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Abstract Given a graph, how to find a small group of ‘gateways’, that is a small subset of

nodes that are crucial in connecting the source to the target? For instance, given a social

network, who is the best person to introduce you to, say, Chris Ferguson, the poker

champion? Or, given a network of people and skills, who is the best person to help you

learn about, say, wavelets? We formally formulate this problem in two scenarios: Pair-

Gateway and Group-Gateway. For each scenario, we show that it is sub-modular and thus it

can be solved near-optimally. We further give fast, scalable algorithms to find such

gateways. Extensive experimental evaluations on real data sets demonstrate the effec-

tiveness and efficiency of the proposed methods.

Keywords Social network � Gateway � Graph mining � Scalability � Sub-modularity

1 Introduction

What is the best gateway between a source node and a target node, in a network? This is a

core problem that appears under several guises, with numerous generalizations. Motivating

applications include the following:
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1. In a corporate social network, which are the key people that bring or hold different

groups together? Or, if seeking to establish a cross-division project, who are the best

people to lead such an effort?

2. In an immunization setting, given a set of nodes that are infected, and a set of nodes we

want to defend, which are the best few ‘gateways’ we should immunize?

3. Similarly, in a network setting, which are the gateway nodes we should best defend

against an attack, to maximize connectivity from source to target.

4. Protein pathways: given a protein interaction network, we know that a certain protein

group corresponds to an earlier type of flu (e.g., normal flu), and another group

corresponds to a new type of flu (e.g., swine flu), and we want to know which other

proteins play a critical role in developing normal flu towards swine flu.

5. Given a graph of co-workers and their skills (keywords), whom should you contact to

learn more about, say, Linux? You want someone reasonably close to you and fairly

well-versed in Linux, but not your secretary or Linus Torvalds himself.

The problem has several, natural generalizations: (a) we may be interested in the top

k best gateways (in case our first few choices are unavailable); (b) we may have more than

one source nodes, and more than one target nodes, as in the immunization setting above;

(c) we may have a bi-partite graph with relationships (edges) between different node types,

as in the last example above. Our main contributions in this paper are:

• A novel ‘gateway-ness’ score for a given source and target, that agrees with human intuition.

Its generalization to the case where we have a group of nodes as the source and the target;

• Two algorithms to find a set of nodes with the highest ‘gateway-ness’ score, which (1)

are fast and scalable; and (2) lead to near-optimal results;

• Extensive experimental results on real data sets, showing the effectiveness and

efficiency of the proposed methods.

The rest of the paper is organized as follows: We give the problem definitions in Sect. 2;

present ‘gateway-ness’ scores in Sect. 3; and deal with the computational issues in Sect. 4.

We evaluate the proposed methods in Sect. 5. Finally, we review the related work in Sect. 6

and conclude in Sect. 7.

2 Problem definitions

Table 1 lists the main symbols we use throughout the paper. In this paper, we focus on

directed weighted graphs. We represent the graph by its normalized adjacency matrix (A).

Following standard notation, we use capital bold letters for matrices (e.g., A), lower-case

bold letters for vectors (e.g., a), and calligraphic fonts for sets (e.g., S). We denote the

transpose with a prime (i.e., A0 is the transpose of A). We use arrowed lower-case letters

for paths on the graph (e.g., p), which are ordered sequences. We use parenthesized

superscripts to represent source/target information for the corresponding variables. For

example p(s,t) = {s = u0, u1, ..., ul = t} is a path from the source node s to the target node

t. If the source/target information is clear from the context, we omit the superscript for

brevity. A sink node i on the graph is a node without out-links (i.e., A(:,i) = 0). We use

subscripts to denote the corresponding variable after setting the nodes indexed by the

subscripts as sinks. For example, p
ðs;tÞ
I is the path from the source node s to the target node

t, which does not go through any nodes indexed by the set I (i.e., ui 62 I ; i ¼ 0; :::; l). With

the above notations, our problems can be formally defined as follows:
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Problem 1(Pair-Gateway)

Given: a weighted directed graph A, a source node s, a target node t, and a budget

(integer) k;

Find: a set of at most k nodes which has the highest ‘gate-way-ness’ score wrt s and t.

Problem 2(Group-Gateway)

Given: a weighted directed graph A, a group of source nodes S; a group of target nodes

T ; and a budget (integer) k;

Find: a set of at most k nodes which has the highest ‘gate-way-ness’ score wrt S and T :

In both Problem 1 (Pair-Gateway) and Problem 2 (Group-Gateway), there are two sub-

problems: (1) how to define the ‘gateway-ness’ score of a given subset of nodes I ; (2) how

to find the subset of nodes with the highest ‘gateway-ness’ score. In the next two sections,

we present the solutions for each, respectively.

3 Proposed ‘Gateway-ness’ scores

In this section, we present our definitions for ‘Gateway-ness’. We first focus on the case of

a single source s and a single target t (Pair-Gateway). We then generalize to the case where

both the source and the target are a group of nodes (Group-Gateway)

3.1 Node ‘Gateway-ness’ score

Given a single source s and a single target t, we want to measure the ‘Gateway-ness’ score

for a given set of nodes I : We first give the formal definitions in such a setting and then

provide some intuitions for our definitions.

Table 1 Symbols

Symbol Definition and description

A;B; . . . Matrices (bold upper case)

A(i, j) The element at the ith row and jth column of matrix A

A(i, :) The ith row of matrix A

A(:, j) The jth column of matrix A

A0 Transpose of matrix A

a;b; . . . Column vectors

p;q; . . . Ordered sequences

S; T ; . . . Sets (calligraphic)

n Number of nodes in the graph

m Number of edges in the graph

gðs; t; IÞ The ‘Gateway-ness’ score for the subset of nodes I wrt the source s and the target t

gðS; T ; IÞ The ‘Gateway-ness’ score for the subset of nodes I wrt the source group S and
the target group T

r(s, t) The proximity score from s to t

rI ðs; tÞ The proximity score from s to t by setting the subset of nodes indexed by I as sinks
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Formal definitions For a graph A, we can use random walk with restart to measure the

proximity (i.e., relevance/closeness) from the source node s to the target node t, which is

defined as follows: Consider a random particle that starts from node s. The particle iter-

atively transits to its neighbors with probability proportional to the corresponding edge

weights. Also at each step, the particle returns to node s with some restart probability

(1 - c). The proximity score from node s to node t is defined as the steady-state probability

r(s, t) that the particle will be on node t (Tong et al. 2008). Intuitively, r(s, t) is the fraction

of time that the particle starting from node s will spend on node t of the graph, after an

infinite number of steps.

Intuitively, a set of nodes I are good gateways wrt s and t if they play an important role

in the proximity measure from the source to the target. Therefore, our ‘Gateway-ness’

score can be defined as follows:

gðs; t; IÞ,Drðs; tÞ,rðs; tÞ � rI ðs; tÞ ð1Þ

where rI ðs; tÞ is the proximity score from source s to t after setting the subset of nodes

indexed by I as sinks.

Intuitions Here, we provide some intuition of the ‘Gateway-ness’ score defined by (1),

using the running example in Fig. 1.

In Fig. 1, each solid arrowed line is a path from node 1 to node 20, which can be

denoted by an ordered sequence. For example, the path marked by the red line can be

denoted by p(1,20) = {1, 3, 4, 5, 12, 14, 20}. For each path p(s,t) = {s = u0, u1, ...,

ul = t}, we can define its score by (2), where
Ql

i¼0 Aðui�1; uiÞ is the probability that the

random particle will traverse this path, and (1 - c)cl penalizes the length of the path. For

example, the red path (p(1,20) = {1, 3, 4, 5, 12, 14, 20}), has score (1 - c)c6A(3, 1)

A(4, 3)A(5, 4)A(12, 5)A(14, 12)A(20, 14).

scoreðpðs;tÞÞ,ð1� cÞcl
Yl

i¼0

Aðui�1; uiÞ ð2Þ

where A is the normalized adjacency matrix of the graph.

With the above definitions for the path score, we have the following lemma:

Lemma 1 Sum of Weighted Path Scores Let P be the set of all the paths from the
source node s to the target node t, and Q be the set of all the paths from the source node s

Fig. 1 Running example (best viewed in color). (Color figure online)
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to the target node t which go through at least one node indexed by the subset I . Let r(s, t)
be the proximity score defined by random walk with restart and gðs; t; IÞ be the ‘Gateway-
ness’ score defined by eq. (1). Then we have

rðs; tÞ ¼
X

pðs;tÞ2P

scoreðpðs;tÞÞ; gðs; t; IÞ ¼
X

pðs;tÞ2Q

scoreðpðs;tÞÞ ð3Þ

Proof Omitted for brevity. h

By (3), the ‘Gateway-ness’ score for a given set of nodes I accounts for all the paths

from the source node s to the target node t which pass through one or more nodes in I . For

example, given the source node 1 and the target node 20 in Fig. 3, the ‘Gateway-ness’

score for I ¼ f2g is the sum of the scores of all the paths from node 1 to node 20 that go

through node 2 (e.g., the green path, the yellow path, and so on).

3.2 Group ‘Gateway-ness’ score

Here we consider the case where the source and/or target consist of more than one nodes.

Suppose we have a group of source nodes S and a group of target nodes T : Then, the

‘Gateway-ness’ score for a given set of nodes I can be defined in a similar way:

gðS; T ; IÞ,
X

s2S;t2T
Drðs; tÞ,

X

s2S;t2T
ðrðs; tÞ � rI ðs; tÞÞ ð4Þ

where rI ðs; tÞ is the proximity score from s to t by setting the subset of nodes indexed by I
as sinks (i.e., delete all out-edges, by setting A(:,i) = 0 for all i 2 I ).

Intuitively, the score defined by (4) accounts for all the paths from the source group to

the target group1 which go through at least one node in I : For example, given S ¼ f1g and

T ¼ f19; 20g in Fig. 1, the group ‘Gateway-ness’ score for I ¼ f5; 8g corresponds to all

the paths from node 1 to 19 or 20 (e.g., red, yellow and green solid lines, purple and blue

dashed lines and so on).

4 BASSET: proposed fast solutions

In this section, we address how to quickly find a subset of nodes of the highest ‘Gateway-

ness’ score. We start by showing that the straight-forward methods (referred to as

‘Com-RWR’) are computationally intractable. Then, we present the proposed BASSET

(BASSET-N for Pair-Gateway and BASSET-G for Group-Gateway). For each case, we

first present the algorithm and then analyze its effectiveness as well as its computational

complexity.

4.1 Computational challenges

Here, we present the computational challenges and the way we tackle them. For the sake of

succinctness, we mainly focus on BASSET-N.

There are two main computational challenges in order to find a subset of nodes with the

highest ‘Gateway-ness’ score. First of all, we need to compute the proximity from the

1 A path from the source group to the target group is a path which starts from a node of the source group and
ends at a node of the target group.

Inf Retrieval (2012) 15:391–411 395

123



source to the target on different graphs, each of which is a perturbed version of the original

graph. This essentially means that we cannot directly apply some powerful pre-compu-

tational method to evaluate the proximity from the source to the target (after setting the

subset of nodes indexed by I as sinks). Instead, we have to rely on on-line iterative

methods, whose computational complexity is O(m). The challenges are compounded by the

need to evaluate gðs; t; IÞ (1) or gðS; T ; IÞ(4) an exponential number of times ð n
k

� �
Þ.

Putting these together, the straightforward way to find k nodes with the highest ‘Gateway-

ness’ score is Oð n
k

� �
mÞ: This is computationally intractable. Suppose on a graph with

1,000,000 nodes, we want to find the best k = 5 gateway nodes. If computing each

proximity score takes 0.001 s, then 2.64 9 1017 years are needed to find the gateways.

This is much longer than the age of the universe.2

To tackle such challenges, we resort to two main ideas, which are summarized in

Theorem 1. According to Theorem 1, in order to evaluate the ‘Gateway-ness’ score of a

given set of nodes, we do not need to actually set these nodes as sinks and compute the

proximity score on the new graph. Instead, we can compute it from the original graph. In

this way, we can utilize methods based on pre-computation to accelerate the process.

Furthermore, since gðs; t; IÞ and gðS; T ; IÞ are sub-modular wrt I ; we can develop some

greedy algorithm to avoid exponential enumeration, and still get some near-optimal
solution. In Theorem 1, A is the normalized adjacency matrix of the graph. It is worth

pointing out that the proposed methods (BASSET-N and BASSET-G) we will introduce

are orthogonal to the specific way of normalization. For simplicity, we use column-nor-

malization throughout this paper. Also, QðI ; IÞ is a jI j � jIj matrix, containing the ele-

ments in the matrix Q which are at the rows/columns indexed by I : Similarly, Qðt; IÞ is a

row vector with length jI j; containing the elements in the matrix Q which are at the tth row

and the columns indexed by I . QðI ; sÞ is a column vector with length jI j; containing the

elements in the matrix Q which are at the sth column and the rows indexed by I :

Theorem 1 Core Theorem Let A be the normalized adjacency matrix of the graph, and
Q = (1 - c)(I - cA)-1. For a given source s and target t, the ‘Gateway-ness’ score of a
subset of nodes I defined in (1) satisfies the properties P1 and P2. For a given source groupS
and target groupT ; the ‘Gateway-ness’ score of a subset of nodesI defined in (4) satisfies the
properties P3 and P4, where s 6¼ t; s; t 62 I ;S

T
T ¼ ;;S

T
I ¼ ;; and T

T
I ¼ ;.

P1. gðs; t; IÞ ¼ Qðt; IÞQðI ; IÞ�1QðI ; sÞ;
P2. gðs; t; IÞ is sub-modular wrt the set I :
P3. gðS; T ; IÞ ¼

P
s2S;t2T Qðt; IÞQðI ; IÞ�1QðI ; sÞ;

P4. gðS; T ; IÞ is sub-modular wrt the set I :

Proof See the ‘‘Appendix’’. h

Intuition Here, we provide some intuition why gðs; t; IÞ and gðS; T ; IÞ are sub-

modular. According to Lemma 1, for a given source s and a given target

t; gðs; t; I [ KÞ � gðs; t; IÞ accounts for the scores of all the paths from s to t, which go

through some nodes in K but none of the nodes in I : Therefore, for a given set K; if we

already have a bigger subset J ; the additional benefit ðgðs; t;J [ KÞ � gðs; t;J ÞÞ
will be relatively small, compared to the case where we have a smaller sub-

set I ðgðs; t; I [ KÞ � gðs; t; IÞÞ. For example, in Fig. 1, let s = 1, t = 20, and I ¼ f5g;

2 According to Wikipedia, (http://en.wikipedia.org/wiki/Age_of_the_universe), the age of the universe is
about 1.4 9 1010 years.
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J ¼ f2; 5g: Then, if we have a new subset K ¼ f8g; the additional benefit for subset

I accounts for all the paths from s = 1 to s = 20 which go through node 8, but not node 5

(e.g., the green path, etc). While the additional benefit for subset J is 0, since all the paths

from s = 1 to t = 20 which go through node 8 must also go through some node inJ (node 2).

4.2 BASSET-N for problem 1

4.2.1 BASSET-N algorithm

Our fast solution for Problem 1 is summarized in Algorithum 1. In Algorithum 1, after

initialization (step 1), we first pick a node i0 with the highest
rðs;iÞrði;tÞ

rði;iÞ (step 3). Then, in

steps 4–14, we find the rest of the nodes in a greedy way. That is, in each outer loop, we try

to find one more node while keeping the current I unchanged. According to P1 of theorem

1, v(i) computed in step 7 is the gateway score for the subset J :3 If the current subset of

nodes I can completely disconnect the source and the target (by setting them as sinks), we

will stop the algorithm (step 12). Therefore, Algorithum 1 always returns no more than k
nodes. It is worth pointing out that in Algorithum 1, all the proximity scores are computed

from the original graph A. Therefore, we can utilize some powerful methods based on

pre-computation to accelerate the whole process. To name a few, for a medium size

graph A (e.g., a few thousands of nodes), we can pre-compute and store the matrix

Q = (1 - c)(I - cA)-1; for large unipartite graphs and bipartite graphs, we can use the

NB_LIN and BB_LIN algorithms, respectively (Tong et al. 2008).

Algorithm 1 BASSET-N

Input: the normalized adjacency matrix A, the source node s, the target node t, the budget k and the
parameter c

Output: a set of nodes I ; where jIj � k:

1: initialize I to be empty.

2: compute the proximity score r(s, t) from the source node s to the target node t.

3: find i0 ¼ argmaxi
rðs;iÞrði;tÞ

rði;iÞ ; where i = 1, ..., n and i = s, i = t. add i0 to I :
4: for j = 2 to k do

5: for i = 1 to n, and i = s, i = t and i 62 I do

6: let J ¼ I [ i:

7: compute vðiÞ ¼ rðJ ; tÞ0rðJ ;J Þ�1rðs;J Þ0

8: end for

9: if maxiv(i) B r(s, t) then

10: find i0 = argmaxiv(i); add i0 to I :
11: else

12: break;

13: end if

14: end for

15: return I

3 This is because in random walk with restart, we have r(i, j) = Q(j, i) for any i, j (Tong et al. 2008).
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4.2.2 Analysis of BASSET-N

In this subsection, we analyze the effectiveness and the efficiency of Algorithum 1. First, the

effectiveness of the proposed BASSET-N is guaranteed by the following lemma. According to

Lemma 2, although BASSET-N is a greedy algorithm, the results it outputs are near-optimal.

Lemma 2 Effectiveness of BASSET-N Let I be the subset of nodes selected by Alg-
orithum 1 and jIj ¼ k0: Then, gðs; t; IÞ� ð1� 1=eÞmaxjJ j¼k0

gðs; t;J Þ; where gðs; t; IÞ; e
is the base of the natural logarithm, and gðs; t;J Þ are defined by (1).

Proof It is easy to verify that the node i0 selected in step 10 of Algorithum 1 satisfies

i0 ¼ argmaxj 62I ;j 6¼s;j 6¼tgðs; t; I
S

jÞ: Also, we have g(s, t, /) = 0, where / is an empty set.

On the other hand, according to Theorem 1, gðs; t; IÞ is sub-modular wrt the subset I :
Therefore (Nemhauser et al. 1978), we have gðs; t; IÞ� ð1� 1=eÞmaxjJ j¼k0

gðs; t;J Þ;
which completes the proof. h

Next, we analyze the efficiency of BASSET-N, which is given in Lemma 34. We can

draw the following two conclusions, according to Lemma 3: (1) the proposed BASSET-N

achieves a significant speedup over the straight-forward method (Oðn � k4Þ vs. Oð n
k

� �
mÞ).

For example, in the graph with 100 nodes and 1,000 edges, in order to find the gateway

with k = 5 nodes, BASSET-N is more than 6 orders of magnitude faster, and the speedup

quickly increases wrt the size of the graph; (2) the proposed BASSET-N is applicable to

large graphs since it is linear wrt the number of the nodes.

Lemma 3 Efficiency of BASSET-N The computational complexity of Algorithum 1 is

upper bounded by Oðn � k4Þ:

Proof The cost for steps 1–2 is constant. The cost for step 3 is O(n). At each inner loop

(steps 6–7), the cost is O(nj3 ? nj2). The cost for steps 9–13 is O(n). The outer loop has no

more than k - 1 iterations. Putting these together, the computational cost for BASSET-N is:

Cost(BASSET-N)� nþ
Xk

j¼1

ðnj3 þ nj2 þ nÞ

¼ nþ nk þ n
kðk þ 1Þð2k þ 1Þ

6
þ n

k2ðk þ 1Þ2

4
¼ Oðnk4Þ

ð5Þ

which completes the proof. h

4.3 BASSET-G for problem 2

4.3.1 BASSET-G algorithm

Our fast solution for Problem 2 is summarized in Algorithum 2. It works in a similar way

as Algorithum 1: after initialization (step 1), we first pick a node i0 with the highest
P

s2S; t2T
rðs;iÞrði;tÞ

rði;iÞ (step 3). Then, in steps 4–14, we find the rest of the nodes in a greedy

way. That is, in each outer-loop, we try to find one more node while keeping the current I
unchanged. If the current subset of the nodes I can completely disconnect the source group

4 Here, we assume that the cost to get one proximity score is constant, which can be achieved with pre-
computation methods (Tong et al. 2008).
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and the target group (by setting them as sinks), we will stop the algorithm (step 10). As in

Algorithum 1, all the proximity scores are computed from the original graph A. Therefore,

we can again utilize those powerful pre-computation based methods to accelerate the

whole process.

4.3.2 Analysis of BASSET-G

The effectiveness and efficiency of the proposed BASSET-G are given in Lemma 4 and

Lemma 5, respectively. Similar as BASSET-N, the proposed BASSET-G is (1) near-
optimal; and (2) fast and scalable for large graphs.

Lemma 4 Effectiveness of BASSET-G Let I be the subset of nodes selected by
Algorithum 2 and jI j ¼ k0: Then, gðS; T ; IÞ� ð1� 1=eÞmaxjJ j¼k0

gðS; T ;J Þ; where

gðS; T ; IÞ; and gðS; T ;J Þ are defined by (4).

Proof Similar as for Lemma 2. Omitted for brevity. h

Lemma 5 Efficiency of BASSET-G The computational complexity of Algorithum 2 is

upper bounded by Oðn � ðmaxðk; jSj; jT jÞÞ4Þ:

Proof Similar as for Lemma 3. Omitted for brevity. h

5 Experimental evaluations

In this section we present experimental results. All the experiments are designed to answer

the following questions:

1 Effectiveness: how effective are the proposed ‘Gateway-ness’ scores in real graphs?

2 Efficiency: how fast and scalable are the proposed BASSET-N and BASSET-G?

Algorithm 2 BASSET-G

Input: the normalized adjacency matrix A, the source group S; the target group T ; the budget k and the
parameter c

Output: a set of nodes I ; where jIj � k:

1: initialize I to be empty.

2: compute the proximity score
P

s2S; t2T rðs; tÞ from the source group S to the target group T :

3: find i0 ¼ argmaxi

P
s2S; t2T

rðs;iÞrði;tÞ
rði;iÞ ; where i = 1, ..., n and i = s, i = t; add i0 to I :

4: for j = 2 to k do

5: for i = 1 to n, and i = s, i = t and i 62 I do

6: let J ¼ I [ i:

7: compute v(i) as vðiÞ ¼
P

s2S; t2T rðJ ; tÞ0rðJ ;J Þ�1rðs;J Þ0

8: end for

9: if maxivðiÞ�
P

s2S; t2T rðs; tÞ then

10: find i0 = argmaxiv(i); add i0 to I :
11: else

12: break;

13: end if

14: end for

15: return I
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5.1 Experimental setup

Data sets We used six real data sets, which are summarized in Table 2.

The first data set (Karate) is an un-weighted unipartite graph, which describes friend-

ship among the 34 members of a karate club at a US university (Zachary 1977). Each node

is a member in the karate club and the existence of the edge indicates that the two

corresponding members are friends. Overall, we have n = 34 nodes and m = 156 edges.

The second data set (PolBooks) is a co-purchasing book network.5 Each node is a

political book and there is an edge between two books if purchased by the same person.

Overall, we have n = 105 nodes and m = 882 edges.

The third data set (MovieLens) is from GroupLens project6. It contains 100,000 rating

information from 943 users on 1,682 movies. Each user has rated at least 20 movies from 1

(strongly unsatisfactory) to 5 (strongly satisfactory). We use this data set to construct a

user-movie bipartite graph. We connect a user with a particular movie if s/he has given

some positive ratings (4 or 5) to this movie. As the result, users who give only negative

ratings and movies which receive only negative ratings are neglected. On the whole, there

are 2,399 nodes (942 users, 1,447 movies) and 55,375 edges. The fourth data set (AC) and

the fourth data set (AA) are both from DBLP.7 The third data set (AC) is an un-weighted

bipartite graph. We have two types of nodes: author and conference. The existence of the

edge indicates that the corresponding author has published in the corresponding confer-

ence. Overall, we have 421,807 nodes and m = 2, 667, 199 edges.

The fifth data set (AA) is a co-authorship network, where each node is an author and the

edge weight is the number of the co-authored papers between the two corresponding

persons. Overall, we have n = 418,236 nodes and m = 2, 753, 798 edges.

The last data set (NetFlix) is from the Netflix prize8. Rows represent users and columns

represent movies. If a user has given a particular movie positive ratings (4 or 5), we

connect them with an edge. In total, we have 2,667,199 nodes (2,649,429 users and 17,770

movies), and 56,919,190 edges.

Parameter settings and machine configurations There is one parameter in BASSET-N

and BASSET-G, the probability c for random walk with restart. We set c = 0.95, as

suggested in (Tong et al. 2008). For the computational cost, we report the wall-clock time.

All the experiments ran on the same machine with four 2.4GHz AMD CPUs and 48GB

memory, running Linux (2.6 kernel). For each experiment, we run it 10 times and report

the average.

Table 2 Summary of the data
sets

Name n m Weight

Karate 34 152 No

PolBooks 105 882 No

MovieLens 2,399 55,375 No

AC 421,807 2,133,632 No

AA 418,236 2,753,798 Yes

NetFlix 2,667,199 56,919,190 No

5 http://www.orgnet.com/
6 http://www.movielens.org/
7 http://www.informatik.uni-trier.de/*ley/db/
8 http://www.netflixprize.com/
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5.2 Effectiveness

Here, we evaluate the effectiveness of the proposed ‘Gateway-ness’ scores. We first

compare with several candidate methods in terms of separating the source from the target.

And then, we present various case studies.

5.2.1 Quantitative comparisons

The basic idea of the proposed ‘Gateway-ness’ scores is to find a subset of nodes which

collectively play an important role in measuring the proximity from the source node (or

source group) to the target node (or target group). Here, we want to validate this basic

assumption. We compare it with the following alternative choices: (a) selecting k nodes

with the highest center-piece AND score (CePS-AND) (Tong and Faloutsos 2006); (b)

selecting k nodes with the highest center-piece OR score (CePS-OR) (Tong and Faloutsos

2006); (c) randomly selecting k nodes (Rand); (d) randomly selecting k nodes from the

neighboring nodes of the source node and the target node (Neighbor-Rand); (e) selecting k

nodes with the highest
rðs;iÞrði;tÞ

rði;iÞ (Topk-Ind). We randomly select a source node s and a target

node t, 9 and then use the different methods to select a subset I with k nodes. Figure 2

presents the comparison results, where the x-axis is the number of nodes selected (k), and

the y-axis is the normalized decay in terms of the proximity score from the source node s to

the target node t ðrðs;tÞ�rI ðs;tÞ
rðs;tÞ Þ. The resulting curves are averaged over 1,000 randomly

chosen source-target pairs. From Fig. 2, we can see that (1) the proposed BASSET-N

performs best in terms of separating the source from the target; (2)Topk-Ind, where we

simply select k nodes with highest
rðs;iÞrði;tÞ

rði;iÞ ; does not perform as well as BASSET-N, where

0 5 10 15
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Basset−N

Fig. 2 Effectiveness comparison between BASSET-N and alternatives. Normalized decay of proximity
versus k. Higher is better. The proposed BASSET-N (red star) is the best. (Color figure online)

9 The result when source and target are a group of nodes is similar, and omitted for brevity.
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we want to find a subset of k nodes which collectively has the highest score

rðI ; tÞ0rðI ; IÞ�1rðs; IÞ0:

5.2.2 Case studies

Next, we will show some case studies, to demonstrate the effectiveness of BASSET-N and

BASSET-G.

Karate We start with Karate graph, which is widely used in social network analysis. In

Fig. 3, there are two different communities in the graph (shaded). In each community,

there are some ‘hub’ nodes (e.g., nodes 33 and 34 in the left community; and nodes 1 and 4

in the right community). The two communities are connected by some ‘bridging nodes’

(e.g., nodes 3, 10, 19, 20). Table 3 presents the resulting gateways of BASSET-N with the

budget k = 5 for a few source-target pairs. The results are consistent with human intuition.

The gateways either are the local center of the community that the source/target node

belongs to, or are bridging nodes that connect the two communities when the source node

and the target node belong to different communities. For example, if s = 1 and t = 33, the

resulting nodes 3, 10, 11 are bridging nodes, while node 34 is the local center for the left

community. Note that, we always return less than or equal to k = 5 nodes. For example, if

s = 15 and t = 34, we only output one node (node 1) as the gateway. This is because all

the paths from node 15 to node 34 must go through node 1.

PolBooks For this data set, the nodes are political books and the existence of the edge

indicates the co-purchasing (by the same person) of the two books. Each book is annotated

by one of the following three labels: ‘liberal’, ‘conservative’ and ‘neutral’. We pick a

‘liberal’ book (‘The Price of Loyalty’) as the source node, and a ‘conservative’ book

(‘Losing Bin Laden’) as the target node. Then, we ran the proposed BASSET-N to find the

gateway with 10 nodes. The result is presented in Table 4. The result is again consistent

with human intuition, - the resulting gateway books are either popular books in one of the

two communities (‘conservative’ vs. ‘liberal’) such as, ‘Bush country’ from ‘conservative’,

‘Back up suck up’ from ‘liberal’, etc; or those ‘neutral’ books which are likely to be

purchased by readers from both communities (e.g., ‘Sleeping with the devil’, etc).

Fig. 3 Karate graph

402 Inf Retrieval (2012) 15:391–411

123



MovieLens For this data set, we pick up a user who likes comedy but not horror movies

(i.e., she has given positive ratings to some comedy movies, but has given negative ratings

to some horror movies, or has never rated any horror movies) as the source node. We also

pick a user who likes horror but not comedy movies as the target node. Then, we ran

BASSET-N to find the gateway with k = 10 nodes. Table 5 lists the resulting gateways for

two such pairs of source-target. We can see that the resulting movies are either popular

comedies (e.g., ‘‘Shakespeare in Love’’) or horror/thrill movies (e.g., ‘‘Silence of the

Lambs’’). Interestingly, ‘‘Ghostbusters’’, whose genre is both comedy and horror (therefore

might be liked by both the source user and the target user), shows up in Table 5a.

AC This is a bipartite graph. Given a source conference/author and a target conference/

author, we can run BASSET-N to find either the gateway conferences or the gateway

authors (Table 6). Table 7 gives one such example when the source is ‘VLDB’ and the

target is ‘NIPS’. Conceptually, we treat an n1 9 n2 bipartite graph as a

(n1 ? n2) 9 (n1 ? n2) unipartite graph, and we further restrict the search to the desired

node type. Again, we can see that the results make sense. The resulting gateway authors are

either productive in one of the two fields: databases vs. statistics, (e.g., Prof. Michael I.

Jordan in statistics, Prof. Hector Garcia-Molina in databases, etc); or productive in data

mining (e.g., Dr. Rakesh Agrawal, Prof. Jiawei-Han), which is an intersection field

between statistics and databases. We have similar observations for the resulting gateway

conferences. For example, ‘SIGMOD’ and ‘UAI’ are isomorphic (i.e., have very similar

neighbor sets) to ‘VLDB’ and ‘NIPS’, respectively; and ‘KDD’ is one major conference in

data mining, which is a highly plausible major connection from ‘VLDB’ (databases) to

‘NIPS’ (statistics / machine learning).

AA We use this data set to perform case studies for the proposed BASSET-G. We

choose (1) a group of people from a certain field (e.g., ‘text’, ‘theory’, etc) as the source

group S; and (2) another group of people in some other field (e.g., ‘databases’, ‘bioinfo-

matics’, etc) as the target group T : Then, we ran the proposed BASSET-N to find the

Table 3 BASSET-N on Karate
graph

Source (s) Target (t) Gateways (I )

24 31 {33,34}

15 34 {1}

1 33 {3, 10, 11, 21, 34}

Table 4 BASSET-N on Pol-
Books graph

c conservative, l liberal, n neutral

Node Index Book title Label

10 Bush country c

13 Off with their heads c

103 Back up such up l

5 Sleeping with the devil n

8 Ghost wars n

77 Plan of attack n

78 Bush at war c

59 Rise of the vulcanes c

52 Allies c

42 The bushes c
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gateway with k = 10 nodes. Table 8 lists some results. They are all consistent with human

intuition, - the resulting authors are either productive authors in one of the two fields, or

multi-disciplinary, who have close collaborations to both the source and the target groups

of authors.

5.3 Efficiency

We will study the wall-clock running time of the proposed BASSET-N and BASSET-G

here. Basically, we want to answer the following two questions:

1. (Speed) What is the speedup of the proposed BASSET-N and BASSET-G over the

straightforward methods?

2. (Scalability) How do BASSET-N and BASSET-G scale with the size of the graph

(n and m)?

First, we compare BASSET-N and BASSET-G with two straightforward methods: (1)

‘Com-RWR’, where we use combinatorial enumeration to find the gateway and, for each

enumeration, we compute the proximity from the new graph; and (2) ‘Com-Eval’, where

we use combinatorial enumeration to find the gateway, and for each enumeration, we

compute the proximity from the original graph. Figure 4 shows the comparison on two real

data sets. We can draw the following conclusions. (1) Straightforward methods (‘Com-

RWR’ and ‘Com-Eval’) are computationally intractable even for a small graph. For

example, on the Karate data set with only 34 nodes, it takes more than 20,560 seconds and

Table 5 BASSET-N on Movie-
Lens network

c comedy, d drama, h horror, t
thrill, r romance, ac action, ad
adventure, w western, s sci-fi

Movie title Genre

(a) Source user id: 499, target user id: 350

American beauty c,d

Silence of the lambs d,t

Shakespeare in love c,r

Speed a,r,t

Four weddings and a funeral c,r

Dances with wolves ac,d,w

As good as it gets c,d

There’s something about mary c

Matrix ac,s,t

Sixth sense t

(b) Source user id: 725, target user id: 425

American beauty c,d

Annie hall c,r

There’s something about mary c

Shakespeare in love c,r

Raiders of the lost ark ad,ac

Sixth sense t

Back to the future c,s

Groundhog day c,r

Ghostbusters c,h

Airplane! c
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100,000 seconds to find the k = 10 gateway by ‘Com-Eval’ and by ‘Com-RWR’,

respectively. (2) The speedup of the proposed BASSET-N and BASSET-G over both

‘Com-Eval’ and ‘Com-RWR’ is significant - in most cases, we achieve several (up to 6)
orders of magnitude speedups. (3) The speedup of the proposed BASSET-N and BASSET-

G over both ‘Com-RWR’ and ‘Com-Eval’ quickly increases wrt the size of the gateway

k. Note that we stop running the program if it takes more than 100,000 seconds (i.e., longer

than a day).

Next, we evaluate the scalability of the proposed BASSET-N and BASSET-G wrt the

size of the graph, using the largest data set (NetFlix). From Fig. 5, we can make the

following conclusions: (1) if we fix the number of nodes (n) in the graph, the wall-clock

Table 6 BASSET-N on AC graph

Gateway authors Michael I. Jordan,Philip S. Yu, Jiawei Han,Geoffrey E. Hinton, H. V. Jagadish,Christos
Faloutsos, Sebastian Thrun,Rakesh Agrawal, Hector Garcia-Molina,Raghu
Ramakrishnan

Gateway
conferences

SIGMODE,ICDE,ICML, IJCAI,KDD, AAAI,CIKM,ICANN,SAC,UAI

From the source ‘VLDB’ to the target ‘NIPS’

Table 7 BASSET-N on AC
network

Gateway authors Gateway conferences

Michael I. Jordan Sigmod

Philip S. Yu ICDE

Jiawei Han ICML

Geoffrey E. Hinton IJCAI

H. V. Jagadish KDD

Christos Faloutsos AAAI

Sebastian Thrun CIKM

Rakesh Agrawal ICANN

Hector Garcia-Molina SAC

Raghu Ramakrishnan UAI

Table 8 BASSET-G on AA network

Source group Target group Gateway [k = 10]

(a) A group of people in ‘text’ to a group of people in ‘databases’

Tom M. Mitchell,
William W. Cohen,
Jaime G. Carbonell

David J. Dewitt, Hector
Garcia-Molina, H.
V. Jagadish

Sunita Sarawagi, Christos Faloutsos, James P.
Callan, Rakesh Agrawal, Andrew Y. Ng,
Yiming Yang, Rich Caruana, Andrew
Mccallum, Chengxiang Zhai, Sebastian
Thrun,

(b) A group of people in ‘theory ’ to a group of people in ‘bioinfomatics’

Manuel Blum, Christos
H. Papadimitriou

Vipin Kumar, Wei Wang,
George Karypis,
Mohammed J. Zaki

Philip S. Yu, Mihalis Yannakakis, Hui Xiong,
Hongjun Lu, Sally A. Goldman, Jiawei Han,
Moni Naor, Mitsunori Ogihara, Richard M.
Karp, Prabhakar Raghavan
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time of both BASSET-N and BASSET-G is almost constant wrt the number of edges (m);

and (2) if we fix the number of edges (m) in the graph, the wall-clock time of both

BASSET-N and BASSET-G is linear wrt the number of nodes (n). Therefore, they are

suitable for large graphs.

6 Related work

In this section, we review the related work, which can be categorized into four parts:

Betweenness centrality The proposed ‘Gateway-ness’ scores relate to measures of

betweenness centrality, both those based on the shortest path (Freeman 1977), as well as

those based on random walk (Newman 2005). When the gateway set size is k = 1, the

proposed ‘Gateway-ness’ scores can be viewed as query-specific betweenness centrality

measures. Moreover, in the proposed BASSET-N and BASSET-G, we aim to find a subset

of nodes collectively, wherein traditional betweenness centrality, we usually calculate the

score for each node independently (and then might pick k nodes with the highest individual

scores).

Connection subgraphs In the proposed BASSET-N, the idea of finding a subset of nodes

wrt the source/target is also related to the concept of connection subgraphs, such as

(Faloutsos et al. 2004; Koren et al. 2006; Tong and Faloutsos 2006). However, in con-

nection subgraphs, we aim to find a subset of nodes which have strong connections among
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Fig. 4 Comparison of speed. Wall-clock time versus k. Lower is better. Time is in logarithm scale. The
proposed BASSET-N and BASSET-G (red star) are significantly faster. (Color figure online)

406 Inf Retrieval (2012) 15:391–411

123



themselves for the purpose of visualization. While in the proposed BASSET-N, we im-

plicity encourage the resulting subset of nodes to be disconnected with each other so that

they are able to collectively disconnect the target node from the source node to the largest

extent (if we set them as sinks). It is interesting to notice that, if we want to find the

gateway with k = 1 for BASSET-N, it can be viewed as a normalized directed version of

CePS-AND score (Tong and Faloutsos 2006).10 Moreover, We allow the more general case

where the source/target is a group of nodes in the proposed BASSET-G; however in

connection subgraphs, the source/target is always a single node.

Graph proximity The basic idea of the proposed BASSET-N and BASSET-G is to find a

subset of nodes which will bring the largest decrease of the proximity score from the

source node (or the source group) to the target node (or the target group). Graph proximity
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Fig. 5 Scalability of BASSET. Wall-clock time versus the size of the graph. Lower is better. jSj ¼ jT j ¼ 5

10 To see this, notice that in the case k = 1, in BASSET-N, we want to find the node with the highest
rðs;iÞrði;tÞ

rði;iÞ ; while in CePS-AND (Tong and Faloutsos 2006), it picks the nodes with the highest r(s, i)

r(t, i), where i = 1, ..., n and i = s, i = t.
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itself is an important building block in many graph mining settings. Representative work

includes the BANKS system (Aditya et al. 2002), link prediction (Liben-Nowell and

Kleinberg 2003), content-based image retrieval (He et al. 2004), cross-modal correlation

discovery (Pan et al. 2004), pattern matching (Tong et al. 2007), ObjectRank (Balmin

et al. 2004), RelationalRank (Geerts et al. 2004), etc.

Other related work in graph mining In recent years, graph mining is a very hot research

topic. Representative work includes pattern and law mining (Albert et al. 1999; Broder

et al. 2000), frequent substructure discovery (Jin et al. 2005; Xin et al. 2005), influence

propagation (Kempe et al. 2003), fraud and anomaly detection (Neville et al. 2005; Noble

and Cook 2003), recommendation (Agarwal and Merugu 2007; Cheng et al. 2007),

community mining and graph partition (Backstrom et al. 2006; Chen et al. 2009, Gibson

et al. 1998; Girvan and Newman ; Karypis and Kumar 1999; Qian et al. 2009), near-clique

detection (Pei et al. 2005), etc.

7 Conclusion

In this paper, we study how to find good ‘gateway’ nodes in a graph, given one or more

source and target nodes. Our main contributions are: (a) we formulate the problem pre-

cisely; (b) we develop BASSET-N and BASSET-G, two fast (up to 6 orders of magnitude
of speedup) and scalable (linear wrt the number of the nodes in the graph) algorithms to

solve it in a provably near-optimal fashion, using sub-modularity. We applied the proposed

BASSET-N and BASSET-G on real data sets to validate the effectiveness and efficiency.
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Appendix

A proofs of the core theorem

Here, we provide the detailed proof of Theorem 1 for completeness.

Proof of P1 WLOG, we assume that I ¼ fn� k þ 1; :::ng. Let A and ~A be the nor-

malized adjacency matrices of the graph before/after we set the subset of nodes in I as

sinks. Write A and ~A in block form:

A ¼ A1;1 A1;2

A2;1 A2;2

� �

; ~A ¼
~A1;1

~A1;2

~A2;1
~A2;2

� �

¼ A1;1 0
A2;1 0

� �

ð6Þ

where 0 is a matrix with all zero elements.
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Let ~Q ¼ ð1� cÞðI� c~AÞ�1: We can also write ~Q and Q in block form:

Q ¼ ð1� cÞðI� cAÞ�1 ¼
Q1;1 Q1;2

Q2;1 Q2;2

� �

¼ ð1� cÞ
I� cA1;1 �cA1;2

�cA2;1 I� cA2;2

� ��1

~Q ¼
~Q1;1

~Q1;2

~Q2;1
~Q2;2

 !

¼ ð1� cÞ
I� cA1;1 0

�cA2;1 I

� ��1

Applying the block matrix inverse lemma (Piegorsch 1990) to ~Q and Q, we get the

following equations:

~Q1;1 ¼ ð1� cÞðI� cA1;1Þ�1; ~Q1;2 ¼ 0

~Q2;1 ¼ cð1� cÞA2;1ðI� cA1;1Þ�1; ~Q2;2 ¼ ð1� cÞI
Q1;1 ¼ ð1� cÞðI� cA1;1Þ�1 þ c2ðI� cA1;1Þ�1A1;2Q2;2A2;1ðI� cA1;1Þ�1

Q1;2 ¼ cðI� cA1;1Þ�1A1;2Q2;2

Q2;1 ¼ cQ2;2A2;1ðI� cA1;1Þ�1

ð7Þ

Therefore, we have

~Q1;1 ¼ Q1;1 �Q1;2Q�1
2;2Q2;1 ð8Þ

On the other hand, based on the properties of random walk with restart (Tong et al.

2008), we have r(i, j) = Q(j, i), and rI ði; jÞ ¼ ~Qðj; iÞ; ði; j ¼ 1; :::; nÞ: Together with (8),

we have

gðs; t; IÞ ¼ rðs; tÞ � rI ðs; tÞ ¼ Q1;1ðt; sÞ � ~Q1;1ðt; sÞ
¼ Q1;2ðt; :ÞQ�1

2;2Q1;2ð:; sÞ
ð9Þ

which completes the proofs of P1. h

Proof of P3 Since P1 holds, we have

gðS; T ; IÞ ¼
X

s2S;t2T
Drðs; tÞ ¼

X

s2S;t2T
gðs; t; IÞ

¼
X

s2S;t2T
Qðt; IÞQðI ; IÞ�1QðI ; sÞ

ð10Þ

which completes the proofs of P3. h

Proof of P2 Let I ;J ;K be three subsets and I � J : We will first prove by induction

that, for any integer power j, the following inequality holds element-wise.

Aj
I � Aj

I
S
K �Aj

J � Aj

J
S
K ð11Þ

It is easy to verify the base case (i.e.,j = 1) for (11) holds. Next, assume that (11) holds for

j = 1, ..., j0, and we want to prove that it also holds for the case j = j0 ? 1:
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Aj0þ1
I � Aj0þ1

I
S
K ¼ Aj0þ1

I � Aj0

I
S
KAI þ Aj0

I
S
KAI � Aj0þ1

I
S
K

¼ ðAj0
I � Aj0

I
S
KÞAI þ Aj0

I
S
KðAI � AI

S
KÞ

� ðAj0
J � Aj0

J
S
KÞAI þ Aj0

I
S
KðAJ � AJ

S
KÞ

� ðAj0
J � Aj0

J
S
KÞAJ þ Aj0

J
S
KðAJ � AJ

S
KÞ

¼ Aj0þ1
J � Aj0þ1

J
S
K ð12Þ

In (12), the first inequality holds because of the induction assumption. The second

inequality holds because AI �AJ � 0 holds element-wise, and AI
S
K �AJ

S
K � 0 holds

element-wise.

Since ~Q ¼ ð1� cÞðI� c~AÞ�1 ¼ ð1� cÞ
P1

j¼0ðc~AÞj; we have

gðs; t; I [ KÞ � gðs; t; IÞ ¼ ð1� cÞ
X1

j¼0

ððcAI Þjðt; sÞ � ðcAI
S
KÞ

jðt; sÞÞ

� ð1� cÞ
X1

j¼0

ððcAJ Þjðt; sÞ � ðcAJ
S
KÞ

jðt; sÞÞ

¼ gðs; t;J [ KÞ � gðs; t;J Þ ð13Þ

Therefore, gðs; t; IÞ is sub-modular, which completes the proof of P2. h

Proof of P4 Since gðS; T ; IÞ ¼
P

s2S;t2T gðs; t; IÞ (In other words, gðS; T ; IÞ is a non-

negative linear combination of sub-modular functions) , according to the linearity of

sub-modular functions (Krause and Guestrin 2005), we have that gðS; T ; IÞ is also sub-

modular, which completes the proof of P4. h
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