defines a Dirichlet prior beyond all the document-topic distributions, so it does not suffer

from the same parameter explosion and over-fitting problems as the probabilistic latent

semantic index (PLSI) approach (Hofmann 1999). Recently, researchers have proposed

many extensions to LDA in terms of various considerations, i.e., relaxing the LDA

assumptions (Blei et al. 2010; Blei and Lafferty 2006, 2007; Doyle and Elkan 2009;

Wallach 2006; Wang et al. 2009), incorporating meta data (Blei and McAuliffe 2007;

Chang and Blei 2010), and applying it to other kinds of data (Li and Perona 2005; Sivic

et al. 2008).

In this paper, we focused on a topic modeling approach and investigated relaxing the

assumptions of LDA. Intuitively, we know that larger document collections may contain

more latent topics. To capture the latent semantics, all documents in LDA are represented

by the same K topics. This leads to a ‘‘forced topic’’ problem. For example, consider a

large academic paper archive that covers many latent topics such as ‘‘artificial intelli-

gence’’, ‘‘data mining’’, ‘‘network’’, ‘‘inorganic chemistry’’, ‘‘organic chemistry’’, and

‘‘high-polymer chemistry’’. Computer science articles may only contain the three com-

puter-related topics, whereas chemistry articles prefer to cover the three chemistry-related

topics. But in LDA, all articles must cover all six topics. That is, chemistry articles do not

involve the ‘‘network’’ topic, but they are forced to cover it in LDA. We can organize

documents into different groups (i.e., computer science and chemistry) and then assign

related topics to the groups (e.g., ‘‘network’’ to computer science and ‘‘organic chemistry’’

to chemistry), as a reasonable method to tackle the ‘‘forced topic’’ problem.

By considering the discussions above, we developed an extension of the LDA model,

namely group latent Dirichlet allocation (GLDA). In GLDA, there are two kinds of topics:

local topics and global topics. A local topic corresponds to a topic that only occurs in the

subset of the corpus, whereas the global topic corresponds one that is ubiquitous to the whole

corpus. Closely related local topics are clustered together as latent groups. Each document

first selects a group, and then generates the topic distribution over both the local topics with

respect to the selected group and the global topics. Finally, it samples words from the

corresponding topic-word distributions. Based on the latent groups, GLDA can model the

documents using the most related topics, rather than constraining each document to all the

topics. In this paper, we used the variational inference algorithm and parameter estimation for
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GLDA. Additionally, we developed an online inference algorithm to model large-scale data.

We conducted a number of experiments on topic modeling and document clustering to

evaluate the proposed model. Our experimental results demonstrate that GLDA can achieve a

competitive performance when compared with state-of-the-art approaches.

The rest of this paper is organized as follows. In Sect. 2, we review topic modeling

approaches. In Sect. 3, we describe the proposed GLDA model. Our evaluation results are

presented inSect. 4, and our conclusions and some potential future work are discussed in Sect. 5.

2 Topic modeling approach

In this section, we review the history of topic modeling approaches. Table 1 summarizes

several important notations used in this paper.

To the best of our knowledge, PLSI (Hofmann 1999) was the first well known topic

model for latent semantic analysis (Deerwester et al. 1990). However, it suffers from two

intractable problems: parameter explosion and over-fitting. Blei et al. (2003) proposed

LDA to tackle these two problems by introducing a Dirichlet prior to the latent topics.

They also developed an effective variational inference algorithm to infer the model. As a

result, LDA is in widespread use. As shown in Fig. 1a, the generative process of LDA is

summarized as follows:

1. For each topic k

(a) Sample a distribution over words: /k �Dirichlet bð Þ

2. For each document d in the corpus W

(a) Sample a distribution over topics: hd �Dirichlet að Þ
(b) For each of the Nd words wd;n

i. Sample a topic zd;n�Multinomial hdð Þ
ii. Sample a word wd;n�Multinomial /zd;n

� �

In topic modeling research, one active direction is to relax the LDA assumptions to

further uncover more sophisticated structures in the documents. Traditionally, the exten-

sions of LDA focus on four fundamental assumptions (Blei 2012): ‘‘bag of words’’, ‘‘bag

of documents’’, ‘‘fixed topics’’, and ‘‘independent topics’’.

1. ‘‘Bag of words’’ is an exchangeable assumption that the orders of words in documents

do not matter. Although this assumption is reasonable for uncovering a coarse

semantic structure and has benefits for computation, it is unrealistic in the sense of

human cognition. Wallach proposed the bigram topic model (Wallach 2006), in which

the word generation is associated with both its topic and context, i.e., the previous

word. Wang et al. (2007) developed the topic N-gram model, which discovers phrases

using the word orders and adjacent topics. Boyd-Graber and Blei (2008) considered

the syntactic structure and proposed the syntactic topic model. These approaches

model words non-exchangeably and improve the language modeling performance.

2. ‘‘Bag of documents’’ is also an exchangeable assumption that the orders of documents

in collections do not matter. This assumption is unreasonable for collections that span

years. Blei and Lafferty (2006) proposed the dynamic topic model, where the topics

Inf Retrieval J (2015) 18:1–25 3

123



change over time. In this method, each topic is a sequence of distributions over words,

so it can capture the dynamic latent semantics.

3. The ‘‘fixed topics’’ assumption signifies that the number of topics in LDA is fixed and

known. Typically, we must determine the number of topics experimentally. To address

this problem, Blei et al. (2010) developed Bayesian nonparametric topic models using

the Dirichlet process (Teh et al. 2006). In such topic models, the number of topics is

determined by the data itself. Furthermore, they can explore hierarchies of topics such

as the tree of topics.

4. ‘‘Independent topics’’ is the assumption that, in LDA, topics are independent from

each other. The pachinko allocation model (Li and McCallum 2006) used a topic

directed acyclic graph to describe the correlation among topics. With the same goal,

the correlated topic model (Blei and Lafferty 2007) used the logistic normal prior for

per-document topic proportion, instead of the Dirichlet prior in LDA.

There are other modified topic models that relax various assumptions with respect to

LDA, for example, as the spherical topic model (Reisinger et al. 2010) and sparse topic

model (sparseTM) (Reisinger et al. 2009). Recently, Wallach (2008) argued that it was

unrealistic to force each document to associate with the same K topics. Considering this

analysis, they proposed a cluster based topic model (CTM), which organizes topics into

different groups and individualizes each group using the group-specific Dirichlet prior of

the document-topic distribution. For each document, CTM first generates a group indicator

and then samples the local topic distribution from the Dirichlet prior specific to the selected

group. Based on CTM, Xie and Xing (2013) further introduced global topics to capture the

global semantics, and proposed the multi-grain cluster topic model (MGCTM). As shown

in Fig. 1b, for each word, MGCTM must select between local and global topics, and then

generate local or global topics using its choice. In our work, we investigated how to relax

Table 1 Notation description

Notation Description

D Number of documents

C Number of groups

V Number of words

K Number of topics in LDA

Kl Number of local topics for each group

Kg Number of global topics

Kd Number of topics for a document, i.e., Kd = Kl ? Kg

KK Total number of topics in GLDA, i.e., KK = C * Kl ? Kg

Nd Number of unique words w.r.t document d

p The C-dimension group distribution

hd The K/Kd-dimension topic distribution in LDA/GLDA w.r.t document d

/k The V-dimension word distribution w.r.t topic k

a The topic Dirichlet prior in LDA

aðgÞ The global topic Dirichlet prior

aðlÞc
The local topic Dirichlet prior w.r.t group c

b The Dirichlet prior for word distributions

z The topic assignments for all words
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the assumptions of LDA, and propose the GLDA model. The proposed GLDA model

defines local topics specific to a group as a solution to the ‘‘forced topic’’ problem, and

defines global topics to capture the background semantics. It samples the document-topic

distributions from a combination of the Dirichlet prior with the selected group’s local prior

and the global prior. The GLDA representation is less ambiguous than MGCTM. More

importantly, GLDA further considers the relationships between local topics and global

topics in terms of different groups. There are more detailed discussions in Sect. 3.5.

3 Proposed approach

In this section, we first introduce the GLDA model, and then propose the procedures for

inference, parameter estimation and online learning. Finally, we compare MGCTM and

GLDA in detail.

3.1 GLDA

In LDA, all documents are represented by the same K topics. This results in the ‘‘forced

topic’’ problem, which has two aspects: (1) in practice, the documents belonging to dif-

ferent groups might only involve some topics, but they are forced to cover all topics (an

example is shown in Sect. 1); and (2) LDA has no mechanism to cover the background

semantics in a corpus, so the semantics must fill in each specific topic. For instance, the

words that cover the background semantics are commonly ubiquitous and frequently occur

in the corpus. As a result, these meaningless words might dominate topics, e.g., ‘‘intro-

duction’’ to ‘‘network’’ and ‘‘organic chemistry’’. This behavior reduces the expressiveness

of the topics.

To address the ‘‘forced topic’’ problem mentioned above, we extended LDA to the

GLDA model. In GLDA, we assume that (1) there is a corpus-level multinomial distri-

bution p, which can be used to generate the group indicator for the documents; (2) each

group c corresponds to Kl local topics behind the Dirichlet prior aðlÞc ; and (3) to capture the

background semantics, all documents share Kg global topics behind the Dirichlet prior aðgÞ.
To formalize the generation process for document d, we first choose a group indicator gd

from the distribution p. We combine the local Dirichlet prior of group gd with the global

Fig. 1 The three topic models: a LDA, b MGCTM, and c GLDA
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Dirichlet prior, to obtain a merged Kd-dimension Dirichlet prior, that is ad ¼ aðlÞgd
; aðgÞ

h i
.

Then, we sample the document-topic distribution hd over the local topics with respect to

the selected group gd, and the global topics (i.e., ‘‘selected topics’’) from the Dirichlet prior

ad . The words are then generated as in LDA.

As shown in Fig. 1c, the generative process of GLDA is as follows:

1. For each topic k

(a) Sample a distribution over words: /k �Dirichlet bð Þ

2. For each document d in the corpus W

(a) Sample a group: gd �Multinomial ðpÞ
(b) Sample a distribution over the ‘‘selected topics’’: hd �Dirichlet ðadÞ
(c) For each of the Nd words wd;n

i. Sample a topic zd;n�Multinomial hdð Þ
ii. Sample a word wd;n�Multinomial /zd;n

� �

We can summarize model parameters as U ¼ p; aðlÞc

� �C

c¼1
; aðgÞ; b

n o
and the latent

variables as H ¼ zd;n

� �d¼D;n¼Nd

d¼1;n¼1
; gdf gD

d¼1; hdf gD
d¼1; /kf gKK

k¼1

n o
.

Reviewing this generation process, we argue that GLDA solves the ‘‘forced topics’’

problem to some extent. On one hand, in contrast to LDA, GLDA gives a two-stage

procedure to generate topics. For each document, if a group is chosen then only the topics

in this group can be used to describe the document. On other hand, GLDA introduces the

concept of global topics to gather the words that describe the background semantics. This

helps to purify the specific topics.

3.2 Inference

Given a corpus W, the key inference problem with respect to GLDA is to compute the

posterior distribution of the latent variables p HjW;Uð Þ. Because this posterior distribution

is intractable to estimate, we use the variational inference (Blei et al. 2003) algorithm for

approximate estimation.

The basic idea behind variational inference is to use Jensen’s inequality to approach the

tightest lower bound on the log likelihood. To achieve this, we introduced the variational

distribution q HjXð Þ (see Fig. 2) in terms of the free variational parameters

X ¼ ~pdf gD
d¼1; ~adf gD

d¼1;
~bk

n oKK

k¼1
; ~hd;n

n od¼D;n¼Nd

d¼1;n¼1

� �
, by removing the coupling edges

and nodes in GLDA. That is,

qðHjXÞ ¼
YKK

k¼1

qð/kj~bkÞ
YD
d¼1

qðgdj~pdÞqðhdj~adÞ
YNd

n¼1

qðzj~hd;nÞ
 !

ð1Þ

where ~adf gD
d¼1 and ~bk

n oKK

k¼1
are Dirichlet parameters; and ~pdf gD

d¼1 and ~hd;n

n od¼D;n¼Nd

d¼1;n¼1
are

multinomial distribution parameters.
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We transformed the task of finding the tightest lower bound on the log likelihood into

the problem of maximizing the following lower bound:

L XjUð Þ ¼ Eq log p H;W jUð Þ½ � � Eq log q HjXð Þ½ � ð2Þ

which is described in the Appendix.

We use the fixed point method to maximize this lower bound with respect to the free

variational parameters X. The derivation of this process is also shown in the Appendix. The

updating rules are:

~pd;c / pc

� exp

log C
PKd

k¼1

aðcÞk

� 	
�
PKd

k¼1

log C aðcÞk

� �

þ
PKd

k¼1

aðcÞk � 1
� �

W ~ad;k


 �
�W

PKd

j¼1

~ad;j

 ! !

þ
PNd

n¼1

PKl

k¼1

~hd;n;k W ~bc�k;wdn

� �
�W

PV
j¼1

~bc�k;j

 ! !

0
BBBBBBBBB@

1
CCCCCCCCCA

ð3Þ

~hd;n;k / exp

W ~ad;k


 �
�W

PKd

j¼1

~ad;j

 ! !

þ
PC
c¼1

~pd;c W ~bc�k;wdn

� �
�W

PV
j¼1

~bk;j

 ! !

0
BBBBB@

1
CCCCCA

ð4Þ

~ad;k ¼
XC

c¼1

~pd;ca
ðcÞ
k þ

XNd

n¼1

~hd;n;k ð5Þ

where aðcÞ is the Dirichlet prior that combines the local topics specific to group c with the

global topics (i.e., aðcÞ ¼ aðlÞc ; a
ðgÞ� 


); ~bc�k corresponds to the kth ~b of group c; C �ð Þ is the

gamma function; and W �ð Þ is the digamma function Then,

Fig. 2 The graphical model representation of the variational distribution
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~bk;v ¼ bv þ
PD
d¼1

PNd

n¼1

~hd;n;kwv
d;n if k is global

~bc�k;v ¼ bv þ
PD
d¼1

PNd

n¼1

~pd;c
~hd;n;kwv

d;n otherwise

8>>><
>>>:

ð6Þ

where

wv
d;n ¼

1 if wd;n ¼ v

0 otherwise

�

The full variational inference procedure is summarized in Algorithm 1.

3.3 Parameter estimation

In this section, we consider the parameter estimation for GLDA. Given a corpus, we wish

to optimize the model parameters (U) using a maximum likelihood estimation. Again, the

likelihood function p W jUð Þ is intractable to compute. So, we use the variational expec-

tation maximization (variational EM) algorithm, which alternatively updates the free

variational parameters (X) and model parameters (U).

Similar to Algorithm 1, the variational EM algorithm is summarized in Algorithm 2. In

the E-step, we infer ~pd; ~ad; ~hd using Eqs. (3), (4) and (5) from Sect. 3.2. In the M-step, we

estimate ~bk and U. ~bk is also updated using Eq. (6). The Dirichlet parameters (aðlÞ; aðgÞ; b)

are optimized by the Newton–Raphson method described in (Blei et al. 2003), and the

multinomial parameter p is updated using:

pc ¼
PD

d¼1 ~pd;c

D
ð7Þ
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Comparison with asymmetric LDA GLDA organizes topics into groups. To specialize

different groups, we apply asymmetric Dirichlet priors for local topics, so GLDA is in

default an asymmetric model. It seems similar with the best version of asymmetric LDA,

i.e., AS form (asymmetric topic Dirichlet prior and symmetric word Dirichlet prior),

suggested in (Wallach et al. 2009a), so we have stated the relationships between the two

models. When inferring a document d, GLDA might equal to AS form LDA with a certain

value of ~pd . However, this is infrequent in practice; and more importantly, the values of pd

are totally different for different documents. In other words, we believe that GLDA and

asymmetric LDA are two disparate models.

3.4 Online learning

In this section, we extend Algorithm 2 to an online inference algorithm (Online GLDA) for

modeling large-scale data. This work is based on the spirit of stochastic variational

inference (SVI) (Hoffman and Wang 2013; Hoffman and Blei 2010), where each iteration

uses only a mini-batch of the documents to generate a stochastic gradient, and a stochastic

optimization algorithm is used to learn the global parameters of interest.

In the GLDA context, the local variational parameters are ~pd; ~ad; ~hd and the global

parameters are ~bk; a
ðlÞ; aðgÞ; b; p. At each iteration t, we first randomly sample M documents

and compute their optimal local variational parameters using Eqs. (3), (4) and (5). We then

update the global parameters given a learning rate qt as follows:

In terms of ~b, we can compute the natural gradient r~bL XjUð Þ, and then give the

updating rule:

~bk;v  ~bk;v þ qt �~bk;v þ bv þ
D

M

XM
d¼1

XNd

n¼1

~hd;n;kwv
d;n

 !
if k is global

~bc�k;v  ~bc�k;v þ qt �~bc�k;v þ bv þ
D

M

XM
d¼1

XNd

n¼1

~pd;c
~hd;n;kwv

d;n

 !
otherwise

8>>>>><
>>>>>:

ð8Þ

In terms of aðlÞ; aðgÞ; b, we extend the Newton–Raphson algorithm to the online case as

in (Hoffman and Blei 2010):
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aðlÞc;k  aðlÞc;k � qtâ
ðlÞ

aðgÞk  aðgÞk � qtâ
ðgÞ

bv  bv � qt
bb

8>><
>>:

ð9Þ

where âðlÞ and âðgÞ are the inverse of the Hessian times the gradient raðlÞL XjUð Þ and

raðgÞL XjUð Þ; and b̂ is the inverse of the Hessian times the gradient rebL XjUð Þ.
This is different to the global variational parameters above; it is a constrained maxi-

mization of p because
PC

c¼1 pc ¼ 1. So we must subtract a form of projection Z (Zinke-

vich 2003), when updating p:

pc  pc þ qtpc D
XM
d¼1

epd;cD
XM

d¼1

epd;c

�
Mpc � Z

 !
; where Z ¼

p;D
PM

d¼1 epd

�
Mp

� �

C

ð10Þ

and ;h i is the inner product.

The Online GLDA is summarized in Algorithm 3.

3.5 Comparison with MGCTM

MGCTM and GLDA have some similarities, so we have investigated the relationships

between the two topic models. In fact, both represent documents using the local topics of

the groups and global topics. However, the relationships between the two kind topics are

different in MGCTM and GLDA.

A graphical model representation is shown in Fig. 1b. We reviewed the generative

process of MGCTM (Xie and Xing 2013) as follows: For each document d, first select a

group gd from the distribution p. Then sample a local topic distribution hl
gd

from the

Dirichlet prior aðlÞgd
with respect to the selected group, and sample a global topic distribution

hg from the Dirichlet prior aðgÞ. The Beta prior c samples a Bernoulli distribution xd , which

is used to make choice between local and global topics. To generate a word wd;n, we first

choose a topic indicator dd;n from the distribution xd . If dd;n ¼ 1, the word wd;n will be

assigned a local topic with respect to the group gd . If dd;n ¼ 0, the word wd;n will be

assigned a global topic. Finally a word is generated as in LDA.

10 Inf Retrieval J (2015) 18:1–25
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Let p tg ¼ kð Þ be the probability of generating the kth global topic. In MGCTM

p tg ¼ kð Þ ¼ p dd;n ¼ 0jxd


 �
� p tg ¼ kjhgð Þ and its expectation is:

Ep k½ � ¼ c1

c1 þ c2

� aðgÞkPKg
i¼1 aðgÞi

ð11Þ

In contrast, GLDA samples the document-topic distribution from the combination Di-

richlet prior ad ¼ aðlÞgd
; aðgÞ

h i
. Therefore, in GLDA equals:

Ep k½ � ¼ aðgÞkPKd
i¼1 ad;i

ð12Þ

We can transform Eq. (12) into:

Ep k½ � ¼
PKg

i¼1 aðgÞiPKg
i¼1 aðgÞi þ

PKl
i¼1 aðlÞgd ;i

� aðgÞkPKg
i¼1 aðgÞi

ð13Þ

Comparing this with Eqs. (11) and (13), we found that the second terms are the same.

The first terms are the probabilities of choosing global topics. Because each group c has its

specific local topic prior aðlÞc , the first term of Eq. (13) should be different for different

groups. That is to say, in GLDA the relationships between local and global topics are

dependent on the different groups, which is not the case in MGCTM. We argue that the

assumption in GLDA is reasonable. For example, computer science articles may be nat-

urally more willing to cover common knowledge topics (i.e., global topics) than chemistry

articles. In particular, we argue that this consideration is more significant when modeling

collections that contain many latent groups.

4 Experiment

In this section, we present our results when evaluating GLDA on two problem domains,

i.e., topic modeling and document clustering.

4.1 Dataset

We considered two widely used offline datasets:1 20-NewsGroups (20-NG) and WebKB.

20-NG is a balanced dataset. It contains 18,821 documents, which are equally divided into

20 related categories. We used 11,293 documents as the training data, and the remaining

7,528 documents as the testing data. WebKB contains 4,199 documents, which consists of

four categories. In contrast to 20-NG, it is an unbalanced dataset, where the largest cat-

egory contains 1,641 documents and the smallest category only contains 504 documents.

We selected 2,803 documents for training, and used the remaining 1,396 documents for

testing.

We also chose an online collection. We randomly downloaded 3M documents from

Wikipedia (Wiki) using the implementation2 in (Hoffman and Blei 2010). We then

1 http://web.ist.utl.pt/*acardoso/datasets/.
2 http://www.cs.princeton.edu/*mdhoffma/.
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processed these documents using a standard vocabulary of 7,700 words. We used 2,000

randomly selected documents from the collection for testing.

4.2 Topic modeling

We evaluated the topic modeling performance of GLDA across the three selected corpora.

In terms of the offline datasets, we used three state-of-the-art topic models (LDA Blei et al.

2003, CTM Wallach 2008, and MGCTM Xie and Xing 2013) as performance baselines.

We downloaded the public version of LDA3 and implemented in-house codes for CTM and

MGCTM. For fair comparisons, we estimated all of the hyper-parameters of these

approaches using the variational EM method, and estimated the GLDA using Algorithm 2.

In terms of the online collection (Wiki), we used Online LDA2 (Hoffman and Blei 2010) as

the baseline and GLDA was estimated using Algorithm 3. All these models used the AS

(Wallach et al. 2009a) form (asymmetric topic Dirichlet prior and symmetric word

Dirichlet prior). The asymmetric topic Dirichlet priors, including local topic Dirichlet

priors and global topic Dirichlet priors, were all initialized4 as 50=K and estimated using

the Newton–Raphson algorithm (Blei et al. 2003). The symmetric word Dirichlet prior b
was fixed at 0.01.

Naturally, we can consider the topic model as a special probability density function for

generating a corpus. So the topic modeling performance can be evaluated by the likelihood

on the held-out test data (Wallach et al. 2009b). In our experiments, we trained all the

baseline topic models and the GLDA using the training data, and then compared the

perplexity scores of the held-out test data. The perplexity, used by convention in language

modeling, is equivalent to the inverse of the geometric mean per-word likelihood. A lower

perplexity represents a higher performance. Given corpora W and Wtest, the perplexity is

defined as:

perplexityðWtestÞ ¼ exp � log p WtestjWð ÞPD
d¼1 Nd

( )
ð14Þ

4.2.1 Qualitative evaluation

We fit GLDA to two versions of the 20-NG datasets. One is the original 20-NG with stop

words, and the other is a filtered 20-NG that has removed stop words5 (378 in total). For

both versions, we set C ¼ 20;Kl ¼ 5 and Kg ¼ 20.

Table 2 illustrates the 10 most popular words for three global topics learnt by GLDA.

The global topics learnt from the original 20-NG are almost filled by stop words. Because

the stop words are ubiquitous to all documents, they can be explained as background

semantics. In other words, GLDA successfully captured the common semantics. The

results are clearer for the filtered 20-NG. We observed that Global Topic 1 is about article

writing; Global Topic 2 is about time; Global Topic 3 is about both writing and time. These

3 http://www.cs.princeton.edu/*blei/topicmodeling.html.
4 In topic modeling evaluation, K is the total number of topics, e.g., in CTM, K equals to C � Kl; in
MGCTM and GLDA, K equals to C � Klþ Kg.
5 http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop.
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global topics obviously show the common semantics, and can be generated in all

documents.

Table 3 shows the local topics from two estimated groups learnt by GLDA. Obviously,

local topics cover the local semantics of each group. In Group 1, the local topics are clearly

associated with computers. where Topics 1, 2 and 3 correspond to hardware, operating

system and network, respectively. In Group 2, the local topics are about sports, including

baseball, hockey and game. Although the results for the original 20-NG were affected by

stop words (e.g., ‘‘can’’, ‘‘many’’ and ‘‘same’’), they effectively captured the local

semantics for each group.

Overall, we found that the two-stage generation of GLDA had a positive influence when

capturing the semantics. On one hand, the local semantics were first organized at a coarse

level (e.g., computer) and then further divided into a fine level (e.g., hardware and net-

work). On the other hand, the common semantics were covered by the global topics. This

framework effectively modeled the corpus, even with stop words.

4.2.2 Quantitative evaluation of offline collections

We tested the perplexity scores of the offline collections with different numbers of topics.

We used the filtered 20-NG and WebKB datasets. The settings for the 20-NG were as

follows: For MGCTM and GLDA, we fixed C ¼ 20 and Kg ¼ 20, and set

Kl ¼ 1; 2; . . .; 10. For the CTM, we set the local topics from 2 to 11, for the same number

of total topics. For WebKB, in both MGCTM and GLDA, we fixed C ¼ 4 and Kg ¼ 32,

and set Kl ¼ 8; 12; . . .; 32. For CTM, we set Kl ¼ 16; 20; . . .; 40 for the same number of

total topics.

The results for 20-NG are shown in Fig. 3. GLDA performed better than LDA and

CTM. For LDA, there was a conflict. A larger K (more topics) is required to uncover the

complex semantics in large document collections, but many documents naturally only

involve some of these topics and the ‘‘forced topics’’ problem is more serious for larger K.

Our experimental results confirmed this analysis. The LDA performed better when K ¼ 40,

and the performance deteriorated for larger K. CTM organizes topics into different groups.

Its performance increases with the growth of K. Unfortunately, the CTM lacks the

mechanism to distinguish local and global topics. So its peak performance is even worse

than LDA for the 20-NG dataset.

Compared with MGCTM, GLDA performed better with respect to the perplexity metric.

They both performed worse for Kl ¼ 1; 2. Because: (1) a small number of local topics are

not enough to adequately cover the local semantics; and (2) relatively few local topics

exaggerate the influence of global topics (i.e., one man’s loss is another’s gain). GLDA

outperformed MGCTM for Kl [ 2, e.g., 3,190 in GLDA and 3,620 in MGCTM for Kl ¼ 6,

and 3,048 in GLDA and 3,323 in MGCTM for Kl ¼ 8. We argue that this is because

GLDA considers the relationships between local and global topics in terms of the different

groups (see the discussions in Sect. 3.5). Our experimental results further validate this

point.

As shown in Fig. 4, GLDA also performed better for WebKB. It performed better than

the two simpler models (i.e., LDA and CTM) and slightly outperformed the state-of-the-art

MGCTM. For the two simpler topic models, CTM outperformed LDA except when

K ¼ 64. This is because, for the WebKB dataset, we used a sufficient amount of local

topics to capture the local semantics. In particular, we found that the gap between MGCTM

and GLDA was smaller than the gap on the 20-NG dataset. This was mainly because

GLDA considers the relationships between local and global topics in terms of different

Inf Retrieval J (2015) 18:1–25 13
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groups, in contrast to MGCTM. However, WebKB contains fewer groups (C = 4) than

20-NG (C = 20). So MGCTM approaches GLDA in this case.

We also investigated how to set the number of local and global topics in GLDA. We

used fivefold cross validation, which produced convincing results. Figure 5 shows the

averaged perplexity performance for different Kl and Kg using the WebKB dataset. The

topic modeling performance was not significantly sensitive to the number of topics, and the

variations were not very abrupt. Larger Kl and Kg resulted in a better performance than

small values, e.g., the best performance was achieved when Kl = 32 and Kg = 32, and the

worst was when Kl = 8, 16 and Kg = 8. More importantly, we found that the performance

reduced when Kl [ Kg. We argue that this trend is reasonable, because it intuitively

requires more global topics to describe the background semantics that are ubiquitous to all

the documents.

4.2.3 Quantitative evaluation on Wiki

Comparion with MGCTM Because of the similarities between MGCTM and (non-online)

GLDA, we attempted to further compare the two models using a larger collection. To this

end, we randomly selected 50,000 documents from the entire 3M Wiki collection (mini-

Wiki) for model training, and evaluated MGCTM and GLDA on the test data that con-

tained the 2,000 documents mentioned above.

Because the true number of groups in Wiki is unknown, we tested the perplexity scores

using different numbers of groups. For both models, we fixed Kl = 10 and Kg = 20, and

set C ¼ 2; 3; . . .; 10. The results are shown in Fig. 6. We can see that GLDA performed

better than MGCTM in most cases. When there was a small number of groups (e.g., C = 2,

3, 4), the gap between the two models was relatively small. As C increased, GLDA rapidly

diverges from the other model. As discussed in Sect. 3.5, the main difference between the

two models is that GLDA considers the relationships between local and global topics in

terms of the different groups, but MGCTM does not. In other words, we argue that GLDA

is superior to MGCTM with a relatively large value of C. These empirical results support

this view, as expected.

Table 2 The 10 most popular words for several global topics in terms of 20-NG learnt by GLDA

Original 20-NG Filtered 20-NG

Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3

many now talk body year information

we same their information period article

probably sent gun section issue talk

alt the most talk time news

serious might many article day situation

should more never reference volume state

harvard talk take graphics talk groups

section serious state work future computer

they politics about collection output write

able meanwhile computer manuscript space time
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Online learning we evaluated the performance of Online GLDA on the entire 3M Wiki

collection. We set the mini-size M = 100 and 500. We fixed K = 100 for the Online

LDA (Hoffman and Blei 2010), and C = 8, Kl = 10 and Kg = 20 for the online GLDA.

The following learning rate is chosen, where the delay s and forgetting rate j are set as

1,024 and 1, respectively.

qt ¼ t þ sð Þ�j ð15Þ

The results are shown in Fig. 7. Obviously, Online GLDA outperformed Online LDA. It

improved by 150 when M = 100 and approximately 180 when M = 500. This is because a

larger dataset must contain more topics. By organizing the topics into groups, we can

cluster the relevant topics together. This experimental result shows that GLDA is useful for

large-scale data.

Table 3 The 10 most popular words for several local topics in terms of 20-NG learnt by GLDA

Original 20-NG Filtered 20-NG

Group 1 Group 1

Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3

comp many network sys comp server

most server ftp hardware windows client

hardware windows sun graphics file ohio

graphics file many windows pc internet

same version clients comp linux comp

ibm might program ibm mac network

apple mac happen fs unix ftp

can pc internet harvard version state

mac follows server apple flash program

sys computer graphics mac cis file

Group 2 Group 2

Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3

sport off race club sport rec

rec game while baseball violence player

serious hockey game player body ohio

baseball and rec game hockey money

run uwm ohio serious race gov

game violence se food western game

they state have space destroyer club

club sport gov sdd health apr

more western player rec body disease

harvard run andrew haven ece primate
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4.3 Document clustering

GLDA assumes that documents belong to groups, so it can be naturally be used for

clustering. We evaluated the document clustering performance of the proposed GLDA

model using the filtered 20-NG and WebKB datasets. For both datasets, we removed the

words that have occurred less than 10 times.

4.3.1 Metric

We evaluated the clustering performance by comparing the obtained cluster indices for

documents using the clustering algorithm and the true labels. In our experiments, we used

two common metrics (Cai et al. 2011; Zhang et al. 2011): clustering accuracy (AC) and

normalized mutual information (NMI). For both metrics, a larger score represents a better

performance.

Fig. 3 The perplexity
performance on 20-NG dataset

Fig. 4 The perplexity
performance on WebKB dataset

16 Inf Retrieval J (2015) 18:1–25

123



The AC is used to evaluate the final clustering performance. Given a document d, let eyd

and yd denote the cluster index and the true label, respectively. Then the AC can be

computed by:

AC ¼
PD

d¼1 d yd;map eydð Þð Þ
D

ð16Þ

where d x; yð Þ is a delta function that is 1 if x ¼ y and 0 otherwise; map �ð Þ is a function that

maps each cluster to a label (as defined in the Kuhn–Munkres algorithm Lovasz and

Plummer 1986).

NMI is originally used to measure the statistical information shared between two dis-

tributions. Let eY be the set of clusters obtained by the clustering algorithm and Y be the

true set of labels. Their mutual information is defined as:

Fig. 5 The perplexity
performance with different Kl
and Kg on WebKB dataset

Fig. 6 The perplexity
performance across mini-Wiki
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MI Y ; eY
 �
¼

X

yi2Y ;eyj2eY
p yi; eyj


 �
log

p yi; eyj


 �

p yið Þp eyj


 �
 !

:

where p yið Þ and p eyið Þ denote the probabilities that a document belongs to the label yi and

cluster eyj , respectively; p yi; eyj


 �
is the joint probability that a document belongs to the

label yi and cluster eyj at the same time. Here, we normalize MI Y ; eY
 �
using:

NMI Y ; eY
 �
¼

MI Y ; eY
 �

max H Yð Þ;H eY
 �
 � ð17Þ

where H Yð Þ is the entropy of the true label set Y , and H eY
 �
is the entropy of the estimated

cluster set eY .

4.3.2 Performance

We selected several baseline algorithms: non-negative matrix factorization (NMF), entropy

weighting K-Means (EWKM) (Jing et al. 2007), LDA (Blei et al. 2003), CTM (Wallach

2008), and MGCTM (Xie and Xing 2013). For the LDA, we followed the experimental

studies in (Lu et al. 2011): That is, (1) treat each topic as a cluster (assign a document to

cluster x if x ¼ arg maxjhj); and (2) use symmetric Dirichlet priors a and b, setting a ¼ 0:1

and b ¼ 0:01. For the CTM, we set the number of topics to 120 for the 20-NG dataset and

to 40 for the WebKB dataset. In MGCTM and the proposed GLDA model, we used 10

local topics for each group and 20 global topics for the 20-NG dataset, and 32 local topics

for each group and 32 global topics for the WebKB dataset. Following the settings in (Xie

and Xing 2013), MGCTM initialized the variational document-group distributions with the

clustering results of LDA and randomly initialized the other parameters. For GLDA, we

initialized the parameters in the same was as MGCTM, and used another version that

randomly initialized all the parameters (Ran-GLDA). For all the approaches, we averaged

the results over 10 independent runs, and also calculated the pairwise t tests at 5 %

significance levels for the GLDA and the baselines.

Table 4 shows the results for the 20-NG dataset. Obviously, the proposed GLDA model

achieved the highest scores in both the AC and NMI metrics. GLDA performed much

Fig. 7 The perplexity performance across Wiki: a/b is the result with M = 100/500
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better than the traditional approaches (i.e., NMF and EWKM), and performed competi-

tively when compared to the topic modeling approaches. It outperformed LDA by

approximately 5 % in AC and 6 % in NMI, and outperformed CTM by approximately 8 %

in AC and 11 % in NMI. Ran-GLDA was approximately 0.5 % better in AC and 0.3 % in

NMI than the state-of-the-art MGCTM. More importantly, GLDA outperformed MGCTM

by approximately 3 %,in both AC and NMI.

Table 5 illustrates the results for the WebKB dataset. As for the 20-NG dataset, GLDA

outperformed all the other approaches on the two metrics. For example, GLDA was

approximately 4 % better than LDA in AC, and approximately 3.5 % better than CTM in

NMI. GLDA outperformed the state-of-the-art MGCTM (approximately 0.3 % better in

AC, and 0.6 % better in NMI). Ran-GLDA performed slightly worse than MGCTM (i.e.,

0.5 % in AC and NMI), because there are no optimal initial parameters for Ran-GLDA.

Additionally, the p values obtained by the pairwise t tests are reported in Tables 4

and 5. We can clearly see that the proposed GLDA model was statistically superior to the

compared algorithms in most cases [i.e., 20-NG (11/12) and WebKB (9/12)]. GLDA was

clearly better than NMF, EWKM, LDA and CTM, and was slightly superior to MGCTM.

We can also see that the standard deviations of the scores from GLDA were smaller. This

further validates the robustness of GLDA.

4.3.3 Study on the number of topics

We investigated the effect of the number of topics on document clustering. Figure 8 illus-

trates the AC and NMI performance for the WebKB dataset, with different Kl and Kg. We

observed that the results were very similar to the results in the topic modeling evaluation. A

better performance is achieved when Kl and Kg are both large. In particular, the performance

deteriorated when Kl [ Kg (e.g., the worst scores were obtained when Kl = 24, 28, 32 and

Kg = 20). This is because, in document clustering, an increase in the number of global topics

reduces the discrimination of the local topics for different groups. Therefore, in practice, we

suggest the following settings in GLDA: (1) relatively larger Kl and Kg; and (2) Kl	Kg.

5 Conclusion

In this paper, we developed GLDA as an extension to the LDA model. The highlight of GLDA

is that it organizes topics into groups to capture local semantics, and introduces global topics

to cover the background semantics. In contrast to existing techniques, GLDA considers the

Table 4 Performance (the average score ± standard deviation) on 20-NG

Algorithm AC (%) NMI (%)

NMF 36.42 ± 2.87• (0.0044) 35.42 ± 1.58• (0.0021)

EWKM 38.99 ± 1.23• (0.0062) 37.58 ± 2.17• (0.0043)

LDA 51.32 ± 0.83• (0.0395) 55.81 ± 0.92• (0.0274)

CTM 48.87 ± 1.48• (0.0282) 50.22 ± 3.46• (0.0162)

MGCTM 53.83 ± 0.52 (0.0836) 58.42 ± 1.27• (0.0409)

Ran-GLDA 54.21 ± 2.01• (0.0336) 58.78 ± 2.62• (0.0415)

GLDA 56.42 ± 0.36 61.19 ± 0.68

•/� GLDA is statistically superior/inferior to the compared algorithm. The p value are shown in brackets
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relationships between local and global topics in terms of the different groups. We developed a

variational inference algorithm to model the offline corpora, and further extended an online

learning algorithm for GLDA for a large-scale collection and true online data.

We used extensive experiments to evaluate the proposed GLDA model. We compared the

topic modeling performance to traditional topic models for both offline and online cases. We

also evaluated GLDA for document clustering. Our experimental results demonstrated that

GLDA can achieve a state-of-the-art topic modeling performance, and also has a competitive

clustering performance when compared with state-of-the-art clustering approaches.

In the future, we hope to develop extensions of GLDA using nonparametric methods,

which can adaptively determine the number of groups and topics. It may also be useful to

apply GLDA to basic tasks such as classification and sentiment analysis.

Acknowledgments This work was supported by National Nature Science Foundation of China (NSFC)
under the Grant Nos. 61170092, 61133011, and 61103091.

Table 5 Performance (the average score ± standard deviation) on WebKB

Algorithm AC (%) NMI (%)

NMF 46.71 ± 3.93• (0.0086) 33.28 ± 1.26• (0.0135)

EWKM 49.32 ± 1.35• (0.0088) 29.88 ± 1.88• (0.0023)

LDA 53.63 ± 0.54 (0.0793) 34.17 ± 1.26• (0.0374)

CTM 52.97 ± 1.62• (0.0212) 33.96 ± 0.93 (0.0621)

MGCTM 56.68 ± 0.85 (0.1364) 36.54 ± 2.57• (0.0478)

Ran-GLDA 55.11 ± 1.92• (0.0418) 36.07 ± 3.73• (0.0423)

GLDA 56.95 ± 0.36 37.11 ± 0.74

•/� GLDA is statistically superior/inferior to the compared algorithm. The p values are shown in brackets

Fig. 8 The clustering performance with different Kl and Kg on WebKB dataset, i.e., a AC and b NMI
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Appendix

In this appendix, we derive the variational inference w.r.t GLDA. In terms of the varia-

tional distribution defined in Eq. (1), we can bound the log likelihood of the corpus using

Jensen’s inequality:

log P Wjp; aðlÞ; aðgÞ; b
� �


Eq log P W ; g; z; h;/jp; aðlÞ; aðgÞ; b
� �h i

� Eq log qðg; z; h;/j~p; ~h; ~a; ~bÞ
h i ð18Þ

The objective is to maximize this lower bound with respect to ~p; ~h; ~a and ~b. Let

L ~p; ~h; ~a; ~bjp; aðlÞ; aðgÞ; b
� �

be the right-hand of Eq. (18). We expand this lower bound as

follows:
L ~p; ~h; ~a; ~bjp; aðlÞ; aðgÞ; b
� �

¼ Eq log p gjpð Þ½ � þ Eq log p hja; gð Þ½ � þ Eq log p zjhð Þ½ �
þ Eq log p /jbð Þ½ � þ Eq log p wj/; z; gð Þ½ �
� Eq log q gj~pð Þ½ � � Eq log q hj~að Þ½ �

� Eq log q zj~h
� �h i

� Eq log q /j~b
� �h i

ð19Þ

We further expand Eq. (19) in terms of the model parameters p; aðlÞ; aðgÞ; b

 �

and the

free variational parameters ~p; ~h; ~a; ~b
� �

:

L ~p; ~h; ~a; ~bjp; aðlÞ; aðgÞ; b
� �

¼
XD

d¼1

XC

c¼1

~pd;c log pc

þ
XD

d¼1

XC

c¼1

~pd;c log C
XKd

k¼1

aðcÞk

 !
�
XKd

k¼1

log C aðcÞk

� �
þ
XKd

k¼1

aðcÞk � 1
� �

Eq log hd;k

� 

 !

þ
XD

d¼1

XNd

n¼1

XKd

k¼1

~hd;n;kEq log hd;k

� 


þ
XKK

k¼1

log C
XV

v¼1

bv

 !
�
XV

v¼1

log C bvð Þ þ
XV

v¼1

bv � 1ð ÞEq log /k;v

� 
 !

þ
XD

d¼1

XNd

n¼1

XC

c¼1

XKd

k¼1

~pd;c
~hd;n;kEq log /c�k;wdn

� 


�
XD

d¼1

XC

c¼1

~pd;c log ~pd;c

�
XD

d¼1

log C
XKd

k¼1

~ad;k

 !
�
XKd

k¼1

log C ~ad;k


 �
þ
XKd

k¼1

~ad;k � 1

 �

Eq log hd;k

� 
 !

�
XD

d¼1

XNd

n¼1

XKd

k¼1

~hd;n;k log ~hd;n;k

�
XKK

k¼1

log C
XV

v¼1

~bk;v

 !
�
XV

v¼1

log C ~bk;v

� �
þ
XV

v¼1

~bk;v � 1
� �

Eq log /k;v

� 

 !

ð20Þ
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where /c�k corresponds to the kth / of group c and:

Eq log hd;k

� 

¼ W ~ad;k


 �
�W

XKd

j¼1

~ad;j

 !
ð21Þ

Eq log /k;v

� 

¼ W ~bk;v

� �
�W

XV

j¼1

~bk;j

 !
ð22Þ

Now we derive the update rules w.r.t the four free variational parameters one by one.

1. For ~p: we know that
PC

c¼1 ~pd;c ¼ 1. Form the Lagrangian by isolating the terms that

contain ~pd;c and adding the Lagrange multipliers k, we obtain:

L ~pd;c

� 

¼ ~pd;c log pc

þ ~pd;c log C
XKd

k¼1

aðcÞk

 !
�
XKd

k¼1

log C aðcÞk

� �
þ
XKd

k¼1

aðcÞk � 1
� �

Eq log hd;k

� 
 !

þ
XNd

n¼1

XKd

k¼1

~pd;c
~hd;n;kEq log /c�k;wdn

� 

þ ~pd;c log ~pd;c

þ k
XC

c¼1
~pd;c � 1

� �

ð23Þ

Compute the derivative with respect to ~pd;c as follows:

oL ~pd;c

� 

o~pd;c

¼ log pc

þ log C
XKd

k¼1

aðcÞk

 !
�
XKd

k¼1

log C aðcÞk

� �
þ
XKd

k¼1

aðcÞk � 1
� �

Eq log hd;k

� 
 !

þ
XNd

n¼1

XKd

k¼1

~hd;n;kEq log /c�k;wdn

� 

� log ~pd;c � 1þ k

ð24Þ

Setting Eq. (24) to zero, so:

~pd;c / pc

� exp

log C
PKd

k¼1

aðcÞk

� 	
�
PKd

k¼1

log C aðcÞk

� �
þ
PKd

k¼1

aðcÞk � 1
� �

Eq log hd;k

� 


þ
PNd

n¼1

PKd

k¼1

~hd;n;kEq log /c�k;wdn

� 


0
BBB@

1
CCCA

ð25Þ

2. For ~h: we know that
PKd

k¼1
~hd;n;k ¼ 1. Again, form the Lagrangian by isolating the

terms that contain ~hd;n;k and adding the Lagrange multipliers k, we obtain:
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L ~hd;n;k

h i
¼ ~hd;n;kEq log hd;k

� 


þ
XC

c¼1

~pd;c
~hd;n;kEq log /c�k;wdn

� 


� ~hd;n;k log ~hd;n;k þ k
XKd

k¼1
~hd;n;k � 1

� �
ð26Þ

Taking the derivative with respect to ~hd;n;k, we obtain:

oL ~hd;n;k

h i

o~hd;n;k

¼ Eq log hd;k

� 


þ
XC

c¼1

~pd;cEq log /c�k;wdn

� 

� log ~hd;n;k � 1þ k

ð27Þ

Setting Eq. (27) to zero, we can obtain:

~hd;n;k / exp Eq log hd;k

� 

þ
XC

c¼1

~pd;cEq log /c�k;wdn

� 

 !

ð28Þ

3. For ~a: in Eq. (20), the terms that contain ~ad;k are as follows:

L ~ad;k

� 

¼
XC

c¼1

~pd;c

XKd

k¼1

aðcÞk � 1
� �

Eq log hd;k

� 
 !

þ
XNd

n¼1

~hd;n;kEq log hd;k

� 


� log C
XKd

k¼1

~ad;k

 !
�
XKd

k¼1

log C ~ad;k


 �
þ
XKd

k¼1

~ad;k � 1

 �

Eq log hd;k

� 
 !
ð29Þ

The corresponding derivative is:

oL ~ad;k

� 

o~ad;k

¼ W0 ~ad;k


 � XC

c¼1

~pd;ca
ðcÞ
k þ

XNd

n¼1

~hd;n;k � ~ad;k

 !

�W0
XKd

j¼1

~ad;j

 !XKd

k¼1

XC

c¼1

~pd;ca
ðcÞ
k þ

XNd

n¼1

~hd;n;k � ~ad;k

 ! ð30Þ

where W0 �ð Þ is the derivative of W �ð Þ function.

Setting Eq. (30) to zero, we can yield the maximum at:

~ad;k ¼
XC

c¼1

~pd;ca
ðcÞ
k þ

XNd

n¼1

~hd;n;k ð31Þ

4. For ~b: in Eq. (20), the terms that contain ~bk;v are as follows:
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L ~bk;v

h i
¼
XV

v¼1

bv � 1ð ÞEq log /k;v

� 


þ
XD

d

XC

c¼1

XNd

n¼1

~pd;c
~hd;n;kEq log /c�k;wdn

� 


� log C
XV

v¼1

~bk;v

 !
�
XV

v¼1

log C ~bk;v

� �
þ
XV

v¼1

~bk;v � 1
� �

Eq log /k;v

� 
 !
ð32Þ

When k is a local topic that belongs to group c, its corresponding derivative is:

oL ~bc�k;v

h i

o~bc�k;v
¼ W0 ~bc�k;v

� �
bv þ

XD

d¼1

XNd

n¼1

~pd;c
~hd;n;kwv

dn � ~bc�k;v

 !

�W0
XV

j¼1

~bc�k;j

 !XV

v¼1

bv þ
XD

d¼1

XNd

n¼1

~pd;c
~hd;n;kwv

dn � ~bc�k;v

 ! ð33Þ

When k is a global topic, its corresponding derivative is:

oL ~bk;v

h i

o~bk;v

¼ W0 ~bk;v

� �
bv þ

XD

d¼1

XNd

n¼1

~hd;n;kwv
dn � ~bk;v

 !

�W0
XV

j¼1

~bk;j

 !XV

v¼1

bv þ
XD

d¼1

XNd

n¼1

~hd;n;kwv
dn � ~bk;v

 ! ð34Þ

Setting the Eqs. (33) and (34) to zero, we can yield the maximums at:

~bk;v ¼ bv þ
PD
d¼1

PNd

n¼1

~hd;n;kwv
d;n if k is a global topic

~bc�k;v ¼ bv þ
PD
d¼1

PNd

n¼1

~pd;c
~hd;n;kwv

d;n otherwise

8>>><
>>>:

ð35Þ
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