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Abstract A solid research path towards new information retrieval models is to further

develop the theory behind existing models. A profound understanding of these models is

therefore essential. In this paper, we revisit probability ranking principle (PRP)-based

models, probability of relevance (PR) models, and language models, finding conceptual

differences in their definition and interrelationships. The probabilistic model of the PRP

has not been explicitly defined previously, but doing so leads to the formulation of two

actual principles with different objectives. First, the belief probability ranking principle

(BPRP), which considers uncertain relevance between known documents and the current

query, and second, the popularity probability ranking principle (PPRP), which considers

the probability of relevance of documents among multiple queries with the same features.

Our analysis shows how some of the discussed PR models implement the BPRP or the

PPRP while others do not. However, for some models the parameter estimation is chal-

lenging. Finally, language models are often presented as related to PR models. However,

we find that language models differ from PR models in every aspect of a probabilistic

model and the effectiveness of language models cannot be explained by the PRP.

Keywords Probabilistic models � Probability of relevance � Probability ranking principle �
Language models

This paper is an extended version of Aly and Demeester (2011) with the following additional contributions:
(1) the finding that there are actually two distinct PRPs, (2) the investigation of three additional models from
the unified framework of PR models, and (3) a more elaborate discussion of related work.
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1 Introduction

One of the main goals of today’s research in Information Retrieval (IR) systems is to invent

ranking functions that order the documents of a collection by their likelihood of answering

a user’s information need. A solid way to define ranking functions is to propose a ranking

model that gives an intuition why a corresponding ranking function would answer the

users’ information needs effectively. For example, the vector space model proposes to rank

by the angle between the vector representation of a considered document and the con-

sidered query (Salton et al. 1975). However, the ranking models, like the vector space

model, do not give any guarantees on whether or not, and why, they would lead to strong

performance, for example a high precision. To overcome such limitations, the research

community introduces ranking principles, which show explicitly that ranking by a certain

criterion optimizes specific effectiveness measures. Hence, increasing the accuracy of a

ranking model that follows a ranking principle also improves its effectiveness.

For around four decades, ranking models have been formulated in a probabilistic way.

One of the main reasons for this trend is the Probability Ranking Principle (PRP) by

Robertson (1977) that provides a theoretical connection between ranking by the probability

of relevance and several evaluation measures. However, the derivation of effective ranking

functions from the PRP has proven to be difficult. Some researchers refer to this as the

theory effectiveness gap, see for example Lv (2012). A recent trend is to abandon formal

ranking models and to argue about ranking functions in an axiomatic way, without

explicitly relating them to a ranking model, see for example (Fang and Zhai 2005). These

axioms, however, do not give any performance guarantees. In this paper, we take an

alternative approach and investigate whether the connections between several popular

ranking models are fully understood in the literature.1 We find that the understanding is not

always complete. We clarify a number of issues during the derivation of these ranking

models. The improved understanding that comes with this clarification can help researchers

to address the theory effectiveness gap in the future.

As the PRP is one of the most frequently used ranking principles, it is important to

understand its definition and properties. We show that the understanding of the PRP is

currently incomplete by finding two distinct ranking principles based on different proba-

bilities of relevance that optimize different effectiveness measures: one is the principle for

different beliefs of a system about relevance of documents to a particular query and the

other principle is based on the popularity of documents to different queries with the same

representation. We clarify the differences between these principles and discuss the influ-

ence of these findings on well-known probabilistic ranking models.

In a following step we investigate in how far two popular types of probability-based

ranking models are connected to the PRP. First, we revisit the four classes of ranking

models described in the unified framework of Probability of Relevance (PR) models by

Robertson et al. (1982), commonly assumed to follow the PRP because they all calculate a

specific probability of relevance. But now that there are two principles, we need to examine

which follows which. We find that not all PR models, even popular ones, can be mapped

onto one of the PRP’s. As the second type of models, we consider four variations of

language models: the query likelihood model (Ponte and Croft 1998), the language model

by Hiemstra (2001) (referred to as Hiemstra’s model), the risk-minimization model (Zhai

and Lafferty 2006), and the relevance model (Lavrenko and Croft 2003). These models are

commonly thought to implement the PRP by being comparable to PR models. However, a

1 We provide a formal definition of the term connection in Appendix 2.
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careful analysis of the PR models and language models reveals that they are fundamentally

different. Therefore, although we cannot prove the absence of a connection between the

two models, we propose on the basis of these differences that a connection does not exist.

This paper adds to the series of works that discuss the connection between PR models

and language models. The conclusions of these works differ significantly: the works by

Lafferty and Zhai (2003), Luk (2008) and Zhai (2008) propose a connection between PR

models and language models exists, while the work by Spärck-Jones et al. (2003) and

Robertson (2005) state the opposite. We believe the difference in these conclusions

originates from the fact that these works make slightly different assumptions about the

discussed models. One possible reason why these differences have gone unnoticed so far is

that existing literature focuses on the events and their probabilities and other aspects of

probability theory are assumed implicitly. In order to make progress in this discussion, this

paper considers all elements of the investigated probabilistic ranking models, i.e., the

underlying process, the sample space, event spaces, and the probability measure.

In summary, this paper makes the following contributions.

1. We find that the original PRP should be seen as two distinct ranking principles.

2. We identify connections between the PR models and these principles.

3. We find that language models are too different from the probabilistic models

considered by these principles or PR models to be connected with them.

We would like to point out to the reader that we do not invent new models in this paper

but investigate the connection of the existing models mentioned above. We assume that

these models are IR applications of the notion of probabilistic models in probability theory.

As this paper makes heavy use of the basic elements of probabilistic models, which are

seldom used to this extent in IR literature, we provide their definitions in Appendix 1 for

the reader’s reference.

This paper is structured as follows: Section 2 clarifies basic assumptions about the modeled

ad-hoc retrieval task, and introduces the notations used in this paper. Section 3 discusses possible

probabilistic models for the PRP, Section 4 defines the basic probabilistic aspects of PR models,

and Sect. 5 discusses language models and their differences to PR models. Section 6 puts this

paper in context with related work, and finally, Sect. 7 concludes the paper.

2 The ad-hoc retrieval process: assumptions and notation

When comparing models it is important to clarify the real-world process they consider. In this

paper, we consider ad-hoc retrieval, which is also considered, for example, by many tasks of the

TREC evaluation workshop (Voorhees et al. 2005). In ad-hoc retrieval, a user formulates each

information need (a topic in the TREC terminology) in a single query and submits this query to a

retrieval system. The retrieval system returns a ranked list of documents that the user is assumed

to read starting from the top. Documents are either relevant or non-relevant to the user’s

information need. Additionally, queries and documents have properties. In this paper, we focus

on textual properties, although there are also other properties, for example the query submission

time or the document genre. Note that some related work defines the term ’query’ differently. In

this paper, a query should not be confounded with its properties, such as the query’s terms.

Furthermore, a query, which we defined as a single submission to a search engine, is different to

the set of submissions with the same text. The reader may think of a query in our definition as an

entry in a query log. The query’s terms are part of the log entry. Similar relationships exist with

documents and their text.
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Before turning to the notation for the ad-hoc retrieval process, we state the principles

used for the notation throughout this paper. We denote sets in uppercase calligraphic

letters, set elements and values in lower case letters, vectors in boldface, and functions and

random variables in upper case letters.

Table 1 gives an overview of most of the symbols used in this paper, some of which are

only introduced in the indicated sections. We denote queries and documents by lower case

q’s and d’s respectively. The considered set of queries is denoted by Q and the considered

set of documents (the collection) by D: Lower case t’s are used for terms, and T indicates

the considered set of terms (the vocabulary). The terms of a query are modeled as a vector,

denoted as TxðqÞ ¼ ðTx1ðqÞ; . . .; TxLðq̂ÞðqÞÞ where Lðq̂Þ is the query length. Finally, we

define the relevance random variable between a query q and document d as:

Rðq; dÞ :¼ 1 if document d is relevant to query q;
0 otherwise:

�
ð1Þ

Note that it would be clearer to define relevance based on information needs rather than on

queries. However, because information needs and queries have a one-to-one mapping in

the ad-hoc retrieval scenario (there is exactly one need per query), we adapt to the common

practice and define relevance based on queries. Note that the ad-hoc retrieval scenario

always considers a single user per query, even if multiple TREC assessors have to agree on

the definition of the relevance variable R.

3 Probability of relevance ranking principles for IR

A ranking principle states a criterion and shows that ranking by this criterion achieves an

objective, usually the maximization of an objective function. Robertson (1977) proposes

the probability ranking principle of IR (PRP) that states documents should be ranked by

their probability of relevance. He provides a mathematical proof that ranking documents

by their probability of relevance maximizes several objective functions that are defined

further on. However, the paper also gives in the appendix an example where ranking by the

probability of relevance does not maximize the user’s utility of a ranking, which was one

of the objective functions mentioned in the main text. Therefore, if the example would

apply to the assumption made in the PRP, the proof would be contradicted, hence jeop-

ardizing the mathematical justification of many existing ranking models that are declared

to follow the PRP. To our knowledge, whether or not the example contradicts the

assumptions of the PRP, still needs to be sorted out, see Cooper (1994). The investigation

of this matter requires a complete definition of the probabilistic model assumed by the

PRP, which is only partially provided in the original work of Robertson. In fact, we

propose for the main text and the example in the appendix of the publication by Robertson

consider two different probabilistic models, which correspond to the maximization of

different objective functions. The example therefore appears to be not contradictory but

rather makes use of another ranking principle.

3.1 Degrees of belief in the PRP

In the original PRP paper, Robertson (1977) shows that ranking documents by their

probability of relevance maximizes three objective functions for the issuer of the current

query: the expected recall, the expected precision, and the expected utility. However, the
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original PRP does not explicitly state on which model the probability of relevance for each

document is defined. In this section, we define a probabilistic model based on Bayesian

beliefs on which the PRP could be based, and refer to the corresponding principle as the

belief probability ranking principle (BPRP). Note that Thomas Bayes made several

Table 1 Overview of the notation used in this paper

Symbol Meaning Mathematical definition

Basic IR objects Sect. 2

q=q̂ Query (q̂ is the current query)

Q Considered queries Q :¼ fq1; . . .; qmg
d=d̂ Document (d̂ is the current document)

D Considered documents (collection) D :¼ fd1; . . .; djDjg
d A specific ranking of documents

t Term

T Term space (vocabulary) T :¼ ft1; . . .; tjT jg
L Query length L : Q ! IN

T xi ith query term Txi : Q ! T
R Relevance R : Q�D ! f0; 1g

BPRP and PPRP Sect. 3

Uq̂ Sample space for the BPRP for query q̂ Uq̂ :¼ f0; 1g � . . .� f0; 1gðjDj timesÞ
R̂q̂;di

Relevance of ith component in Uq̂ R̂q̂;di
: U! f0; 1g

Un
q̂;d Utility of reading d for q̂ until rank n Un

q̂;d : U! IR

Precn
q̂;d Precision at n of ranking d for q̂ Precn

q̂;dð/ 2 UÞ ! ½0; 1�
Recn

q̂;d Recall at n of ranking d for q̂ Recn
q̂;d : U! ½0; 1�

Q̂ Sample space for the PPRP Q̂ :¼ fq 2 QjTxðqÞ ¼ Txðq̂Þg
Ud Utility of document d in the PPRP Ud : Q̂ ! IR

Ud
n Utility of ranking d until rank n Un

d : Q̂ ! IR

PR models Sect. 4

X Query-document pair sample space X ¼ Q�Dþ

Q F Query feature depends on model instance

Q Trivial query feature Q : X! Q
D F Document feature depends on model instance

D Trivial document feature D : D ! D
Language models Sect. 5

T n Drawn term sequence (sample space) T n ¼ T � . . .� T ðn timesÞ
Ti ith term in a sequence T : T n ! T
H Sample space of Hiemstra’s model H :¼ T Lðq̂Þ � D
D0 Document a user has in mind D0 : H! D
RM Sample space of the relevance model RM :¼ fðd; tÞ 2 D � T 1jRðq̂; dÞ ¼ 1g
D00 Drawn, relevant document D00 : RM! D
R0 Relevant document R0 : RM! f0; 1g
h Distribution parameters h : D ! ½0; 1�

Probabilistic models Appendix 1

PE Probability measure of model E.
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contributions to probability theory, which are sometimes used ambiguously. In Appendix 1

we contrast the contribution of Bayesian belief with his other contributions to clarify how

we use this term.

In the following, we show how the Bayesian beliefs are used to maximize the objective

functions mentioned in the original PRP paper. Note that, although the mathematical

development here is similar to the one of the original PRP paper, we provide the necessary

proofs using a probabilistic model over all documents, whereas the original paper only uses

a comparison between any two documents.

The probabilistic model of the BPRP considers for each document two states: relevant

and non-relevant to the current query. Therefore, the sample space of the BPRP consists of

all the possible relevance configurations, the set of all possible relevance states of the

documents in the collection to the query q̂:

Uq̂ :¼ f0; 1g � . . .� f0; 1g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jDjtimes

ð2Þ

where each component of Uq̂ corresponds to an arbitrary but fixed document. For a par-

ticular relevance configuration / 2 Uq̂, we define the relevance state of document d as

/d 2 f0; 1g (using the fixed position of d in Uq̂), and we define the (trivial) relevance

random variable of d as R̂q̂;dð/ 2 Uq̂Þ :¼ /d. Note that the random variable R̂q̂;d differs

from the relevance random variable R defined in Eq. (1): R̂q̂;d states the relevance of a

given query q̂ and document d in a (unknown) relevance configuration / 2 Uq̂ while R

states the relevance of any query and document in the collection. The probability

PUðR̂q̂;d ¼ 1Þ is the probabilistic relevance, our degree of belief that document d is relevant

to query q̂:
In the following, we explicitly show how the probabilities of relevance are used to

maximize the objective functions of the BPRP, using the example of the expected utility.

For the current query q̂ and a ranking d, we define the utility at rank n as a function of the

relevance random variables:

Un
q̂;dð/ 2 UÞ :¼

Xn

j¼1

UðR̂q̂;dj
ð/ÞÞ ð3Þ

where n is the rank at which the user stops reading, d is a ranking of the collection D; dj is

the jth document in the ranking d (note that dj is usually not the jth component in U), and

Uðr 2 f0; 1gÞ is a utility function that assumes that the user issuing q̂ has utility ur from a

relevant document (r = 1) and a utility un from a non-relevant document (r = 0). Using

the basic laws of expectations, the expected utility for a user who reads the top-n docu-

ments of a particular ranking d is:

E½Un
q̂;d� ¼

Xn

j¼1

E½UðR̂q̂;dj
Þ�

¼
Xn

j¼1

ur PUðR̂q̂;dj
¼ 1Þ þ unPUðR̂q̂;dj

¼ 0Þ
� � ð4Þ

where all variables are defined as above.

Based on the probabilistic model above, it can be seen that the BPRP maximizes the

expected utility for the current query because the ranking
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ðd1; . . .; djDjÞ with PUðR̂q̂;d1
¼ 1Þ� . . .�PUðR̂q̂;djDj ¼ 1Þ

satisfies

ðd1; . . .; djDjÞ ¼ argmax
d

E½Un
q̂;d�

where d iterates over all possible rankings of the documents in the collection. In a similar

manner it can be shown that the BPRP maximizes the expectations of the precision and

recall of the user issuing the current query reading until a rank n, which can be defined as

follows:

Precn
q̂;dð/ 2 UÞ :¼ 1

n

Xn

j¼1

R̂q̂;dj
ð/Þ ð5Þ

Recn
q̂;dð/ 2 UÞ :¼ 1

jRj
Xn

j¼1

R̂q̂;dj
ð/Þ ð6Þ

Therefore, the BPRP states that documents should be ranked by PUðR̂q̂;d ¼ 1Þ, and ranking

models that implement the BPRP have to define this probability for each document d 2 D:

3.2 Popularity in the PRP

We propose that the example in the appendix of the original PRP paper uses a different

probabilistic model than the BPRP. The model is related to the model used by Maron and

Kuhns (1960) that ranks documents by the probability of a document being relevant among

multiple queries with the same query terms. Note that this probability is different from the

one of the BPRP, which considers only a single query. Because the used probabilities of

relevance can be seen as popularity measures of documents for queries with the same query

terms, we refer to this ranking principle as the Popularity-based Probability Ranking

Principle (PPRP). In the following, we show that the PPRP maximizes the expected utility

of a search engine serving a random query.

In the PPRP, we consider the sample space to be the set of queries that share a number

of properties with the current query. For the purpose of this definition, we consider the set

of queries that have the same query terms as the current query:

Q̂ :¼ fq 2 QjTxðqÞ ¼ Txðq̂Þg;

where Txðq̂Þ are the query terms of the current query. Note that this definition can be

extended to other properties than the equality of query terms, as done in Sect. 4. It is also

important to see that every query, issued by a user, is a separate element of Q, even for

different queries that have exactly the same intent. Based on the defined sample space, we

define the relevance random variable of a document d 2 D for a query q:

Rdðq 2 Q̂Þ :¼ Rðq; dÞ ð7Þ

where R is defined in Eq. (1). The probability of relevance, which is the probability that

document d is relevant to a random query in Q̂, is defined as:

PQ̂ðRd ¼ 1Þ :¼ jfq 2 Q̂jRdðqÞ ¼ 1gj=jQ̂j
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Under the assumption that all users have the same constant utility for reading a relevant

document, respectively, a non-relevant document, we can define the utility random variable

for a document d 2 D with respect to a query q based on its relevance:

Udðq 2 Q̂Þ :¼ uþ if RdðqÞ ¼ 1;
u� otherwise:

�
ð8Þ

where u? is the utility for reading a relevant document and u- is the utility of reading a

non-relevant document, with u? [ u-. Based on the utility of a single document, we define

the utility of reading the first n documents of a ranking d:

Un
dðq 2 Q̂Þ :¼

Xn

j¼1

Udj
ðqÞ ð9Þ

where Udj
is the utility of the jth document in ranking d. It is important to note that the

utility Ud
n is different from the utility Uq̂n;d considered in the BPRP defined in Eq. (3). The

PPRP utility Ud
n considers a fixed ranking d and yields the utility for any query q, which is

defined on the fixed relevance states of the documents in d to q, while the BPRP utility

Uq̂n;d considers a fixed ranking d and query q̂ and states the utility for any relevance

configuration between the two, with the goal to model the uncertainty which of the con-

figurations is reality (in particular, the relevance of a given document is uncertain). Using

the basic laws of expectations, the expected utility for a random query q 2 Q̂ whose issuer

reads n documents of the ranking d, becomes:

E½Un
d� ¼

Xn

j¼1

E½Udj
�

¼
Xn

j¼1

uþ PQ̂ðRdj
¼ 1Þ þ u� PQ̂ðRdj

¼ 0Þ
ð10Þ

Based on the probabilistic model above, the PPRP maximizes the expected utility of a

random query with the same query terms, because the ranking

ðd1; . . .; djDjÞ with PQ̂ðRd1
¼ 1Þ� . . .�PQ̂ðRdjDj ¼ 1ÞÞ

satisfies

ðd1; . . .; djDjÞ ¼ argmax
d

E½Un
d�

where d iterates over all possible rankings of the documents in the collection. Therefore, the PPRP

states that documents should be ranked by the probability P(Rd = 1), which refers to the event

that document d is relevant of an unknown query in Q. Note that this probability is different from

the probability PPðRBq̂;d ¼ 1Þ used in the BPRP, which refers to the uncertain relevance of a

document d to the known query q̂:Ranking models that want to implement this the PPRP and

maximize the expected utility for a search engine serving a user with results for a random

query from Q̂, have to define the probabilities PQ̂ðRd ¼ 1Þ for each document d 2 D:

3.3 Discussion

In this section, we investigated probabilistic models on which the PRP could be based. We

found that there are actually two distinct ranking principles, depending on the considered
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probabilistic model: the BPRP that ranks a document according to our belief of relevance

for a single query, and the PPRP that ranks a document according to the probability that it

is relevant among multiple queries with the same query terms. This new perspective on the

PRP has the following impact on IR theory.

1. The rankings produced by models that implement the BPRP or the PPRP can be

substantially different. To clarify these differences, Figure 1 depicts an example query-

document matrix, see also Robertson (2005), of five queries and six documents. Let us

assume that the queries have the same representation (e.g., the same query terms), but

apart from that, they are different. For example, they were issued for distinct information

needs. The shading of each cell denotes the relevance between a query and a document.

Based on their relevance pattern, we divide the documents into two groups: d1, d2, d3

and d4, d5, d6. Note that we intentionally chose this extreme relevance pattern to

demonstrate the main differences between the two principles. A ranking model

following the PPRP ranks the documents d1, d2, d3 above the documents d4, d5, d6

because they are relevant to more queries, in this case three out of five. A ranking

according to the BPRP, on the other hand, depends on the degree of belief that the search

engine has about the relevance of each document to each individual query. For example,

a search engine could use a different document representation for each query, which

leads to different degrees of belief according to a BPRP-based model. Figure 1 shows

two possible degrees of belief settings of the six documents for the two queries q1 and

q5.2 Therefore, the similarity of the results according to the BPRP and the PRPR depend

on the query representation used for the PPRP and the relevance pattern for each query,

and the model that generates the degrees of belief used for the BPRP.

2. The probabilities of relevance PUðR̂q̂;d ¼ 1Þ and PQ̂ðRd ¼ 1Þ of the respective

principle have to be estimated differently. However, this has not been accounted for in

the literature. In the next section, we will investigate models that consider random

draws of query-document pairs to estimate these probabilities.

3. Principles stated in recent work build upon the PRP by including the relevance

dependencies between documents, see for example (Wang and Zhu 2009; Chen and

Karger 2006). However, these principles do not explicitly state on which PRP they are

based, although this clearly affects their interpretation and estimation methods.

As a consequence of the discovery that there are two ranking principles, the relationship

between each of the ranking models that was originally motivated by the PRP and the two

alternative principles have to be analyzed. We provide this analysis for probability of

relevance models and language models in the following section and in Sect. 5 respectively.

4 Probability of relevance models

Robertson et al. (1982) propose a unified framework of probability of relevance (PR) models,

which are generally believed to implement the original PRP. However, Robertson et al.

consider draws of random query-document pairs in their framework, while the two PRPs

consider given documents, see Sect. 3. The argumentation of how the differences of those

models can be formally overcome is missing in literature. In this section, we investigate under

which conditions PR models can be used to define the probabilities used by the respective PRP.

2 We discuss possible ways to determine the degrees of belief of relevance in the following Sect. 4.
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4.1 The unified framework of PR models

Before investigating the relation of the PRP and PR models, we define the four basic

probabilistic aspects underlying the unified framework of PR models using a notation

based on random variables. We do not use the event-based notation by Robertson et al.

(1982), which considers events such as ‘‘the document is similar to the current document’’,

because we believe this notation has led to confusion in the comparison of PR models to

language models. The first aspect is the considered process, which we already identified to

be a drawing of random query-document pairs as stated by Robertson et al.. In the fol-

lowing, we define the remaining three basic probabilistic aspects of PR models.

Sample Space Robertson et al. (1982) do not mention the considered sample space

explicitly and refer to the Cartesian product of queries and all documents3, X :¼ Q�Dþ,

as the considered event space. However, these events are ‘‘elementary’’ events, which we

call samples in this paper. This makes X the sample space of the unified framework. Note

that because X is a set of pairs, it cannot be an event space, which is a set of sets.

Event Space The unified framework consists of four models (Models 0-3) that differ in

the way that they partition the event space. The partitioning is achieved by features, which

are sometimes also referred to as representations or descriptors. Strictly speaking, Model

0-3 are meta models because the unified framework does not explicitly define the con-

sidered features. For the discussions below, we give the following abstract definition of

features:

QF :¼ ðQF1; . . .;QFmÞ ð11Þ

DF :¼ ðDF1; . . .;DFnÞ ð12Þ

where QFi is the ith query feature (a function of the query q of a query-document pair

ðq; dÞ 2 X), and QF is a vector of m query features. DFi is a document feature (a function of

the document d of a query-document pair ðq; dÞ 2 X), and DF is the vector of n document

features4. We refer to QFðqÞ as the query feature value of feature QF for query q, and

Fig. 1 Comparison of the BPRP and the PPRP based on an example of five queries with the same

representation Q̂ ¼ fq1; . . .; q5g and a collection of six documentsD ¼ fd1; . . .; d6g: The probabilities in the
rows for q1 and q5 show two possible sets of beliefs in the relevance of the individual documents for the
respective query

3 The notion of ‘‘all documents’’ has not been explicitly defined in the unified framework, but could, e.g., be
interpreted as ‘‘containing the current collection, but extended with other documents that could have
belonged to it’’. An example will be given further on.
4 In order to keep the notation lean, we denote query features and document features as depending on
queries and documents respectively, which is also their intuitive meaning. However, we define them on
query-document pairs, to accommodate for the mathematical formalism of the unified framework.
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DFðdÞ as the document feature value of D F for document d. Note that there are also

features that are defined on queries and documents, for example, the fact that a document

was clicked in response to a query. However, following the unified framework, we do not

consider such query-document features. For later use, we define two concrete features: let

Qððq; dÞ 2 XÞ :¼ q be the query of a query document pair, and let Dððq; dÞ 2 XÞ :¼ d be

the document of the query-document pair. We refer to these features as the trivial query

feature and the trivial document feature, respectively. Note that vectors are only one out of

multiple mathematical structures to denote features, which we chose to conform to current

works in IR.

Additionally to the query and document features, PR models consider the relevance of

query-document pairs as a random variable defined in Eq. (1). The combination of query

and document feature values and relevance values, induces the event space of PR models.

For example, the set fðq; dÞ 2 XjRðq; dÞ ¼ 1g is the relevance event, and the set fðq; dÞ 2
XjDFðdÞ ¼ DFðd̂Þg is the event that a query-document pair has the same document features

as the current document.

Probability Measure The unified framework considers a query-document pair ðq̂; d̂Þ and

uses the conditional probability that any (q, d) pair with the same query features and

document features, is relevant. We define this probability measure from a Frequentist’s

perspective, similar to Robertson et al. (1982):

PXðR jQF ¼ QFðq̂Þ;DF ¼ DFðd̂ÞÞ :

¼ jfðq; dÞ 2 X jRðq; dÞ ¼ 1;QFðqÞ ¼ QFðq̂Þ;DFðdÞ ¼ DFðd̂Þgj
jfðq; dÞ 2 X jQFðqÞ ¼ QFðq̂Þ;DFðdÞ ¼ DFðd̂Þgj

ð13Þ

where q̂ is the current query, and d̂ is the current document. Note that Eq. (13) is a

definition of a probability measure, which in reality might be estimated using sophisticated

machine learning techniques. Equation 13 makes the difference between the BPRP and

PRPR on the one hand, and PR models on the other hand apparent: while the BPRP and

PPRP consider the probabilities PUðR̂q̂;d ¼ 1Þ and PQ̂ðRd ¼ 1Þ for a particular document d,

PR models consider the probability of relevance of random query-document pairs given

certain feature values, see Eq. (13).

4.2 PR models and their connection to the PRP

Based on the definition of the basic probabilistic aspects of the unified framework, this

section investigates in how far the probability calculated by each of the models can be used

in the PRPs, introduced in Sect. 3. For instructive reasons, we consider the models not in

their numerical order.

4.2.1 Model 2

Model 2 ranks the document d̂ for the query q̂ by the probability

PXðRjQ ¼ q̂;DF ¼ DFðd̂ÞÞ:Therefore, Model 2 considers the relevance between the current

query and all documents with the same feature values as the current document. If we

assume that the only knowledge we have about documents are the features DF; documents

with the same feature values are indistinguishable. Under this assumption, it is reasonable

to define the probabilistic relevance for document d of the BPRP as the probability of

relevance calculated by Model 2:
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PUðR̂q̂;d̂ ¼ 1Þ :¼ PXðRjQ ¼ q̂;DF ¼ DFðd̂ÞÞ ð14Þ

As a result, instances of Model 2 produce a ranking motivated by the BPRP. This connects

the BPRP with Model 2. Note that Fuhr (1992) discusses the influence of the chosen

document features DF on the probability of relevance, PXðRjQ ¼ q̂;DF ¼ DFðd̂ÞÞ: How-

ever, the choice of DF only influences our certainty about the relevance of query-document

pairs—the more discriminative DF, the more certain we are about the relevance of a pair—

but did not lead to the discovery of the difference between the BPRP and Model 2.

As an illustration that the assumption on which Eq. (14) is based does not always hold,

consider the following issue: The probability measure PX is defined on a sample space

involving the notion of all documents Dþ: The more the feature distribution in Dþ differs

from the distribution in collection D, the more unrealistic the assumption in Eq. (14)

becomes. In other words, the considered documents Dþ should be created in such a way

that the current collection D is a representative sample. For example, if we add to a

considered collection of web pages D a collection of news articles to form Dþ, the

appearance of query terms (the features) better differentiates between relevant and non-

relevant documents because journalists have a clearer language usage. However, the

probability measure PX in Eq. (14), based on Dþ, no longer necessarily reflects our belief

of the relevance of documents in D: Therefore, maximizing the expected utility, which is

based on these beliefs, is in this case not a good objective.

Furthermore, because Model 2 considers only the current query, it is unsuitable for the

PPPR, which considers multiple queries.

4.2.2 Model 1

Model 1 ranks the document d̂ to query q̂ by the probability PXðR jQF ¼ QFðq̂Þ;D ¼ d̂Þ: In

other words, Model 1 considers for each document the probability of relevance of query-

document pairs where the queries have the same query feature values as the current query,

and the document is the current document. Therefore, on the one hand, the probability of

relevance calculated by Model 1 is not necessarily suitable to express the probabilistic

relevance in the BPRP, which only considers the current query.5 On the other hand, the

probability of relevance calculated by Model 1 can be used in the PPRP by assuming the

following equality:

PQ̂ðRd̂ ¼ 1Þ ¼ PXðR jQF ¼ QFðq̂Þ;D ¼ d̂Þ

where PQ̂ðRd ¼ 1Þ is the probability of relevance of document d considered by the PPRP

considering the query set Q̂ :¼ fq 2 QjQF ¼ QFðq̂Þg: This definition effectively connects

Model 1 and the PPRP.

In Model 2, the choice of documents considered as ‘‘all documents’’ Dþ limited the

adequacy of the connection between probabilities calculated in the model and the ones of

the BPRP. The situation for Model 1 is comparable, but now the choice of queries con-

sidered as ‘‘all queries’’ Q limits the adequacy of the connection between the model and

the PPRP. If the queries in Q do not reflect the current distribution of information needs,

the maximization of the expected utility of the PPRP, defined by the probabilities

PXðR jQF ¼ QFðq̂Þ;D ¼ d̂Þ is not a good ranking objective.

5 Although we are free to choose our Bayesian degree of belief, it depends on the considered query if Model
1’s probability of relevance is a good measure in the BPRP.
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Note that apart from the interpretation of the probability measure of Model 1 for the

PPRP, it can also be used for the BPRP, by defining the following new document feature

for the current query

POðd 2 DÞ :¼ PXðR jQF ¼ QFðq̂Þ;D ¼ dÞ

where PO is a document feature expressing the popularity of a document among queries

with the same query feature values. We can use this document feature in the probability of

relevance measure from Model 2, PXðRjQ ¼ q̂;PO ¼ POðd̂ÞÞ, to implement the BPRP. If

we consider this measure as a function of PO(d), its shape will depend on the considered

query. For example, for many queries the probability of relevance of Model 2 will increase

with the popularity PO. However, for other queries popular documents with a high PO

might have a lower probability of relevance in Model 2. For example, this might hold for

queries posted by researchers, who are sometimes not interested in popular documents.

4.2.3 Model 3

Model 3 ranks the document d̂ for the query q̂ by the probability PXðRjQ ¼ q̂;D ¼ d̂Þ,
where Q and D are the previously defined trivial query and document features. Model 3 is a

special case of Model 2 that uses the trivial document feature instead of the general

document features DF, and analogously it is a special case of Model 1. Therefore, in

principle Model 3 can be used to implement both the BPRP and the PPRP. However, we

find that the consideration of Model 3 and hence its use in the BPRP or PPRP is only of

academic nature. To see this, we expand the Model’s probability of relevance by the

definition of any conditional probability:

PXðR ¼ 1jQ ¼ d̂;D ¼ d̂Þ ¼ PXðfðq; dÞ 2 XjRðq; dÞ ¼ 1g \ fðq; dÞ 2 Xjq ¼ q̂; d ¼ d̂gÞ
PXðfðq; dÞ 2 Xjq ¼ q̂; d ¼ d̂gÞ

¼
PXðfðq̂;d̂ÞgÞ
PXðfðq̂;d̂ÞgÞ

if Rðq̂; d̂Þ ¼ 1;

PXðfgÞ
PXðfðq̂;d̂ÞgÞ

otherwise:

8<
:

We can see that, for any probability measure PX that maps the empty event {} to zero

probability, this probability can only take two values: one, if document d̂ is relevant to

query q̂, and zero otherwise. Therefore, ranking by the probability of relevance of Model 3

would solve the ad-hoc retrieval task (we can tell the relevance of each document to each

query). However, we propose that it seems unlikely that one can ever find a method to

accurately estimate a probability measure for the mentioned events.

4.2.4 Model 0

Model 0 ranks the document d̂ to query q̂ by the probability PXðRjQF ¼ QFðq̂Þ;DF ¼
DFðd̂ÞÞ: Therefore, Model 0 considers for each document the probability of relevance of

multiple query-document pairs with equal feature values. As a result, Model 0 considers

multiple queries in contrast to Model 2, which only considers the current query. Fur-

thermore, Model 0 considers multiple documents in contrast to Model 1, which considers

only a single document for multiple queries. Therefore, Model 0 cannot be used in the
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BPRP, which considers a single query, or the PPRP, which considers each document in

multiple queries.

4.3 Discussion

In this section, we investigated the four basic probabilistic aspects of the unified framework

of PR models (Models 0-3). In the following, we discuss the possible connections of PR

models and the BPRP or the PPRP:

1. We found that the probabilities calculated by Model 2 and Model 3 can be used

for the BPRP. However, we found that Model 3 is only of academic interest

because it requires knowledge of the relevance of the currently considered query-

document pair. Furthermore, because Model 2 is only defined on the current query,

there is often no, or only limited, training data available to estimate the model’s

parameters.

2. Model 1 considers multiple queries with the same query feature values for one

particular document, and the calculated probability of relevance can be used for the

PPRP.

3. Current search approaches use relevance examples from seen query-document pairs

and therefore rank similar to Model 0. These approaches often produces strong

performance, see for example the literature about learning to rank Liu (2009).

However, because Model 0 cannot be used to implement the BPRP or the PPRP,

these principles cannot explain the strong performance of these approaches.

Therefore, if the development of these approaches should be guided by a ranking

principle there are the following two alternatives: first, the underlying Model 0 must

be shown to implement another, possibly new, ranking principle, or second, search

approaches have to find ways to estimate parameters of different models using past

queries.

4. The features of documents are in practice often unique in the collection. If we consider

only the current collection ðDþ ¼ DÞ, Model 2 is equivalent to Model 3. Note,

however, that instances of Model 2 usually consider a larger set of documents that

have a similar distribution. If we consider Model 2 as a classifier, see for example

Lewis (1998), this assumption is the same as in many works in machine learning

(Bishop 2006).

5 Language models

In this section, we compare PR models presented in Sect. 4 to the following four popular

language models: the query likelihood model by Ponte and Croft (1998), the language

model by Hiemstra (2001), which we refer to as Hiemstra’s model, the risk minimization

model by Zhai and Lafferty (2006), and the relevance model by Lavrenko and Croft

(2003). Note that we focus here on the probabilistic aspects of the mentioned models

because their more conceptual aspects are discussed in other work, for example the one

mentioned above. Before analyzing the connection between PR models and these men-

tioned above models, we define the basic probabilistic aspects, which are common to all of

them.
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5.1 Common elements in language models

The four language models discussed in this paper have in common that they consider term

draws. For the definition of the individual models, we define the (in some cases partial)

sample space of drawing terms and the random variables expressing the outcome of this

process as follows:

T n :¼ T � . . .� T
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n times

ð15Þ

Tiðt 2 T nÞ :¼ the ith drawn term in t ð16Þ

Tðt 2 T nÞ :¼ t ð17Þ

where T n is the sample space of drawing n terms (the set of all possible term combinations

resulting from n term draws), the random variable Ti states the ith drawn term, and

T denotes a sequence of drawn terms (a vector of random variables).

Because it will be used in the comparison between PR models and language models,

please note that there is a difference between the random variable for the ith query term,

Txi, see Sect. 2, which is defined on queries, and the ith drawn term, Ti, which is defined on

the drawn text. For example, given the current query q̂, its ith term Txiðq̂Þ is a fixed value,

whereas Ti denotes a random term.

Note that Roelleke and Wang (2006) consider a slightly different probabilistic model for

language models, which is based on a sample space of text locations, where locations

contain terms. We use term sequences instead of locations as the sample space of language

models, because the simpler notation suffices for our needs. Nevertheless, it can be shown

that using text locations as the sample space of language models does not change the

findings in this paper.

For the probability measure in language models, we limit our discussion to unigram

models, which are most frequently used in IR. In unigram models, we assume terms are

independently drawn from a multinomial distribution. The probability measure of drawing

a sequence of terms is hence:

PdðT ¼ tÞ :¼
YLðq̂Þ
i¼1

PdðTi ¼ tiÞ ¼
YLðq̂Þ
i¼1

hiðdÞ ð18Þ

where t is the considered term sequence, Lðq̂Þ is the length of the sequence, ti is the ith

term, Pd(Ti = ti) is the probability of drawing the ith term from document d, and hi(d) is

the parameter of the multinomial distribution for term ti in the language model of docu-

ment d.

Note that the language model parameters hðdÞ of document d are usually unknown and

estimated from the document text. For this estimation, some literature, see for example

Zhai and Lafferty (2004), uses Bayesian estimators that are also based on a probabilistic

model. Here, the model parameters are usually included in the notation: PdðT ¼ tjhðdÞÞ. In

this paper, we focus on probabilistic models for ranking, and assume that we can determine

the language model parameters with sufficient precision. Therefore, we exclude the

parameter estimation from our discussion, and use the parameters in the probability

notation.
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5.2 Individual language models

In order to be able to compare language models to PR models, we define the basic

probabilistic aspects of the four language models mentioned above, using the common

definitions from Sect. 5.1.

5.2.1 Query likelihood model

Ponte and Croft (1998) propose the query likelihood model that considers for each doc-

ument a hypothetical process in which Lðq̂Þ terms are drawn. It ranks the documents by the

likelihood, PdðT ¼ Txðq̂ÞÞ, of the event that the query terms were drawn from their lan-

guage model.6 The event space hence consists of all possible term sequences.

5.2.2 Hiemstra’s model

Hiemstra (2001) proposes a language model that considers a process of generating the

document that the user has in mind, and the terms the user draws using the document’s

language model. Using the common definitions of language models in Sect. 5.1, we define

the following random variables:

H :¼T Lðq̂Þ � D
D0ððt; dÞ 2 HÞ :¼the document d; which the user has in mind

whereH is the model’s sample space, and D0 states the document the user has in mind. The

event space is defined by the values of the random variables D0 and T, see Eq. (17).

Hiemstra’s model ranks a document d̂ by the probability that the user had this document in

mind, given that the query terms were observed: PHðD0 ¼ d̂jT ¼ Txðq̂ÞÞ. Note that in

practice this probability is ‘‘reversed’’ using Bayes’ law, leaving out components that do

not influence the ranking.

5.2.3 Risk-minimization model

Zhai and Lafferty (2006) propose the risk-minimization model that considers drawing a

single term (the sample space is T 1) from a query language model and from the language

model of each document. The model ranks a document d by the Kullback-Leibner (KL)

divergence between the two distributions:

KLðPqjjPdÞ :¼
X
t2T

PqðT ¼ tÞ log
PqðT ¼ tÞ
PdðT ¼ tÞ

� �
ð19Þ

where Pq is the probability measure of the query language model, Pd is the probability

measure of the current document’s language model, and T is the random variable

expressing the drawn term.7

6 Ponte and Croft (1998) use binary random variables expressing the event that a certain term was drawn or
not. We follow more common notation and consider events of drawing query terms, which leads to
equivalent results.
7 The KL divergence is defined over the domain T of the random variable T, not to be confused with the
sample space T 1 of the probabilistic model (although in this case equivalent)
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Note that the literature rarely mentions that the risk-minimization framework considers

only a single term draw, which is different from considering Lðq̂Þ term draws in the query

likelihood model or Hiemstra’s model. However, that Eq. (19) considers a single term draw

can be seen from the original definition of the KL divergence, which measures the dif-

ference between a true distribution and a proposed distribution of sending a single mes-

sage, see Kullback and Leibler (1951).

5.2.4 Relevance model

Lavrenko and Croft (2003) propose the relevance model that considers drawing a single

term (the sample space is T 1) from each document’s language model. The relevance model

ranks a document d̂ by the negative cross entropy (CE) between the term distribution of the

relevance language model8 and the document’s language model:

�CEðPrjjPdÞ :¼ �
X
t2T

PrðT ¼ tÞ log PdðT ¼ tÞð Þ

where the term distribution of the document model Pd(T = t) is defined by the probabilistic

model in Sect. 5.1, and hereunder we define the term distribution of the relevance language

model.

The relevance language model first considers drawing a relevant document and then a

term from this document (Lavrenko and Croft 2003, p. 24). Therefore, the sample space,

the random variable for the drawn document, and the relevance of the relevance language

model are defined as follows:

RM :¼fðd; tÞ 2 D � T 1jRðq̂; dÞ ¼ 1g
D00ððd; tÞ 2 RMÞ :¼d was drawn

R0ððd; tÞ 2 RMÞ :¼Rðq̂; dÞ

where RM is the sample space of the relevance language model (the set of relevant

documents with the corresponding drawn terms), q̂ is the current query, D00 states the drawn

relevant document, and R0 states the relevance of the drawn document to the current query,

which is always one because only relevant documents are considered. The probability of

drawing a term t from the relevance language model is the marginalization over

documents:

PrðT ¼ tÞ :¼
X

fd2DjRðq̂;dÞ¼1g
PrðT ¼ tjD00 ¼ dÞPrðD00 ¼ dÞ

Note that the set fd 2 DjRðq̂; dÞ ¼ 1g is unknown in practice, and Lavrenko and Croft

(2003) and others propose estimation methods for this probability.

5.3 PR models versus language models

Given the definitions of PR models and language models in Sect. 4 and above, we now

investigate whether language models can be used in the definition of PR models. Table 2

summarizes the models’ definitions.

8 We use ‘‘relevance model’’ to refer to the ranking model and relevance ‘‘language model’’ for the
probabilistic model against which document models are compared.
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We find that PR models and language models exhibit fundamental differences on the

level of the underlying process, the sample space, event space, and probability measure.

These differences are discussed in the following paragraphs. Note that there is related work

that proposes that PR models and language models are related. We discuss the differences

between these findings and our work in Sect. 6.

Process PR models and language models differ in the process they describe. Although

not often mentioned in the literature, we believe this is worth mentioning because it

clarifies the correspondence between the process described by the model and the real-world

ranking process. On the one hand, PR models envision a process of uncertain relevance of

a documents. On the other hand, the mentioned language models consider different pro-

cesses. In the query likelihood model, a document seems to perform the process, which can

be deduced from the common jargon ‘‘a term is produced by a document’’. In Hiemstra’s

model, the user draws documents and terms. In the risk-minimization model, a single term

is produced by a document and the query language model is produced by the language of

the user posing the query. Finally, in the relevance model, a single term is produced by the

document, but it is unclear who performs the process of the relevance language model.

Sample Space PR models consider query-document pairs, whereas from the four dis-

cussed language models, only Hiemstra’s model considers drawing documents in con-

nection with the current document9. Additionally, while PR models consider queries

(objects) in their sample space, language models mainly consider terms in their sample

space.

Event Space PR models consider the event of a query-document pair having certain

query feature values, document feature values and relevance status. The feature values and

the relevance status are fixed for a given query-document pair, although unobservable in

the case of relevance. In contrast, language models consider mainly events that we cannot

observe as, for example, a term t being produced. For the difference of query features, and

events of drawing query terms from language models, see the discussion in Sect. 5.1.

Furthermore, the use of a relevance event in language models is different from PR models.

The query likelihood model and the risk-minimization model do not mention relevance.

Hiemstra’s model assumes a single relevant document (random variable D0), which has

been mentioned by Spärck-Jones et al. (2003). What has not been mentioned is that

Hiemstra’s model also assumes that the relevance of a document is random, which can be

seen from the fact that the value of the random variable D0 is functionally dependent on the

drawn sample. Finally, although the relevance variable in the relevance language models is

used in a similar way as the relevance variable of PR models, they only consider relevant

documents, such that the role of the relevance variable R0 is mainly for reasons of clarity.

Probability Measure PR models and language models also differ in the quantities,

mainly probabilities of events, they consider for ranking. On the one hand, PR models

consider for each document the probability of relevance, with one probabilistic model for

all queries and documents. Language models, on the other hand, consider a variety of

events. The query likelihood model considers for each document a separate probabilistic

model, which describes the drawing of terms from the respective document. Hiemstra’s

model considers a single probabilistic model per query, similar to PR models. However,

instead of varying features in the probability measure, the model varies the documents the

user could have had in mind. The risk-minimization model and the relevance model do not

consider single probabilities but compare distributions of drawing single terms from a

document with a query language model or a relevance language model, respectively.

9 In the relevance model, document draws are only considered in the relevance language model.
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5.4 Discussion

In this section, we investigated whether the differences between PR Models and language

models can be overcome from a probabilistic perspective. From the comparison in Sect.

5.3, we can see that language models and PR models differ in every basic probabilistic

aspect. Therefore, we propose that it is unlikely that one can connect the PR models and

language models. One could raise the question whether language models could also be

directly connected to the BPRP and/or the PPRP. This would require a formal motivation

as to why the probabilities calculated by the individual language models represent a

suitable degree of belief of relevance for the BPRP or the probability of being relevant

among similar queries in the PPRP. However, given the fundamental differences between

all aspects of both types of the respective probabilistic models, we argue that such a

connection is equally unlikely as the connection between PR models and language models.

In summary, the above finding has the following impact on IR theory: language models

cannot be motivated by the BPRP or the PPRP because the respective probabilistic models

are not comparable to those models or to PR models.

Additionally, the careful mutual comparison of the four discussed language models on

the level of basic probabilistic aspects revealed that these language models also substan-

tially differ among themselves. This fact has not been stressed in the literature so far, and

we propose a further investigation of these differences and their consequences as future

work.

6 Related work

This paper is not the first to investigate the relationship between probabilistic models in IR.

In the following, we will discuss previous contributions and point out their relationship to

this paper.

Cooper (1994) proposes that one should refer to the PRP as a hypothesis, because the

example that he contributed to the original publication by Robertson (1977) would con-

tradict the principle’s proof. In this work, we show that the example does not contradict the

main text but the main text and the example refer to two different principles. Crestani et al.

(1998) present an overview of estimation methods for the probability of relevance in PR

models, therefore focusing on modeling the probability measure of PR models. In this

paper, we focus on the comparison of probabilistic models Furthermore, Chen and Karger

(2006) propose to rank documents according to the expected value of other metrics than the

one proposed in the PRP. Chen and Karger’s work is orthogonal to the content of this paper

because it proposes new objective functions, whereas we consider the differences between

the probabilistic models and principles.

The following works have compared PR models and language models. The proponents

of a connection between PR models and language models derive the probabilities calcu-

lated by PR models and language models from the probability of relevance given a par-

ticular document and a particular query, see Lafferty and Zhai (2003), Luk (2008) and Zhai

(2008). Their contributions are difficult to compare to our work because the basic

assumptions differ in at least the following aspects.

1. On the one hand, the proponents assume an event space of the crossproduct of queries,

documents, and the possible relevance status of the two, Q�D� f0; 1g: On the other

hand, we consider a sample space of query-document pairs, Q�Dþ, and an event
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space of relevance status and feature values, as originally proposed by the unified

framework of PR models by Robertson et al. (1982).

2. On the one hand, the proponents derive language models and the binary independence

model (BIM) by Robertson and Spärck-Jones (1976) from the probability of relevance

given the current query and document P(R|q, d) defined on the event space Q�D�
f0; 1g: The proponents consider this probability similar to the probability of relevance

used in Model 3 of the unified framework. In the derivation, they assume that the

probability of a query given a document can be approximated by the language model

based probability of the query terms given the document, which is P(q|d)^
P(Tx(q)|d) in our notation. Furthermore, they assume that the BIM uses an

approximation of the probability of the document given relevance P(d|r)^
P(A(d)|r), where A(d) are binary attributes of the document d. On the other hand,

we consider language models as explicitly defined in this paper, and the unified

framework of PR models, as originally proposed. We find that the respective sample

spaces, event spaces, and probability measures are fundamentally different. Addition-

ally, Robertson et al. (1982) present the BIM as an instance of Model 2, where the

attributes A are used as the documents features used in the model and not as an

approximation of Model 3, as suggested by the proponents.

In summary, the proponents take a different point of view on the connection of PR

models and language models. From our point of view, as we argued in Sect. 5.3, we have to

conclude that the differences between the PR models and language models cannot be

overcome on the level of probabilistic models. Note that Spärck-Jones et al. (2003) and

Robertson (2005) already pointed out the differences between PR models and language

models in terms of event spaces. The current paper goes even further: we consider all four

basic aspects of probabilistic models, and we find additional differences in the PRP and PR

models.

Roelleke and Wang (2006) establish a link between the BIM and language models on

the level of ranking functions. They focus on documents with the same term occurrences

(see their Theorem 2), which correspond to a single point in the domain of the ranking

function of the BIM (an existing PR model). This approach is complementary to our paper:

we investigate the connection between probabilistic models, whereas Roelleke and Wang

investigate connection between ranking functions that are derived from these models. Note

that although we focus in this paper on the probabilistic models of PR models and ranking

principles, we showed in Aly and Demeester (2011) an alternative connection between the

mentioned ranking functions compared to the connection proposed by Roelleke and Wang.

7 Conclusions

In this paper, we revisited the definition of the following probabilistic IR models and their

connection with each other: first, the probabilistic model considered by the probability

ranking principle (PRP), second, the probability of relevance (PR) models, and finally,

language models.

The first issue treated in this paper concerned the probabilistic model of the PRP as well

as the objectives followed by that principle, which had not been explicitly defined in the

literature. We proposed two probabilistic models that maximize different objective func-

tions. First, the belief probability ranking principle (BPRP) ranks documents based on the

belief that a document is relevant to the current query, which is expressed by the
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probability of relevance. We showed that the BPRP maximizes the expected utility for the

current query, which can also be shown for the expected precision and expected recall.

Second, the popularity probability ranking principle (PPRP) ranks documents based on the

probability that a document is relevant to a query from a set of queries with the same query

terms (or feature values in the more general case). We showed that the PPRP maximizes

the expected utility of a search engine serving a random query from the set of queries with

the same features. We found that the differences between the principles, which for example

influences the goals of parameter estimation methods, is not always reflected in the lit-

erature that is based on the PRP. We identified the BPRP as the more desirable principle

than the PRPR, because the BPRP optimizes the effectiveness for each individual query

while the PPRP focuses on queries with the same representation.

Furthermore, in Sect. 4.2 we investigated for each of the four models of the unified

framework of PR models by Robertson et al. (1982) whether the calculated probabilities

can be used in the BPRP or the PPRP. We found that Model 2 and Model 3, which both

consider only the current query, can be used to define the probabilistic relevance of the

BPRP, under the assumption that we cannot differentiate between distinct documents with

the same feature values. Model 1 considers for each document the probability that this

document is relevant among queries with the same query features. We showed that the

probability calculated by Model 1, but also the Model 3 probability, can be used in the

PPRP. We also found that Model 3 is mainly of academic interest because its definition

only allows a probabilistic relevance of 0 or 1, depending on the relevance of the only

considered query-document pair. Therefore, Model 2 was the only model of the unified

framework that can be realistically used to implement the BPRP. A major weakness of

Model 2 is that it partitions the sample space of the unified framework by individual

queries. Therefore, example-based learning methods cannot use examples from past que-

ries for parameter estimation. Model 0, which considers query-document pairs with the

same query features and document features, cannot be used in the BPRP or the PPRP

because it considers multiple queries and documents at the same time.

Additionally, we investigated the difference between PR models, which consider ran-

dom query-document pairs, and language models, which consider term draws. Previous

work proposed that there is a connection between PR models and language models, see for

example Lafferty and Zhai (2003), Luk (2008), Zhai (2008). However, we found that those

works used a slightly different definition of PR models, compared to the original publi-

cation by Robertson et al. (1982). From the definition of the probabilistic model of PR

models and language models as given in this paper, we found that the two types of models

differ in every basic probabilistic aspect.

According to the authors, the main merit of this paper is to bring insights and to open

new perspectives, which can be used as research directions in the future. We propose some

of these research directions as follows:

1. Recently, the research community has been considering ranking principles that address

diversity and relate them to the PRP. However, we found that there are actually two

distinct PRPs. Therefore, we believe that an important research direction is to

investigate in how far this distinction affects ranking principles for diversity.

2. Model 0, which depends on query and document features, is one of the most widely

used ranking models in practice but we found that it does not follow the BPRP or the

PPRP. Therefore, finding out which principle Model 0 follows, if there is one, is an

important research direction.
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3. We identified Model 2 as the most promising of the unified framework because it

optimizes effectiveness measures for individual queries. However, Model 2 cannot use

example relevance judgments of past queries for parameter estimation. On the other

hand, there are also other learning methods than example-based methods, which have

not received much attention so far. We propose an investigation of applying such

methods as a promising research direction.

4. Language models would benefit from a connection to a ranking principle, which can

guide their development orthogonally to the improvement of their scoring functions

axiomatically. Therefore, we believe a promising research direction is to define new

ranking principles that language models do follow. An alternative direction is to

investigate the similarity of language model ranking functions with score functions from

models that do follow an existing ranking principle, akin to but more general than our

approach in Aly and Demeester (2011) (Sect. 5) or the one by Roelleke and Wang (2006).
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Appendix 1: Extract from probability theory

Similar to Feller (1968) and Manning and Schuetze (1999, chap. 2), we use the following

definitions of probability theory. The definition of a probabilistic model uses four basic

aspects: a sample is a possible outcome of a process10. The corresponding sample space is

the set of all possible samples. An event is a subset of the sample space. An event space is a

set of events. A probability measure is a function that maps events to probabilities. We use

a subscript to indicate the sample space on which the measure is defined. For example

PX : E ! ½0 : 1� is a probability measure defined on the event space E for the process

connected with event space X.11 A conditional probability is the probability of an event e1

given a conditioning event e2, which is defined as the probability of the intersection of

events divided by the probability of the conditioning event: P(e1|e2) = P(e1 \ e2) / P(e2).

A random variable is a function of a sample.12

The literature often refers to Thomas Bayes in the context of probability theory.

However, there are at least three concepts in probability theory that are attributed to

Thomas Bayes, which make such references ambiguous. In this paper we differentiate

three contributions of Thomas Bayes: (1) Bayes rule, which establishes the equality

between a conditional probability and its inverse together with two priors regardless of

probability measure and event space, (2) the Bayesian estimation framework where esti-

mated parameters are assumed to have a prior distribution and one chooses, for example,

10 Samples are also referred to as basic outcomes, sample points or elementary events.
11 Other literature assumes that each sample has an elementary probability, say lðs 2 XÞ 2 ½0 : 1�, where X
is the sample space, and the probability of an event is then defined as the sum of these elementary
probabilities over those samples that constitute the event, Pðe 2 EÞ ¼

P
s2e lðsÞ: Note that these assump-

tions are compatible, and we will attach probabilities to events in this paper.
12 Feller (1968) refers to random variables as the biggest misnomer in probability theory, because they are
denoted equivalent to variables in the P notation, although they are actually functions. Therefore, random
functions would have been more suitable.
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the parameters with the maximum a posteriori probability, and (3) Bayesian beliefs, as

opposed to Frequentist probabilities, where the random process can only be executed once,

see Bishop (2006). A typical example for Bayesian beliefs is ‘‘the probability that the polar

caps melt in 10 years’’. Here, it is clear that the polar cap can only melt or not and this

process cannot be repeated. The reason for establishing a Bayesian belief is to be able to

reason about consequences, for example, by means of a utility function. For the interested

reader, Cox (1946) uses a similar to Bayesian beliefs.

Appendix 2: Connections between probabilistic models and their objectives

This paper treats the connection between probabilistic ranking principles and their

objectives as well as several probabilistic models. This section formalizes our notion of a

connection. We use the term connection in two different senses, which we define as

follows:

1. A connection between a probabilistic ranking principle X and an objective, represented

by the maximization of a function Y, exists if following that principle implies that the

objective will be met. In mathematical terms, a connection exists if a ranking

ðd1; . . .; djDjÞ follows X

implies

ðd1; . . .; djDjÞ ¼ argmax
d

YðdÞ:

where d iterates over all possible rankings of the documents in the collection D:
2. Let M1 = \ S1, E1, P1 [ and M2 = \ S2, E2, P2 [ be two probabilistic models,

where the components are the sample space, the event space, and the probability

measure respecitively. We say, a connection between M1 and M2 exists, if there is a

justifiable correspondence between any event e1 2 E1 and an event e2 2 E2, such that

we can assume the equality of the events’ probabilities P1(e1) = P2(e2). Note that such

a correspondence between events is often subjective and proposing its existence

requires careful argumentation.
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