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Abstract As retrieval systems become more complex, learning to rank approaches are

being developed to automatically tune their parameters. Using online learning to rank,

retrieval systems can learn directly from implicit feedback inferred from user interactions.

In such an online setting, algorithms must obtain feedback for effective learning while

simultaneously utilizing what has already been learned to produce high quality results. We

formulate this challenge as an exploration–exploitation dilemma and propose two methods

for addressing it. By adding mechanisms for balancing exploration and exploitation during

learning, each method extends a state-of-the-art learning to rank method, one based on

listwise learning and the other on pairwise learning. Using a recently developed simulation

framework that allows assessment of online performance, we empirically evaluate both

methods. Our results show that balancing exploration and exploitation can substantially

and significantly improve the online retrieval performance of both listwise and pairwise

approaches. In addition, the results demonstrate that such a balance affects the two

approaches in different ways, especially when user feedback is noisy, yielding new insights

relevant to making online learning to rank effective in practice.
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1 Introduction

Information retrieval (IR) systems are becoming increasingly complex. For example, web

search engines may combine hundreds of ranking features that each capture a particular

aspect of a query, candidate documents, and the match between the two.1 In heavily used

search engines, these combinations are carefully tuned to fit users’ needs. However, on

smaller-scale systems, such careful manual tuning is often infeasible.

For automatically tuning the parameters of such a system, machine learning algorithms

are invaluable (Liu 2009). Most methods employ supervised learning, i.e., algorithms are

trained on examples of relevant and non-relevant documents for particular queries. While

large amounts of data are available for training in some applications, such as web search,

there are also many situations in which such data cannot be obtained. For example, when

deploying a search engine for a company’s intranet (enterprise search) or a personal

computer (desktop search, personalization), collecting the large amounts of training data

required for supervised learning is usually not feasible (Sanderson 2010). Even in envi-

ronments where training data is available, it may not capture typical information needs and

user preferences perfectly (Radlinski and Craswell 2010) and cannot anticipate future

changes in user needs.

A promising direction for addressing a lack of resources for manual or supervised

training are online approaches for learning to rank (Joachims 2002; Yue and Joachims

2009; Yue et al. 2009). These methods work in settings where no training data is available

before deployment. They learn directly from implicit feedback inferred from user inter-

actions, such as clicks, making it possible to adapt to users throughout the lifetime of the

system.2

In an online setting, it is crucial to consider the impact of such learning on the users. In

contrast to offline approaches, where the goal is to learn as effectively as possible from the

available training data, online learning affects, and is affected by, how user feedback is

collected. Ideally, the learning algorithm should not interfere with the user experience,

observing user behavior and learning in the background, so as to present search results that

meet the user’s information needs as well as possible at all times. This would imply

passively observing, e.g., clicks on result documents. However, passively observed feed-

back can be biased towards the top results displayed to the user (Silverstein et al. 1999).

Learning from this biased feedback may be suboptimal, thereby reducing the system’s

performance later on. Consequently, an online learning to rank approach should take into

account both the quality of current search results, and the potential to improve that quality

in the future, if feedback suitable for learning can be observed.

In this article, we frame this fundamental trade-off as an exploration–exploitation
dilemma. If the system presents only document lists that it expects will satisfy the user, it

cannot obtain feedback on other, potentially better, solutions. However, if it presents

document lists from which it can gain a lot of new information, it risks presenting bad

results to the user during learning. Therefore, to perform optimally, the system must

explore new solutions, while also maintaining satisfactory performance by exploiting

1 http://www.google.com/corporate/tech.html
2 This article focuses on learning solutions that generalize to unseen queries. Thus, learning from previous
interactions with results for the same query is not possible, in contrast to settings assumed by most on-line
relevance feedback and re-ranking approaches. These approaches are orthogonal to work in online learning
to rank and could, e.g., be used to further improve learned rankings for frequent queries.

64 Inf Retrieval (2013) 16:63–90

123

http://www.google.com/corporate/tech.html


existing solutions. Making online learning to rank for IR work in realistic settings requires

effective ways to balance exploration and exploitation.

We investigate mechanisms for achieving a balance between exploration and exploi-

tation when using listwise and pairwise methods, the two most successful approaches for

learning to rank in IR (Liu 2009). The pairwise approach takes as input pairs of documents

with labels identifying which is preferred and learns a classifier that predicts these labels.

In principle, pairwise approaches can be directly applied online, as preference relations can

be inferred from clicks (Joachims 2002). However, as we demonstrate in this article,

balancing exploration and exploitation is crucial to achieving good performance. In con-

trast, listwise approaches aim to directly optimize an evaluation measure, such as NDCG,

that concerns the entire document list. Since such evaluation measures cannot be computed

online, new approaches that work with implicit feedback have been developed (Yue and

Joachims 2009). These online approaches rely on interleaving techniques, where prefer-

ence relations between two ranking functions can be inferred from aggregated clicks

(Joachims et al. 2007).

In this article, we present the first two algorithms that can balance exploration and

exploitation in settings where only implicit feedback is available. First, we start from a

recently developed listwise algorithm that is initially purely exploratory (Yue and Jo-

achims 2009). Second, we develop a similar mechanism for a pairwise approach that is

initially purely exploitative.

We assess the resulting algorithms using an evaluation framework that leverages

standard learning to rank datasets and models of users’ click behavior. Our main result is

that finding a proper balance between exploration and exploitation can substantially and

significantly improve the online retrieval performance of both listwise and pairwise

approaches.

In addition, our results are the first to shed light on the strengths and weaknesses of

using pairwise and listwise approaches online, as they have previously only been compared

offline. We find that the pairwise approach can learn effectively when feedback is reliable.

However, when feedback is noisy, a high amount of exploration is required to obtain

reasonable performance. The listwise approach learns more slowly when provided with

perfect feedback, but is much more robust to noise than the pairwise approach. We discuss

in detail the effects on each approach of balancing exploration and exploitation, the amount

of noise in user feedback, and characteristics of the datasets. Finally, we describe the

implications of our results for making these approaches work effectively in practice.

The remainder of this paper is organized as follows. We present related work in Sect. 2

and our methods for balancing exploration and exploitation in Sect. 3. Experiments are

described in Sect. 4, followed by results and analysis in Sect. 5. We conclude in Sect. 6.

2 Related work

While our methods are the first to balance exploration and exploitation in a setting where

only implicit relative feedback is available, a large body of research addresses related

problems. The question of how to explore is addressed by active learning approaches for

supervised learning to rank, and in online learning to rank for IR approaches. A large body

of work in reinforcement learning (RL), a branch of machine learning where an algorithm

learns from interactions with an environment (Sutton and Barto 1998), addresses the

problem of balancing exploration and exploitation when explicit feedback can be observed.
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Below, we first summarize related work in learning to rank for IR and then turn to relevant

results from RL.

As an alternative to manual tuning of IR systems, supervised learning to rank has

become very popular in recent years (Liu 2009). Various approaches have been developed,

the most successful of which are pairwise [e.g., RankSVM (Herbrich et al. 1999; Joachims

2002)] and listwise [e.g., SoftRank (Taylor et al. 2008)] learning to rank. As in other

supervised learning settings, supervised learning to rank methods typically assume that a

representative set of training data (including judgments) is available at training time, so

that characteristics of the data can be estimated from this set.

In contrast to offline supervised learning, we address learning to rank in an online

setting, where a system learns directly from interactions with the user. In this setting,

labeled training data is not provided but needs to be collected through interaction with the

user. A first evaluation of RankSVM in an online setting demonstrated that learning from

implicit feedback is possible in principle (Joachims 2002). How to best collect feedback for

effective learning from implicit feedback has so far not been examined further, but we

hypothesize that online approaches need to explore to learn effectively.

Many researchers have considered how best to explore efficiently in information

retrieval, without addressing the question of how to balance that exploratory behavior with

exploitation. The most common approach is based on active learning, where the focus is on

reducing manual labeling. Xu et al. (2007) present an algorithm that learns a linear

combination of features based on relevance, document density, and diversity, which is then

used to select documents for which to obtain relevance feedback. Similarly, Xu and Akella

(2008) follow a probabilistic approach that selects documents expected to minimize model

variance. Donmez and Carbonell (2009) apply active learning to two state-of-the-art

learning to rank algorithms, RankSVM and RankBoost. Their approach selects the training

instances expected to have the largest effect on the current model.

Two recently developed approaches have addressed the problem of exploration in

online learning to rank. These stochastic methods infer feedback using interleaved com-

parison methods (Hofmann et al. 2011b; Radlinski and Craswell 2010). Using such

techniques, the algorithms infer relative preferences between an exploratory and an

exploitative ranking function (Yue and Joachims 2009; Yue et al. 2009). One algorithm

compares a fixed set of ranking functions and selects the best one (Yue et al. 2009). The

other algorithm, on which our approach is based, uses relative feedback about two ranking

functions for stochastic gradient descent (Yue and Joachims 2009).

In RL, balancing exploration and exploitation is considered important for optimizing

performance while learning, and we hypothesize that similar benefits can be achieved in

information retrieval. The distinguishing characteristic of RL problems is that an agent

interacts with an environment by trying out actions and receiving rewards (Kaelbling et al.

1996). In this setting, the agent can only observe the rewards for the actions it selected,

meaning that it is never shown any examples of the optimal action for any situation, as is

the case in e.g., supervised learning. For this reason, balancing exploration and exploration

is crucial. The agent needs to try out new solutions to be able to learn from the observed

feedback, and it needs to exploit what it has already learned to ensure high reward.3

3 Balancing exploration and exploitation also plays an important role in other areas, such as sequential
experimental design and in the multi-armed bandit work coming from the applied probability community.
Early work includes (Robbins 1952), with an important breakthrough by Gittins (1979). A recent overview
can be found in (Mahajan and Teneketzis 2008). Exploration and exploitation have also been extensively
studied as fundamental principles of human and animal decision-making behavior (Cohen et al. 2007).
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Particularly relevant to this article are methods for tackling contextual bandit problems,4

a well-studied type of RL problem (Auer 2003; Barto et al. 1981; Langford and Zhang

2008; Strehl et al. 2006), as they have been successfully applied to problems similar to

learning to rank for IR. For example, Langford et al. (2008) consider the ad placement

application. Given a website, their algorithm learns the value of placing each of a set of

candidate ads on the website. Similarly, Radlinski et al. (2008a) consider how to learn

diverse document lists such that different information needs are satisfied; they present an

algorithm for doing so that balances exploration and exploitation. Another widely-studied

application area of related approaches is news recommendation, where news stories are

selected for a user population or for individual users. Work in this area has focused on

learning approaches (Agarwal et al. 2008; Li et al. 2010), and methods for offline evalu-

ation (Li et al. 2011). Finally, an application to adaptive filtering is presented in (Zhang

et al. 2003). However, like other RL algorithms, these methods all assume access to

explicit feedback. For example, in ad placement, clicks provide explicit feedback because

they are directly correlated with the value of the ad-website pair (assuming a pay-per-click

model). Since explicit feedback is not typically available in online IR settings, these

methods are not directly applicable. Note that, while in related areas implicit feedback can

often be interpreted as absolute (possibly noisy) reward, this is not possible in our setting.

Within IR, using implicit feedback to improve search results has long been the goal of

relevance feedback approaches. Exploration in the relevance feedback setting has, e.g.,

been formulated in terms of diversifying the list of initial documents that is shown to the

user to elicit relevance feedback (Karimzadehgan and Zhai 2010). These methods typically

assume explicit feedback (which can be noisy) and do not generalize over queries.

3 Approach

In this section, we first formalize the problem of online learning to rank for IR. Then we

describe our approaches, starting with the baseline learning algorithms, and extend them to

balance exploration and exploitation.

3.1 Problem formulation

Our formulation of learning to rank for IR differs from most other work in learning to rank

in that we consider the interactions between users and the search engine as a continuous

cycle. A natural fit for this problem are formalizations from RL, in which an algorithm

learns by trying out actions (e.g., document lists) that generate rewards (e.g., an evaluation

measure such as AP or NDCG) from its environment (e.g., users) (Sutton and Barto 1998).

Using this formalization allows us to describe this problem in a principled way and to

apply concepts and solutions from this well-studied area.

Figure 1 shows the interaction cycle. A user submits a query to a retrieval system,

which generates a document list and presents it to the user. The user interacts with the list,

e.g., by clicking on links, from which the retrieval system infers feedback about the quality

of the presented document list. This problem formulation directly translates to an RL

problem (cf., Fig. 1, terminology in italics) in which the retrieval system tries, based only

on implicit feedback, to maximize a hidden reward signal that corresponds to some

evaluation measure. We make the simplifying assumption that queries are independent,

4 Contextual bandit problems are also known as bandits with side information, or associative RL.
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i.e., queries are submitted by different users and there are no sessions. This renders the

problem a contextual bandit problem (Barto et al. 1981; Langford and Zhang 2008).

Since our hypothesis is that balancing exploration and exploitation improves retrieval

performance while learning, we need to measure this aspect of performance. Previous work

in learning to rank for IR has considered only final performance, i.e., performance on

unseen data after training is completed (Liu 2009), and, in the case of active learning,

learning speed in terms of the number of required training samples (Xu et al. 2010).

As is common in RL, we measure cumulative reward, i.e., the sum of rewards over all

queries addressed during learning (Sutton and Barto 1998). Many definitions of cumulative

reward are possible, depending on the modeling assumptions. We assume an infinite
horizon problem, a model that is appropriate for IR learning to rank problems that run

indefinitely. Such problems include a discount factor c [ [0,1) that weights immediate

rewards higher than future rewards. One way to interpret the discount factor is to suppose

that there is a 1 - c probability that the task will terminate at each timestep (e.g., users

may abandon the retrieval system). Rewards are thus weighted according to the probability

that the task will last long enough for them to occur. Then, cumulative reward is defined as

the discounted infinite sum of rewards ri : C ¼
P1

i¼1 ci�1ri:

To summarize, we model online learning to rank for IR as an interaction cycle between

the user and the retrieval system. We assume an infinite horizon setting and use dis-

counting to emphasize immediate reward. The resulting problem formulation differs from

those traditionally used in IR because performance depends on cumulative reward during

the entire learning process, rather than just the quality of the final retrieval system pro-

duced by learning. It also differs from typical contextual bandit problems, which assume

that the agent has access to the true immediate reward resulting from its actions. Typical IR

evaluation measures require explicit feedback, which is not available in most realistic use

cases for online learning to rank. Thus, this contextual bandit problem is distinct in that it

requires the learner to cope with implicit feedback such as click behavior.

3.2 Balancing exploration and exploitation in pairwise learning to rank

Our first approach builds off a pairwise formulation of learning to rank, and a stochastic

gradient descent learner. Pairwise approaches model the pairwise relations between doc-

uments for a given query. Our formulation of the learning to rank problem from implicit

feedback follows (Joachims 2002). The learning algorithm is a stochastic gradient descent

algorithm, following (Sculley 2009; Zhang 2004).

document list
action at

query
state st

user
environment

examine 
document list

generate implicit 
feedback

reward rt

implicit 
feedback

evaluation 
measureretrieval system

agent

Fig. 1 The IR problem modeled as a contextual bandit problem, with IR terminology in black and
corresponding RL terminology in green and italics
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3.2.1 Baseline learning approach

Pairwise learning to rank approaches for IR construct training data from observed queries

and preference relations between pairs of documents. Given an appropriate method of

obtaining such pairwise labeled training data, learning in this setting can be reduced to

binary classification (Sculley 2009). Our baseline algorithm obtains pairwise labels by

observing clicks on an exploitative result list and learns a weight vector w for ranking

documents using the learning algorithm from (Sculley 2009; Zhang 2004).

Our pairwise approach infers labels from clicks, following the method developed by

(Joachims 2002). This method is based on the observation that clicks on results are too

unreliable to allow conclusions about absolute relevance of clicked documents, but that

clicked documents that were displayed at lower ranks than a non-clicked document can be

assumed to be preferred over the non-clicked document. For example, assume a query q, in

response to which the system returns documents (d1, d2, d3), in this order. If the user clicks

on documents d2 and d3, but not on d1, we can infer that d2 � d1 and d3 � d1: From these

observations, labeled data could be extracted as (d1, d2, -1) and (d1, d3, -1).

Given a set of labeled document pairs, we apply the stochastic gradient descent (SGD)

algorithm defined by Zhang (2004, Algorithm 2.1). This algorithm finds a weight vector ŵ
that minimizes the empirical loss L(w, x , y) given a set P of labeled training samples each

consisting of a feature vector x and a label y:

ŵ ¼ arg min
w

1

P

XP

i¼0

Lðw; xi; yiÞ þ
k
2
jjwjj22

" #

; ð1Þ

where the last term is a regularization term. Using the hinge loss, i.e., L(w, x, y) =

max(0, 1 - ywTx), the algorithm optimizes the same quantity as RankSVM (Joachims

2002). It was shown to perform competitively on standard learning to rank datasets in

terms of ranking performance with only a fraction of the training time (Sculley 2009).

Here, we follow the implementation provided in sofia-ml,5 and apply it to pairwise learning

by setting x = (xa - xb), where xa and xb are the feature vectors of a document pair.

Combining the above method of inferring pairwise feedback and the pairwise learning

method, we obtain our pairwise baseline algorithm (Algorithm 1). It receives as input a

document set D, learning rate g, regularizer weight k, and an initial weight vector w0. For

each observed query qt, a set of feature vectors /(di|q) is extracted that characterize the

relationship between the query and each candidate document di 2 D: The document feature

vectors are then scored using the weight vector learned so far (wt-1), and sorted by this

score to obtain an exploitative result list (the best ranking given what has been learned so

far).

The constructed exploitative result list is shown to the user, and clicks on any of the

result documents are observed. From the observed clicks C, all possible labeled document

pairs P are inferred using the pairwise labeling method described above (Joachims 2002).

The labeled samples in P are then used to update the weight vector w. For each pair, the loss

is obtained by comparing the current solution to the observed label (line 10, cf. the definition of

the hinge loss above). If the labels do not match, or the prediction margin is too small, the weight

vector is updated using the update rule wt = wt-1 ? gyi (xa_i - xb_i) - gk wt-1. Here, we use

the unregularized version of this update rule (by setting k = 0) and use a small constant g. This

5 Provided online at http://code.google.com/p/sofia-ml.
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formulation was found to show good convergence properties (Zhang 2004) and resulted in good

performance in preliminary experiments.

3.2.2 Balancing exploration and exploitation

In previous applications of pairwise learning to implicit feedback scenarios, learning was

performed in a batch setting. First, implicit feedback was collected given an initial ranking

function. Then, the algorithm was trained on all collected implicit feedback. Finally, this

trained system was deployed and evaluated (Joachims 2002). In this setting, data collection

is naturally exploitative. Users are shown results that are most likely to be relevant

according to a current best ranking function. In the online setting, such an exploitative

strategy is expected to result in the highest possible short-term performance. However, it is

also expected to introduce bias, as some documents may never be shown to the user, which

may result in sub-optimal learning and lower long-term performance. This is confirmed in

our experiments, as we will see below.

In supervised applications of pairwise learning to rank methods, the learning algorithm

is typically trained on the complete dataset. Sculley (2009) developed a sampling scheme

that allows training of a stochastic gradient descent learner on a random subset of the data

without noticeable loss in performance of the trained algorithm. In this setting, document

pairs were sampled randomly such that at each learning step one relevant and one non-

relevant document were selected to form a training pair. We expect this strategy, which is

fully exploratory, to result in minimal training bias.

In the online setting where we learn from implicit feedback, we cannot directly

determine for which document pairs we obtain feedback from the user. Any document list

that is presented in response to a query may result in zero or more clicks on documents,

such that zero or more pairwise constraints can be extracted. Due to position bias

(Silverstein et al. 1999), the higher a document is ranked in the result list presented to the

user, the more likely it is to be inspected and clicked.

Algorithm 1 Baseline algorithm for the pairwise setting, based on (Joachims 2002; Sculley 2009; Zhang
2004)

1: Input: D, g, k, w0

2: for query qt (t = 1..T) do

3: X = /(D|qt) // extract features

// construct exploitative result list

4: S = wt-1
T X

5: L = sortDescendingByScore(D, S)

6: I = L [1:10]

7: Display I and observe clicked elements C.

8: Construct all labeled pairs P = (xa, xb, y) from I and C.

9: for i in (1 .. P)do

10: if yi wt-1
T (xa_i - xb_i) \ 1.0 and yi = 0.0 then

11: Update wt as: wt = wt-1 ? gyi (xa_i - xb_i) - gk wt-1

12: return wt
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Here, we ignore explicit dependencies between displayed documents, and define two

document lists, one exploratory and one exploitative, that are then combined to balance

exploration and exploitation. The exploitative list is generated by applying the learned

weights to compute document scores and then sorting by score, as in the baseline algo-

rithm. The exploratory list is generated by uniform random sampling of the documents

associated with a query.6

We employ a method for balancing exploration and exploitation that is inspired by e-
greedy, a commonly used exploration strategy in RL (Watkins 1989). In e-greedy explo-

ration, the agent selects an exploratory action with probability e at each timestep. With

probability 1 - e, it selects the greedy action, i.e., the action with the highest currently

estimated value.7

The difference between our approach and e-greedy is that we do not pick a single action

at each timestep, but that we can select a number of actions that are presented simulta-

neously. This results in Algorithm 2 that differs from our baseline algorithm in how the

result list is constructed (line 6).

Therefore, we vary the relative number of documents from the exploratory and

exploitative lists as determined by e [ [0, 1]. For each rank, an exploitative action (a

document from the exploitative list) is selected with probability 1 - e. A document from

Algorithm 2 Balancing exploration and exploitation in the pairwise setting

1: Input: D; g; k;w0; �

2: for query qt (t = 1..T) do

3: X = /(D|qt) // extract features

// construct exploitative result list

4: S = wt-1
T X

5: L = sortDescendingByScore(D, S)

6: I½r�  first element of L 62 I with probability e; element randomly sampled without replacement
from L n I with probability 1 - e

7: Display I and observe clicked elements C.

8: Construct all labeled pairs P = (xa, xb, y) from I and C.

9: for i in (1 .. P) do

10: if yi (xa_i - xb_i) wt-1
T \ 1.0 and yi = 0.0 then

11: Update wt as: wt = wt-1 ? gyi (xa_i - xb_i) - gk wt-1

12: return wt

6 In practice, candidate documents are typically collected based on some feature-based criteria, such as a
minimum score. Here, we use the candidate documents provided with the learning to rank data sets used in
our experiment, where candidate selection may have been biased (Minka and Robertson 2008). However,
bias in terms of feature values can be neglected here, as the specifics of the learned ranker are not the subject
of this study, and all learning methods are affected equally.
7 More complex schemes of balancing exploration and exploitation are of course possible, but our focus
here is on demonstrating the benefit of such a balance over purely exploratory and purely exploitative forms
of soliciting feedback. A simple scheme is sufficient for this goal. We also experimented with a more
complex softmax-like algorithm and obtained qualitatively similar results. However, such an algorithm is
more difficult to tune than the e-greedy-like algorithm used here (Sutton and Barto 1998; Whiteson and
Stone 2006).

Inf Retrieval (2013) 16:63–90 71

123



the exploratory list is selected with probability e. Thus, values of e close to 0 mean that

little exploration is taking place, making the algorithm collect feedback in an exploitative

way (e = 0 corresponds to the purely exploitative baseline setting). Values close to 1 mean

more exploration.

3.3 Balancing exploration and exploitation in listwise learning to rank

Our second online learning to rank approach builds off a gradient-based policy search

algorithm called Dueling Bandit Gradient Descent (DBGD) (Yue and Joachims 2009). This

algorithm has been specifically developed for learning to rank in an online setting, and it

requires only relative evaluations of the quality of two document lists, and infers such

comparisons from implicit feedback (Radlinski et al. 2008b).

3.3.1 Baseline learning approach

Similar to the pairwise learning to rank approach discussed in the previous section, DBGD

learns a ranking function consisting of a weight vector w for a linear weighted combination

of feature vectors. Thus, to rank a set of documents D given a query q, feature vectors

X ¼ fx1; x2; . . .; xDg that describe the relation between D and q are produced. Next, scores

S for each document are produced using S = w X. Finally, documents are ranked by their

scores to generate a ranked document list l.
Algorithm 3 summarizes this approach. It takes as input a comparison method

f(l1, l2), that compares two document lists, and three parameters, the step sizes a8 and

d, and an initial weight vector w0. At each timestep t, the algorithm observes a query qt

from which two document lists are produced: one exploitative, one exploratory. The

exploitative list is produced from the current exploitative weight vector wt, found to

perform best up to the current timestep t. The exploratory list is produced from an

exploratory weight vector w0t; which is generated by moving wt in a random direction ut by

a step of size d. The exploitative and exploratory lists are then compared using a function

f(l1, l2). If the exploratory weight vector w0t is judged to have produced the better document

ranking, the current exploitative weight vector wt is updated by moving it towards w0t by a

step size a.

Algorithm 3 Baseline Algorithm for the listwise setting

1: Input: f(l1, l2), a, d, w0

2: for query qt (t = 1..T) do

3: Sample unit vector ut uniformly.

4: w0t  wt þ dut // generate exploratory w

5: if f ðlðwtÞ; lðw0tÞÞ then

6: wtþ1  wt þ aut // update exploitative w

7: else

8: wtþ1  wt

9: return wt?1

8 In (Yue and Joachims 2009), c denotes the exploitation step size. We use a to avoid confusion with the
discount factor c.
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For the comparison method f(l1, l2), several implementations have been suggested (He

et al. 2009; Radlinski et al. 2008b). We chose a variant of the balanced interleave
method as it is efficient, easy to implement, and was found to be more reliable than the

similar team-draft method both in (He et al. 2009) and in our own preliminary experi-

ments. This method takes as input two document lists and constructs an interleaved result

list by randomly selecting a starting list and then interleaving the two lists so that

presentation bias between the two lists is minimized. After observing user clicks on the

result list, a preference between the lists is inferred as follows. The rank of the lowest

clicked document N is identified. Then, for each list the number of clicked documents

within the top N is counted. The list that received more clicks in its top N is preferred.

Ties are ignored.

3.3.2 Balancing exploration and exploitation

Given an appropriate function for comparing document lists, the baseline algorithm

described above learns effectively from implicit feedback. However, the algorithm always

explores, i.e., it constructs the result list in a way that minimizes bias between the

exploratory and exploitative document lists, which is assumed to produce the best feedback

for learning. We now present a comparison function f(l1, l2) that does allow balancing

exploration and exploitation.

In contrast to previous work, we alter the balanced interleave function to interleave

documents probabilistically. Instead of randomizing only the starting position and then

interleaving documents deterministically, we randomly select the list to contribute the

document at each rank of the result list. In expectation, each list contributes documents to

each rank equally often.

Constructing result lists by probabilistic interleaving, allows us to apply a method

similar to e-greedy. Our probabilistic interleave algorithm, which supplies the comparison

method that is required by DBGD, is shown in Algorithm 4. The algorithm takes as input

two document lists l1 and l2, and an exploration rate k. For each rank of the result list to be

filled, the algorithm randomly picks one of the two result lists (biased by the exploration

rate k). From the selected list, the highest-ranked document that is not yet in the combined

result list, is added at this rank. The result list is displayed to the user and clicks C are

observed. Then, for each clicked document, a click is attributed to list li (i = 1, 2) if the

document is in the top N of li, where N is the lowest-ranked click.

The exploration rate k [ [0.0, 0.5] controls the relative amount of exploration and

exploitation, similar to e. It determines the probability with which a list is selected to

contribute a document to the interleaved result list at each rank. When k = 0.5, an equal

number of documents are presented to the user in expectation.9 As k decreases, more

documents are contributed by the exploitative list, which is expected to improve the quality

of the result list but produce noisier feedback.

As k decreases, more documents from the exploitative list are presented, which intro-

duces bias for inferring feedback. The bias linearly increases the expected number of clicks

on the exploitative list and reduces the expected number of clicks on the exploratory list.

We can partially compensate for this bias since

9 Note that the setting k = 0.5 corresponds to the fully exploratory baseline algorithm. Setting k [ 0.5
would not increase the amount of information that can be gained from a comparison, but would hurt the
expected reward, because fewer exploitative documents would be shown.
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E½c2� ¼
n1

n2

� E½c1�; ð2Þ

where E[ci] is the expected number of clicks within the top N of list li, and ni is the number

of documents from li that were displayed in the top N of the interleaved result list. This

compensates for the expected number of clicks, but some bias remains because the

observed clicks are converted to binary preference decisions before they are aggregated

over queries. While perfectly compensating for bias is possible, it would require making

probabilistic updates based on the observed result. This would introduce additional noise,

creating a bias/variance trade-off. Preliminary experiments show that the learning algo-

rithm is less susceptible to increased bias than to increased noise. Therefore we use this

relatively simple, robust bias correction.

4 Experiments

In this section, we describe the experiments that evaluate the algorithms presented in Sect.

3. We first give an overview of the general evaluation setup, before giving further details

on specific aspects such as the datasets and runs.

4.1 Evaluation setup

Evaluating the ability of an algorithm to maximize cumulative performance in an online IR

setting poses unique experimental challenges. The most realistic experimental setup—in a

live setting with actual users—is risky because users may get frustrated with bad search

results. The typical TREC-like setup used in supervised learning to rank for IR is not

Algorithm 4 f(l1, l2) – k-greedy comparison of document lists

1: Input: l1, l2, k

2: initialize empty result list I

// construct result list

3: for rank r in (1 .. 10) do

4: L l1 with probability k, l2 with probability 1 - k

5: I½r�  first element of L 62 I

6: display I and observe clicked elements C

7: N = length(C); c1 = c2 = 0

8: for i in (1 .. N) do

9: if C[i] [ l1[1:N] then

10: c1 = c1 ? 1 // count clicks on l1

11: if C[i] [ l2[1:N] then

12: c2 = c2 ? 1 // count clicks on l2

// compensate for bias (Eq. 2)

13: n1 = | l1[1:N] \ I[1:N] |

14: n2 = | l2[1:N] \ I[1:N] |

15: c2 ¼ n1

n2
� c2

16: return c1 \ c2
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sufficient because information on user behavior is missing. Also, live experiments cannot

evaluate and compare many different settings like simulated experiments can.

To address these challenges, we propose an evaluation setup that simulates user

interactions. This setup combines datasets with explicit relevance judgments that are

typically used for supervised learning to rank with recently developed click models. Given

a dataset with queries and explicit relevance judgments, interactions between the retrieval

system and the user are simulated (c.f., the box labeled ‘‘user/environment’’ in Fig. 1).

Submitting a query is simulated by random sampling from the set of queries. After the

system has generated a result list for the query, feedback is generated using a click model

and the relevance judgments provided with the dataset. Note that the explicit judgments

from the dataset are not directly shown to the retrieval system but used to simulate the user

feedback and measure cumulative performance.

Using simulated evaluations naturally has limitations. Here, we can show how learning

methods behave under different assumptions about user behavior, but to what degree these

assumptions apply in specific practical settings needs to be studied in more detail.

4.2 Click model

Our click model is based on the Dependent Click Model (DCM) (Guo et al. 2009a, b), a

generalization of the cascade model (Craswell et al. 2008). The model posits that users

traverse result lists from top to bottom, examining each document as it is encountered.

Based on this examination, the user decides whether to click on the document or skip it.

After each clicked document, the user decides whether or not to continue examining the

document list. Since the DCM has been shown to effectively predict users’ click

behavior (Guo et al. 2009b), we believe it is a good model for generating implicit

feedback.

When a user examines a document in the result list, he or she does not know the true

relevance label of the document. However, aspects of the document’s representation in

the result list (e.g., its title) make it more likely that a document is clicked if it is

relevant. Using this assumption, the ground truth relevance judgments provided in

explicitly annotated learning to rank datasets, and the process put forward by the DCM,

we define the following model parameters. Relevant documents are clicked with a

probability p(c|R), the probability of a click given that a document is relevant. Non-

relevant documents can attract (noisy) clicks, with probability p(c|NR). After clicking a

document, the user may be satisfied with the results and stop examination with proba-

bility p(s|R), the probability of stopping examination after clicking on a relevant docu-

ment. The probability of stopping after visiting a non-relevant document is denoted by

p(s|NR).

To instantiate this click model we need to define click and stop probabilities. When the

DCM is trained on large click logs, probabilities are estimated for individual query-

document pairs, while marginalizing over the position at which documents were presented

in the training data. In our setting, learning these probabilities directly is not possible,

because no click log data is available. Therefore we instantiate the model heuristically,

making choices that allow us to study the behavior of our approach in various settings.

Setting these probabilities heuristically is reasonable because learning outcomes for the

gradient algorithms used in this paper are influenced mainly by how much more likely

users are to click on relevant and non-relevant documents. Thus, this ratio is more

important than the actual numbers used to instantiate the model.
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Table 1 gives an overview of the click models used in our experiments. First, to

obtain an upper bound on the performance that could be obtained if feedback was

deterministic, we define a perfect model, where all relevant documents are clicked and

no non-relevant documents are clicked. We further implement two realistic models, the

navigational and informational models. These two models are based on typical user

behavior in web search (Broder 2002; Guo et al. 2009a), because 8 of the 9 datasets we

use implement web search tasks (see below). In a navigational task, users look for a

specific document they know to exist in a collection, e.g., a company’s homepage.

Typically, it is easy to distinguish relevant and non-relevant documents and the proba-

bility of stopping examination after a relevant hit is high. Therefore, our navigational

model is relatively reliable, with a big difference between p(c|R) and p(c|NR). In an

informational task, users look for information about a topic, which can be distributed

over several pages. Here, users generally know less about what page(s) they are looking

for and clicks tend to be noisier.

4.3 Data

We conducted our experiments using two standard collections for learning to rank: LETOR

3.0 and LETOR 4.0 (Liu et al. 2007). In total, these two collections comprise 9 datasets.

Each consists of queries for which features were extracted from a document collection,

together with relevance judgements for the considered query-document pairs.

The datasets were compiled from different sources: the 106 queries in OHSUMED are

based on a log of a search engine for scientific abstracts drawn from the MedLine database.

The remaining datasets are based on Web Track collections run between 2003 and 2008 at

TREC. HP2003, HP2004, NP2003, NP2004, TD2003 and TD2004 implement homepage

finding, named-page finding, and topic distillation tasks, using a crawl of web pages within

the .gov domain. These datasets contain between 50 and 150 queries each, with about

1,000 judged documents per query. MQ2007 and MQ2008 are based on the 2007 and 2008

Million Query track at TREC and use the .GOV2 collection. These two datasets contain

substantially more queries, 1,700 and 800 respectively, but far fewer judged documents per

query.

The datasets based on the TREC Web track use binary relevance judgments, while

OHSUMED, MQ2007 and MQ2008 are judged on a 3-point scale from 0 (non-relevant) to

2 (highly relevant). In all experiments we use binary relevance judgments. For the three

datasets that originally contain graded judgments, we treat all judgments greater than zero

as relevant. In preliminary experiments with graded relevance, we obtained results nearly

identical to those with the simpler binary judgments.10

Table 1 Overview of the click models used

Model p(c|R) p(c|NR) p(s|R) p(s|NR)

Perfect 1.0 0.0 0.0 0.0

Navigational 0.95 0.05 0.9 0.2

Informational 0.9 0.4 0.5 0.1

10 The reason appears to be that the learning algorithm works with very coarse feedback, so more finely
grained feedback has little influence on the reliability of inferred judgments.
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Each dataset comes split up for machine learning experiments using fivefold cross-

validation. We use the training sets for training during the learning cycle and for calcu-

lating cumulative performance, and the test sets for measuring final performance.

4.4 Runs

4.4.1 Pairwise approach

In all pairwise experiments, we initialize the starting weight vector w0 to zero. In preliminary

experiments we evaluated offline performance for g [ {0.0001, 0.001, 0.01, 0.1}, and

selected the setting that performed best over all data sets (g = 0.001). Our baseline is the

pairwise formulation of learning to rank with stochastic gradient descent as described in Sect.

3.2, in the fully exploitative setting (r = 0). Against this baseline we compare increasingly

exploratory versions of the algorithm (r [ {0.2, 0.4, 0.6, 0.8, 1.0}). All experiments are run

for 1000 iterations.

4.4.2 Listwise approach

In all listwise experiments, we initialize the starting weight vector w0 to a random point on

a unit sphere around the origin, and use the best performing parameter settings from (Yue

and Joachims 2009): d = 1 and a = 0.01 (these settings resulted in good performance over

all datasets in our preliminary experiments). Our baseline is Algorithm 3, based on (Yue

and Joachims 2009), which corresponds to a purely exploratory setting of k = 0.5 in our

extended method.11 Against this baseline we compare exploit runs that balance exploration

and exploration by varying the exploration rate k between 0.4 and 0.1 as shown in

Algorithm 4. Again, we run all experiments for 1000 iterations.

4.5 Discounting

Because our problem formulation assumes an infinite horizon, cumulative performance is

defined as an infinite sum of discounted rewards (cf. Sect. 3). Since experiments are

necessarily finite, we cannot compute this infinite sum exactly. However, because the sum

is discounted, rewards in the far future have little impact and cumulative performance can

be approximated with a sufficiently long finite experiment.

In our experiments, we set the discount factor c = 0.995. This choice can be justified in

two ways. First, it is typical of discount factors used when evaluating RL methods (Sutton

and Barto 1998). Choosing a value close to 1 ensures that future rewards have significant

weight and thus the system must explore in order to perform well. Second, at this value of

c, cumulative performance can be accurately estimated with the number of queries in our

datasets. Since rewards after 1000 iterations have a weight of 1 % or less, our finite runs

are good approximations of true cumulative performance.

4.6 Evaluation measures

We use cumulative NDCG on the result list presented to the user to measure cumulative

performance of the system. We define cumulative reward as the discounted sum of NDCG

11 In the listwise approach, the highest level of exploration is reached when the two candidate lists are
interleaved in equal parts, i.e., k = 0.5.
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that the retrieval system accrues throughout the length of the experiment. Final perfor-

mance is reported in terms of NDCG on the test set.

For each dataset we repeat all runs 25 times and report results averaged over folds and

repetitions. We test for significant differences with the baseline runs (purely exploitative

for the pairwise approach (k = 0.0), purely exploratory for the listwise approach (k = 0.5))

using a two-sided student’s t test. Runs that significantly outperform the exploratory

baseline are marked with M (p \ 0.05) or m (p \ 0.01).

5 Results and discussion

The primary goal of this paper is to show that balancing exploration and exploitation in

online learning to rank for IR can improve cumulative performance. As there is currently

little known about the performance of pairwise and listwise learning to rank approaches in

an online setting, we first report on the performance of each baseline algorithm, before

turning to our main results. Finally, we compare the performance of the two approaches

under the novel perspective of balancing exploration and exploitation.

5.1 Pairwise learning

As a first sanity check, we calculate standard evaluation measures that are typically used to

evaluate supervised learning to rank methods for the baseline approach (purely exploit-

ative, i.e., r = 0.0). Results in terms of NDCG at 10 (NDCG@10), Precision at 10 (P@10),

and Mean Average Precision (MAP) (Liu 2009) for the perfect click model are shown in

Table 2. These are computed after 1000 iterations (consisting of 1 query, result list, and

learning step each), which means that learning may not have converged and higher results

are possible. These results should therefore be interpreted as a rough indication of what

performance can typically be achieved by this approach in an implicit feedback setting.

Based on the performance of the pairwise approach relative to state-of-the-art super-

vised approaches (Liu 2009), we can divide the datasets used in our experiments in two

groups. For the first group, which includes the datasets HP2003, HP2004, NP2003, and

NP2004, performance is quite high. In particular, for the datasets HP2003
(NDCG@10=0.820) and HP2004 (NDCG@10=0.803), the pairwise exploitative learner is

among the top 3 approaches and even beats the supervised version of RankSVM (with an

NDCG@10 of 0.807 and 0.768, respectively). For the second group, which includes the

Table 2 NDCG@10, P@10,
and MAP for the pairwise
baseline algorithm (perfect click
model)

NDCG@10 P@10 MAP

HP2003 0.820 0.106 0.753

HP2004 0.803 0.099 0.705

NP2003 0.794 0.093 0.676

NP2004 0.796 0.095 0.672

TD2003 0.271 0.153 0.208

TD2004 0.279 0.217 0.183

OHSUMED 0.321 0.392 0.371

MQ2007 0.377 0.343 0.412

MQ2008 0.490 0.239 0.452
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remaining datasets, performance is lower both in absolute terms and relative to state-of-

the-art supervised learning approaches. Here, performance is comparable to the mid-range

of the approaches compared in (Liu 2009).

To analyze the performance differences between datasets, we study the learning curves

of two representative datasets, MQ2007 and NP2003, at different levels of exploration.

Figure 2 shows the final performance in terms of NDCG (on the whole result list) plotted

over time (up to 1,000 iterations). For the dataset MQ2007 we see that best learning is

achieved at high exploration rates (the dark, dashed lines; the difference between settings

r = 0.8 and r = 1.0 is negligible). As expected, when implicit feedback is collected on

fully exploratory result lists, it is unbiased and thus results in the best learning. However,

we see the opposite for the dataset NP2003, where performance further improves when

implicit feedback is collected on exploitative result lists (r = 0, light and solid lines). Most

likely, this increase in performance results from an effect similar to that observed in active

learning. Because the current top results are shown, feedback is focused on the part of the

document space that is most informative for learning. All datasets for which this effect is

observed have few relevant documents, so that focusing feedback on a promising region

can have a substantial benefit. For the remaining datasets, there are more relevant docu-

ments per query. Thus, feedback that is focused on one part of the solution space (in the

exploitative setting) does not improve performance.

For all datasets, the absolute difference in final performance at varying exploration rates

is relatively small (similar to the two datasets analyzed above) under the perfect click

model. Much higher variance is observed when we simulate noisy feedback. Figure 3

shows learning curves for the dataset NP2003 at different settings of r for the navigational
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Fig. 2 Final performance for the pairwise approach (with 5 % confidence intervals) over time for the
datasets (a) MQ2007 and (b) NP2003, under the perfect click model and r 2 f0:0; 0:8; 1:0g:
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Fig. 3 Final performance for the pairwise approach (with 5 % confidence intervals) over time for the
dataset NP2003 for a navigational, and b informational click models and r 2 f0:0; 0:8; 1:0g
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and informational click models. For the navigational click model (a) final performance

improves over time for all r, although differences in performance for different r are higher

than with perfect click feedback. Final performance is lowest for r = 1.0 (0.714), and

increases for r = 0.0 (0.720) and r = 0.8 (0.778). For the informational click model, final

performance degrades dramatically in the purely exploitative baseline settings (r = 0,

0.102). In this setting, performance decreases over time. The purely exploratory setting

(r = 1.0) leads to reasonable final performance, while the best performance is achieved

with high exploration but some exploitation (r = 0.8, 0.724).

Our analysis of final performance results in a number of observations. We hypothesized

that the best learning would occur with perfect feedback and pure exploration because this

setting minimizes variance and bias in user feedback. As expected, learning outcomes were

best for perfect feedback and degraded with noisier feedback. However, the effect of the

exploration rate changed with the amount of noise in user feedback and characteristics of

the dataset. For perfect feedback, little to no exploration sometimes produced the best

learning outcomes because exploitative result lists focused feedback on more informative

parts of the solution space. Under noisy feedback, higher exploration rates generally

improved learning, though the best performance occurred with moderate amounts of

exploitation.

5.1.1 Balancing exploration and exploitation

We now turn to our main results for the pairwise approach: the influence of balancing

exploration and exploitation on online performance. Above, we saw that the effect of this

balance on offline performance is complex and that more exploration does not necessarily

imply better learning. When optimizing online performance, a system should generally try

to exploit as much as possible. However, if increasing exploration results in sufficiently

high learning gains, the short-term cost of this exploration may be outweighed by long-

term benefits, as it would increase the quality of exploitative result lists later on.

Table 3 shows our results for comparing runs with varying amounts of exploration

(r [ [0.2, 1.0]) to the purely exploitative baseline (r = 0.0). The best runs per row are

highlighted in bold and significant differences are marked as described above. For the

perfect click model, the best performance is achieved in the baseline settings for 7 out of 9

datasets, ranging from 103.05 (TD2003) to 124.75 (HP2003). For these datasets, the best

learning is achieved at low exploration rates, so that increasing exploration cannot lead to

long-term benefits. The modest improvement in offline performance at slightly higher

exploration rates (e.g., as for datasets TD2003 and TD2004 at r = 0.2) is not large enough

to outweigh the cost of the increased exploration.

Exceptions are the datasets OHSUMED and MQ2007. For both datasets, online per-

formance improves significantly when the exploration rate is increased to r = 0.2, with a

relative increase of 12.9 % for OHSUMED and 2.8 % for MQ2007. As discussed above,

these datasets have more relevant documents per query. Consequently, the expected utility

is high, even when result lists are randomized (this can also be observed when comparing

online performance at the purely exploratory setting r = 1.0). As a result, the cost of

exploration is relatively low and easily outweighed by the long-term learning gains.

In the relatively reliable navigational click model, optimal online performance is

achieved at the slightly higher exploration rate of r = 0.2 for all but one dataset. For 5 of

these datasets, this improvement is significant when compared to the baseline setting.

Compared to the perfect click model, online performance with the noisier navigational
model is typically lower, as expected. The performance loss due to noise is between 3.5 %
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(MQ2008) and 11.0 % (HP2003). One exception is the dataset NP2003, for which learning

is not strongly affected by the small increase in noise and where performance is close to

identical to the perfect click model. The second exception is the dataset NP2004, for which

online performance for the navigational click model at the best settings (r = 0.2) is 4.4 %

higher than for the best setting and the perfect click model. Interestingly, this result

demonstrates that a small amount of noise and mild exploration can lead to a better

exploration of the solution space and an improvement in online performance.

As in earlier results, we see a difference between datasets with high and low ratios of

relevant documents. For datasets with a relatively low ratio of relevant documents (HP*,
NP*, and TD*) the relative improvement in online performance at this higher exploration

rate is typically big (up to 32.2 % for the dataset TD2003). Although the short-term cost of

Table 3 Results for the pairwise approach. Online performance (in terms of cumulative NDCG) over 1000
iterations

r 0.0 0.2 0.4 0.6 0.8 1.0

click model: perfect

HP2003 124.75 122.32 109.82. 89.50. 61.12 . 1.35 .

HP2004 115.08 102.15 . 87.14 . 72.64 . 48.79 . 1.14 .

NP2003 115.75 110.72 96.21 . 87.43 . 54.94 . 1.84 .

NP2004 111.26 104.43 94.37 . 76.60 . 52.44 . 1.17 .

TD2003 103.05 98.88 85.37 . 69.65 . 43.63 . 8.23 .

TD2004 106.77 103.93 83.06 . 65.56 . 44.50 . 14.62 .

OHSUMED 119.13 134.53 m 127.31 m 119.68 111.42 . 100.44 .

MQ2007 104.12 107.06 m 105.50 m 101.53 . 95.96 . 90.13 .

MQ2008 104.01 103.38 98.96 . 93.70 . 87.58 . 80.60 .

click model: navigational

HP2003 104.99 111.01 108.15 102.48 69.91 . 1.39 .

HP2004 91.69 110.26 M 107.83 M 82.70 57.20 . 1.27 .

NP2003 115.85 110.40 106.50 91.94 . 61.19 . 1.88 .

NP2004 93.79 116.11 m 106.39 89.67 64.20 . 1.07 .

TD2003 64.43 85.20 m 77.85 m 66.59 42.80 . 8.08 .

TD2004 87.59 97.90 m 82.91 66.31 . 45.46 . 14.30 .

OHSUMED 127.05 129.73 123.39 . 117.64 . 110.04 . 100.81 .

MQ2007 101.68 102.88 M 101.99 99.13 . 95.08 . 90.05 .

MQ2008 100.16 100.41 97.18 . 93.06 . 87.31 . 81.23 .

click model: informational

HP2003 7.21 40.39 m 72.60 m 66.52 m 55.31 m 1.37 .

HP2004 6.39 29.81 m 51.81 m 67.20 m 46.30 m 1.11 .

NP2003 5.75 24.39 m 55.16 m 60.57 m 45.04 m 1.90 .

NP2004 5.64 23.95 m 69.22 m 65.58 m 52.01 m 1.21 .

TD2003 7.47 23.64 m 43.92 m 43.96 m 36.25 m 7.85

TD2004 17.31 50.10 m 60.12 m 54.58 m 38.44 m 14.48 �

OHSUMED 102.60 121.48 m 122.06 m 116.55 m 109.53 m 101.12

MQ2007 92.76 96.58 m 98.19 m 96.66 m 95.43 m 90.00 .

MQ2008 90.00 91.14 92.45 m 91.12 86.88 . 81.69 .

Best runs per row are highlighted in bold
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exploration for these datasets is high, this high cost is outweighed by even higher long-term

benefits (being able to rank the few relevant documents well). For datasets with a high ratio

of relevant documents, both the cost of exploration, and its long-term benefits are small.

This leads to relative improvements of between 0.3 % (MQ2008) and 2.1 % (OHSUMED).

For dataset NP2003, increased exploration does not lead to better online performance.

In the noisier informational click model, the trends observed for the navigational click

model continue. Performance in the purely exploitative setting is substantially lower than

for the other click models, as the increase in noise results in lower learning gains and

therefore lower online performance. In this setting, the cost of exploration decreases rel-

ative to its benefit, so optimal performance is seen at higher exploration rates. For 6

datasets, the best online performance is achieved at r = 0.4; for the remaining 3 datasets

the best setting is r = 0.6. All improvements are statistically significant when compared to

the purely exploitative baseline. For the datasets with a low ratio of relevant documents,

online performance improves by as much as an order of magnitude. For datasets with a

high ratio of relevant documents, improvements range from 2.7 % (MQ2008) to 19.0 %

(OHSUMED). Compared to the navigational click model, online performance drops for all

datasets, as expected. The increase in noise leads to a drop in online performance of

between 4.6 % (MQ2007) and 48.4 % (TD2003).

Overall, for the pairwise approach the effect of balancing exploration and exploitation

depends both on noise in user feedback and characteristics of the datasets. When feedback

is reliable, online performance is best in the purely exploitative (baseline) setting. How-

ever, the pairwise baseline approach does not learn well when feedback is noisy. Increasing

the exploration rate can partially compensate for this. As a result, the best online perfor-

mance under noisy feedback is achieved at r = 0.4 and r = 0.6, for which result lists

contain about one half exploratory and one half exploitative documents. These findings

confirm our hypothesis that balancing exploration and exploitation in the pairwise

approach improves online performance.

5.2 Listwise learning

As with the pairwise approach, we start by evaluating the final performance of the listwise

baseline approach (k = 0.5) in terms of standard evaluation measures. Results for the

perfect click model after 1000 iterations are listed in Table 4. In this setting, performance

is slightly lower than for the pairwise approach for 6 of the 9 datasets used (except for

TD2003, TD2004, and OHSUMED). Despite the limited information available to the

Table 4 NDCG@10, P@10,
and MAP for the listwise baseline
algorithm (perfect click model)

NDCG@10 P@10 MAP

HP2003 0.792 0.102 0.721

HP2004 0.770 0.096 0.676

NP2003 0.761 0.090 0.649

NP2004 0.787 0.093 0.659

TD2003 0.296 0.152 0.231

TD2004 0.298 0.236 0.206

OHSUMED 0.422 0.488 0.437

MQ2007 0.375 0.335 0.410

MQ2008 0.488 0.238 0.447
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algorithm (relative quality of the result list instead of explicit relevance judgment per

document), performance is competitive with current supervised learning to rank algorithms

(Liu 2009).

Figure 4 shows the learning curves for the datasets MQ2007 and NP2003 at different

settings of k and the perfect click model. In contrast to the pairwise approach, there is no

significant difference in performance after 1000 iterations for either dataset. For NP2003,

learning in the fully exploratory setting (k = 0.5) is slightly faster than in other settings.

This is expected, as the best feedback is available at maximal exploration. However,

learning at lower exploration rates quickly catches up. Thus, for the listwise approach the

exploration rate does not appear to have a significant effect on offline performance when

feedback is perfect.

Learning curves for the navigational and informational click models are shown in Fig. 5.

As expected, learning is faster when feedback is more reliable. For the idealized perfect click

model, final performance after 1000 iterations ranges between 0.777 and 0.785 for different

settings of k. For the noisy informational click model, final performance is between 0.412 and

0.546. Although final performance drops substantially as implicit feedback becomes extre-

mely noisy, performance improves over time for all datasets as there is still a signal, i.e.,

relevant documents are more likely to be clicked than non-relevant ones.

Once again there is an interaction effect between click model and exploration rate,

although it is different from that of the pairwise approach. Here, there is no significant

difference between the final performance at different settings of k under the perfect click

model. Under the navigational click model, the effect of noise is small, and results are

similar to the perfect click model. However, in the informational click model, variance

increases and there is a large difference between final performance at different settings of

k. This is a direct and expected consequence of the noise in inferred feedback. More

surprising is that final performance improves for smaller k, since we expected feedback to
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Fig. 4 Final performance (with 5 % confidence intervals) over time for the datasets a MQ2007 and b
NP2003 for the perfect click model and k 2 f0:1; 0:2; 0:5g
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Fig. 5 Final performance (with 5 % confidence intervals) over time for the dataset NP2003 for a
navigational, and b informational click models and k 2 f0:1; 0:2; 0:5g
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be most reliable for the fully exploratory setting k = 0.5. Instead, it appears that, since bias

is only partially compensated for (cf., Sect. 3), the bias that remains at lower values of k
smoothes over some of the noise in the click model. At lower exploration rates, fewer

results from the exploratory list are presented and it becomes harder for the exploratory list

to win the comparison. Thus, instead of noisier updates, the algorithm makes fewer, more

reliable updates that on average result in greater performance gains.

5.2.1 Balancing exploration and exploitation for the listwise approach

Our main results for the listwise approach are shown in Table 5. Here, we take the original,

purely exploratory, form of the algorithm as the baseline (k = 0.5) against which we

Table 5 Results for the listwise approach. Cumulative NDCG for baseline (k = 0.5) and exploit
(k 2 ½0:1; 0:4�) runs

k 0.5 0.4 0.3 0.2. 0.1

Click model: perfect

HP2003 119.91 125.71 m 129.99 m 130.55 m 128.50 m

HP2004 109.21 111.57 118.54 m 119.86 m 116.46 m

NP2003 108.74 113.61 m 117.44 m 120.46 m 119.06 m

NP2004 112.33 119.34 m 124.47 m 126.20 m 123.70 m

TD2003 82.00 84.24 88.20 m 89.36 m 86.20 m

TD2004 85.67 90.23 m 91.00 m 91.71 m 88.98 M

OHSUMED 128.12 130.40 m 131.16 m 133.37 m 131.93 m

MQ2007 96.02 97.48 98.54 m 100.28 m 98.32 m

MQ2008 90.97 92.99 m 94.03 m 95.59 m 95.14 m

Click model: navigational

HP2003 102.58 109.78 m 118.84 m 116.38 m 117.52 m

HP2004 89.61 97.08 m 99.03 m 103.36 m 105.69 m

NP2003 90.32 100.94 m 105.03 m 108.15 m 110.12 m

NP2004 99.14 104.34 M 110.16 m 112.05 m 116.00 m

TD2003 70.93 75.20 m 77.64 m 77.54 m 75.70 M

TD2004 78.83 80.17 82.40 M 83.54 m 80.98

OHSUMED 125.35 126.92 M 127.37 m 127.94 m 127.21

MQ2007 95.50 94.99 95.70 96.02 94.94

MQ2008 89.39 90.55 91.24 M 92.36 m 92.25 m

Click model: informational

HP2003 59.53 63.91 61.43 70.11 M 71.19 m

HP2004 41.12 52.88 m 48.54 M 55.88 m 55.16 m

NP2003 53.63 53.64 57.60 58.40 69.90 m

NP2004 60.59 63.38 64.17 63.23 69.96 M

TD2003 52.78 52.95 51.58 55.76 57.30

TD2004 58.49 61.43 59.75 62.88 M 63.37

OHSUMED 121.39 123.26 124.01 M 126.76 m 125.40 m

MQ2007 91.57 92.00 91.66 90.79 90.19

MQ2008 86.06 87.26 85.83 87.62 86.29

Best runs per row are highlighted in bold
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compare exploit runs (k 2 ½0:1; 0:4�). With the perfect click model, all lower settings of k
outperform the baseline in all datasets. For k \ 0.4, all improvements over the baseline are

statistically significant. The improvements range from 4.1 % (OHSUMED) to 12.35 %

(NP2004).

Results for the navigational click model are similar. For all datasets, there are several

lower settings of k which outperform the baseline. For all but one dataset (MQ2007), these

improvements are statistically significant. Improvements range from 0.54 % (MQ2007) to

21.9 % (NP2003).

The trend continues for the informational click model. Again, more exploitative settings

outperform the purely exploratory baseline in all cases. For 7 out of 9 cases the

improvements are statistically significant. The improvement ranges up to 35.9 % for the

dataset HP2004.

Together, these results demonstrate that, for all click models and all datasets, balancing

exploration and exploitation can significantly improve online performance over the purely

exploratory baseline. Comparing cumulative performance listed in Table 5 with final

performance in Table 4, we find that cumulative performance does not depend only on

final performance. For example, NDCG@10 and MAP for HP2003 are higher than for

OHSUMED, but cumulative performance is similar (precision scores are low for HP2003
because there are few relevant documents in general, and are not a good indicator of the

relative quality of result rankings). The main factors affecting cumulative performance are

the speed of learning and how effectively early learning gains are exploited. Thus, these

results underscore the inadequacy of final performance as an evaluation measure for online

learning to rank algorithms.

The best setting for exploration rate k is 0.1 or 0.2 in all but two cases. A setting of

k = 0.2 means that by injecting, on average, only two documents from an exploratory list,

the algorithm learns effectively and achieves good online performance for all levels of

noise in click feedback. This means that surprisingly little exploration is sufficient for good

performance and that the original listwise algorithm explores too much. In contrast, the

best setting for the pairwise approach depends on the amount of noise in the click model.

When feedback is perfect, little to no exploration is needed. For the informational click

model, the optimal setting of r [ {0.4, 0.6} means that up to 60 % of the result list needs

to be exploratory.

While balancing exploration and exploitation improves performance for all datasets, the

magnitude of these improvements differs substantially. For example, for the navigational
click model, the relative improvement between the baseline and best settings for NP2003 is

21.9 %, while for MQ2007 the difference is only 0.54 %. Like the differences observed under

the pairwise approach, these are a consequence of the differences in the relative number of

relevant documents per query. For datasets with few relevant documents, the differences

between the exploitative and exploratory document lists are large, leading to a high cost of

exploration but also high potential gains if this exploration leads to better learning. For

datasets MQ2007, MQ2008, and OHSUMED, which contain a high ratio of relevant docu-

ments, the cost of exploration and the potential long-term gains from improved learning are

relatively small. Note that, in realistic settings, it is likely that more candidate documents are

considered, so the effect of exploiting more is likely to be stronger.

Cumulative performance is also affected by noise in click feedback, as observed in the

results obtained for the different click models. Performance is highest with perfect feed-

back, and decreases as feedback becomes noisier. Performance on some datasets is more

strongly affected by noisy feedback. For the HP, NP, and TD datasets, performance for the

informational model drops substantially. This may again be related to the large number of
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non-relevant documents in these datasets. As finding a good ranking is harder, noise has a

stronger effect. Despite this drop in performance, balancing exploration and exploitation

consistently leads to better cumulative performance than the purely exploratory baseline.

5.3 Comparing the pairwise and listwise approach

For both the pairwise and the listwise approaches, our results confirm our hypothesis that a

balance between exploration and exploitation is needed to optimize online performance.

The mechanisms of how such a balance affects online performance, however, differ

between the two learning approaches. Below, we first discuss how exploration impacts

performance for both approaches. Then, we turn to an overall comparison of the online and

offline performance of the two approaches, and conclude with implications for putting

them in practice.

An unexpected outcome of our analysis is that increasing exploration does not always lead

to better learning, i.e., better offline performance. As a result, exploitation can be ‘‘free,’’ i.e.,

the current best solution is also the most useful for collecting feedback for learning. We

observed this, e.g., for the pairwise approach under perfect click feedback. As click feedback

on the exploitative list automatically focuses on an informative part of the document space,

increasing exploration does not result in better learning. For the listwise approach, differences

in learning for different exploration rates are small under the perfect click model. However,

exploration does lead to faster convergence, so exploitation has a small cost.

When click feedback is noisy, the pairwise approach benefits from increased explora-

tion, while the opposite is true for the listwise approach. Exploitation introduces bias in the

pairwise approach, which focuses feedback on a relatively narrow part of the solution

space that is not informative. Depending on the amount of noise, this effect can result in

low final performance. Increasing exploration reduces this bias and improves final per-

formance. As a result, the optimal balance between exploration and exploitation shifts

towards increased exploration as feedback becomes noisier. For the listwise approach, an

increase in noise also results in some bias. However, in this approach, the bias does not

affect the inferred preference judgments (it only increases their variance) but acts as a

safeguard against too frequent updates based on noisy data. This leads to less frequent but

more reliable updates of the weight vector, thereby improving offline performance. Thus,

as noise in click feedback increases, the long-term cost of exploitation increases for the

pairwise approach, while it decreases for the listwise approach.

Final performance of the pairwise algorithm with the perfect click model is generally

high, compared to state-of-the-art supervised learning to rank methods. Final performance

also tends to be higher than for the listwise approach (winning on 6 out of the 9 datasets

studied), although these results should be considered preliminary as we did not tune the

approaches to the characteristics of the datasets and higher performance may be possible.

In terms of online performance, however, the two approaches perform similarly, with

the listwise approach beating the pairwise approach on 4 datasets. An advantage of the

listwise approach is that the cost of exploitation can be small if the exploratory document

list is similar to the exploitative one, which is more likely as learning progresses. For the

pairwise approach, the cost of exploration is generally high, so the approach has a dis-

advantage when a similar level of exploration is required for reasonable learning gains.

Thus, at similar final performance and exploration rates, the listwise approach tends to

achieve higher online performance than the pairwise approach.

Differences in how implicit feedback is processed by the two approaches lead to pro-

nounced differences in their behavior when feedback is noisy. The performance of the
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pairwise approach can drop dramatically, especially in the original exploitative setting

where often no learning is possible. However, balancing exploration and exploitation

allows the algorithm to recover its performance. A relatively high amount of exploration,

with about half the result list constructed from exploratory documents, is needed to achieve

good learning outcomes and high online performance. The drop in performance due to

noise is much less pronounced for the listwise method. Online performance of the algo-

rithm in its original, fully exploratory, version is often an order of magnitude higher than

for the original version of the pairwise approach. A possible reason is that, by aggregating

feedback over document lists, the algorithm becomes inherently robust to noise. Increasing

exploitation can further improve online performance. However, after balancing exploration

and exploitation, the two algorithms perform similarly, with the pairwise approach winning

on 4 datasets, and the listwise approach winning on 5.

Our analysis suggests that the pairwise and listwise approaches are appropriate for

learning from implicit feedback in different settings. If the implicit feedback is known

to be reliable, then the pairwise approach should be preferred as it results in good

offline performance. Also, in this setting, the pairwise approach requires little to no

exploration for substantial learning gains. Thus, it can exploit aggressively, leading to

high online performance. However, if feedback is expected to be noisy, the listwise

approach should be preferred. In contrast to the pairwise approach, it safeguards against

dramatic loss in offline performance, as long as there is some signal in the feedback

that prefers truly relevant documents. In addition, under noisy feedback, the listwise

approach requires much less exploration than the pairwise approach, and the cost of

exploration is lower.

6 Conclusion

We demonstrated that balancing exploration and exploitation can substantially and signifi-

cantly improve online performance in online learning to rank for IR. We introduced two

methods for balancing exploration and exploitation in this setting, based on one pairwise and

one listwise learning approach. To the best of our knowledge, these are the first algorithms

that can achieve such a balance in a setting where only relative feedback is available.

Our experimental results demonstrated that the effect of balancing exploration and

exploitation is complex and that there is an interaction effect between the amount of

exploitation and the amount of noise in user feedback. When feedback is reliable, both

approaches learn well and a high amount of exploitation can be tolerated, which leads to

high online performance. As feedback becomes noisier, learning under high exploitation

becomes unreliable for the pairwise approach. A higher amount of exploration is required

to maintain reasonable performance. For the listwise approach, however, a smoothing

effect occurs under high exploitation, so that exploitation is essentially cost-free. This

allows the listwise approach to maintain good performance under noisy feedback with a

surprisingly small amount of exploration.

Our results also shed new light on the relative performance of online learning to rank

methods. The pairwise approach makes very effective use of implicit feedback when there

is little noise, leading to final performance comparable to supervised learning to rank

approaches. However, it is strongly affected by noise in user feedback. Our results dem-

onstrated that a balance of exploration and exploitation is crucial in such a setting. For the

listwise approach, learning can be slower but, due to the aggregation of feedback over

multiple result lists, this approach is more robust to noise.
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After demonstrating the importance of balancing exploration and exploitation in online

learning to rank, a crucial question is how best to explore. This is the direction we are

planning to pursue in future work. For the pairwise approach, the cost of random explo-

ration is high. Exploration methods based on active learning approaches (Donmez and

Carbonell 2009; Tian and Lease 2011; Xu et al. 2007) are a promising alternative that may

reduce its effect on short-term performance, while maintaining or even improving long-

term learning. For the listwise approach, the current form of random exploration can lead

to inefficient learning. Unlike for the pairwise setting, we are not aware of any active

learning methods for the listwise setting that could be used for smarter exploration.

Obvious starting points are methods for exploration in policy search reinforcement learning

(Kalyanakrishnan and Stone 2010; Whiteson and Stone 2006).

A straightforward way to further improve online performance would be to use annealing

schedules that reduce the exploration rate over time, as is common practice in RL. While

this technique could improve absolute performance, it is not expected to affect the qual-

itative outcomes of our analysis. In realistic settings its applicability may be limited as such

problems are likely non-stationary, meaning that the exploration rate should never become

so small that the retrieval system cannot adapt to changes in user preferences. A more

interesting question is whether and how the system could automatically adjust the amount

of exploration to a specific setting.

In this paper we focused on evaluating our methods using simulations. This had the

advantage that we could conduct experiments for various settings, such as varying the

amount of noise in click feedback. Naturally, assumptions underlying these simulations

need to be tested before moving these methods to a real setting. Based on our results, we

believe that it is particularly important to study the level of noise in user feedback, and

collection characteristics such as the typical ratio of relevant and non-relevant documents

before applying the methods in a specific environment. Based on such statistics, an

informed choice about the appropriate online learning approach and a good balance of

exploration and exploitation can be made.
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