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Abstract As an important application in text mining and social media, sentiment

detection has aroused more and more research interests, due to the expanding volume of

available online information such as microblogging messages and review comments. Many

machine learning methods have been proposed for sentiment detection. As a branch of

machine learning, transfer learning is an important technique that tries to transfer

knowledge from one domain to another one. When applied to sentiment detection, existing

transfer learning methods employ articles with human labeled sentiments from other

domains to help the sentiment detection on a target domain. Although most existing

transfer learning methods are devoted to handle the data distribution difference between

different domains, they only resort to some approximation methods, which may introduce

some unnecessary biases. Furthermore, the popular assumption of existing transfer learning

techniques on conditional probability is often too strong for practical applications. In this

paper, we propose a novel method to model the distribution difference between different

domains in sentiment detection by directly modeling the underlying joint distributions for

different domains. Some of the important properties of the proposed method, such as the

convergence rate and time complexity, are analyzed. The experimental results on the

product review dataset and the twitter dataset demonstrate the advantages of the proposed

method over the state-of-the-art methods.
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1 Introduction

Over the past decade, with the development of the Internet and the social media, enormous

opportunities have been created for companies of all sizes to interact with customers,

advertise products, make business transactions, as well as for individuals to get better

knowledge on the product reviews (Blitzer et al. 2012; Das and Chen 2007; Thomas et al.

2006). As a result, sentiment detection methods are becoming more and more important in

automatically analyzing and summarizing the sentiments online.

With widely-varying domains, researchers who build sentiment classification systems

need to collect and curate data for the domains they work on. But laboring the collected

data is normally very expensive and inefficient. To solve the label insufficiency problem, a

feasible way is to utilize examples from other domains. According to the availability of

labels/sentiments on different domains, there are mainly three scenarios in sentiment

detection: (1) Some labeled (with known sentiments) examples from other domains (source

domain) are available, while no labeled example is available on the new domain (target

domain). In this case, the sentiments of the examples in the new domain can be predicted

by using domain adaption methods (Blitzer et al. 2012; Huang et al. 2006; Pan et al.

2010). (2) Sufficient unlabeled examples in other domains are available, while a small

number of labeled examples in the new domain can be obtained. Then, a classifier can be

trained through self taught learning (Raina et al. 2007). (3) Abundant labeled examples in

the source domain are available, and meanwhile several labeled examples can also be

obtained in the target domain. In this scenario, the classifier can be trained by treating the

source domain examples as auxiliary data, and training a classifier that is consistent on

both the source domain and the target domain.

In this paper, our focus is on the third case. In this case, it is clear that if the data distributions

for both the source and the target domains are the same, then a classifier can be directly trained

based on the labeled examples from both the source and target domains by using methods, such

as support vector machines (SVM) (Scholkopf and Smola 2002). However, in practice, the

distributions of these two domains are normally very different and directly applying the

classifiers from other domains on the target domain normally leads to a poor classification

performance (Blum and Chawla 2001; Lafferty et al. 2001; Nigam et al. 2000).

In twitter sentiment classification problem, normally some labeled tweets are available

in the target domain, while in the source domain a rich set of labeled ‘‘complete‘‘ docu-

ments are available. Since each tweet contains only a limited number of characters, directly

designing classifiers based on the labeled tweets will not be accurate due to the extreme

sparseness of these tweet feature vectors. So, we consider to incorporate the examples in

the source domain. But the distribution for the source domain examples is usually deviates

a lot from that of tweets, since they may probably cover different topics and the huge

difference of the feature sparseness on these two domains also poses a big challenge. So, if

we simply merge the labeled source and target domain examples together, and design a

classifier based on them, the sentiment classification results will be badly affected.

As another example, in the sentiment detection of product review comments, suppose

we have some labeled review comments in the target domain, as well as a lot of labeled

ones in the source domain. A natural question is whether we can use the labeled review

comments for some other products to help us to understand the review comments on the

target product. Normally, different products have different characteristics. For example,

‘‘sharpness’’ is a good descriptor for a good knife. But it is not a good evaluation for

laptops. So, if we design a sentiment classifier based on the labeled ‘‘knife’’ products, we

cannot directly use it to classify the sentiments for the laptop review comments.
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To deal with the domain difference problem, a lot of methods have already been

developed. One of the most successful methods is the structural correspondence learning

(SCL) (Ando and Bartlett 2005; Blitzer et al. 2006). In this work, the authors first find a

set of pivot features which frequently appear in both the source domain and the target

domain. Then, the correlations between the pivot features and the non-pivot features are

modeled through a set of linear classifiers. Some hidden patterns underlying these clas-

sifiers are then considered as the correlations between different kinds of features. Based

on these hidden patterns, another set of features are designed and appended to the original

feature space before the supervised training process. In Huang et al. (2006), the authors

assume that the posterior probability for the two domains are the same, and the difference

only lies on the data distribution without considering the labels. Based on this assumption,

they modeled data distribution difference between different domains through kernel mean

matching.

Their methods are reasonable and handle the distribution difference problem from

different perspectives. However, the distribution difference problem still exists in these

works. For example, in SCL, even if the new features are appended to the original feature

space, it is clear that distribution difference problem still exists on the original features.

Therefore, designing a classifier based on the new feature space is still not good for target

domain examples. In Huang et al. (2006), the assumption that the conditional probability

of PS(y|x) and PT(y|x), where x represents the instance and y is referred to as the label, are

the same is too strong. Instead, in this paper, we propose a novel formulation—sentiment

detection with auxiliary data (SDAD), which solves this problem by modeling the joint

distribution difference between different domains through Kernel Density Estimation

(KDE) (Bishop 2007) and incorporates the source domain examples more naturally into the

objective function through reweighting the source domain examples. The proposed for-

mulation is then solved by the bundle method (Smola et al. 2008; Teo et al. 2010). Some

important properties of the proposed method, such as the convergence rate and the time

complexity, are analyzed in ‘‘Appendix’’. The experimental results clearly demonstrate the

advantages of the proposed method.

The rest of this paper is organized as follows: Sect. 2 introduces the related works.

Section 3 gives the problem statement and puts forward the proposed method. An extensive

set of experiments are given in Sect. 4 At the end of this paper, a conclusion will be drawn.

2 Related works

2.1 Sentiment detection

With more than 10 years’ development, sentiment detection (Argamon et al. 1998; Kessler

et al. 1997; Spertus 1997) has become one of the major subfields in information man-

agement (Dimitrova et al. 2002; Hillard et al. 2003; Wilson et al. 2005), especially after

the year 2001. This is mainly due to three reasons (Pang and Lee 2008): (1) the increase of

machine learning techniques in natural langauge processing; (2) the availability of the

datasets due to the popularity of the Internet, especially the development of social media;

(3) the rising interest in commercial and business intelligence applications in this area. As a

result, a lot of approaches (Cardie et al. 2003; Das and Chen 2001; Morinaga et al. 2002;

Pang and Lee 2004) have been developed to solve this problem.

In machine learning, sentiment detection can be viewed as a classification or regression

problem, which mainly deals with two subproblems, i.e., sentiment polarity/classification
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and degrees of positivity. Depending on the domains on which training examples are

available, the concrete methods can be categorized into two groups, i.e., the group that

deals with only one single domain and the group with multiple domains. As for the first

group (Taboada et al. 2006; Whitelaw et al. 2005; Wiebe and Riloff 2005), to train the

classifiers, the training examples are normally available on the target domain. Some

machine learning methods that have been used to train the classifiers and have shown state-

of-the-art performances in these tasks include naive bayes, maximum entropy, support

vector machine (SVM) (Pang et al. 2002) etc.

The second group, which is also the focus of this paper, considers training examples

from several different domains. However, sentiment detection is a very domain specific

problem, i.e., the classifiers trained in one domain do not perform well in others (Blum and

Chawla 2001; Lafferty et al. 2001; Nigam et al. 2000). This is mainly because that the data

distributions on different domains are usually different. For example, ‘‘sharpness’’ is a

good word feature to describe knives, but is not a good one to evaluate computer products.

To deal with this problem, one common way is to use the transfer learning (Pan and Yang

2010), which transfers the knowledge from the training examples in other domains (source

domain) to the target domain.

However, previous transfer learning methods that have been applied to sentiment

detection only deal with the data distributions problem implicitly. For example, in Blitzer

et al. (2012), the authors picked some pivot features which appear frequently in both the

source domain and the target domain, and then models the correspondences between these

pivot features and all the other features. These correlations are considered as some new

features in the training process (Ando and Bartlett 2005; Blitzer et al. 2006). Their method

is reasonable. However, although being alleviated, the problem of distribution difference

still exist, since they only append some additional features into the original feature space.

And the performances are affected by the choices of the pivot features. In this paper, we

model the joint distribution difference between the target domain and the source domain by

kernel density estimation, so that the training examples on the source domain can be better

utilized and the problem of picking the pivot features can also be avoided.

2.2 Transfer learning

In traditional machine learning, such as supervised learning (Duda et al. 2001) and semi-

supervised learning (Zhu 2006), one of the common assumptions is that both the labeled

and unlabeled data are sampled from the same distribution or lie on the same manifold. But

when the distribution changes, a new model would need to be built. It would be useful if

the previously trained models can be reused to guide the construction of the new model.

This gives rise to the concept of transfer learning, a technique that transfers knowledge

across domains, tasks and distributions that are similar but not the same.

An important problem in transfer learning is what kind of knowledge can actually be

transferred from the source domain to the target domain. Roughly speaking, the assump-

tions introduced in previous transfer learning work can be grouped into four categories:

(Pan and Yang 2010):

• Feature Representation Transfer. In Argyriou et al. (2007), Dai et al. (2008), Duan

et al. (2009), Pan et al. (2012), Raina et al. (2007), and Zhang and Si (2009), the

authors assume that there exist some common feature space shared by both the source

domain examples and the target domain examples, and this common feature space can

be used as a bridge to transfer knowledge from the source domain to the target domain.
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• Parameter Transfer. By assuming the shared parameters/hyper-parameters, such as in

Gaussian Process (GP)models, in Bonilla et al. (2008) and Lawrence and Platt (2004),

the authors try to justify and estimate the shared parameters for the models in the

source domain and the target domain.

• Instance Transfer. The examples in the source domain examples are selected or

reweighted for use in the target domain (Dai et al. 2007; Huang et al. 2006).

• Relation Transfer. In Davis and Domingos (2009), Mihalkova et al. (2007), and

Mihalkova and Mooney (2008), the authors build the relational map between the source

and target domains, and relax the i.i.d. assumptions in these two domains.

In this paper, the proposed method is based on the instance transfer, which considers

modeling the distribution difference between the examples on the source domain and target

domain together through reweighting the importances of the labeled examples on the

source domain. It is true that, some previous works, such as Huang et al. (2006), are also

devoted to model the difference between different domains. However, they only achieve

this goal indirectly by some approximation methods, while the proposed method directly

models the distribution difference through kernel density estimation. Furthermore, to

simplify the proposed formulation, the previous works assume that the conditional prob-

ability PS(y|x) and PT(y|x), where x are the same for both the source domain and the target

domain. Instead, in this work, by taking advantage of kernel density estimation, we can

avoid this assumption elegantly.

2.3 Training with auxiliary data

As a machine learning technology, SVM has enjoyed its popularity for more than ten years.

One question related to SVM, as well as some other supervised learning methods, is how we

can utilize the training examples from some other sources to improve the classification

accuracy on the target domain. In Wu and Dietterich (2004), the authors proposed a novel

formulation to incorporate the source domain examples into the training process as follows:

min
h

XNp

i

Lðhðxp
i Þ; y

p
i Þ þ c

XNa

i

Lðhðxa
i Þ; ya

i Þ þ kDðhÞ; ð1Þ

where h is the classification. (xi
p, yi

p) denotes the ith training example on the target domain, and

(xi
a, yi

a) refers to the ith auxiliary example. L(•, •) is a predefined loss function, such as the hinge

loss. D(h) is a complexity penalty to prevent overfitting. c and k are two trade-off parameters.

The problem with this method is that it incorporates the auxiliary data into the objective

function without considering the distribution difference between the different domains. As

suggested by Huang et al. (2006), by modeling the training data distribution difference

between different domains, the model can be much more accurate. Out of the same

motivation, in this paper, we model the distribution difference between different sentiment

detection domains and combine them in a more natural way.

2.4 Bundle method

The proposed formulation is a convex optimization problem. In this paper, we proposed an

optimization algorithm based on the bundle method (Smola et al. 2008; Teo et al. 2010),

which has shown its superior performances in both efficiency and effectiveness over state-

of-the-art methods, to solve this proposed formulation. The basic motivation of the bundle
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method is to approximate the objective function J(w) through a set of linear functions,

where w is the model parameter. In particular, this objective function is lower bounded as

follows:

JðwÞ� max
1� i� t

fJðwi�1Þ þ hw� wi�1; aiig;

where wi is a set of points picked by the bundle method, and ai is the gradient/sub-gradient

at point wi. The bundle method monotonically decreases the gap between J(w) and

max1� i� tfJðwi�1Þ þ hw� wi�1; aiig such that the minimal point of J(w) can be

approximated by the minimum of the line segments max1� i� t fJðwi�1Þ þ hw� wi�1; aiig.
Some recent development in bundle method (Teo et al. 2010) shows that if J(w) con-

tains some regularizers by itself, the bundle method is guaranteed to converge to the

precision � in Oð1=�Þ steps. In this paper, we adapt the bundle method to solve the

proposed problem, which can also be proven to have an efficient convergence rate.

3 Sentiment detection with auxiliary data

In this section, we first introduce the problem of SDAD. Then, an optimization formulation

is proposed, which integrates the source domain examples (i.e., auxiliary data) into the

objective function in a principled way. This problem is later solved by bundle method

(Smola et al. 2008; Teo et al. 2010). In ‘‘Appendix’’, we analyze some important prop-

erties of the proposed method, such as the convergence rate.

3.1 Problem statement

In the proposed problem, we have labeled data from both the source domain and the target

domain, where the source domain examples are denoted as: ðX;YÞ ¼ fðx1; y1Þ; ðx2; y2Þ;
. . .; ðxn; ynÞg and the target domain examples are referred to as ðZ;Y�Þ ¼ fðz1; y

�
1Þ;

ðz2; y
�
2Þ; . . .; ðzm; y

�
mÞg; where yi 2 f1;�1g and y�i 2 f1;�1g represent the positive and

negative attitudes on source and target domains respectively. Without loss of generality,

our objective is to train a linear sentiment classifier w based on the labeled examples from

both the source domain and the target domain.

3.2 Methodology

3.2.1 Formulation

In this subsection, we propose the formulation of SDAD, which incorporates examples

from different domains by modeling the data distribution difference. In particular, the

optimization problem of SDAD can be formulated as follows:

min
w;ni � 0;n�j � 0

1

2
kwk2 þ C1

n

Xn

i¼1

ni þ
C2

m

Xm

j¼1

bjn
�
j

s:t: 8i 2 f1; 2; . . .; ng; yiw
T xi� 1� ni;

8j 2 f1; 2; . . .;mg; y�j wT zj� 1� n�j :

ð2Þ
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where bj refers to
PrT ðxj ;y

�
j Þ

PrSðxj;y�j Þ
; and represents the ratio between the joint data distribution on

the target domain PrT(xj, yj
*) and that on the source domain PrS(xj, yj

*) for the source

domain example xj.

There are various ways to estimate bj, such as Gaussian Mixture Model (GMM) (Liu

et al. 2002), kernel density estimation (Sheather and Jones 1991), kernel mean matching

(Huang et al. 2006), etc. In our approach, without loss of generality, we adopt kernel

density estimation. In particular, we have:

bj ¼
PrTðxj; y

�
j Þ

PrSðxj; y�j Þ
¼

PrTðxjjy�j Þ � PTðy�j Þ
PrSðxjjy�j Þ � PSðy�j Þ

: ð3Þ

It is clear that
PT ðy�j Þ
PSðy�j Þ

represents the label ratios on the two different domains, which can

be estimated from the labeled examples on both domains. As for
PrT ðxjjy�j Þ
PrSðxjjy�j Þ

, by using kernel

density estimation with the gaussian kernel, it can be estimated as follows:

PrTðxjjy�j Þ
PrSðxjjy�j Þ

/
Pm

i¼1 I�ijexpð� kxj�zik
r2 Þ

Pn
k¼1 Ikjexpð� kxj�xkk

r2 Þ � 1
; ð4Þ

where r is the bandwidth parameter for the gaussian kernel. Iij
* is an indication function,

which equals 1 if yi
* equals yj, and otherwise zero. Similarly, Ikj is an indication function,

which equals 1 if yk equals yj, and otherwise zero. It is clear that if a source domain

example is close enough to the target domain examples, then its importance is higher.

Otherwise, it will be down weighted. Through this way, the data distribution of the training

examples on the source domain is adjusted to follow the data distribution on the target

domain as close as possible.

Some of the previous transfer learning works also share similar motivations as the one

we are using here. However, they only do this indirectly, by calculating the probability

ratios in some other ways, such as kernel mean matching. Furthermore, in these works, to

ease the complexity of the formulations, one common assumption for these previous works

is that the conditional probability PT(yj
*|xj) and PS(yj

*|xj) are the same and the difference

between different domains only lies on their data distributions without considering the

labels, which is too strong in most cases. In this paper, instead, we model the joint

probability ratio directly through kernel density estimation. It effectively avoids the strong

assumption on the conditional probability and directly models the distributions on the two

domains, rather than approximate them in an implicit way.

3.2.2 Efficient optimization

There are several alternatives to solve problem (2) efficiently. Here, an efficient way,

which is an adaption of the bundle method, is used to solve it. The concrete procedure is

described in Table 1. Here, RempðwÞ ¼ C1

n

Pn

i¼1

maxf0; 1� yiw
T xig þ C2

m

Pm

j¼1

bj maxf0;

1� y�j wT zjg; JtðwtÞ ¼ 1
2
kwk2 þmax1� i� thw; aii þ bi: Since Remp(w) is non-smooth,

when calculating its gradient, we use the subgradient instead, which can be calculated as:

owRempðwÞ ¼ �
C1

n

Xn

i¼1

IS
i yixi �

C2

m

Xm

j¼1

IT
j bjy

�
j zi; ð5Þ
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where Ii
S equals 1 if yiw

T xi B 1, and otherwise 0. Similarly, Ij
T equals 1 if yj

*wT zj B 1, and

0 otherwise. Some important properties of the proposed method will be elaborated in

‘‘Appendix’’.

4 Experiments

In this section, we present an extensive set of experimental results to demonstrate the

advantages of the proposed method.

4.1 Datasets

We use two datasets in our experiments, i.e., the product review dataset, and the twitter

dataset.

Product Review Dataset This is a benchmark dataset for sentiment detection (Blitzer

et al. 2012), which is selected from the Amazon product reviews for four different product

types: books, DVDs, electronics, and kitchen appliances. Since each review consists of a

0–5 stars rating, reviews with ratings higher than 3 points are considered as positive

sentiment, and otherwise are considered as negative. Each dataset contains 2,000 reviews,

among which 1,000 are positive reviews and the remaining 1,000 reviews are negative

reviews. The detailed description of this dataset can be found in Table 2.

Twitter Dataset This dataset contains tweets downloaded and labeled throughout the

whole October, 2010. The tweets with keywords ‘‘software‘‘ and ‘‘education’’ are used in

this dataset. When extracting features, we use the same feature space as we use for the

product review dataset. For more details, please refer to Table 2.

Table 1 Algorithm Description: SDAD

Algorithm: Sentiment Detection with Auxiliary Data (SDAD)

Input:

1. Kernel density parameter: r in Eq.(3).

2. Optimization parameters: trade-off parameters C1, and C2in Eq.(2), optimization precision � ¼ 0:01:

3. Source Domain Examples: ðX;YÞ ¼ fðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞg:
4. Target Domain Examples: ðZ;Y�Þ ¼ fðz1; y

�
1Þ; ðz2; y

�
2Þ; . . .; ðzm; y

�
mÞg:

Output: classifier w

1. Calculate bj according to Eq.(3).

2. Initialization t = 0, randomly initialize w0.

3. repeat

4. t = t ? 1

5. Compute the gradient for the empirical loss: at = qw Remp(wt-1), and bt = Remp(wt-1) - \ wt-1,
at [ .

6. Derive the optimization problem: Rt
CP = max1 B i B t \ w, ai [ ? bi

7. wt ¼ arg min
ew

1
2

wT wþ RCP
t

8. �t ¼ min
0� i� t

JðwiÞ � JtðwtÞ

9. until �t � �
10. Output: w = wt. For a test example z in the target domain, if wT z [ 0, then it is labeled as a positive

sentiment. Otherwise, it is labeled as negative.
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For these datasets, the tf-idf (normalized term frequency and log inverse document

frequency) (Manning et al. 2008) features are extracted, and the stop words are removed.

We use porter as the stemmer. Given these two datasets, 14 sentiment detection tasks are

created by specifying different combinations of source domain and task domain subdata-

sets. The detailed descriptions of these 14 tasks are specified in Table 3.

4.2 Methods

We compare the proposed method with the following competitors: SVM on the Target

domain (SVMT); SVM on both the Source domain and the Target domain (SVMST); SCL

on the Target Domain (SCLT)1; SCL on both the Source domain and the Target domain

(SCLST). In our experiments, we show that the proposed method can also be combined

with SCL naturally by considering the whole procedure except the final training step in

SCL as a feature construction process. In particular, the pivot features are chosen on both

the source domain and target domain, and then the correlations between the pivot features

and non-pivot features are learned. This correlation is then converted as a set of features

that are then appended to the original feature space as is done in SCL. In the final training

step, we apply SDAD to these newly represented examples. We name this method SCL-

SDAD.

Table 2 Dataset description

Dataset Sub-dataset # Positive Inst # Negative Inst # Dim

Product Review DVDs 1,000 1,000 6,844

Kitchen 1,000 1,000 6,844

Electronics 1,000 1,000 6,844

Books 1,000 1,000 6,844

Twitter Software 2,353 673 6,844

Education 969 619 6,844

The feature spaces of both the product review dataset and the twitter dataset are the same

Table 3 Task description

Task # Source domain Target domain Task # Source domain Target domain

1 Electronics Kitchen 8 DVD Kitchen

2 Electronics DVD 9 DVD Electronics

3 Kitchen Electronics 10 Book Electronics

4 DVD Book 11 Book DVD

5 Electronics Book 12 Book Kitchen

6 Kitchen Book 13 Electronics Software

7 Kitchen DVD 14 Book Education

The first twelve tasks are conducted on the product review dataset, while the remaining two tasks are
conducted on both the product review dataset and the twitter dataset. Since twitter is not a reliable infor-
mation source, limited by the length of each post, they could not be used as source domain datasets

1 SCL is a transfer learning method. Here, SCLT is implemented by using SCL to append the correlation
features into the original feature space, and train a linear classifier based on the target domain examples by
using SVM.
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For both the proposed method and the baseline methods, their parameters are all set by

five fold cross validations. For each experiment, we use all the examples from the source

domain and a specified ratio of target domain examples as the training examples, while the

rest of the target domain examples are used for testing. The averaged results of 10 inde-

pendent runs are reported.

4.3 Results and analysis

The sentiment detection results on the product review datasets are reported in Figs.1 and 2.

The results with product review datasets as the source domains, and the twitter datasets as

the target domains are reported in Fig.3. The sentiment detection results with 90% target

domain training examples and all of the source domain examples are further reported in

Table 4.

As can be seen from these results, the proposed methods, i.e., SDAD and SCL-SDAD

show the best performances in most cases. This is because through modeling examples on

both the source and the target domains, examples on the source domain can be better

incorporated to train a good classifier on the target domain. SVMST and SCLST can be

considered as two special cases of SDAD and SCL-SDAD respectively, with bj being set to

be 1. It is clear that by calculating appropriate bj, the data distribution on the source

domain can be tuned to fit that on the target domain.

From Fig. 3, it can be seen that the sentiment detection accuracies on the twitter dataset

can be helped by the incorporation of some ‘‘complete’’ (on contrary to the short text on

twitter dataset) examples from other domains. These results are also consistent with the

results on Zhang et al. (2010, 2011), in which the authors improve the twitter classification

accuracies by transferring the knowledge from some labeled webpages.

SVMT and SCLT are two methods that only consider training classifiers on the target

domain. From the experimental results, it is clear that these two methods perform worse

than SVMST and SCLST on the previous twelve tasks in most cases, while they are very

competitive on the latter two tasks. This is because the similarities between different

domains in the product review dataset are much higher than those between the product

review dataset and the twitter dataset. Therefore, on the first twelve tasks, even if we don’t

consider the distribution difference between different domains, the source domain exam-

ples can still be directly used to help to improve the performance on the target domain. But

on the latter two tasks, since the domain difference is relatively high, incorporating source

domain without considering these difference will sometimes degrade the classification

performance. It is clear that on these two tasks, the proposed methods can still use the

source domain examples, and show the best performances in most cases.

As for SCLT, SCLST and SCL-SDAD, we can conclude that SCL-SDAD performs

better than SCLT and SCLST. This is because although SCLT and SCLST are transfer

learning methods, they do not model the distribution difference directly. Even after the

pivot features are picked and the correlations between pivot and non-pivot features are

appended to the original feature space, this distribution difference still exists and deteri-

orates the the performances of the classifier. Different from these methods, after the pivot

choosing and correlation learning steps, SCL-SDAD integrates the distribution difference

into the objective function and reweighting the examples on the source domain in a

reasonable way. Therefore, SCL-SDAD is superior to SCLT and SCLST.

There are in total three parameters in the proposed method, i.e., r, C1 and C2. To study

the robustness of the proposed method (SDAD), some parameter sensitivity experiments

are also conducted by each time fixing two parameters and varying the other one.
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Fig. 1 Sentiment detection accuracy, with different training ratios on the target domain and all of the
examples on the source domain. The x-axis represents the different training ratios on the target domain,
while the y-axis demonstrates the corresponding classification accuracy
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Fig. 2 Sentiment detection accuracy, with different training ratios on the target domain and all of the
examples on the source domain. The x-axis represents the different training ratios on the target domain,
while the y-axis demonstrates the corresponding classification accuracy
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The experimental results on Task 5 and Task 7 are reported in Fig. 4. It can be seen from these

experiments that the proposed method is relatively robust with different parameter values.

5 Conclusions

Sentiment detection is an important technique for investigating what people think in

opinion rich resources such as online review sites, microblogging sites and personal blogs.
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Fig. 3 Sentiment detection accuracy, with different training ratios on the target domain and all of the
examples on the source domain. The x-axis represents the different training ratios on the target domain,
while the y-axis demonstrates the corresponding classification accuracy

Table 4 Sentiment detection accuracies with 90% examples on the target domain, and all the labeled
examples in the source domain as the training set, and the remaining examples in the target domain as the
testing set

Task # SDAD SVMT SVMST SCL-SDAD SCLT SCLST

1 0.882 ± 0.003 0.830 ± 0.004 0.849 ± 0.003 0.872 ± 0.003 0.838 ± 0.002 0.847 ± 0.004

2 0.850 ± 0.002 0.821 ± 0.004 0.807 ± 0.005 0.871 ± 0.005 0.823 ± 0.003 0.825 ± 0.005

3 0.864 ± 0.003 0.833 ± 0.006 0.826 ± 0.005 0.861 ± 0.004 0.841 ± 0.005 0.841 ± 0.003

4 0.856 ± 0.011 0.788 ± 0.009 0.790 ± 0.007 0.859 ± 0.010 0.815 ± 0.006 0.830 ± 0.007

5 0.807 ± 0.002 0.797 ± 0.003 0.770 ± 0.004 0.819 ± 0.005 0.790 ± 0.003 0.806 ± 0.004

6 0.799 ± 0.003 0.788 ± 0.005 0.782 ± 0.003 0.844 ± 0.002 0.794 ± 0.001 0.825 ± 0.002

7 0.828 ± 0.012 0.811 ± 0.009 0.825 ± 0.008 0.830 ± 0.008 0.821 ± 0.005 0.829 ± 0.006

8 0.860 ± 0.004 0.825 ± 0.004 0.842 ± 0.003 0.852 ± 0.005 0.835 ± 0.004 0.849 ± 0.001

9 0.836 ± 0.003 0.833 ± 0.002 0.824 ± 0.003 0.860 ± 0.002 0.837 ± 0.004 0.836 ± 0.003

10 0.839 ± 0.013 0.833 ± 0.009 0.821 ± 0.010 0.840 ± 0.011 0.839 ± 0.007 0.828 ± 0.009

11 0.828 ± 0.007 0.821 ± 0.004 0.814 ± 0.005 0.845 ± 0.004 0.815 ± 0.006 0.837 ± 0.002

12 0.864 ± 0.009 0.844 ± 0.011 0.834 ± 0.009 0.869 ± 0.005 0.855 ± 0.007 0.846 ± 0.003

13 0.812 ± 0.010 0.800 ± 0.009 0.795 ± 0.010 0.821 ± 0.008 0.793 ± 0.006 0.789 ± 0.007

14 0.790 ± 0.015 0.772 ± 0.008 0.785 ± 0.010 0.781 ± 0.012 0.766 ± 0.010 0.757 ± 0.010

The best performances are marked in bold. It is clear that the proposed methods show the best performances on these tasks
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Transfer learning has been utilized in sentiment detection to transfer knowledge from one

source domain with rich labeled information to another target domain. However, most

existing transfer learning techniques for sentiment detection simply append some corre-

lation features to the original feature space and the problem of distribution difference still

exists. Moreover, the commonly used assumption on the conditional probability is too

strong for practical applications. To address these problems, this paper presents a new

method that directly models the joint distribution difference on different domains, and an

efficient method is proposed to optimize the proposed formulations. The proposed method

is guaranteed to converge within a finite number of steps. An extensive set of examples

clearly demonstrate the advantages of the proposed method over the state-of-the-art

methods. In the future, we plan to extend the proposed method to the the setting of multi-

task learning, as well as the mood classification, in which more than two classes exist.
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Appendix: Theoretical analysis

In this subsection, we deduct the convergence rate, and the time complexity of the pro-

posed method.
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Fig. 4 The parameter sensitivity of the proposed method. The experiments are conducted by using all of the
source domain examples and 90% of the target domain examples as the training set, while fixing the
following examples as the testing set. For each experiment, we fix two parameters and tune the other one.
The average performances of 10 independent runs are reported
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Convergence rate

Theorem 1 For the algorithm developed inTable 1, suppose bj B B. The proposed
method converges to the precision �inOð1=�Þ steps. In particular,

• If �[ 8ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ; the proposed method converges to

precision � after at most log2
C1þBC2

2ðC2
1

maxi2f1;...;ng x2
iþB2C2

2
maxj2f1;...;mg z2

j Þ
steps.

• If �� 8ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ; the proposed algorithm converges

to precision � after at most

log2

C1þ BC2

2ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ

þ
16ðC2

1 maxi2f1;...;ng x2
i þ B2C2

2 maxj2f1;...;mg z2
j Þ

�
� 1

ð6Þ

steps.

Proof It is clear that:

kowRempðwÞk2 ¼kC1

n

Xn

i¼1

IS
i yixi þ

C2

m

Xn

j¼1

IT
j bjy

�
j zik2

� 2ðC2
1 max

i2f1;...;ng
x2

i þ B2C2
2 max

j2f1;...;mg
z2

j Þ:
ð7Þ

and

Jð0Þ ¼ C1 þ
C2

m

Xm

j¼1

bj�C1þ BC2 ð8Þ

By integrating these inequations into Theorem 4 of Teo et al. (2010), we can get

�t � �tþ1�
�t

2
minf1; �t=8ðC2

1 max
i2f1;...;ng

x2
i þ B2C2

2 max
j2f1;...;mg

z2
j Þg; ð9Þ

where �t ¼ min
0� i� t

JðwiÞ � JtðwtÞ: The algorithm will terminate if �t � �. So, if

�[ 8ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ; �t � �tþ1� �t

2
, and the algorithm termi-

nate after at most:

log2

Jð0Þ
2ðC2

1 maxi2f1;...;ng x2
i þ B2C2

2 maxj2f1;...;mg z2
j Þ

� log2

C1þ BC2

2ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ

ð10Þ

steps.

If �� 8ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ, then, this algorithm needs the above

steps to converge to 8ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ, then, we should have

�t � �tþ1� �2
t

16ðC2
1

maxi2f1;...;ng x2
i þB2C2

2
maxj2f1;...;mg z2

j Þ
. It is clear that it needs another
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16ðC2
1

maxi2f1;...;ng x2
iþB2C2

2
maxj2f1;...;mg z2

j Þ
� � 1 steps to converge to the precision �. So, in total, the

algorithm converges in

log2

C1þ BC2

2ðC2
1 maxi2f1;...;ng x2

i þ B2C2
2 maxj2f1;...;mg z2

j Þ

þ
16ðC2

1 maxi2f1;...;ng x2
i þ B2C2

2 maxj2f1;...;mg z2
j Þ

�
� 1

ð11Þ

steps. h

In summary, the algorithm converges in Oð1=�Þ steps. It is clear that the convergence

rate is highly influenced by C1 and B C2, as well as maxi2f1;...;ng x2
i and maxj2f1;...;mg z2

j . So,

given a dataset, smaller C1 and BC2 normally lead to faster convergence rates.

Time complexity

Theorem 2 For each iteration of the proposed method, it takes time O(s(m ? n)), where
s is the average feature sparsity on both the source domain and the target domain.

Proof The gradient computation in step 5 takes time O((m ? n)s). Instead of solving the

primal quadratic programming problem in step 7, one can instread solve it in the dual form.

Setting up the dual requires computing O(t2) elements of the Hessian, which can be done in

O(t2 s) steps. Since t2 is normally much less than (m ? n), the overall time complexity is

dominated by O(s(m ? n)) per iteration. h

This result is actually similar to that in Joachims (2006). However, the total number of

iterations in Joachims (2006) can be as worse as Oð1=�2Þ; as given by the Lemma 2 of

Joachims (2006). The proposed method is guaranteed to converge within Oð1=�Þ steps. So,

solving the proposed formulation by bundle method is much faster than using the Cutting

Plane method(Kelley 1960).
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