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Abstract Before a patent application is made, it is important to search the appropriate

databases for prior-art (i.e., pre-existing patents that may affect the validity of the

application). Previous work on prior-art search has concentrated on single query repre-

sentations of the patent application. In the following paper, we describe an approach which

uses multiple query representations. We evaluate our technique using a well-known test

collection (CLEF-IP 2011). Our results suggest that multiple query representations sig-

nificantly outperform single query representations.

Keywords Patent search � Prior-art � Collaborative filtering

1 Introduction

Patent search is an active sub-domain of the research field known as information retrieval

(IR; Tait 2008). A common task in patent IR is the prior-art search. This type of search is

usually performed by individuals who need to ensure originality before applying for, or

granting, a new patent. These individuals use IR systems to search databases containing

previously filed patents. The entire patent application, or some subset of words extracted

from it, is typically used as the query (Mahdabi et al. 2012; Piroi et al. 2011; Xue and

Croft 2009).

At the time of writing, there are various state-of-the-art patent IR systems (e.g., Becks

et al. 2011; Lopez and Romary 2010; Magdy and Jones 2010; Mahdabi et al. 2011). All of

these systems use single query representations of the patent application. In this paper, we
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describe an approach to prior-art search that uses multiple query representations. Given a

patent application, we generate a set of similar queries. Each of these queries is an

alternative representation of the information contained in the application. This set of

queries is submitted to an IR engine. We treat each batch of search results as a set of

‘ratings’. We analyse these ratings using collaborative filtering (CF) algorithms. Subse-

quently, we merge this pseudo-collaborative feedback with a set of standard IR results to

achieve a final document ranking.

The remainder of this paper is organized as follows. In Sect. 2, we summarise related

work from the fields of patent IR, collaborative filtering and data fusion. In Sect. 3, we

describe a CF-based implementation of patent prior-art search. In Sect. 4, we discuss an

extension of our technique called iterative refinement. Section 5 documents the experi-

ments we used to evaluate our algorithms. Section 6 presents our results. Section 7 con-

cludes the paper and proposes future work.

2 Related work

2.1 Patent IR

One of the defining challenges in patent IR is the problem of representing a long, technical

document as a query. Early systems mimicked the approach taken by professional patent

examiners, who (at the time) valued high frequency words as query terms (Itoh et al. 2003;

Iwayama et al. 2003). Recently, use of the entire patent application (or a large set of terms

automatically extracted from it) has become popular. Automatically extracting appropriate

query terms from a patent application is a difficult task. These documents usually contain a

large volume of text sectioned into multiple fields (e.g. Title, Abstract, Description,

Claims. etc.). This being the case, how do we extract the ‘right’ terms, and which

field(s) do we extract those terms from?

Xue and Croft (2009) examined query terms taken from different fields of a patent

application. In an experiment using data published by the United States Patent and

Trademark Office (USPTO), they found the best performance was obtained using high

frequency terms extracted from the raw text of the Description field. These results were

subsequently confirmed by other research teams. Magdy et al. (2011) produced the second

best run of CLEF-IP 20101 (Piroi 2010) using patent numbers extracted from the

Description field, and Mahdabi et al. confirmed this finding when experimenting with

Language Models (LM; Mahdabi et al. 2011, 2012).

The status of phrases in patent IR is somewhat uncertain. One study has suggested that

retrieval performance can be improved by including noun phrases (obtained via a global

analysis of the patent corpus) in the query (Mahdabi et al. 2012). Another study, using a

different patent collection (CLEF 2011 rather than CLEF 2010), found quite the opposite

(Becks et al. 2011).

There are several key differences between patent search and conventional IR. Patent

queries, which typically contain several hundred terms, are obviously much longer than

standard IR queries. This makes high precision retrieval very difficult, as the information

need is quite diffuse. Techniques which work well in conventional search do not always

translate gracefully to patent IR. Pseudo-relevance feedback (PRF), for example, performs

very poorly in this particular context (Ganguly et al. 2011; Mahdabi et al. 2012). In patent

1 http://www.clef-initiative.eu/.
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IR, precision is relatively low even in the top-ranking results. Expanding a query using

terms extracted from top-ranked patents tends to produce additional noise, rather than

focus the information need.

2.2 Collaborative filtering

Collaborative filtering is a technique commonly used by commercial recommender sys-

tems. Recommender systems make predictions about the likelihood that a user u will like

an item i. A prerequisite for this operation is a matrix relating items to ratings (Shardanand

and Maes 1995). These ratings are awarded by u and his/her peers (i.e., the user com-

munity). Assuming the availability of this matrix, the recommendation process works as

follows:

• Find the subset of all users who have awarded ratings to other items that agree with the

ratings awarded by u

• Use ratings awarded by like-minded users to predict items for u

Given a large enough matrix, this process quickly becomes computationally expensive.

There are a number of memory- and model-based algorithms designed to optimise the

process. Memory-based algorithms [e.g., item-based and user-based systems (Resnick

et al. 1994; Sarwar et al. 2001)] exploit the whole matrix when computing predictions.

Generally, these predictions are calculated from the ratings of neighbours (i.e. users or

items that are similar to the active user/item). In contrast, model-driven techniques make

predictions based on user behaviour models. The parameters of the models are estimated

offline. Techniques exploiting singular value decomposition (SVD; Billsus and Pazzani

1998) and probabilistic methods [e.g., latent class models (Hofmann 2004)] are common in

this context.

A number of CF algorithms use graph-based analysis to calculate item predictions. A

common approach involves modelling the users as nodes in an undirected weighted graph,

wherein edges represent the degree of similarity between users based on rating activity

(Aggarwal et al. 1999; Luo et al. 2008). There are a number of variations from this basic

pattern. For example, Wang et al. proposed a recommendation scheme based on item

graphs (Wang et al. 2006). In this scheme, items are nodes and edges represent pairwise

item relationships. Huang et al. advanced this idea, proposing a bipartite graph comprising

of item nodes and users nodes (Huang et al. 2004). In this scheme, ratings are modelled as

links connecting nodes from the disjoint sets. Transitive associations between the nodes are

subsequently used to generate item predictions.

It is worth noting that memory- and model-based algorithms both experience difficulties

when the ratings matrix is sparsely populated. Accurately recommending products to new

users (i.e., the ‘cold start’ problem) is also challenging (Cacheda et al. 2011). In the past,

collaborative feedback algorithms have been combined effectively with conventional IR

models (Zhou et al. 2013). Researchers have exploited IR rankings and click-through logs

to improve the performance of CF algorithms (Cao et al. 2010; Liu and Yang 2008;

Weimer et al. 2007). However, to date, there has been no attempt to combine CF algo-

rithms and IR models in the field of patent search.

2.3 Data fusion algorithms

Our work combines multiple results sets retrieved using alternate query representations

(i.e., data fusion). There are two general approaches when fusing search results. The first
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approach is unsupervised. Shaw and Fox have proposed a number of successful algorithms

in this context, including CombSUM and CombMNZ (Shaw and Fox 1994). Other

unsupervised algorithms, developed for monolingual and multilingual search, include

CombRSV, CombRSVNorm (Powell et al. 2000) and CORI (Callan et al. 1995; see also

Savoy 2004, 2005). The second approach to data fusion is supervised (Sheldon et al. 2011;

Si and Callan 2005; Tsai et al. 2008). The supervised technique involves two steps. In step

one, the quality of various result sets is ‘learnt’ from relevance judgements. In step two,

unseen results sets are merged using predictions based on step one. Optional pre-pro-

cessing (e.g., systemic bias, query ‘gating’) may be applied during this stage (Sheldon

et al. 2011; Si and Callan 2005; Tsai et al. 2008).

3 Collaborative patent prior-art search (CPAC)

In this section, we explain our approach to patent prior-art search. We begin with an

explanation of our notation. Our technique deals with a finite set of queries,

Q ¼ fqa; q1; q2. . .qng, and a finite set of documents D ¼ fd1; d2. . .dmg aggregated from

documents retrieved by Q. Each query q 2 Q is associated with a profile, which consists of

a set of documents retrieved by submitting that query to a standard IR engine, Dq � D, and

the corresponding retrieval scores. Note that we treat these retrieval scores as CF ratings.

These ratings, denoted R, will always correspond to real numbers. The first query we send

to the IR system is denoted qa. The subset of queries that have retrieved a certain document

d is defined as Qd � Q. Note that q and d (used in the subscript) vary over the sets

fqa; q1; q2. . .qng and fd1; d2. . .dmg.
Using the query profiles, we construct a rating matrix V. V will contain |Q| rows and

|D| columns. Each element of V, vqd 2 R [£; denotes the rating given by query q 2 Q

to document d 2 D: A value of £ for vqd indicates that the query q has not retrieved the

document d yet. We process this matrix using a CF algorithm (see Algorithm 2). The

goal of this algorithm is to predict the value v for documents which have not been

retrieved. Let us denote the prediction for d 2 D by query q 2 Q as pqd 2 R [£ (pad for

qa). If our CF algorithm is not able to make this prediction, then we set pqd ¼£: For

later use, we define the subset of document ratings for the query q as vq� ¼ fvqd 2
V=d 2 Dqg; and the subset of query ratings for the document d as v�d ¼ fvqd 2 V=q 2
Qdg: We also denote the document mean rating for a query q as vq�ðva� for qa) and query

mean rating for a document d as v�d�
Now, assume our system receives a single query qa. First, we obtain a set of results for

this query from a standard IR engine. Next, we generate a set of queries Q0 ¼ fq1; q2. . .qng
similar to qa. Each of these auto-generated queries is an alternative representation of the

information contained in qa (see Sect. 3.2 for the query representations used in this study).

We retrieve the top-ranked documents for each query in QðQ qa [ Q0), using this data to

construct our ratings matrix. This process is described in Algorithm 1. In this algorithm,

x is the number of top-ranked documents we retrieve for each query q, and RATE() returns

the score from the IR engine. Note that the top ranked documents fd1; . . .; dxg are likely to

be different for each qi 2 Q: We cache the documents returned by IR-RETRIEVE (), together

with the scores, for later use.
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V ¼

d1 d2 d3 d4 d5 d6

qa � � � � � �
q1 � � � � � �
q2 � � � � � �
q3 � � � � � �

2
66664

3
77775

An example of a populated matrix is shown above. In this matrix, di denotes the sequence

number of the document in the entire corpus. Here, we assume that x = 2. The RATE()

function in Algorithm 1 returns real numbers, but we have replaced all real numbers with a

symbol (9 ) to simplify the diagram. A (�) symbol indicates that a query qi has not

retrieved that specific document di.

Having built the rating matrix V, we predict the relevance pad of each document d 2 D

to qa. This procedure is described in Algorithm 2. In this algorithm, we iterate through all

documents in D (excluding those documents which were retrieved using the original query

qa) to produce a vector of predictions pa�
�!. These predictions are calculated using a col-

laborative filtering algorithm (Cacheda et al. 2011). In our experiment, we try four dif-

ferent CF algorithms, as follows:

User-based

pad ¼ va� þ ra

P
q2neigha

ðvad�va�
rq
Þsða; qÞ

h i
P

q2neigha
sða; qÞ

Item-based

pad ¼
P

d0 ðsðd0; dÞvadÞP
d0 jsðd0; dÞj

SVD
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pad ¼ Va� þ Ur �
ffiffiffiffiffi
ST

r

q
ðuÞ �

ffiffiffiffiffi
Sr

p
� RT

r ðdÞ

SlopeOne

pad ¼

P
d02Dq� df gð

P
x2Sdd0

vxd�v
xd0

jS
dd0 j
þvqd
ÞjSdd0 j

P
d02Dq� df g jSdd0 j

In the user-based algorithm, we use Pearson’s correlation coefficient to measure the

similarity between qa and q 2 Q (denoted as s(a, q)) as follows:

sða; qÞ ¼
P

d2Da\Dq
ðvad � va�Þðvqd � vq�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

d2Da\Dq
ðvad � va�Þ2

P
d2Da\Dq

ðvqd � vq�Þ2
q

where Da denotes documents retrieved for qa and Dq denotes documents retrieved for

q 2 Q: After calculating the the similarity between different queries, we calculate pre-

dictions by considering the contribution of each neighbour in the matrix, weighted by its

similarity to qa (neigha). We use the technique suggested by Herlocker et al. (2002),

taking into account the mean va�, as well as the standard deviation ra and rq of the

meaning ratings for the queries qa and q in Q. Similarly, we define the similarity between

different documents (denoted as s(d0, d)) for the item-based algorithm as:

sðd0; dÞ ¼
P

q2Qðvqd � vq�Þðvqd0 � vq�ÞP
q2Qðvqd � vq�Þ2

P
q2Qðvqd0 � vq�Þ2

In the weighted SlopeOne algorithm, Sdd’ is the set of queries that have ‘rated’ both

documents d and d0. In the SVD algorithm [referred to as ‘LSI/SVD’ in Cacheda et al.

(2011)], we use a matrix factorization technique that converts V into three matrices:

V ¼ U � S � RT

where U and R are orthogonal matrices, and S is a diagonal matrix of size k 9 k (where k is

the rank of V). This matrix is iteratively reduced by discarding the smallest values, to

produce a matrix Sc with c\ k. The reconstructed matrix, Vc ¼ Uc � Sc � RT
c is the best

rank-c approximation of the rating matrix V.We calculate CF predictions from this

(reduced dimension) matrix using the formula stated above.

We choose these four CF algorithms because they are very popular and have produced

good results (Cacheda et al. 2011). Other CF algorithms could be used instead. Whichever
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algorithm is used, the output of this stage will be another ranked set of documents. In the

final stage of our procedure, we fuse a set of IR-generated results with the CF-generated

results. This procedure is described in Algorithm 3, where we combine the documents

returned for qa by the IR engine with the vector of predictions produced in Algorithm 2.

We tried a number of combinatorial methods. CombRSVNorm seems to work best in this

context (see further Sect. 6.1). It is usually defined in the following way:

COMBRSVNORM ¼ SUM½ðRSVi �MINRSVÞ=ðMAXRSV �MINRSVÞ�

where RSV denotes the retrieval status value (i.e., the score). Now we have three sets of

document rankings (IR scores, CF scores and COMBRSVNORM scores). We sort the

documents using all three scores (sort precedence as listed above, descending order) to

produce a final ranking.

3.1 Possible weaknesses of our technique

As mentioned above, CF algorithms have two known weaknesses:

[1] Sparsity—In a typical recommender system, most users will rate only a small subset

of the available items. This means that most of the cells in the rating matrix will be

empty.

[2] Cold start—CF algorithms struggle to generate recommendations for users recently

introduced into the system.

Neither problem affects our technique. We can ensure that the matrix is sufficiently

populated by manipulating the size of the top-ranked results lists (via parameter x). And

‘cold start’ does not occur because ‘similar’ queries are auto-generated (see below).

3.2 Query representations

In this section, we introduce the various query representations used in our technique. The

first query representation, denoted ALL, is the Description field of a full-length patent

application (stop words and numbers removed, terms stemmed). Note that the stop word

list used is not patent-specific (unlike Becks et al. 2011; Mahdabi et al. 2011) and phrases

are ignored.
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The second query representation, denoted LM, adopts the unigram model proposed by

Mahdabi et al. (2012). Applying the unigram model involves estimating the importance of

each term in the patent application according to a weighted log-likelihood approach, as

follows:

PðtjqLMÞ ¼ ZtPðtjHqÞ log
PðtjHqÞ
PðtjHCÞ

where Zt = 1/
P

tP(t|q) is the normalization factor. Hq is a model describing the query

language. HC is a model describing the language used in the corpus. These models are

defined in the following way:

PðtjHqÞ ¼ ð1� kÞ � PMLðtjdÞ þ k � PMLðtjCÞ

where the maximum likelihood estimation of a term t in a document d, PML(t|d), is defined

as
nðt;dÞP
t0 nðt0;dÞ : 0\k\1 is a parameter used to control the influence of each estimation, and

n(t, d) is the term frequency of term t in document d.

The third query representation, denoted LMIPC considers International Patent Clas-

sifications (IPC) (Mahdabi et al. 2012). We build a relevance model HLMIPC specifically

for this purpose. The result model is defined as:

PðtjqLMIPCÞ ¼ ð1� kÞ � PðtjHLMIPCÞ þ k � PðtjqLMÞ

where PðtjHLMIPCÞ is calculated using:

PðtjHLMIPCÞ ¼
X

d2LMIPC

PðtjdÞ � PðdjHLMIPCÞ

and

PðDjHLMIPCÞ ¼ Zd

X
t

PðtjHdÞ log
PðtjHLMIPCÞ

PðtjHCÞ

where Zd ¼ 1=
P

D2LMIPC PðDjHLMIPCÞ is a document specific normalization factor. Next,

we have three query representations exploiting standard IR weighting schemes, denoted

TF, TFIDF, and BM25 respectively:

PðtjqTFÞ ¼
nðt; dÞ

maxt0 nðt0; dÞ

PðtjqTFIDFÞ ¼
nðt; dÞ

maxt0 nðt0; dÞ
� log
jDj
dft

PðtjqBM25Þ ¼
X

t

wt

ðk1 þ 1Þnðt; dÞ
K þ nðt; dÞ

ðk3 þ 1Þnðt; dÞ
k3 þ nðt; dÞ

where |D| is the total number of documents, df is document frequency, wt ¼ log
jDj�dftþ0:5

dftþ0:5 is

the inverse document frequency weight of term t and K ¼ k1 � ðð1� wbÞ þ wb � jdjavgjdjÞ
includes the impact of the average document length. k1, k3 and wb are free parameters (see

Sect. 5.5 for the values used in this experiment). The final query representation, denoted

UFT, is the raw text of the Description field minus unit frequency terms (i.e., terms which

occur only once in the patent query).
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We chose these query representations because they are popular and produce good

results. Other query representations could be substituted. Throughout, we followed the

normal procedures when calculating the top weighted terms in the patent (Becks et al.

2011, Ganguly et al. 2011; Mahdabi et al. 2012; Piroi 2010).

4 Iterative refinement

In this section, we describe a method which improves the basic performance of CPAC.

This method assumes that CF-generated results and IR-generated results mutually reinforce

one another. Updating one set of scores should iteratively propagate to the other set of

scores via pairwise document relationships (i.e., associations created when the same

document is rated by different query representations). To exploit these relationships, we

adjust the CF-generated scores and IR-generated scores using a function which regularizes

the smoothness of document associations over a connected graph. These document asso-

ciations are easy to model within our CF framework. We construct an undirected weighted

graph describing documents that are ‘rated’ by queries. In this graph, nodes represent

documents and edges represent pairwise document relationships.

Let G = (D, E) be a connected graph, wherein nodes D correspond to the |D| documents

rated/retrieved by different queries, and edges E correspond to the pairwise document

relationships between documents. The weights on these edges are calculated using the

‘ratings’ assigned by queries, derived by multiplying a transpose of the ratings matrix V

(VT) with itself (VTV). Further, assume an n 9 n symmetric weight matrix B on the edges

of the graph, so that bij denotes the weight between documents di and dj. We further define

M as a diagonal matrix with entries

Mii ¼
X

j

bij

We also define a n 9 2 matrix F with

F ¼ pa��!IRa�
��!h i

where IRa is a vector of IR scores retrieved by qa and f(a, d) denotes qa’s ratings assigned

to d.

Thereafter, we develop a regularization framework for adjusting the CF-generated and

IR-generated scores. Formally, the cost function <(F, a, G) in a joint regularization

framework is defined as:

<ðF; a;GÞ ¼ 1

2

Xn

i;j¼1

bij

f ða; diÞffiffiffiffiffiffiffi
Mii

p � f ða; djÞffiffiffiffiffiffiffi
Mjj

p
�����

�����
2

þl
Xn

i¼1

f ða; diÞ � f 0ða; diÞ
�� ��2

where l[ 0 is the regularisation parameter, f0(a,di) is the initial rating of the test query qa

and the document di. F and F0 are the refined matrix and the initial matrix, respectively.

The first term on the right-hand side of the cost function is the global consistency con-

straint. This constraint ensures that the weighting function does not change too much

between nearby points. In this experiment, ‘nearby points’ are the refined rating scores

reflecting the initial relationships between documents and the nearby documents. The

second term on the right hand side of the cost function is the fitting constraint. This
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constraint ensures that the ratings assigned to documents fit the initial ratings. The trade-off

between these two variables is controlled by the parameter l.

Given the above, the final weighting function is defined as:

F� ¼ arg min
F2F
<ðF; a;GÞ

where arg min stands for the argument of the minimum,2 F denotes the set of n 9 2

matrices and F 2 F : After simplification, we can derive the following closed form

solution:

F� ¼ l2ðI � l1SÞ�1
F0

where:

l1 ¼
1

1þ l

l2 ¼
l

1þ l

S ¼ M�
1
2BM

1
2

and I is an identity matrix (see further Zhou et al. 2004; Zhu et al. 2003). Note that S is a

normalized graph Laplacian matrix. Given the refined weighting matrix F, we can extract

the refined pa�
�! and IRa�

��!
scores.3 This refinement method is described in Algorithm 4. In the

iteration step of this algorithm, each node receives information from its neighbours while

retaining its initial information. When F(s) converges, it is equivalent to the close form

solution of F* [refer to Zhou et al. (2004) for proof].

∑

5 Evaluation

In the following section, we describe a series of experiments designed to answer the

following questions:

2 The set of points of the given argument for which the given function attains its minimum value.
3 It is worth noting that l2 could be eliminated as it does not change the ranking.
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[1] Does our technique outperform state-of-art patent IR systems?

[2] How effective is the refinement method described in Sect. 4?

[3] Which query representation is most effective?

[4] Which collaborative filtering algorithm performs the best?

5.1 Experimental data

The text corpus used in our evaluation was built using the CLEF-IP 2011 test collection.

This collection contains 3.5 million XML-encoded patent documents, relating to approx-

imately 1.5 million individual patents.4 These documents were extracted from the MAREC

data corpus.5 We used the CLEF-IP 2011 query set, which contains 1,351 topics (English

subset). Each topic is a patent application comprising several fields. We built all queries

using the Description field. Prior to indexing and retrieval, a suffix stemmer (Porter 1997)

and a stop word list6 were applied to all documents and queries. We also removed all

numbers. Citation information was ignored. Relevance judgements were produced by

CLEF campaign organizers. Judgements were extracted from published search reports.

5.2 Evaluation metrics

We used the following evaluation metrics in this experiment:

• The precision computed after 10, 50 and 100 documents were retrieved (P@10, P@50

and P@100)

• Normalized discounted cumulative gain (NDCG; Järvelin and Kekäläinen 2000)

• The recall computed after 10, 50 and 100 documents were retrieved (R@10, R@50 and

R@100)

• Mean average precision (MAP).

Unless otherwise stated, results indicate average performance across all topics.

Statistically-significant differences in performance were determined using a paired t test

at a confidence level of 95 %.

5.3 Retrieval systems

All information retrieval functions in our experiment were handled by the Terrier open

source platform (Ounis et al. 2006).7 We used the BM25 retrieval model as it achieved

(slightly) better results during set-up.

5.4 Baseline systems

We used a number of baseline systems to evaluate our technique. The first seven baseline

systems relate to the seven query representations described in Sect. 3.2 (i.e., we used each

query representation in isolation as a performance baseline). We also used the phase-based

4 A patent document can be a patent application, a search report, or a patent grant.
5 MAREC is a collection of 19 million patent documents available from http://ifs.tuwien.ac.at/*clef-ip/
marec.shtml.
6 ftp://ftp.cs.cornell.edu/pub/smart/.
7 http://terrier.org/.

Inf Retrieval (2014) 17:471–491 481

123

http://ifs.tuwien.ac.at/~clef-ip/marec.shtml
http://ifs.tuwien.ac.at/~clef-ip/marec.shtml
ftp://ftp.cs.cornell.edu/pub/smart/
http://terrier.org/


model described in Mahdabi et al. (2012), denoted LMIPCNP, and the query reduction

method presented in Ganguly et al. (2011), denoted QR. LMIPCNP extends the LMIPC

method, adding key phrases with similar semantics to the patent query. These phrases are

extracted using the noun phrase patterns defined in Mahdabi et al. (2012). QR reduces a

patent query by comparing segments of that query to top ranked documents using Lan-

guage Models. The least similar segments are subsequently removed (Ganguly et al. 2011;

Mahdabi et al. 2012). To measure the effectiveness of PRF in this context, we also carried

out two retrieval runs using pseudo-relevance feedback (denoted ALLPRF and UFTPRF).

We used the implementations provided by the Terrier platform for these two baselines (see

further Robertson 1991).

5.5 Parameter settings

We used the training topics provided by the CLEF-IP 2011 organizers to empirically set all

of the parameters used in this experiment, including those used by the baseline systems.8

First, we set the parameters for our own method. We conducted a number of runs with

different values for x (i.e., the number of top-ranked documents used when generating

ratings). As shown in Fig. 1, there were no significant changes in MAP scores between 15

and 50 documents. The optimal value was obtained when x = 10. This is a relatively low

figure, but it is consistent with the search environment. In patent search, precision is

typically much lower than web search, often dropping off fairly quickly. Too many doc-

uments (e.g., x = 100) and the noise disrupts our technique. Too few (e.g., x = 5) and we

miss relevant documents. The parameter l was set to 0.99, consistent with prior work

(Zhou et al. 2004, 2012).

The parameters for the baseline systems were set as described in Mahdabi et al. (2012)

and Ganguly et al. (2011). Parameters k1, wb, k3 (part of the BM25 model) were set to

1.2, 0.75 and 7 respectively. The number of phrases (used in LMIPCNP) was set to 10. The

number of pseudo-relevant documents (used in QR) was set to 20. We used the training set

to fix the number of query terms for TF, TFIDF, BM25, LM and LMIPC. We tried every

number in the range f5; 10; 15; 20; . . .100g [following a study placing the effective

upper bound at 100 (Xue and Croft 2009)]. We found that 50 query terms was the most

effective.

6 Results

In our first evaluation, we compared the performance of our technique with the baseline

systems listed in Sect. 5.4. The results are shown in Table 1. Our multiple query technique,

CPAC, performed extremely well. It achieved statistically significant improvements over

the top performing baselines, including ALL, QR and LMIPCNP. Notably, it scored a

19.32 % improvement in MAP over LM (Mahdabi et al. 2012). These results support our

assertion that multiple query representations are more effective than single query repre-

sentations in patent search.

As shown in Table 1, our refinement method (CPACRegu) recorded statistically sig-

nificant improvements over CPAC. In terms of MAP, CPACRegu scored 4.18 % higher

8 CLEF-IP 2011 training data consists of 100 English topics distinct from the test topics.
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than CPAC, and improved ALL (the highest scoring baseline) by 10.59 % . A similar trend

emerged in terms of NDCG, where CPACRegu exceeded CPAC by 6.42 % and ALL by

10.48 %. The performance of the CPACRegu method measured by P@10, P@50 and

P@100 was particularly strong, showing improvements w.r.t ALL of 20.33, 11.49 and

12.21 % respectively. These results support our earlier claim that CF-generated results and

IR-generated results mutually reinforce each other.

Figure 2, which plots the precision-recall curves9 for the various systems, suggests that

the gains achieved using our methods are consistent. Interestingly, the refined version of

our technique outscores the baselines on almost all of the evaluation metrics, despite being

specifically tuned for MAP. Comparing our system to the results published for CLEF-IP

2011, we note that CPAC is only fractionally lower than the best performing run, while

CPACRegu outperforms it completely (Piroi et al. 2011). To summarise, the results

described above indicate that our technique is extremely suitable for patent prior-art

search, and that it is capable of state-of-the-art performance.

Fig. 1 Varying the number of
top ranked documents (parameter
x)

Table 1 Precision of collaborative patent search and various baselines

MAP NDCG P@10 P@50 P@100

ALL 0.0925 0.2385 0.0856 0.0348 0.0213

BM25 0.0729 0.1967 0.0705 0.0266 0.0168

LM 0.0823 0.2228 0.0806 0.0304 0.0195

LMIPC 0.0847 0.2264 0.0788 0.0318 0.0201

TF 0.0645 0.1831 0.0600 0.0243 0.0156

TFIDF 0.0821 0.2243 0.0813 0.0311 0.0197

UFT 0.0833 0.2230 0.0797 0.0313 0.0198

LMIPCNP 0.0851 0.2283 0.0798 0.0316 0.0199

QR 0.0913 0.2388 0.0877 0.0356 0.0217

CPAC 0.0982 0.2476 0.0919 0.0361 0.0219

CPACRegu 0.1023 0.2635 0.103 0.0388 0.0239

9 This figure shows the interpolated precision at a certain recall level, see further (Manning et al. 2008).
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6.1 Comparison with standard data fusion

In this section, by way of comparison, we examine an alternative approach to multiple

query patent search that does not use CF-based analysis. In this approach, we create

multiple query representations of each patent application as described above. Then we

submit these queries to a standard IR engine, combining the search results using con-

ventional data fusion algorithms (see Sect. 3). We wanted to know if we could outperform

CPAC using this simpler technique.

The first task was to determine which type of data fusion algorithm to use (i.e., supervised

or unsupervised). We evaluated 5 unsupervised methods and one supervised method (see

Tables 2, 3) using a subset of the CLEF-IP 2011 English query set (675 topics). We cal-

culated CombMNZ (an unsupervised method) by multiplying the sum of the scores for a

document by the number of lists that contained that document. To apply the supervised

technique (LAMBDAMERGE) we split the query set into two subsets (training and testing),

selecting gating features appropriate to our query representations (Sheldon et al. 2011).

Figure 3 compares the retrieval performance of the algorithms. CombSUM and

CombMNZ were the lowest scoring techniques. Interestingly, the supervised technique,

LAMBDAMERGE, was outperformed by two unsupervised methods (CombRSVNorm and

CombRSV). This unexpected result may be due to the diverse query representations used in

our study, which produced highly dissimilar result sets. This was a challenging environ-

ment for data fusion algorithms, one which clearly did not suit LAMBDAMERGE. Fig-

ures 4 and 5 report the results when we compared our CF-based technique to the

Fig. 2 Precision-Recall curves for the top performing systems

Table 2 A summary of six data
fusion methods

CombMNZ SUM(RSVi)*(# of nonzero (RSVi))

CombSUM SUM(RSVi)

CombRSV SUM(RSVi/MAXRSV)

CombRSVNorm SUM[(RSVi - MINRSV)/(MAXRSV - MINRSV)]

CORI As described in Callan et al. (1995)

LAMBDAMERGE As described in Sheldon et al. (2011)
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unsupervised data fusion algorithms (entire query set). CPAC and CPACRegu outper-

formed the top scoring fusion algorithm CombRSVNorm with statistically significant

results. This finding confirms our suspicions. Our CF-based technique produces results that

we cannot replicate with simple data fusion.

6.2 Baseline systems

In this section, we evaluate the performance of the baseline systems used in our experi-

ment. Overall, the best performing baseline was ALL (i.e., the entire pre-processed

Table 3 Recall of collaborative
patent search and various
baselines

R@10 R@50 R@100

ALL 0.1192 0.2374 0.2868

BM25 0.0990 0.1810 0.2267

LM 0.1128 0.2078 0.2608

LMIPC 0.1122 0.2169 0.2694

TF 0.0852 0.1676 0.2091

TFIDF 0.1122 0.2112 0.2647

UFT 0.1133 0.2114 0.2670

LMIPCNP 0.1153 0.2166 0.2694

QR 0.1209 0.2426 0.2926

CPAC 0.1292 0.2492 0.2978

CPACRegu 0.1383 0.2623 0.3014

Fig. 3 Comparison of supervised and unsupervised data fusion methods (using a subset of CLEF-IP 2011
query set)
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Description field). This finding is consistent with work published at CLEF 2010 and CLEF

2011. UFT also performed well, probably because it closely resembles ALL. Filtering out

the unit frequency terms from the Description field leaves most of the original terms intact.

A similar effect was observed in the QR run.

We found that TF produced the worst performance on the CLEF-IP test collections.

This result conflicts with previous work showing positive results on the USPTO corpus

(Xue and Croft 2009). These results are possibly due to the citation practices common to

that corpus. As expected, the effect of pseudo-relevance feedback on the top performing

baselines was negative (see Figs. 5, 6). The use of IPC information improved overall

performance (i.e., LMIPC scored better than LM). Consistent with Becks et al. (2011),

Fig. 4 Precision of collaborative patent search and unsupervised data fusion algorithms (entire query set)

Fig. 5 Recall of collaborative patent search and unsupervised data fusion algorithms (entire query set)
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adding phrases (LMIPCNP) led to a modest (i.e., not statistically significant) improvement

in retrieval effectiveness.

6.3 CF algorithms

We studied the performance of the different CF algorithms. The results are shown in

Fig. 7. The model-based CF algorithms (SVD and Weighted SlopeOne) produced mar-

ginally better results than the memory-based alternatives (User-based and Item-based).

Memory-based CF algorithms tend to perform poorly when the rating matrix is sparse.

Model-based algorithms are generally less sensitive. All of the CF algorithms produced

equivalent results. This supports our assertion that collaborative patent search is less

sensitive to the problem of matrix sparsity.

Fig. 6 The effect of PRF on the
top-performing baselines

Fig. 7 The effect of changing the CF algorithm
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6.4 Per-query analysis

We performed a per-query analysis comparing the results produced by ALL and CPAC-

Regu. We found that 61 % of all queries (824 out of 1,351) benefited from our refined,

multiple query representations technique. Only 18.7 % of queries (252 out of 1351) were

better off with a single query representations of the Description field.

6.5 Recall

In addition to the precision-based measurements described above, we evaluated our

algorithms using recall-based metrics. Given the context, this is quite fitting. Patent prior-

art search is a recall-oriented task wherein the primary focus is to retrieve relevant doc-

uments at early ranks. We found that CPAC and CPACRegu achieved better recall than the

baseline systems. These improvements were quite stable across all evaluation metrics (see

Fig. 8; Table 2). The high recall performance of our technique has an intuitive explanation.

Relevant documents are being crowd-sourced (i.e., ‘found’ by other query representations).

7 Conclusion and further work

In this paper, we have described a pseudo-collaborative approach to patent IR which

combines results lists from multiple query representations. We have also proposed an

iterative method for refining its performance. In a multi-stage evaluation using CLEF-IP

data, our experimental system delivered statistically significant improvements over state-

of-the-art baseline systems. In future work, we intend to explore the differences between IP

test collections. We also plan to evaluate the use of citation information alongside more

selective query generation techniques. Further scrutiny of data fusion algorithms, and their

application to our technique, is another obvious extension.

Fig. 8 Recall of collaborative patent search and various baselines
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