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Abstract Web search engines are increasingly deploying many features, combined using

learning to rank techniques. However, various practical questions remain concerning the

manner in which learning to rank should be deployed. For instance, a sample of documents

with sufficient recall is used, such that re-ranking of the sample by the learned model

brings the relevant documents to the top. However, the properties of the document sample

such as when to stop ranking—i.e. its minimum effective size—remain unstudied. Simi-

larly, effective listwise learning to rank techniques minimise a loss function corresponding

to a standard information retrieval evaluation measure. However, the appropriate choice of

how to calculate the loss function—i.e. the choice of the learning evaluation measure and

the rank depth at which this measure should be calculated—are as yet unclear. In this

paper, we address all of these issues by formulating various hypotheses and research

questions, before performing exhaustive experiments using multiple learning to rank

techniques and different types of information needs on the ClueWeb09 and LETOR cor-

pora. Among many conclusions, we find, for instance, that the smallest effective sample for

a given query set is dependent on the type of information need of the queries, the document

representation used during sampling and the test evaluation measure. As the sample size is

varied, the selected features markedly change—for instance, we find that the link analysis

features are favoured for smaller document samples. Moreover, despite reflecting a more

realistic user model, the recently proposed ERR measure is not as effective as the tradi-

tional NDCG as a learning loss function. Overall, our comprehensive experiments provide

the first empirical derivation of best practices for learning to rank deployments.
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1 Introduction

Learning to rank (Liu 2009) is gaining increasing attention in information retrieval (IR),

with machine learning techniques being used to learn an appropriate combination of

features into an effective ranking model. An increasing amount of research is devoted to

developing efficient and effective learning techniques, while major search engines

reportedly deploy ranking models consisting of hundreds of features (Pederson 2010;

Segalovich 2010).

Nevertheless, the manner in which learning to rank is deployed within real settings has

not seen published discussion. For instance, learning to rank involves the use of a sample

of top-ranked documents for a given query (Liu 2009), which are then re-ranked by the

learned model before display to the user. However, in the literature, the properties of an

effective sample are not clear. Indeed, despite his thorough treatment of existing learning

to rank techniques, Liu (2009) does not address in detail how the sample should be made

within an existing deployment, what document representation should be deployed when

generating the sample (e.g. in addition to the body of the document, should anchor text be

included or not?), nor how many documents it should contain.

Typically, a standard weighting model, such as BM25 (Robertson et al. 1992), is

used to rank enough documents to obtain sufficient recall. Yet there is a great variation

in the literature and existing test collections about how many documents should be re-

ranked when learning models or deploying previously learned models, with large

sample sizes such as ‘‘tens of thousands’’ (Chapelle et al. 2011), 5,000 (Craswell et al.

2010), 1,000 (Qin et al. 2009) as well as small samples such as 200 (Zhang et al. 2009)

or even 20 (Chapelle and Chang 2011) observed. However, as we will show in this

paper, such small samples can result in learned models with significantly degraded

effectiveness.

On the other hand, reducing the size of the sample has various efficiency benefits. In

particular, if document-at-a-time (DAAT) matching techniques such as WAND (Broder

et al. 2003) are used to identify the sample of K documents within the search engine, then

using a smaller K (i.e. a smaller sample) can markedly increase efficiency compared to a

larger K (Broder et al. 2003). Moreover, the number of feature computations are decreased

for smaller K. Lastly, for environments where learning time is critical, the use of smaller

samples markedly reduces the learning time of many learning to rank techniques such as

AFS (Metzler 2007) and RankBoost (Freund et al. 2003).

Another issue concerns the loss function that learning to rank techniques deploy to

produce effective models. In particular, listwise techniques, which directly use an IR

evaluation measure for the loss function are often the most effective (Liu 2009). However,

the choice of this learning evaluation measure and the rank cutoff to which it is computed

during learning may have a noticeable impact on the effectiveness of the learned model on

unseen data. Nonetheless, there has not been much work on such issues—for instance,

while Robertson (2008) provided theoretical speculations, Donmez et al. (2009) observed

that matching the learning measure with the test measure results in the best test accuracy in

presence of ‘‘enough’’ training data. This was contradicted by Yilmaz and Robertson

(2010), who observed that ‘‘enough’’ training data may not always be present. Overall, the

lack of agreement in the existing literature suggests the necessity of a thorough empirical

study.

Our work is the first study into best practices in a real deployment of learning to rank. In

particular, the contributions of this work are threefold:
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1. We propose an experimental methodology for investigating the size of the document

sample as well as the choice and the rank cutoff of the evaluation measure deployed

during learning;

2. We thoroughly experiment with multiple learning to rank techniques across several

query sets covering both diverse information needs and corpora, namely the existing

LETOR v3.0 GOV learning to rank test collection and the TREC Web track

ClueWeb09 corpus;

3. From these experiments, we derive empirically identified recommendations on the

sample size and the learning evaluation measure. In particular, three research themes

are addressed in this paper, namely: the properties of the sample; the role of the

learning evaluation measure; and the interaction between the learning evaluation

measure cutoff and the sample size.

Through exhaustive experimentation across these three research themes, we investigate

how the effectiveness of the learned model is affected by:

• the document representation used to generate the sample and the size of the sample;

• the learning to rank technique and the sample size;

• the type of information need and the sample size;

• the learning evaluation measure;

• the rank cutoff of the learning evaluation measure.

Among many conclusions, we find, for instance, that on the larger ClueWeb09 corpus the

minimum effective sample can be as low as 10–20 documents for the TREC 2009 and 2010

Web track queries. However, surprisingly, a sample size of 1,500 documents is necessary

to ensure effective retrieval for navigational information needs on the same corpus.

Moreover, for the same navigational information needs, we also show the importance of

including anchor text within the document representation used to generate the sample.

Finally, the test evaluation measure is shown to be important, as evaluation by the ERR

cascade measure (Chapelle et al. 2009) (which penalises redundancy) is shown to permit

smaller effective samples than for other measures such as NDCG (Järvelin and Kekäläinen

2002) and MAP (Buckley and Voorhees 2000). As for the choice of the learning loss

function, despite reflecting a more realistic user model, ERR is not as effective as NDCG,

even when ERR is the target test measure. Indeed, our results provide additional insights

into the ongoing aforementioned debate on whether the test measure is actually the most

suitable for learning.

The remainder of the paper is structured as follows: Sect. 2 discusses related work and

elaborates on the research themes that we study in this article; Sect. 3 describes the

proposed experimental methodology that allows hypotheses concerning our research

themes for learning to rank techniques to be validated; In Sect. 4, we define the experi-

mental setup; Experimental results and analysis follow in Sect. 5; Concluding remarks are

made in Sect. 6.

2 Problem definitions

Learning to rank is the application of machine learning techniques to generate a learned

model combining different document features in an information retrieval system (Liu

2009). For instance, learning to rank techniques are often applied by Web search engines,

to combine various document weighting models and other query-independent features

(Pederson 2008). The form of the model generated by different learning to rank techniques
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differs in nature: for some, it is a vector of weights for linearly combining each feature

(Metzler 2007; Xu and Li 2007); for others it can represent a learned neural network

(Burges et al. 2005), or a series of regression trees (Weinberger et al. 2010). Regardless of

the applied technique, the general steps for obtaining a learned model using a learning to

rank technique are the following (Liu 2009):

0. Pooling: For each query in a training set, documents for which human relevance

assessments are obtained are identified using a pooling methodology. By combining a

diverse set of retrieval systems for each query (Voorhees and Harman 2005), a high

quality pool can be obtained.

1. Top K Retrieval: For a set of training queries, generate a sample of documents using

an initial retrieval approach.

2. Feature Extraction: For each document in the sample, extract a vector of feature

values. A feature is a binary or numerical indicator representing the quality of a

document, or its relation to the query.

3. Learning: Learn a model by applying a learning to rank technique. Each technique

deploys a different loss function to estimate the goodness of various combinations of

features. Documents are labelled according to the relevance assessments identified in

step (0).

In practice, step (0) may have been performed separately—for instance, by reusing

relevance assessments created as part of the TREC evaluation forum—or can be integrated

into the general learning process, using active learning approaches to select additional

documents to be assessed (Donmez and Carbonell 2009; Long et al. 2010).

Once a learned model has been obtained from the above learning steps, it can be

deployed within a search engine as follows:

4. Top K Retrieval: For an unseen test query, a sample of documents is generated in the

same manner as in step (1),

5. Feature Extraction: As in step (2), a vector of feature values is extracted for each

document in the sample. The set of features should be exactly the same as for step (2).

6. Learned Model Application: The final ranking of documents for the query is obtained

by applying the learned model on every document in the sample, and sorting by

descending predicted score.

Figure 1 illustrates steps (4)–(6) of deploying a learned model in a search engine setting.

Of all seven steps, feature extraction [steps (2) and (5)] defines the features deployed by

the search engine. As there are countless possible features from the body of information

retrieval (IR) literature, we assume a standard set of features, therefore the efficient and

effective calculation of these features are not considered in this discussion. On the other

hand, step (6) is a straightforward application of the learned model to the vectors of feature

values for each document in the sample (e.g. calculating the dot product of the document’s

feature values with the feature weights of the learned model to obtain the final document

score), and hence there is little that can be altered to vary efficiency or effectiveness.

Therefore, in this paper, we concentrate on the generation of the sample [steps (1) and (4)]

and on the actual learning process [step (3)]. In particular, the generation of a sample in

step (1) is important, since for efficiency reasons, it is impractical to apply learning to rank

on the entire corpus, nor even on the union of all documents containing any query term.

Moreover, efficiency benefits may be obtained by minimising the size of the sample, both

during learning and application.
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However, the appropriate properties of the sample have not been the subject of much

investigation. Moreover, the effectiveness of the model generated in step (3) is of utmost

importance. Indeed, learning to rank techniques that deploy standard IR evaluation measures

as their loss functions are often among the most effective (Liu 2009). However, while the

effectiveness of the learned model is reported to depend on the choice of the measure

(Robertson 2008), this aspect has not seen much empirical treatment within the learning to

rank literature, and—as mentioned in Sect. 1—even brought inconsistent observations

(Donmez et al. 2009; Yilmaz and Robertson 2010). In the following, we expand on both the

role of the sample (Sect. 2.1) and the role of the learning evaluation measure (Sect. 2.2), to

form research themes around which hypotheses and research questions are postulated. The

hypotheses and research questions of each research theme are later investigated in Sect. 5.

2.1 Sample

In this section, we define the motivations for sampling (Sect. 2.1.1), as well as reviewing

the manner in which the sampling is performed in the literature (Sect. 2.1.2). We also

review the tradeoff between the quality and the size of the sample (Sect. 2.1.3), as well as

how the sample has been obtained in existing learning to rank test collections (Sect. 2.1.4).

We use this discussion to motivate several hypotheses and research questions, which are

defined in Sect. 2.1.4.

2.1.1 Why sample?

The sample is a set of documents collected for each query, before learning [step (1)] or

before applying a learned model [step (4)]. The motivations for the sample primarily occur

for the efficient application of a learned model, but also has particular uses during learning,

as detailed below. In the following, we provide the motivations for the use of sampling,

ordered by their importance, across steps (4), (1) and also step (0).

Sampling for Applying a Learned Model [step (4)]: As mentioned above, a sample is

used during the application of a learned model to reduce the size of the number of

Fig. 1 The three steps when deploying a learned model in a search engine setting
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documents for which features are calculated (Liu 2009), by using an initial ranking

approach to identify a set of documents that are likely to contain the relevant documents

[Liu (2009) refers to the sample as a set of ‘‘possibly relevant documents’’]. Minimising the

number of documents for which features are calculated provides efficiency advantages,

particularly if some features are expensive to compute [e.g. proximity features (Metzler

and Croft 2005)]. Moreover, when a document-at-a-time (DAAT) retrieval strategy such as

WAND (Broder et al. 2003) is used to identify the sample of documents in step (4), min-

imising the number of documents in the sample benefits efficiency by permitting WAND to

omit the scoring of more documents that are unlikely to make the final sample (Broder

et al. 2003).

Sampling for Learning [step (1)]: The use of a sample in learning has some similar

motivations to its use within a deployed search engine. Indeed, even during learning, it is

impractical to extract feature vectors for all documents in the corpus (Liu 2009). Following

other supervised learning tasks such as classification and regression, a sample constitutes

representative training data from which an effective learned model can be obtained.

However, in contrast to the other supervised tasks, in learning to rank, it is not the case that

every example document in the training data is independent and identically distributed

(i.i.d). Indeed, the documents associated to each query in the sample form a group—the

groups are i.i.d., however, the documents within a group are not i.i.d. (Li 2011). Instead,

the documents should be identified in a deterministic manner (Li 2011). Finally, the

learning time of many learning to rank techniques [step (3)] increases as the number of

documents in the sample increases. Indeed, Fig. 2 shows the learning time for several

learning to rank techniques as the sample size increases. For instance, for the AFS learning

to rank technique (Metzler 2007) using NDCG@10 as the learning evaluation measure, the

learning time for a sample of 2,000 documents is twice that for 1,000 documents

(1,208 seconds vs. 604 seconds). Hence, if available resources for offline learning are

limited, it may be desirable to reduce the learning time by constraining the size of the

sample, providing there is no resulting loss in effectiveness when using a smaller sample.

Sampling for Pooling [step (0)]: Some work from the literature [e.g. Aslam et al.

(2009)] merge the notion of sampling for learning [step (1)] with sampling for producing

relevance assessments [step (0)]. In particular, the building of a high quality test collection

involves the use of multiple different retrieval systems contributing documents to an

assessment pool for each query. Each document in the pool is then assessed for its rele-

vance. In this work, we assume that high quality relevance assessments are already
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available. In this way, we restrict the notion of sampling to refer only to the identification

of documents during steps (1) and (4) above, and not for identifying those that should be

assessed for relevance before learning can occur.

2.1.2 How to sample?

Different strategies can be used to create the sample. For instance, in the LETOR v3.0

learning to rank test collection (Qin et al. 2009), the top 1,000 documents are sampled

using BM25 computed on a document representation that includes the body of the docu-

ments and the anchor text of their incoming hyperlinks. Cambazoglu et al. (2010) also used

BM25 to create the sample. Liu (2009) does not provide any more details on how the

sample should be obtained, but instead, simply states that while using BM25 alone to

produce the sample is sufficient, it may not be the best approach. Hence, there are no

empirically established guidelines for how to sample, nor for the properties of an effective

sample for deploying learning to rank within a search engine. In this work, we investigate

the use of anchor text in the documentation representation used by the sample, to determine

its impact on the recall of the sample, and the effectiveness of the resulting learned models.

In the earlier LETOR v2.0 test collection, the sample included relevant documents from

the pooled TREC relevance assessments, in addition to the top-ranked documents

according to BM25. However, Minka and Robertson (2008) noted a bias in this document

sampling strategy. In particular, it was observed that a learning to rank technique found a

negative feature weight for BM25 to be effective, as this allowed relevant documents not

present in the BM25 sample to be easily identified. On the other hand, such a learned

model would not be effective on a sample obtained using BM25 alone, as it would rank

highly documents with low BM25 scores, despite the fact that these are likely to be

irrelevant. To illustrate this sample selection bias, Table 1 provides an example learning

sample with features, where a selection of top-ranked documents have been identified

using the BM25 weighting model within step (1). Two relevant documents (docid 4 & 7)

have been added to the sample, in the hope that their presence will permit the learning to

rank technique to learn how to rank these documents highly. However, their presence can

cause bias within the obtained learned model, which may identify that these relevant

documents can be highly ranked simply by identifying documents with the lowest BM25

score. Such a learned model would not perform well on a sample obtained from step (4)

using BM25 alone, as it would highly rank documents with the lowest BM25 scores.

Other works in the literature have made use of active learning in the identification of

sample during learning (Donmez and Carbonell 2009; Long et al. 2010). By adapting

Table 1 Example of biased sampling strategy

Relevant docid BM25 PageRank URL-length

4 20 4.9 3.8 3

· 45 4.8 3.9 8

4 19 4.3 3.7 2

· 8 4.1 3.3 5

· 38 4.0 3.3 3

. . .

4 7 0 1.3 5

4 4 0 3.8 5
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approaches previously used for sampling examples for learning classifiers, it was shown

that effective models can be obtained with less documents considered during learning.

However, neither of these works examine how the properties of sample are affected, such

that the distribution of documents in the training samples remains comparable to that

observed in the sample on which the learned model will be applied, to ensure that sample

selection bias does not occur. In this work, our realistic setting always ensures that we

obtain learned models from training samples that are identified in the same manner as the

samples for test queries. For this reason, we do not consider it advantageous to sub-sample

the learning samples, such as using active learning approaches, as their impact on the

generality of the models remains unclear.

Aslam et al. (2009) compared different strategies for sampling documents, by com-

bining sampling for pooling and sampling for learning [steps (0) and (1)]. In particular,

strategies that pooled documents from multiple different retrieval systems (in this case

participating systems in TREC 6–8) were found to generate high quality document sam-

ples. However, we argue that using multiple retrieval systems to generate the sample for

learning may incur a similar bias to that reported by Minka and Robertson (2008) when the

learned model is deployed using features obtained from a single system. Moreover, such

strategies are not re-usable in a deployed search engine setting, as multiple different

systems are not necessarily available with which to generate the sample. In this respect,

Chapelle et al. (2011) noted that such approaches from the learning to rank literature only

consider ‘‘an offline reranking scenario’’. Naturally, the approach of Aslam et al. (2009)

could potentially be achieved using multiple retrieval models for generating the sample

instead of multiple systems. However, in practice, it is the diversity of entirely different

retrieval systems rather than different retrieval models that contribute to the quality of a

test collection pool (Beitzel et al. 2004; Zobel 1998).

In this work, we aim to learn an effective model for a given search engine. For this

reason, we assume a realistic scenario, as identified from the literature, which we sum-

marise as follows: The sample for applying the learned model [step (4)] should be gen-

erated by only a single feature (e.g. BM25) from the single system at hand (Chapelle et al.

2011); The sample for learning [step (1)] should have the same number of documents as for

applying the learned model and generated using the same method (Liu 2009), to ensure a

similar distribution of documents in the training and test samples; We assume that sam-

pling for pooling [step (0)] has occurred independently of the learning to rank process, such

that relevance assessments are already available for the documents in the sample, while to

avoid sample selection bias, no additional relevant documents are added to the sample

(Minka and Robertson 2008).

2.1.3 Quality versus quantity

It is intuitive that the strategy used to create the sample of documents to re-rank will impact

on the effectiveness of the learned model. In particular, to maximise the effectiveness of

the learned model, the recall of the sample should be as high as possible, as this maximises

the potential for the learned model to promote the relevant documents to the top of the

ranking. To achieve this objective, two alternative strategies are possible: either the

approach used to generate the sample should be as effective as possible, or the sample

should be large enough to achieve sufficient recall.

The natural way to improve the effectiveness of the sample would be to introduce more

features into the ranking process, such that a sample with higher recall for the same number

of documents is obtained. However, this induces a recursive application of learning to rank,
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i.e. learning to rank would be required to generate a sample on which to apply learning to

rank.

Instead—as discussed in Sect. 2.1.2—the normal practice is to select many documents

ranked by a standard weighting model (e.g. BM25) (Cambazoglu et al. 2010; Qin et al.

2009). By considering a large number of documents for the sample, the recall of the sample

is increased, and it is hoped that the learned model can re-rank highly the relevant doc-

uments that were not present in the smaller sample. However, larger samples would

typically contain more irrelevant documents, with the proportion of newly identified rel-

evant documents compared to irrelevant ones diminishing as the size of the sample

increases. For some learning to rank techniques, we postulate that the high imbalance

between relevant and irrelevant documents brought by a large sample may hinder the

learning of an effective learned model.

In terms of the quality of the document sample, we consider that the choice of the

document representation used for obtaining the sample may have an impact upon effec-

tiveness. In particular, adding anchor text to the document representation can alleviate the

vocabulary mismatch problem (Plachouras 2006), while also permitting easier identifica-

tion of the relevant documents for navigational queries (Hawking et al. 2004). However,

adding anchor text to the document representation used to generate the sample can sig-

nificantly change the documents retrieved in the sample, and may not lead to similar

improvements for non-navigational queries (Plachouras 2006).

In summary, a smaller, more precise sample could be used, but this boils down to

iterative applications of learning to rank. Instead, using a larger, less precise sample leads

to the same relevant documents being present as in a smaller, more precise sample.

However, a larger sample incurs the expense of further irrelevant documents and decreased

efficiency, in terms of deployment and learning times (as illustrated by Fig. 2). Hence, in

the next section, we discuss how the size of the sample has been addressed in previous

works.

2.1.4 How much quantity?

Assuming that the sample should be generated by a single system using a standard

weighting model—as per Sect. 2.1.2—we aim to determine how many documents should

be considered in the sample to obtain sufficient recall to allow effective learned models to

be obtained.

In general, recall is an area which has seen less work within IR, primarily because

precision is deemed the most important aspect in many search applications. Notable

exceptions are the types of information needs present within the patent (Piroi and Zenz

2011) and legal search (Tomlinson and Hedin 2011) domains where recall is an overriding

important aspect. To this end, models are being developed to determine when to terminate

a ranked list while ensuring recall (Arampatzis et al. 2009).

To provide an overview of the sample size used in the literature for various types of

information needs, Table 2 quantifies the samples in existing learning to rank test col-

lections. It also reports the type of information needs addressed in each query set, in

terms of informational (denoted Inf.), or navigational (Nav.). For some test collections,

the particular information need addressed is not specified in the associated literature

(Unspec.).

From Table 2 and the literature, we observe that two ranges of sample size are com-

monly used:
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• Large Samples (C 1,000 documents): Samples of 1,000 documents are used by the

early LETOR test collections (v3.0 and before) (Qin et al. 2009). Indeed, for the TREC

GOV collection, it was previously claimed that 1,000 documents are sufficient for

combining BM25 and PageRank, without loss of effectiveness (Craswell et al. 2005).

Craswell et al. (2010) used a sample of 5,000 documents for retrieval from the 500

million documents of the ClueWeb09 collection, but without justification. Chapelle

et al. (2011) anecdotally report sample sizes of ‘‘tens of thousands of documents’’.

• Small Samples (B 200 documents): From Table 2, we observe that various learning to

rank test collections have mean sample sizes of 120 documents or less (e.g. LETOR

v4.0, MSLR), with some as few as 10 documents per query (Yandex), even when

sampled from the entire Web. Similarly, Zhang et al. (2009) used a sample of 200

documents ranked by BM25 and PageRank from a Web search engine.

It is noticeable that while for many of the query sets the type of information need

addressed is not specified, we expect these to include both information and navigational

needs, perhaps for the same query. Indeed, similar to recent TREC Web track test col-

lections (Clarke et al. 2010, 2011), there is a trend towards using multiple relevance label

grades to address different possible information needs for the same query. For example, for

the query ‘University of Glasgow’, the University’s home page would be labelled 4

(‘perfect’), representing the best answer for the navigational information need of a typical

user, while the Wikipedia entry about the University would be labelled 3 (‘excellent’).

Documents not discussing the University would be judged irrelevant (labelled 0). The high

mean numbers of relevant documents for query sets such as MSLR, Yandex and Yahoo!

LTR Challenge in Table 2 are indicative that labelling with multiple relevance grades is

used for these datasets. However, we observe no relationship between the type of infor-

mation need and the size of the sample used within the existing learning to rank test

collections.

Table 2 Existing learning to rank test collections

Test collection Corpus Query
set

Information
need

Num.
queries

Num.
features

Ave.
sample

Ave.
rel.

Name Size

LETOR v3.0 GOV 1 M NP03 Nav. 150 64 991.0 1.03

GOV 1 M NP04 Nav. 75 64 984.5 1.05

GOV 1 M HP03 Nav. 150 64 984.0 1.26

GOV 1 M HP04 Nav. 75 64 992.1 1.10

GOV 1 M TD03 Inf. 50 64 981.2 8.31

GOV 1 M TD04 Inf. 75 64 988.6 14.88

Ohsumed 350 K – Inf. 106 45 152.3 46.0

LETOR v4.0 GOV2 25 M MQ2007 Unspec. 1,692 46 41.1 12.4

GOV2 25 M MQ2008 Unspec. 784 46 19.4 5.2

MSLR Web Unspec. 10 k Unspec. 10,000 136 120.0 59.47

MSLR Web Unspec. 30 k Unspec. 30,000 136 119.6 59.9

Yandex IMAT
2009

Web Unspec. – Unspec. 9,124 245 10.6 4.9

Yahoo! LTR
Challenge

Web Unspec. – Unspec. 10,871 699 23.9 19.57

Unspec. is stated when the relevant literature does not specify the size of the corpus or the information need
represented by the test collection
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Overall, there is clearly a lack of evidence on the appropriate size of the document

sample for effective learning. Hence, in this work, as the first of three research themes, we

formulate and validate several hypotheses relating to the sample, allowing us to empiri-

cally determine the properties of an effective sample. Firstly, we expect that, in general,

sample size does have an impact on effectiveness:

Hypothesis 1 The observed effectiveness of learned models can be affected by different

sample sizes.

Next, depending on the presence of anchor text within the document representation used

for the sample, the few relevant documents for navigational information needs may be

easier to find than the larger number of relevant documents for informational information

needs. In particular, the choice of document representation to use when sampling will

likely impact on the documents identified in the sample. Moreover, the most suitable

document representation for sampling may vary across different types of information

needs. For instance, if the document representation used by the weighting model for

obtaining the sample does consider anchor text, then the navigational pages with quality

anchor text in their incoming hyperlinks are more likely to be retrieved in the sample

(Hawking et al. 2004; Plachouras and Ounis 2004). However, we postulate that using

anchor text may reduce the number of relevant documents identified for more informa-

tional queries. Hence, we hypothesise that:

Hypothesis 2 The observed effectiveness of learned models can be affected by the type

of information need observed in the queries, and the used document representation for

generating the samples, regardless of the size of these samples.

Moreover, the choice of learning to rank technique may also have an impact on the

effective choice of the sample size. For instance, pairwise learning to rank techniques aim

to reduce the number of incorrectly ranked pairs of documents. However, as larger sample

sizes exhibit less balance between relevant and irrelevant documents, there are larger

number of document pairs for which no preference relation exists, which may degrade the

effectiveness of these learning to rank techniques. Hence, we hypothesise that:

Hypothesis 3 The observed effectiveness of learned models depends on the deployed

learning to rank technique and the sample size.

Finally, as discussed above in Sect. 2.1.1, minimising the size of the sample without

significant degradations compared to an effective sample size has marked efficiency ben-

efits. In particular, when applying the learned model, minimising the number of sample

documents to be identified during matching reduces the response time, while also reducing

the time required to calculate features for all documents in the sample. Moreover, smaller

sample sizes reduce the learning time for most learning to rank techniques (see Fig. 2). For

these reasons, the identification of the smallest sample size for obtaining effective retrieval

performance is desirable, which we aim to answer in the following research question:

Research Question 1 What are the aspects that define the smallest sample size for an

effective learned model?

2.2 Learning evaluation measure

Besides investigating the properties of an effective sample, we are also interested in the

effective configuration of learning to rank techniques. Indeed, for listwise learning to rank
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techniques, the evaluation measure deployed during learning can impact on the effec-

tiveness of the learned models (Xu and Li 2007). In the following, we review and discuss

the use (Sect. 2.2.1), properties (Sect. 2.2.2) and choice of evaluation measures during

learning (Sect. 2.2.3). This discussion is used to motivate hypotheses concerning our

second and third research themes, which address the role of the learning evaluation

measure, and the effect of the interaction between the learning evaluation measure cutoff

and the sample size.

2.2.1 Need for evaluation measures in learning

In the process of learning a model, a learning to rank technique will attempt many different

combinations of features, and evaluate them as per the defined loss function. Listwise

learning to rank techniques, which directly deploy IR evaluation measures as their loss

function [e.g. AFS (Metzler 2007) and AdaRank (Xu and Li 2007)] are reported to be

particularly effective (Liu 2009).

Many evaluation measures have been defined in the literature, with different properties.

However, their role within learning has not been the subject of an in-depth investigation.

Indeed, in a keynote presentation, Croft (2008) speculated that different optimisations

might be needed for different measures. In the following, we discuss the attributes of

evaluation measures, and their impact when a measure is used for learning.

2.2.2 Properties of evaluation measures

In general, IR evaluation measures—such as Mean Average Precision (MAP) (Buckley and

Voorhees 2000) and normalised Discounted Cumulative Gain (NDCG) (Järvelin and

Kekäläinen 2002)— are not continuous. This is because each measure may or may not

‘react’ to a swap in the positions of two documents, depending on the relevance of the two

documents and their respective positions in the ranked list. Moreover, measures are

computed to a pre-determined cutoff rank, after which they do not consider the retrieved

documents. For instance, precision only considers the number of relevant documents

occurring before the cutoff, but not the order of the documents before the cutoff, nor the

order after.

The responsiveness of a measure to swaps in the ranking is known as its informativeness

(Robertson 2008). For example, consider a ranking of four documents for a query, of which

one is highly relevant, two relevant, and one irrelevant. Of the 4! = 24 possible rankings of

these four documents, precision can only give one possible value (0.75), and mean reci-

procal rank (MRR) can give two (1 or 0.5). In contrast, MAP and NDCG are more

informative measures, as they discriminate between the effectiveness of more of the 24

possible rankings, producing four and nine different values, respectively.

2.2.3 Evaluation measures for effective learning

Given a measure on the test queries that we wish to improve, it is not necessarily the case

that we should also aim to maximise this measure during the learning process (He et al.

2008; Robertson 2008). Indeed, the informativeness of the learning measure will have a

direct impact on the learned model, and hence a measure used for testing may not be

sufficiently informative to guide the learning process. For instance, as precision at k does

not react to many swaps in the document ranking during learning, it may not be able to
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differentiate between two possible models whose performance characteristics are actually

quite different (e.g. consider two models that place a highly relevant document ranked at

rank 1 and rank k, respectively). In contrast, when graded relevance assessments are

available, NDCG and ERR are more informative measures, as they can differentiate

between the relevant documents of different relevance grades (e.g. consider the ordering of

a pair of documents, one highly relevant, one marginally relevant).

Next, the rank cutoff also affects the usefulness of the measure. For instance, by only

considering documents to rank k, a measure cannot differentiate between ranking models that

place a relevant document at rank k ? 1 or rank k ? 100—even if the former is more likely to

be an effective model on unseen data (Robertson 2008). However, for a given sample of

documents, using larger cutoffs during learning also degrades the efficiency of the learning to

rank technique. For example, in Fig. 2, it takes AFS using NDCG@1,000 approximately

twice as long to learn a model as AFS using NDCG@10 (e.g. 2,097 vs. 6,097 s for 5,000

document samples). Moreover, as most IR evaluation measures are ‘top-heavy’, they react

less to changes deeper in the ranking, meaning that we expect diminishing returns in the

effectiveness of the resulting model as the evaluation cutoff is increased.

The impact of the choice of measure and cutoff in listwise learning to rank techniques

have not been the subject of much literature. An exception is the work of He et al. (2008),

who compared the sensitivity of different measures for training under different levels of

incompleteness. However, the training was conducted in the setting of hyper-parameters of

retrieval models (e.g. the b hyper-parameter of BM25), rather than the now more typical

learning to rank environment. Robertson (2008) speculated on the effect of the informa-

tiveness of the training measure, without however providing empirical evidence. Donmez

et al. (2009) found that given enough training queries, for a given test measure, the same

measure should be the most suitable for learning. Later, Yilmaz and Robertson (2010)

challenged this finding, noting that sufficient queries are not always available. Our work

further aids the understanding of this area, by investigating the choice of the learning

evaluation measure within a learning to rank setting, across multiple search tasks, and with

even sparser amounts of training queries.

As our second research theme, we formulate several hypotheses relating to the choice of

the learning evaluation measure within a listwise learning to rank technique [step (3)].

Firstly, based on the different informativeness of various evaluation measures, we

hypothesise the following:

Hypothesis 4 The observed effectiveness of the learned model obtained from a listwise

learning to rank technique can be affected by the choice of the learning evaluation

measure.

For a large sample, increasing the rank cutoff of the learning evaluation measure

increases the informativeness of the measure by allowing it to potentially respond to more

swaps between relevant and irrelevant documents. It follows that by using a measure with

improved informativeness, a learning to rank technique may identify a yet unseen feature

combination that works well for some pairs of document in the sample, which is not

observed for the smaller rank cutoff. This may be useful later for improving the effec-

tiveness of an unseen query, where the relevant documents are pushed to the top ranks, due

to the additional feature combination. Hence, we hypothesise that:

Hypothesis 5 The observed effectiveness of the learned model obtained from a listwise

learning to rank technique can be affected by the choice of the rank cutoff of the learning

evaluation measure.
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Lastly, as our third and final research theme, we combine the two investigations within this

work concerning the sample size [step (1) and (4)] and the rank cutoff of the selected learning

evaluation measure [step (3)], to investigate the dependence between the two. Consider the

evaluation of 4 documents discussed above. If the sample is also of 4 documents, then there

are only 4! = 24 possible rankings that can be produced. However, if the sample size is larger,

say 5, then there are 5! = 120 possible rankings, even though the evaluation measure will

only consider the ordering of the top-ranked 4 documents. The size of the increased space for

the possible re-ranking should increase the chances that an effective learned model can be

identified. For this reason, our last hypothesis is the following:

Hypothesis 6 The observed effectiveness of the learned model obtained from a listwise

learning to rank technique can be affected by both the choice of the rank cutoff of the

learning evaluation measure and the size of the samples.

In the following, we define the experimental methodology (Sect. 3), as well as the

experimental setup (Sect. 4) permitting the investigation of our three research themes.

Recall that these three research themes address the role of the sample, the role of the

learning evaluation measure, and how the sample size and the learning evaluation measure

interact, respectively. Experimental results are reported and discussed in Sect. 5.

3 Methodology

In this section, we define the methodology that permits the identification of best practices

for the three research themes mentioned above. As discussed in Sect. 2.1.2, we assume that

the learned model will be deployed on a single retrieval system, with the sample generated

by using a standard weighting model. For learning, documents in the sample are labelled

using high quality relevance assessments (e.g. from TREC) that are already available.

We investigate the research questions and hypotheses of our three research themes

across different scenarios, including different types of information needs, learning to rank

techniques, and corpora. To investigate each of our research questions, we perform

empirical experiments using multiple query sets on several learning to rank test collections.

In particular, query sets are grouped into training, validation and testing sets with no

overlap of queries. For instance, for a given query set (HP04, NP04 etc.), LETOR v3.0

GOV prescribes five folds, each with separate training, validation and testing query sets.

On a given testing query set, the test evaluation measure and its rank cutoff are pre-

defined—to use the experimental design terminology, this is the dependent variable. Then,

on the corresponding training query set, the ‘‘factor of interest’’ (independent variable) for

a particular learning to rank technique is varied (namely sample size, or evaluation mea-

sure and cutoff). For each setting of a learning to rank technique (e.g. sample size, learning

evaluation measure and cutoff), a model is learned. The effectiveness of this learned model

is then evaluated on the test query set using the test evaluation measure. By comparing

across different learning settings, the impact of the factor being varied can be assessed.

Within this framework, the columns of Table 3 detail the experimental design for each

of our three research themes on a given pair of training/testing query sets. In particular, to

investigate the role of the sample size, the original samples for the train and test query sets

are both cropped to various different sizes, while maintaining their ordering of documents.

Moreover, as discussed in Sect. 2.1.2, we ensure that a learned model is not deployed on a

sample that has a different size from that with which it was learned. Using this method-

ology, we can vary the sample size as the primary factor in the experiment, thereby
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simulating the smaller samples used by other learning to rank test collections. However,

the learning evaluation measure and cutoff (only applicable for listwise learning to rank

techniques) as well as the test evaluation measure are held fixed. In this way, we can

observe the impact of sample size on the effectiveness of the learned model. Moreover, as

the conclusion may change for different learning to rank techniques or depending on the

document representation used by the sampling strategy (i.e. anchor text or not), we vary

these as additional ‘‘second’’ or ‘‘other’’ factors of interest.

To investigate our second research theme concerning the role of the learning evaluation

measure for listwise learning to rank techniques, following Table 3, we firstly fix the

sample size, as well as the evaluation measure for testing. The primary factors in this

experiment are the learning evaluation measure and the rank cutoff—we vary both of these

concurrently, to allow any dependent effects between the choice of the learning evaluation

measure and the rank cutoff to be examined. Furthermore, as a second experimental factor,

this experiment is conducted for different listwise techniques, to examine if the conclusions

change for different techniques.

Lastly, for our third research theme, we vary both the sample size and the learning

measure cutoff within a single experiment, to determine if there is any dependence

between these factors. Hence, as shown in Table 3, both the sample size and the learning

evaluation measure rank cutoff form the (1st factor) independent variables of interest.

For each set of experiments, to measure if there is a significant dependence between

effectiveness and the first or second factors, we use within-subject ANOVAs (Coolican

1999) to measure the probability that the observed results are caused by the null hypothesis

for each factor. In particular, each query is a subject, where the dependent variable (the test

evaluation measure) is observed after each variation of the independent variables. Indeed,

by using ANOVAs, we can measure that the observed variance across the different

independent variables is not due to a type I error.

4 Experimental setup

Our experiments across the three research themes are conducted using the methodology

defined in Sect. 3, and are reported in Sect. 5. In this section, we describe the setting of

these experiments, structured in three subsections: Sect. 4.1 describes the learning to rank

test collections used in our experiments, Sect. 4.2 provides an overview of the used

learning to rank techniques, and Sect. 4.3 describes how we vary the experimental setup for

the various factors identified in Sect. 3.

Table 3 How experimental variables are varied or fixed for each research question on a given query set

Experimental variables Type Research themes

Sample size Learning measure &
cutoff

Learning cutoff &
sample size

Train & test sample size Independent 1st Factor Fixed 1st Factor

Learning measure Independent Fixed 1st Factor Fixed

Learning measure cutoff Independent Fixed 1st Factor 1st Factor

Learning to rank technique Independent 2nd Factor 2nd Factor Fixed

Sample document
representation

Independent Other factor Fixed Fixed

Test measure Dependent Fixed Fixed Fixed
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4.1 Learning to rank test collections

As detailed in Sect. 3, we experiment with document samples of various sizes. To this end,

the learning to rank test collections that we apply must have sufficiently large original

samples to allow cropping into smaller samples.

Of all learning test collections in Table 2, we consider that only the LETOR v3.0 GOV

query sets have sufficiently large samples [*1,000 documents per query (Qin et al. 2009)]

to allow smaller sample sizes to be investigated. Each of the six query sets is split into

fivefolds for the purposes of cross validation (train, validation and test), and have binary

relevance assessments as well as a common set of 64 features. We select three query sets

from TREC 2004, covering different types of information needs with the same number of

queries: HP04 (home page) and NP04 (named page) query sets both represent navigational

information needs with single relevant documents; while TD04 (topic distillation) is an

informational query set.1

However, as discussed in Sect. 2.1.4, the LETOR v3.0 GOV query sets do not exhibit

the largest sample sizes seen in the literature [5,000 documents per query sampled from the

ClueWeb09 collection (Craswell et al. 2010)]. To investigate whether such large samples

are necessary, and to strengthen our conclusions, we create a new, larger and more modern

learning to rank test collection. In particular, the TREC 2009 Million query track has

various queries sampled from the logs of a Web search engine, while the TREC 2009 &

2010 Web tracks addressed queries that are faceted or ambiguous in nature (which can mix

informational and navigational interpretations for each query), also sampled from the logs

of a Web search engine. We select three such mixed query sets of queries from these recent

TREC tracks that include graded relevance assessments:

• MQ09: 70 queries from the TREC 2009 Million query track (Carterette et al. 2010).

• WT09: 50 queries from the TREC 2009 Web track (Clarke et al. 2010).

• WT10: 48 queries from the TREC 2010 Web track (Clarke et al. 2011).

Lastly, we use a query log to create a purely navigational query set, so that we can directly

compare and contrast results with the purely navigational HP04 and NP04 query sets from

LETOR v3.0:

• NAV06: 150 ‘head’ queries with the highest clickthrough into ClueWeb09 documents

as suggested by Macdonald and Ounis (2009), obtained from the MSN 2006 query log

(Craswell et al. 2009).

The underlying document corpus for the MQ09, WT09, WT10 and NAV06 query sets is

the TREC ‘category B’ ClueWeb09 Web crawl (CW09B). This corpus comprises 50 million

English documents, aimed at representing the first tier of a commercial search engine index.

We index these documents using the Terrier retrieval system (Ounis et al. 2006), including

anchor text from incoming hyperlinks. For each query, we use a light version of Porter’s

English stemmer and the DPH (Amati et al. 2008) Divergence from Randomness weighting

model to extract large original document samples for each query set. As we are not aware of

the particular parameter settings used for BM25 when sampling in the LETOR v3.0 query

sets, using DPH permits comparable sample effectiveness to BM25, without the need to train

any parameter, as DPH is parameter free (Amati et al. 2008).

To cover a wide range of sample sizes, we aim to sample as many documents as

possible from CW09B for each query. However, as noted in Sect. 2.1.1, the learning time

1 We collectively refer to HP04, NP04 and TD04 as the GOV query sets.
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of various learning to rank techniques increases with sample size. To keep our experiments

feasible, we investigate the number of relevant documents identified for the query sets when

the number of retrieved documents is unconstrained. Figure 3 reports the precision@k, for

k up to the size of the corpus (50 million documents). We note that after rank k = 5,000,

precision falls below 0.01, meaning that, on average, for every additional 100 documents

retrieved, at most 1 more relevant document will be retrieved. Moreover, from Fig. 2, running

AFS for the WT09 query set using 5,000 documents can take over 1.5 hours. For these

reasons, we deem an original sample of 5,000 documents to be sufficient for these experi-

ments. Indeed, on a detailed inspection of the experiments conducted for Fig. 3, we find that

all three query sets have 80–90 % recall at 5,000 documents compared to an exhaustive

sampling comprising the union of all documents containing any query term.

Next, recall that our experiments consider the role of anchor text in the document

representation used to identify the sample and its impact on retrieval effectiveness for

different types of informational need. We firstly highlight the document representations

that we consider. Figure 4 illustrates the fields of an example document, in terms of the

title, body, URL and anchor text. In the GOV query sets, the documents in the sample are

obtained by computing BM25 on all fields, including anchor text. To facilitate analysing

the impact of the document representation used in the sampling, the document samples

identified using DPH on the CW09B query sets are created using two different document

representations, without and with the presence of anchor text. When sampling with anchor

text, the ranking of documents in the sample changes, making it more likely that the

homepage documents with much anchor text will be highly ranked for a corresponding

navigational query, such as the query ‘Bing’ for the example document in Fig. 4.

For the CW09B query sets, we calculate a total of 75 document features for all docu-

ments in the samples, covering most of the features used in the learning to rank literature

(Qin et al. 2009). These features are summarised in Table 4 and organised into the fol-

lowing five classes:

• Standard weighting models (WM) computed on each field of each document, namely

title, body, anchor-text and URL. We use four weighting models, namely BM25

(Robertson et al. 1992), PL2 (Amati 2003), DPH (Amati et al. 2008) and LM with

Dirichlet smoothing (Zhai and Lafferty 2001). We note that the chosen document

representation for generating the sample does not have an impact on the availability of

the four fields—for instance, we may use a document representation without anchor

text for generating the sample, but we can still calculate WM features based on the

anchor text.
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Fig. 4 Document representation used within our work

Table 4 Features deployed for the three query sets of our new CW09B learning to rank test collection

Class Feature Description Total

LA Absorbing Absorbing model score (Plachouras et al. 2005) 2

LA Edgerecip No. of reciprocal links (Becchetti et al. 2006) 2

LA Inlinks No. of inlinks 2

LA Outlinks No. of outlinks 2

LA InvPageRank PageRank transposed score 2

LA PageRank PageRank score (Page et al. 1998) 2

SPAM SpamFusion Spam likelihood (Cormack et al. 2011) 2

URL URLDigits No. of digits in domain and host 4

URL URLComps No. of host, path, and query components 6

URL URLLength Length of host, path, and query string 6

URL URLType Root, subroot, path, file (Kraaij et al. 2002) 2

URL URLWiki Whether URL is from Wikipedia 2

WM BM25 BM25 score (Robertson et al. 1992) 5

WM DPH DPH score (Amati et al. 2008) 5

WM LM LM score (Dirichlet) (Zhai and Lafferty 2001) 5

WM PL2 PL2 score (Amati 2003) 5

WM MQT No. of matching query terms 5

WMP MRF MRF dependence score (Metzler and Croft 2005) 8

WMP pBiL DFR dependence score (Peng et al. 2007) 8

TOTAL 75
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• Link analysis-based features (LA) typically identify authoritative documents. We

deploy PageRank and incoming and outgoing link counts.

• Proximity weighting models (WMP) boost documents where the query terms occur in

close proximity. For each field, we deploy proximity language models (Metzler and

Croft 2005) and DFR models (Peng et al. 2007) based on Markov Random Fields.

• URL features (URL) (e.g. short URLs) are often a useful feature for identifying

homepages (Kraaij et al. 2002).

• Spam documents are present in the realistic CW09B corpus. We include the fusion

score by (Cormack et al. 2011) as a feature.

All parameters of the document features (e.g. b in BM25, c in PL2, l in LM with

Dirichlet smoothing) remain at their recommended settings, as implemented by the Terrier

retrieval platform, namely b = 0.75, c = 1, and l = 2500. Finally, as different features

are measured on different scales, we follow the common practice (Liu 2009) [and in line

with LETOR (Qin et al. 2009)] to normalise all features to lie between 0 and 1 for each

query.

4.2 Learning to rank techniques

Various learning to rank approaches in the literature fall into one of three categories,

namely pointwise, pairwise and listwise (Liu 2009). In this work, we deploy learning to

rank techniques representative of each of the three categories, all of which are either freely

available as open source or widely implemented:

• GBRT (Pointwise), also known as Gradient Boosted Regression Trees, produces a set of

regression trees that aim to predict the label of documents in the training data

(Friedman 2000). The tree learned at each iteration only needs to find the difference

between the target label and the prediction of the previous tree(s). We use the RT-Rank

implementation (Weinberger et al. 2010).2 However, going further than the open

source implementation, we choose the number of trees that performs highest on the

validation data as the final learned model.

• RankBoost (Pairwise) constructs a linear combination of weak rankers (in our case the

various document features), based on a loss function defined as the exponential

difference between the labels of pairs of documents (Freund et al. 2003).

• RankNet (Pairwise) constructs a neural network, based on a loss function encapsulating

the cross entropy of pairs of objects being correctly ranked (Burges et al. 2005).

• LambdaMART (Pairwise/Listwise3) also deploys boosted regression trees internally,

but the training of the trees consider NDCG4 to obtain the gradient of the surrogate loss

function between pairs of documents (Wu et al. 2008). We use the implementation of

the Jforests open source package (Ganjisaffar et al. 2011).5 A LambdaMART approach

was the winning entry in the Yahoo! learning to rank challenge (Chapelle and Chang

2011). The model of the highest performing iteration on the validation data is chosen.

• AFS (Listwise), also known as Automatic Feature Selection, obtains a weight for the

linear combination of the most effective feature at each iteration, which is then added

2 http://sites.google.com/site/rtranking/.
3 LambdaMART is both pairwise and listwise according to Li (2011).
4 It is not trivial to change LambdaMART to arbitrary learning measures.
5 http://code.google.com/p/jforests/.
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to the set of features selected in the previous iteration(s) (Metzler 2007). In our

implementation, we use simulated annealing (Kirkpatrick et al. 1983) to find the

combination weight for each feature that maximise NDCG@1,000. Note that such

weights are obtained one by one, with no retraining of the weights of those already

selected features. When validation data is used, the model of the highest performing

iteration as measured using the same evaluation measure on the validation data is

chosen [in this manner, the validation data is used to determine the correct number of

AFS iterations, as suggested by Liu (2009)].

• AdaRank (Listwise) optimises feature weights by applying boosting (Xu and Li 2007).

In particular, at each iteration, a distribution of the importance of each query is updated,

and the weight of the feature that improves the overall performance of those queries,

after weighting by the importance distribution, is added to the model. A feature can be

selected multiple times and its weight consequently updated. As suggested by Liu

(2009), we use validation data to set the number of iterations, so as to prevent the

overfitting of models on the training set.

4.3 Experimental factors

In order to address the hypotheses and research questions identified in Sects. 2.1.4 and

2.2.3, we analyse the outcome of various learning to rank settings on a corresponding test

query set. Table 5 details how the query sets are used for training, validation and testing for

the learning to rank test collection based on the GOV and CW09B corpora. In particular,

for the GOV query sets, we use the fivefolds prescribed in LETOR v3.0, including the

splits of the topics into separate training, validation and testing sets for each fold; we report

the mean over all of the test topics from all folds. For the CW09B corpus, we retain a

setting as realistic to a TREC deployment as possible. In particular, for WT10, we use the

query set from the preceding TREC year (i.e. WT09) for training (60 %) and validation

(40 %). As no training queries were available for WT09, we use queries from the TREC

2009 Million Query track (MQ09) for training (60 %) and validation (40 %). Similarly, we

split the 150 NAV06 queries into equal sets, to form a single fold with separate training,

validation and testing query subsets.

Table 5 also records the test evaluation measure used to test the effectiveness of the

learned models on each query set. Indeed, for the GOV query sets, the measure used for

each query set matches the official measure used by the corresponding TREC Web track

(Craswell and Hawking 2004). For the CW09B query sets, NDCG@20 was used for the

evaluation measure in TREC 2009 (Clarke et al. 2010), while for TREC 2010, ERR@20

Table 5 Applied training, validation and testing query sets

Task type Corpus Folds Query sets Test measure

Training Validation Test

Navigational GOV 5 HP04 HP04 HP04 MRR

Navigational GOV 5 NP04 NP04 NP04 MRR

Informational GOV 5 TD04 TD04 TD04 MAP

Mixed CW09B 1 MQ09 MQ09 WT09 NDCG@20

Mixed CW09B 1 WT09 WT09 WT10 ERR@20

Navigational CW09B 1 NAV06 NAV06 NAV06 MRR
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was used (Clarke et al. 2011). In the following experiments, we use both measures, and for

completeness, we additionally use MAP for both WT09 and WT10 query sets. For the

NAV06 navigational query set, we report mean reciprocal rank (MRR).

Aside from the deployed learning to rank technique, there are four factors in our

experiments that we defined in Sect. 3, namely: the size of the sample; the document

representation used to generate the sample; the learning evaluation measure using within

the loss function of the AFS and AdaRank listwise learning to rank techniques; and the

rank cutoff of the learning evaluation measure. Indeed, as per the methodology prescribed

in Sect. 3, we differentiate between the test evaluation measure, which remains fixed, and

the learning evaluation measure used by a listwise learning to rank technique, which we

vary. The settings for each of the factors in our experiments are as follows:

• Sample Document Representation—For GOV, BM25 with anchor text, as provided by

LETOR v3.0. For CW09B, DPH with or without anchor text, as illustrated in Fig. 4.

• Sample Size—We experiment with different sample sizes, up to the maximum

permitted by the original samples of size 1,000 for GOV and 5,000 for CW09B:

GOV ¼ f10; 20; 50; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1; 000g;
CW09B ¼ f10; 20; 50; 100; 500; 1; 000; 1; 500; 2; 000; 3; 000; 4; 000; 5; 000:g

• Learning Evaluation Measures—We experiment with a selection of standard measures

for use within the loss functions of the listwise learning to rank techniques, which may

be different from the test evaluation measure used to assess the retrieval performance of

the resulting learned model: Precision (P), Mean Average Precision (MAP), Mean

Reciprocal Rank (MRR), normalised Discounted Cumulative Gain (NDCG) (Järvelin

and Kekäläinen 2002) and Expected Reciprocal Rank (ERR) (Chapelle et al. 2009).

• Learning Evaluation Measure Cutoffs—We also vary the rank cutoff of the learning

evaluation measures. The cutoff values used for both GOV and CW09B are the same

values used for the sample size, as follows:

GOV ¼ f10; 20; 50; 100; 200; 300; 400; 500; 600; 700; 800; 900; 1; 000g;
CW09B ¼ f10; 20; 50; 100; 500; 1; 000; 1; 500; 2; 000; 3; 000; 4; 000; 5; 000g:

Our chosen sample sizes (and cutoffs) cover small and large sizes observed in existing

learning to rank test collections and in the literature. For the learning evaluation measures, we

include both standard measures such as precision and MAP, in addition to measures that

consider graded relevance judgements (NDCG and ERR). Moreover, due to the interaction of

the sample size with the learning evaluation measure cutoff, the learning settings that would

produce identical results are omitted. For example, if sample size is 500, MAP to rank 1,000

(i.e. MAP@1,000) is identical to MAP@500. All experimental factors, along with the

deployed learners, are summarised for both GOV and CW09B in Table 6.

5 Results

In the following, we experiment to address each of our three research themes: Sect. 5.1

addresses the theme concerning the properties of the sample; Sect. 5.2 addresses the

learning evaluation measure and cutoff research theme; Sect. 5.3 analyses the final research
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theme concerning the dependence between the sample size and the learning evaluation

measure cutoff, as well as the features selected in the obtained learned models.

5.1 Sample size

Figures 5, 6 and 7 show the impact of different sample sizes on the test performance, for

the GOV (Fig. 5), as well as the CW09B query sets, without and with the use of anchor

text when generating the sample (Figs. 6 & 7, respectively). In each figure, the test

performance of a learning to rank technique is represented by a line. For the listwise

techniques—based on insights that we will discuss in Sect. 5.2—in this section, we fix the

learning measure and rank cutoff to NDCG@10.

We firstly make some general observations from Figs. 5, 6 and 7. With respect to

sample size, a common trend can be observed across all figures: retrieval performance

generally increases as the sample size increases, but stabilises after a sufficiently large

sample. However, the size at which effectiveness stabilises can vary widely: for some

query sets, all but the smallest sample sizes appear to be effective-indeed, for the HP04

query set (Fig. 5a), even 10 documents appears to be very effective; yet for other query

sets, effectiveness continues to rise until much larger samples—e.g. 1,000 in Fig. 6d. At

the extreme end, we note that for the NAV06 query set without anchor text (Fig. 6g), a

marked rise in effectiveness occurs when sample size reaches 5,000. Moreover, across all

query sets, the trends exhibited by the RankNet learning to rank technique represent

outliers, which we discuss further below.

In the following, we expand upon this analysis, by examining each of the query sets and

learning to rank techniques in turn (Sects. 5.1.1 and 5.1.2), before concluding on each of

our defined hypotheses in Sect. 5.1.3.

5.1.1 Query set analysis

Taking each query set in turn, we make observations about the relationship between sample

size and effectiveness across these different query sets. Firstly, for the navigational query

sets HP04 and NP04 (Figs. 5a, b), we note that a reasonable performance is obtained at

small sample sizes, suggesting that most of the relevant documents that can be ranked

highly by the learned models have been obtained within a sample of that size. In particular,

the LambdaMART learning to rank technique achieves its highest HP04 MRR at sample

Table 6 All factors in our experiments

GOV CW09B

Learners GBRT, RankBoost, RankNet, LambdaMART, AFS, AdaRank

Sample document
model &
representation

BM25 with anchor text DPH with/without anchor text

Sample size {10, 20, 50, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1,000}

{10, 20, 50, 100, 500, 1,000,
1,500, 2,000, 3,000, 4,000, 5,000}

Learning evaluation
measure

P,MAP,MRR,NDCG,ERR

Learning evaluation
measure cutoffs

{10, 20, 50, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1,000}

{10, 20, 50, 100, 500, 1,000, 1,500,
2,000, 3,000, 4,000, 5,000}
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size 10, while other techniques are all competitive from size 50. On the NP04 query set,

sample sizes of 50 or larger are most effective. In contrast, for topic distillation TD04

(Fig. 5c), samples up to 400–600 documents are required before the most effective models

are obtained. This larger sample size is expected, as topic distillation represents infor-

mation needs that are more informational in nature, and suggests that relevant documents

may appear at lower ranks in the samples for this query set.

The results for the ClueWeb09 query sets (WT09, WT10 and NAV06) are reported

twice: in Fig. 6, documents are sampled using a document representation that does not

consider anchor text; in Fig. 7, the sampling document representation includes anchor text

in addition to the title, URL and body fields. Moreover, the results for WT09 and WT10

query sets are reported for each of the three test evaluation measures, namely ERR@20,

NDCG@20 and MAP. Indeed, while the used evaluation measure changed between the

TREC 2009 and TREC 2010 Web tracks from NDCG@20 to ERR@20 (see Table 5), we

find that the choice of measure for testing impacts on the obtained conclusions, hence we

provide figures for both, while adding the classical MAP measure permits observations

about how sample size impacts effectiveness at deeper ranks.

Overall, we note that smaller samples result in lower effectiveness for the ClueWeb09

query sets. However, the degradation observed is dependent on the test evaluation measure

being used. Indeed, for ERR@20, an effective model is obtainable with a sample size of

20–50 documents. However, for NDCG@20, in general, maximal effectiveness is not
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achieved for samples smaller than 100 (WT09) or 1,000 (WT10). For MAP, 1,000–3,000

documents is necessary for maximal effectiveness. These results show that the choice of

test measure is important when making a decision on sample size. Indeed, the ERR

measure discounts the contributions of documents that appear after highly relevant doc-

uments, hence relevant documents retrieved further down the ranking matter less for ERR

than, for example, NDCG. This explains why smaller sample sizes are more effective for

ERR than NDCG. In contrast, MAP needs the largest sized samples, explained by its recall

component.

For the purely navigational NAV06 query set, the trend is markedly different from the

WT09 and WT10 sets, whereby large improvements are obtained for very large sample

sizes. In particular, when anchor text is not used (Fig. 6g), a sample size of 5,000 markedly

improves over smaller sample sizes, as many of the relevant documents are not found in

these smaller samples. When the anchor text document representation is used for sampling

(Fig. 7g), more relevant documents are found in the smaller samples, resulting in increased

effectiveness for smaller samples, due to the ability of anchor text to identify homepages

(Hawking et al. 2004). However, the trends for NAV06 do not mirror the HP04 and NP04

samples on the GOV corpus, in that a sample size of 50 is still insufficient for fully

effective retrieval, even with the inclusion of anchor text in the document representation

used for generating the sample.

The need for bigger samples for CW09B than GOV suggests that relevant documents

occur at deeper ranks in the sample than for GOV, and hence the sample must be larger to

compensate, even for navigational information needs. Indeed, we note that CW09B is

approximately 50 times larger than the GOV corpus. It also appears to represent a more

difficult corpus, i.e. identifying relevant documents is comparatively more challenging. For

instance, the presence of spam documents in CW09B—as discussed by Cormack et al.

(2011)—will likely cause relevant documents to be ranked after spam in the sample. On

the other hand, in Fig. 7g, the benefit of extending past size 2,000 is less pronounced,

suggesting that the sample size of 5,000 used by Craswell et al. (2010) is perhaps

unnecessary for information needs that are purely navigational in nature.

5.1.2 Learning to rank technique analysis

Taking each learning to rank technique in turn, we can make observations about their

suitability for different sample sizes. To aid in this analysis, Table 7 shows the mean and

standard deviation of the effectiveness of each learning to rank technique, for each query

set and test evaluation measure.

In general, all techniques behave similarly with the exception of RankNet. Indeed,

RankNet (denoted by ( ) in Figs. 5, 6 and 7) generally does not perform as high as

other techniques for the GOV query sets, while for WT09 and WT10, it degrades retrieval

performance for all sample sizes larger than 20 when evaluated using NDCG@20 or

ERR@20 measures, and 100 for MAP. This suggests that it is unable to resolve the

additional pairwise constraints that are exponentially added as sample size increases. For

the navigational query sets with less relevant documents, the number of pair constraints are

less, and hence RankNet exhibits less sensitivity. In contrast to RankNet, RankBoost

( )—also a pairwise technique—performs similarly to other learning to rank tech-

niques, showing somewhat more robustness to larger sample sizes. Nevertheless, from

Figs. 5, 6 and 7, the performances of both RankBoost and RankNet are relatively better for

smaller sample sizes on the CW09B query sets than for the GOV query sets. This is likely
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due to the use of graded relevance assessments, which allow more pairwise preferences to

be better expressed than for binary relevance assessments with the same size of sample.

GBRT ( ) produces a robust retrieval performance, giving a reasonable effec-

tiveness at small sample sizes. However, for WT09, its performance is not comparable to

other effective techniques for larger sample sizes. On the other hand, the state-of-the-art

LambdaMART ( ) exhibits effective performances across all sample sizes and query

sets.

Lastly, the AFS and AdaRank listwise techniques also produce robust and effective

overall performances. On the GOV query sets, AdaRank ( ) is generally more

effective. On HP04 and TD04, the difference is not marked, but it is more marked for

NP04. However, for WT09, WT10 and NAV06, AdaRank is less effective for very large

samples (C1,000), while AFS is more stable.

To conclude, while RankNet exhibits the worst overall performance in Table 7,

LambdaMART followed by AFS and AdaRank are the most effective techniques across all

sample sizes. These performances are in line with LambdaMART’s top performance in the

Yahoo! Learning to Rank Challenge (Chapelle and Chang 2011), and the observations

concerning the effectiveness of listwise techniques reported by Liu (2009).

5.1.3 Hypotheses analysis

To address each of the hypotheses and research questions defined in Sect. 2.1.4, we deploy

ANOVAs. In particular, Table 8 presents the p values of the within-subject ANOVAs

Table 8 ANOVA p values for different query sets and evaluation measures as sample sizes or learners are
varied

Query set Test evaluation
measure

p value

Learning technique Sample size Technique 9 sample size
– Hypothesis 1 Hypothesis 3

HP04 MRR 0.00508** 0.58472 4.661e-12**

NP04 MRR 0.33373 0.03319* 3.618e-15**

TD04 MAP 0.60300 8.101e-11** 0.07133

WT09 ERR@20 0.8641 0.4333 0.5598

WT09 NDCG@20 0.9097 0.7989 0.5502

WT09 MAP 0.6594 2.733e-06** 0.2220

WT10 ERR@20 0.7825 0.1165 0.4441

WT10 NDCG@20 0.8310 0.1164 0.8359

WT10 MAP 0.7101 2.275e-06** 0.4241

NAV06 MRR 0.9282 4.429e-05** 0.6942

WT09a ERR@20 0.13107 0.03584* 1.187e-05**

WT09a NDCG@20 0.1400 0.3281 1.784e-06**

WT09a MAP 0.0909035 0.0009944** 0.0002281**

WT10a ERR@20 0.9773 0.2160 0.8562

WT10a NDCG@20 0.94809 0.07734 0.52887

WT10a MAP 0.2986 1.598e-06** 0.0690

NAV06a MRR 0.8600 1.797e-06** 0.8043

* Denotes a p value of less than 5 %, ** denotes a p value less than 1 %
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computed over all queries within a given query set, while varying the sample size and

learning to rank technique. The a suffix denotes when the sample for a query set was

obtained using anchor text. For example, WT09a MAP represents the ANOVA calculated

across all WT09 queries, learning to rank techniques, and sample sizes, where the sample

document representation includes anchor text, and the queries are evaluated using the MAP

test evaluation measure. From the ANOVAs, we exclude RankNet, for the reasons stated in

Sect. 5.1.2, as we found that its high variance under large samples introduced sensitivities

to sample size not present for the other learning to rank techniques.

In Hypothesis 1, we postulated that sample size should affect retrieval performance. On

consideration of the Sample Size column of Table 8, we find that sample size significantly

impacts on the NP04, TD04 and NAV06 query sets, as well as WT09 and WT10 for only

the MAP test evaluation measure (a single outlier is WT09a evaluated by ERR@20, which

is explained below). Indeed, for MAP, deeper samples are required than for other mea-

sures. In general, the results in Table 8 assert the importance of the sample size for

effective learning, and mirror our general observations across Figs. 5, 6 and 7. Overall, we

conclude that Hypothesis 1 is generally validated.

Hypothesis 2 is concerned with the types of information needs. In particular, we argued

that the impact of the sample size will vary for different information needs, while also

postulating that the use of anchor text in the sampling document representation could affect

the results. From Fig. 5a, we observed that for the navigational HP04 query set, a deep

sample is not required for effective results. This is mirrored in Table 8, where we find that

sample size has no significant impact for HP04 effectiveness. This contrasts with, for

example, the informational TD04 query set, where a significant dependence (p = 8.101e-

11) is observed, as would be expected from Fig. 5c. However, for the NAV06 query set, a

significant dependence on sample size is observed, regardless of whether anchor text is

present in the sampling document representation. Indeed, anchor text markedly improves

the effectiveness of smaller samples for navigational queries—e.g. while in Fig. 5a the

trend for HP04 is nearly flat, NAV06 (Fig. 7g) has a markedly improved effectiveness for

sample sizes 100–4,000 when anchor text is used. However, anchor text for NAV06 does

not exhibit the flat trend observed for HP04, suggesting that large samples are still nec-

essary on the larger ClueWeb09 corpus, as illustrated by the significant p values for

NAV06 and NAV06a in the Sample Size column of Table 8 (p = 4.429e-05 and 1.797e-

06, respectively). To illustrate this, Table 9 reports the recall measure for samples with

sizes 1,000 and 5,000, with and without anchor text. For the entirely navigational NAV06

query set, more relevant documents are ranked in the top 1,000 documents of the sample

when using anchor text, explaining the improved effectiveness.

On the other hand, for the mixed queries of WT09 and WT10, comparing across Figs. 6

and 7, the general magnitude of effectiveness values are mostly unchanged by the addition

of anchor text. We note a greater variation between the performances of different learning

Table 9 Recall of samples of size 1,000 and 5,000 for the ClueWeb09 query sets, as the presence of anchor
text in the sample document representation is varied

Query set ; 1,000 5,000

Anchor text ! · 4 · 4

WT09 (%) 58.2 55.2 78.6 75.9

WT10 (%) 31.6 30.2 38.9 37.5

NAV06 (%) 20 34 56 48
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to rank techniques on WT09 when anchor text is deployed, suggesting that for these

queries, anchor text produces a noisier sample, in which some learning to rank techniques

struggle to properly rank relevant documents. This is manifested by significant values for

WT09a in Table 8 (e.g. p = 0.03584). This may be due to the contrasting nature of the

WT09 query set and its corresponding MQ09 training queries. However, in general, from

Table 9, we see that sampling with anchor text reduces the recall for the mixed Web track

query sets. The likely cause of this is that anchor text is often spammed to improperly

manipulate Web search results (Castillo et al. 2006), which may explain the adverse effect

of the anchor text samples on recall. On the other hand, for the GOV corpus that only

contains documents and links administered by various US government departments, there

are less adversarial issues relating to anchor text.

In summary, we find that Hypothesis 2 is partially validated: the impact of the sample

size can depend on the type of information need, while the presence of anchor text is

important for assuring the effectiveness of smaller sample sizes for navigational queries.

Hypothesis 3 stipulates that the effectiveness of learned models depends on both the

choice of the learning to rank technique and the sample size. To analyse this hypothesis, we

use the last column of Table 8, which denotes significant dependencies on both of these

independent variables. In general, we observe significant dependencies between effec-

tiveness and the learning to rank technique only for the HP04 and NP04 query sets, as well

as WT09a. On inspection of the corresponding figures for these query sets (namely

Figs. 5a, b, 7a, c, e), this observation can be explained as follows: For these query sets and

corresponding test evaluation measures, there are learning to rank techniques that markedly

degrade in performance for large sample sizes (e.g. GBRT, in addition to the excluded

RankNet), thereby diverging from the other effective techniques. Overall, we find

Hypothesis 3 to be partially validated, as GBRT, and in fact RankNet, markedly degrade in

effectiveness for large sample sizes.

For completeness, Table 8 also reports the ANOVA p values for the dependence of

effectiveness on the selection of learning to rank technique alone. In the results shown in

the Learning Technique column of Table 8, a significant dependence is only exhibited for

the HP04 query set. Indeed, on inspection of the corresponding Fig. 5a for HP04, we

observe a concordance in the relative ordering of the learning to rank techniques across the

sample sizes. Hence, the choice of the learning to rank technique has a significant impact

on retrieval effectiveness for this query set. For all other query sets, there is no significant

dependence between the selected learning to rank technique and effectiveness, showing

that many learning to rank techniques have very similar performances.

Finally, Research Question 1 is concerned with identifying what aspects may have an

impact on the smallest effective sample size. To address this research question, Table 10

reports the minimum sample size for each learning to rank technique, query set and test

measure that does not result in a significantly degraded performance compared to the

sample size that is most effective. On analysing this table, we note that the mean minimum

sample size varies across both query sets and test evaluation measures. For instance, the

informational TD04 query set needs a large sample to ensure effectiveness is not signifi-

cantly degraded from the best achieved, while the navigational HP04 exhibits effective

results across all learning to rank techniques with a sample of only 10 documents. Eval-

uating the Web track query sets using NDCG@20 and ERR@20 measures permit small

effective samples (with ERR@20 needing smaller samples than NDCG@20), while the

smallest effective sample for MAP is markedly larger, due to its emphasis on recall. For the

NAV06 query set, the single relevant document for each query necessitates deep samples,

but sample size could be reduced by using anchor text within the sampling document
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representation (see Table 10, NAV06 and NAV06a rows). However, for the other Clue-

Web09 query sets, namely WT09 and WT10, adding anchor text did not markedly change

the smallest effective sample size. Lastly, some learning to rank techniques were less

sensitive than others: for instance, RankNet prefers a small sample, but this is mainly due

to its ineffective performance at large sample sizes; AFS and the state-of-the-art Lamb-

daMART require similarly large samples (mean approx. 1,200), while AdaRank and GBRT

were effective with smaller samples (mean approx. 600–700). Overall, we conclude that

while the smallest effective sample size can depend on a number of factors (sampling

document representation, type of information need), using test evaluation measures that

focus on the top-ranked documents (e.g. ERR@20 rather than MAP) can reduce the size of

the minimum effective sample. Moreover, using anchor text when sampling for naviga-

tional information needs can reduce the minimum size of an effective sample without a

marked impact on other information need types.

5.1.4 Summary

Our detailed experiments have permitted various conclusions to be drawn with respect to

the sample size. In the following, we list the hypotheses and research question from Sect.

2.1.4, and summarise our findings for each.

Hypothesis 1 The observed effectiveness of learned models can be affected by different

sample sizes.

Table 10 Smallest sample size not statistically degraded from the most effective sample size for a given
query set, test evaluation measure and learning to rank technique

Query
set

Measure Mean Technique

GBRT LambdaMART RankBoost RankNet AFS AdaRank

HP04 MRR 10.0 10 10 10 10 10 10

NP04 MRR 65.0 200 20 50 50 20 50

TD04 MAP 425.0 400 800 700 50 100 500

WT09 ERR@20 13.3 10 20 10 10 10 20

WT09 NDCG@20 25.0 20 20 20 20 20 50

WT09 MAP 500 2,175.0 2,000 1,500 50 5,000 4,000

WT10 ERR@20 20.0 10 20 10 10 50 20

WT10 NDCG@20 543.3 50 2,000 100 10 1,000 100

WT10 MAP 1,933.3 1,500 4,000 1,000 100 4,000 1,000

NAV06 MRR 5,000 5,000 5,000 5,000 5,000 5,000 5,000

WT09a ERR@20 20.0 10 50 10 20 20 10

WT09a NDCG@20 25.0 20 50 20 20 20 20

WT09a MAP 525.0 50 1,000 500 100 1,000 500

WT10a ERR@20 188.3 50 500 500 10 20 50

WT10a NDCG@20 678.3 500 1,000 500 20 2,000 50

WT0a MAP 1,591.7 1,500 4,000 1,000 50 1,500 1,500

NAV06a MRR 1,083.3 1,500 1,500 1,000 1,000 1,000 500

Means 842.5 666.5 1,293.5 701.8 384.1 1,221.8 787.1

Significant differences are measured using the paired t test, with p \ 0.01. The a subscript for ClueWeb09
query sets denotes when anchor text is used within the sampling document representation
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Generally Validated: Sample size has a significant impact on all query sets except the

navigational HP04. The choice of test evaluation measure can affect the impact of sample

size for instance, for the WT09 and WT10 query sets evaluated by NDCG@20, sample size

did not have significant impact, while for MAP it did.

Hypothesis 2 The observed effectiveness of learned models can be affected by the type

of information need observed in the queries, and the used document representation for

generating the samples, regardless of the size of these samples.

Partially validated: Adding anchor text to the NAV06 query set improved retrieval

performance for smaller sample sizes. For the mixed WT09 and WT10 query sets, sample

size was not significantly important.

Hypothesis 3 The observed effectiveness of learned models depends on the deployed

learning to rank technique and the sample size.

Partially validated: The effectiveness of the learned models depends on the sample size

for some learning to rank techniques, namely GBRT and RankNet.

Research question 1 What are the aspects that define the smallest sample size for an

effective learned model?

The test evaluation measure, the type of information need and the learning to rank

technique have all been shown to have an impact on the size of the smallest effective

sample. In particular, from Table 10, we found that the smallest effective sample size was

generally 10–50 documents for the navigational query sets on the GOV (LETOR) test

collection, while 400 documents were necessary for the informational TD04 query set. For

the TREC Web track query sets of mixed information needs on the much larger Clue-

Web09 corpus, 20–50 documents were sufficient for effective ERR@20 performances,

while larger samples were required for some techniques and query sets to ensure effective

NDCG@20 (e.g. LambdaMART: 20 documents for WT09 vs. 2,000 documents for

WT10). Furthermore, for an effective MAP performance, samples of 2,000 documents

were necessary across all learning to rank techniques. For the navigational query set on

ClueWeb09, we found that it was important to use anchor text in the sampling document

representation to ensure effective retrieval at sample sizes smaller than 5,000 documents.

In summary, to ensure effective retrieval across different types of information needs for

the ClueWeb09 corpus, our results suggest that a sample for learning to rank is created

using at least 1,500 documents obtained using a document representation that includes both

the body of the document and the anchor text of incoming hyperlinks, or at least 2,000

documents when not using anchor text, to ensure maximum effectiveness.

5.2 Learning evaluation measure & cutoff

For listwise learning to rank techniques, we postulated in Sect. 2.2.3 that the choice of the

learning evaluation measure and rank cutoff used within their loss function may have an

impact on the effectiveness of the resulting learned model. This section addresses this

second research theme, by identifying appropriate measures and cutoffs for listwise

learning to rank techniques. For these experiments, as described in Sect. 3, we fix the

sample size. In particular, following the results of Sect. 5.1, we choose the maximal sample

sizes (1,000 for GOV, 5,000 for CW09B), as these have the highest potential to perform

well across all query sets, while the sample document representation for CW09B is fixed to

exclude anchor text (again, this is also an effective setting across all query sets). In the
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following, we present and analyse our experiments, firstly, in a graphical manner (Sect.

5.2.1), and secondly in an empirical manner (Sect. 5.2.2). We then summarise whether our

hypotheses from Sect. 2.2.3 were validated (Sect. 5.2.3).

5.2.1 Graphical analysis

Figure 8 (GOV query sets) and Fig. 9 (CW09B query sets) show the impact of using

different learning evaluation measures with different rank cutoffs for AFS and AdaRank on

the effectiveness for the various query sets. For reasons of brevity, we omit figures for the

NP04 and NAV06 query sets, as the trends observed are identical to HP04 (Fig. 8a, b)

Firstly, on analysis of the navigational HP04 query set (Fig. 8a, b), is it clear that the

learning evaluation measure and its rank cutoff do not impact greatly the effectiveness of

the learned models, with the exception of the precision measure (P). Indeed, as expected,

the low informativeness of the precision (P) measure makes it unsuitable for use as a

learning evaluation measure at all but the smallest depths. For the other measures, the

variability is much lower across different cutoff depths, and the measures have widely

similar performances. This is due to the very few relevant document for each query in this

set (see Table 2), which ensures that the various measures can only respond to changes

where the relevant document moves up or down in the ranking.

For the more informational TD04 query set (Fig. 8c, d), there is more contrast between

the performance of the various learning evaluation measures than for HP04. In particular,
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for both AFS and AdaRank, MRR and the related ERR measures are very similar in per-

formance, and their rank cutoff has little impact on the effectiveness of the learned model. In

contrast, learned models obtained using the MAP and NDCG learning evaluation measures

exhibit generally higher performance than ERR and MRR, due to their higher

informativeness.

On analysing WT09 and WT10 query sets in Fig. 9, we observe a higher variance in

effectiveness for some learning evaluation measures across different sample sizes for these

query sets than for TD04. In particular, some learned models using precision can be

effective, but such occurrences are fairly seldom and appear to occur randomly. Once

again, MAP and NDCG appear to be effective learning evaluation measures, with the

effectiveness of NDCG increasing as rank cutoff increases for WT09 using AFS (Fig. 9a).

In contrast, with their focus on the first-ranked relevant documents, the ERR and MRR

learning evaluation measures show little variance in effectiveness as rank cutoff increases.

However, we note that the WT10 learned models are more markedly effective for MRR

than ERR—an observation not found for the other query sets.

5.2.2 Empirical analysis

To aid in the cross-comparison of measures, for both AFS and AdaRank, Table 11 shows

the mean and standard deviation of the test performance measure across all cutoffs for a

given learning evaluation measure. For instance, the lines for ERR ( ) in Figs. 8 and 9
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are summarised in the ERR column of Table 11. The last row in Table 11 reports the

average in each column, to indicate the trends across the different learning evaluation

measures.

Comparing the learning evaluation measures, we observe from Table 11—similar to the

performances observed in Figs. 8 and 9 —that Precision (P) provides the lowest perfor-

mance, and the highest variance, as the learned models it produces are not always effective

(the high variance is explained in that some models consist of only a single effective

feature, while in other scenarios a low quality model is obtained). Of the other measures,

NDCG and MAP are overall the most effective learning evaluation measures, followed by

MRR and ERR in certain cases.

Breaking this down by query set, for the HP04 and NP04 navigational sets, we observe

from Table 11 that NDCG is the most effective learning evaluation measure for AFS, fol-

lowed by MRR (mean performances of 0.724 and 0.717, respectively, for HP04, 0.423 and

0.415 for NP04). While it is expected that the informative NDCG measure produces the most

effective models, the promising performances of MRR and the related ERR measure suggest

Table 11 For AFS and AdaRank, mean and standard deviation of the test performance measure of learned
models obtained using different learning evaluation measures across all rank cutoffs

Query set Test measure Learning evaluation measure

ERR NDCG MAP MRR P

Mean r Mean r Mean r Mean r Mean r

AFS

HP04 MRR .713 .008 .724 .013 .697 .005 .717 .008 .412 .140

NP04 MRR .405 .042 .423 .035 .412 .037 .415 .037 .220 .154

TD04 MAP .182 .004 .220 .017 .220 .019 .175 .002 .151 .050

WT09 ERR@20 .136 .000 .158 .012 .141 .009 .133 .001 .122 .022

WT09 NDCG@20 .271 .002 .309 .022 .285 .016 .263 .001 .242 .049

WT09 MAP .188 .002 .205 .012 .193 .010 .176 .001 .168 .035

WT10 ERR@20 .132 .002 .129 .006 .132 .007 .138 .007 .083 .042

WT10 NDCG@20 .198 .002 .234 .013 .248 .010 .209 .005 .141 .070

WT10 MAP .097 .000 .135 .003 .137 .002 .098 .001 .096 .027

NAV06 MRR .422 .030 .422 .030 .422 .030 .422 .030 .161 .087

AdaRank

HP04 MRR .730 .007 .724 .014 .723 .003 .740 .004 .439 .160

NP04 MRR .669 .002 .673 .013 .670 .002 .679 .001 .308 .194

TD04 MAP .196 .003 .198 .011 .209 .004 .193 .004 .174 .044

WT09 ERR@20 .133 .001 .139 .003 .141 .003 .134 .000 .134 .017

WT09 NDCG@20 .260 .001 .272 .004 .274 .003 .261 .000 .270 .035

WT09 MAP .184 .001 .190 .002 .192 .002 .184 .000 .185 .021

WT10 ERR@20 .087 .000 .104 .013 .103 .009 .110 .001 .105 .019

WT10 NDCG@20 .148 .000 .172 .014 .175 .012 .162 .001 .164 .027

WT10 MAP .097 .000 .113 .005 .116 .007 .089 .001 .105 .012

NAV06 MRR .260 .000 .258 .003 .241 .012 .241 .012 .171 .094

Means .275 .005 .290 .012 .287 .010 .277 .006 .193 .065

The highest performing learning to rank technique in each row is highlighted. The last row shows the
average of all numbers in each column
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that, for these query sets, learning using just the top of the ranking is sufficient to obtain

effective learned models. This is also true for AdaRank learned models, with MRR exhibiting

the most effective learned models for both query sets (0.740 and 0.679).

For the informational TD04 query set, MAP and NDCG are effective choices, with

similar results observed for the WT09 and WT10 mixed query sets, regardless of the test

evaluation measure. Indeed, for WT09 and WT10, it is not the case that learning using the

test evaluation measure results in the most effective models when evaluated using the test

measure. This is particularly true for learning using ERR, which always results in lower

quality models than NDCG, even when evaluated by ERR@20 (for instance, for AFS,

models learned using NDCG have mean ERR@20 of 0.158, versus 0.136 for ERR as a

learning evaluation measure). Moreover, this agrees with the theoretical speculations of

Robertson (2008), and validates the results of Yilmaz and Robertson (2010) across many

more query sets and in a reproducible setting. The observed results also confirm the earlier

work of He et al. (2008), but which was not conducted within a learning to rank setting.

Comparing the AdaRank and AFS listwise learning to rank techniques, from Table 11,

we observe that the mean performances for both techniques are broadly similar-in line with

Table 7. However, by using a cell-by-cell comparison, we find AdaRank to perform

slightly better than AFS, while also exhibiting an overall lower variance.

Overall, we observe the following ranking of learning evaluation measures:

NDCG C MAP C {ERR, MRR}� P, and hence recommend NDCG as the most effective

learning measure. For making an appropriate choice of measure, high effectiveness should

be regarded as more important than low variance. Indeed, while ERR has a low variance, it

performs lower than MAP or NDCG. Even for the effective MAP and NDCG measures,

the variance was low suggesting that to permit effective learning, evaluating using a small

cutoff (e.g. 10) is sufficient, due to the top-heavy nature of most evaluation measures.

Moreover, from Fig. 2, we note that smaller rank cutoffs provide efficiency advantages by

markedly reducing learning time.

Finally, we address our hypotheses concerning the evaluation measure choice

(Hypothesis 4) and rank cutoff (Hypothesis 5). Similar to Sect. 5.1 above, this is achieved

with the aid of ANOVAs, which are reported in Table 12. By analysing the Learning

Evaluation Measure column of Table 12, we observe significant dependencies on the

selected measure for AFS and AdaRank for 6 and 5 out of 9 query sets, respectively. This

suggests that the choice of measure can have an impact on effectiveness, particularly for

the GOV query sets, partially upholding Hypothesis 4.

This observation about the GOV query sets is also mirrored in the results of the

Learning Evaluation Measure Cutoff column of Table 12, with AdaRank showing sig-

nificant dependence on the rank cutoff. However, the results for the CW09B query sets do

not exhibit significant dependencies on evaluation measure cutoff, which is explained by

the higher variance and lack of concordance of learning to rank techniques across different

cutoffs for these query sets. Indeed, only from inspection of Figs. 8 and 9 do we note the

dependence of effectiveness on the cutoff of the precision measure. Overall, we conclude

that due to the focus of most evaluation measures on the top-ranked documents, only for

the precision measure can Hypothesis 5 be validated.

5.2.3 Summary

Our detailed experiments have permitted various conclusions to be drawn with respect to

the choice of learning evaluation measure rank cutoff. Below, we summarise our findings

for the hypotheses we defined in Sect. 2.2.3:
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Hypothesis 4 The observed effectiveness of the learned model obtained from a listwise

learning to rank technique can be affected by the choice of the learning evaluation

measure.

Partially validated: The choice of learning evaluation measure can significantly impact

the effectiveness of learned models from listwise learning to rank techniques, but only for

some types of information needs. In particular, for navigational queries with very few

relevant documents, all measures except precision are comparably effective. However, for

query sets with informational needs, measures such as MAP and NDCG are the most

effective. Overall, regardless of the measure used to evaluate the effectiveness of the

learned model, our results suggest that NDCG is an effective choice as a learning evalu-

ation measure for a listwise learning to rank technique, due to its informative nature.

Hypothesis 5 The observed effectiveness of the learned model obtained from a listwise

learning to rank technique can be affected by the choice of the rank cutoff of the learning

evaluation measure.

Partially validated: For the precision measure, there is a clear dependence between the

learning evaluation measure rank cutoff and the effectiveness of the resulting learned

Table 12 ANOVA p values for different query sets and evaluation measures as learning evaluation
measure and cutoffs are varied

Query set Test measure p value

Learning evaluation Learning evaluation Learning evaluation
Measure Measure cutoff Measure 9 cutoff
Hypothesis 4 Hypothesis 5 –

AFS

HP04 MRR 2e-16** 0.06317 0.11763

NP04 MRR 2.2e-16** 0.2936 4.936e-07**

TD04 MAP 5.213e-09** 0.340027 0.002777**

WT09 ERR@20 0.1266 0.5082 0.5630

WT09 NDCG@20 0.2587 0.6254 0.7079

WT09 MAP 0.5921 0.7468 0.8490

WT10 ERR@20 6.408e-09** 0.1529 0.2954

WT10 NDCG@20 0.001968** 0.281312 0.413536

WT10 MAP 0.2141 0.3738 0.9089

NAV06 MRR 6.098e-07** 0.3730 0.8111

AdaRank

HP04 MRR 2.2e-16** 0.0194766* 0.0006706**

NP04 MRR 2.2e-16** 0.0004233** 2.522e-09**

TD04 MAP 0.0007071** 0.0265877* 0.0183190*

WT09 ERR@20 0.5336 0.9631 0.9986

WT09 NDCG@20 0.9796 0.9392 0.9969

WT09 MAP 0.9956 0.7389 0.9899

WT10 ERR@20 0.001188** 0.543233 0.352908

WT10 NDCG@20 0.4031 0.8359 0.7595

WT10 MAP 0.03274* 0.62433 0.91968

NAV06 MRR 0.4288 0.6982 0.9766
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models (see Figs. 8, 9). On the other hand, significant dependencies between rank cutoff

and effectiveness are only observed for AdaRank on the GOV query sets, which can be

considered as outliers. Therefore, given the reduced learning time achievable when using a

smaller rank cutoff (see Fig. 2), our results suggest that 10 is a suitable rank cutoff for the

learning evaluation measure of a listwise learning to rank technique.

5.3 Sample size and learning evaluation measure cutoff

In the preceding sections, we have examined the research themes concerning the sample size

and the evaluation measure cutoff in independence, by fixing one while varying the other.

However, in this section, we vary both concurrently to determine if there is dependence

between these factors, thereby addressing our final research theme and its corresponding

Hypothesis 6. This is performed by analysing the resulting performance of a learned model as

the two factors are varied (Sect. 5.3.1), and by comparing the weights assigned to features in

the learned models (Sect. 5.3.2). We summarise our observations in Sect. 5.3.3.

5.3.1 Graphical and empirical analysis

For the WT10 query set (our most recent CW09B query set), we fix the learning to rank

technique to AdaRank trained by NDCG, on a sample obtained using a document repre-

sentation without anchor text. Indeed, based on the results in Sect. 5.1, AdaRank is an

effective learning to rank technique, while based on Sect. 5.2, NDCG is the most effective

learning measure, particularly on the CW09B query sets. Finally, the results in Sect. 5.1

show that anchor text has little impact on the results for WT10.

To measure the dependence between the sample size and the learning evaluation

measure cutoff, we vary both as independent variables, and observe the resulting effec-

tiveness as the dependent variable. Figure 10 presents the resulting NDCG@20 surface—

the triangular shape is caused by the omission of points where the measure cutoff exceeds

sample size. From this figure, we observe that effectiveness increases as sample size

increases towards 1,000, but decreases past 1,000 (as expected from Fig. 6d for AdaRank).

With respect to the measure cutoff, the surface is flat across all sample sizes. This suggests

that there is no dependence between sample size and measure cutoff. Indeed, using a

within-subject ANOVA, a p value of 0.809 validates the lack of a significant dependence

between effectiveness and the two independent variables.

5.3.2 Learned model comparison analysis

Another method to determine the impact of the sample size and the learning measure cutoff

is to compare and contrast the trained models. In particular, the AdaRank learning to rank

technique calculates a weight af for each feature, where unselected features have af = 0.

From this, the vector a contains the weights for all features. We normalise this vector to

magnitude 1. Next, these weights are grouped by the five feature classes defined in Sect.

4.1 (weighting models, link analysis, etc.). Then by summing the absolute feature weights

for all features with that class, we can determine the importance to the learned model,

known as mass, of the features of that class:

massðclassÞ ¼
X

f2featuresðclassÞ
jaf j ð1Þ

Inf Retrieval (2013) 16:584–628 621

123



where features(class) is the set of features belonging to that class from Sect. 4.1. Finally,

we can compare models by measuring the difference in mass for each class of features

between the two models.

We choose three points from the test performances for WT10 shown in Fig. 10:

• sample size of 10; learned using NDCG@10, denoted in Fig. 10 by �;

• sample size of 1,000; learned using NDCG@10, denoted by 9;

• sample size of 1,000; learned using NDCG@1,000, denoted by ?.

By comparing the corresponding learned models, we can examine the difference in feature

weight mass between different sample sizes, and between different learning evaluation

measure cutoffs. In particular, the left hand side of Fig. 11 shows the difference in feature

weight mass between the learned models with sample size of 10 learned using NDCG@10

and sample size of 1,000 learned using NDCG@10. A positive difference denotes a feature

group stronger in the former model. Similarly, the right hand side shows the difference in

feature weight mass in models using sample size of 1,000 learned using NDCG@1,000 and

sample size of 1,000 learned using NDCG@10.

From Fig. 11 (left), we observe that the link analysis features have markedly more

emphasis in the models obtained for sample size 10. This is explained as follows: with a

small sample size, the link analysis features can be applied more aggressively, as the
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probability of relevance of the sample of documents being re-ranked is high (even if the

effectiveness of the sample is lower). In contrast, for a larger sample, the probability of

relevance of the documents in the sample is lower, and hence the weighting models are

regarded as a stronger features. For example, consider a sample of two documents with two

features: BM25 (used to identify the sample), and PageRank. For such a sample, it may be

effective to re-rank the two documents entirely by PageRank, as it is likely that the second

ranked document is relevant. However, there is much more potential to damage effec-

tiveness by re-ranking a sample of 1,000 documents by PageRank, as the likelihood of

relevance of the document with the highest PageRank (potentially at rank 1,000) is lower.

This also explains why learned models obtained from a small sample should not be applied

on larger samples and vice versa.

In Fig. 11 (right), we observe that for a large sample, the overall weights given to the

feature groups are more similar, whether NDCG@10 or NDCG@1,000 is used for

learning. However, for models obtained using NDCG@1,000, URL and proximity features

play more of a role at getting relevant documents retrieved at the deeper ranks. The

disparity between the most highly weighted feature classes from the different settings gives

support to the fact that models emphasising different features are obtained according to the

selected sample size and learning evaluation measure cutoff, even if the effectiveness of

the models are similar.

5.3.3 Summary

Through the above experiments and analysis, the dependence between the sample size and

the learning evaluation measure has addressed our final hypothesis from Sect. 2.2.3:

Hypothesis 6 The observed effectiveness of the learned model obtained from a listwise

learning to rank technique can be affected by both the choice of the rank cutoff of the

learning evaluation measure and the size of the samples.

Partially validated: We find that the choice of the learning evaluation measure cutoff for

an effective model is not dependent on the sample size. Yet the models selected for

different sample sizes and for different learning evaluation measures differ in the selected

features. In particular, link analysis is a strong feature for ranking a small sample of 10

documents. However, for a large sample, when a learning evaluation measure with a large

rank cutoff is used, link analysis features are introduced to improve the effectiveness of the

ranking at lower ranks. Still, these features are not important for ordering the top-ranked

documents. Overall, this suggests that using a larger sample does not require a larger rank

cutoff for the learning evaluation measure used by the listwise learning to rank technique.

6 Conclusions

This study investigated how best to deploy learning to rank to obtain effective learned

models, across different information need types, learning to rank techniques and corpora. It

represents a larger and more thorough study than any currently present in the literature,

investigating practical issues that arise when deploying learning to rank. In particular, we

define three research themes, with corresponding hypotheses and research questions. In the

first theme, we address the size and constitution of the sample for learning to rank (when to

stop ranking). Moreover, in the second research theme, we address the choice of the

learning evaluation measure and the corresponding rank cutoff for listwise learning to rank
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techniques (how to evaluate the learned models within the loss function of listwise learning

to rank techniques). Lastly, our final research theme investigates the dependence between

the sample size and the learning evaluation measure rank cutoff.

Overall, we found that when to stop ranking—the smallest effective sample—varied

according to several factors: the information need, the evaluation measure used to test the

models, and the presence of anchor text in the document representation used for sampling.

In particular, from Table 10, we found that the smallest effective sample size was 10–50

documents for navigational information needs on the GOV (LETOR) test collection, while

400 documents were necessary for the topic distillation query set. For the TREC Web track

query sets of mixed types of information needs on the much larger ClueWeb09 corpus,

samples with as little as 20 documents are sufficient for effective ERR@20 performances.

Some techniques and query sets were shown to require larger samples (up to 2,000 doc-

uments) for effective NDCG@20. Furthermore, for an effective MAP performance,

samples of 2,000 documents were shown to be necessary for all learning to rank tech-

niques. For the navigational query set on ClueWeb09, we found that it was important to use

anchor text in the sampling document representation to ensure effective retrieval at sample

sizes smaller than 5,000 documents—indeed, a sample size of at least 1,500 documents

guarantees effective retrieval for all query sets using this representation. These results

suggest that deep samples are necessary for effective retrieval in large Web corpora,

indeed deeper than some recent learning to rank test collections such as those listed in

Table 2. In addition, our experiments also showed that the effectiveness of learned

models are generally dependent on the sample size (Hypothesis 1), partially dependent on

the type of information need and the sample document representation (Hypothesis 2), and

partially dependent on the choice of the learning to rank technique and the sample size

(Hypothesis 3).

With respect to our second research theme addressing how the loss function for listwise

learning to rank techniques should be defined—i.e. the choice of learning evaluation

measures deployed by listwise learning to rank techniques—we found that the choice of

the learning evaluation measure can indeed have an impact upon the effectiveness of the

resulting learned model (Hypothesis 4), particularly for informational needs. Indeed, our

results show that NDCG and MAP are the most effective learning evaluation measures,

while the less informative ERR was not as effective, even when the test performance is

evaluated by ERR. For the learning evaluation measure rank cutoff (Hypothesis 5), we

only found the effectiveness of learned models to be markedly impacted by the rank cutoff

for the precision measure.

Finally, for our third research theme, we showed that while there is no dependence

between the learning measure cutoff and the sample size in terms of the effectiveness of

the learned model (Hypothesis 6), the weights of the selected features can markedly differ

between small and large samples, and between small and large learning evaluation measure

cutoffs.

To summarise our empirical findings for applying learning to rank on a large Web

corpus such as ClueWeb09, where evaluation is conducted using a measure such as

NDCG@20 or MRR, our results suggest that the sample should contain no less than 1,500

documents, and be created using a document representation that considers anchor text in

addition to the content of the document, so as to ensure effective retrieval for both

informational and navigational information needs (Sect. 5.1.4). If a listwise learning to

rank technique is used to obtain the learned model, then our results suggest that

NDCG@10 represents a suitably informative learning evaluation measure to achieve an

effective learned model (Sect. 5.2.3). Lastly, the importance of different classes of features
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within a learned model are dependent on both the sample size and the rank cutoff of the

learning evaluation measure (Sect. 5.3.3).

This work used a total of six learning to rank techniques that are widely implemented or

freely available, which are representative of the various families (pointwise, pairwise and

listwise), as well as of different types of learned models (linear combination, neural net-

work, or regression tree). The used learning to rank techniques includes the state-of-the-art

LambdaMART technique, which won the Yahoo! 2011 learning to rank challenge

(Chapelle and Chang 2011). While some other learning to rank techniques have been

proposed in the literature [as reviewed by Liu (2009)], the breadth of those learning

techniques that we experimented with and their wide deployment in the literature and

public evaluation forums leads us to strongly believe that our results should generalise to

the learned models obtained from other learning to rank techniques.
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