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Abstract We investigate the effect of feature weighting on document clustering,

including a novel investigation of Okapi BM25 feature weighting. Using eight document

datasets and 17 well-established clustering algorithms we show that the benefit of tf-idf
weighting over tf weighting is heavily dependent on both the dataset being clustered and

the algorithm used. In addition, binary weighting is shown to be consistently inferior to

both tf-idf weighting and tf weighting. We investigate clustering using both BM25 term

saturation in isolation and BM25 term saturation with idf, confirming that both are superior

to their non-BM25 counterparts under several common clustering quality measures.

Finally, we investigate estimation of the k1 BM25 parameter when clustering. Our results

indicate that typical values of k1 from other IR tasks are not appropriate for clustering; k1

needs to be higher.

keywords Document clustering � Feature weighting � Okapi BM25

1 Introduction

Clustering is a popular data mining area, with document clustering in particular receiving

much attention (Slonim and Tishby 2000; Steinbach et al. 2000; Zhao and Karypis 2002;

Beil et al. 2002; Fung et al. 2003; Xu et al. 2003; Sevillano et al. 2006; Hu et al. 2009 to

give just a fraction of the publications in the past decade on this subject). The amount of

attention received is likely due to the massive amount of electronic document collections

available and the desire (or need) to automatically organize them. Certain assumptions

regarding the weighting of text features are nearly ubiquitous in this work. In this paper we

explore some of these assumptions, investigating the effect of typical text feature
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weighting on document clustering algorithms. We aim to determine whether we can

improve on these standard term weighting strategies.

Before we begin our discussion, we give some preliminary notation. Let X be a set of

documents we want to cluster, and Xi be the ith document of X. Each Xi is represented

using the standard vector space model representation

Xi ¼ ½xi1; xi2; . . .; xim�: ð1Þ

xij is the weight of feature j to document i. When raw term counts are used to generate each

Xi

xij ¼ tfij; ð2Þ

where tfij is the term frequency of j in i. Typical practice in clustering is to incorporate an

inverse document frequency (idf) component into the feature weighting:

xij ¼ tfij log
n

nj

� �
; ð3Þ

where n is the number of documents in the X, and nj is the number of documents in X that

contain term j. To avoid unfavorable biases based on different document lengths, it is also a

standard to make each document unit Euclidean length (jjXijj2 ¼ 1) by setting each xij as

follows:

xij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 x2
ij

q ð4Þ

It is common in document clustering literature to use tf-idf weighting, mostly with length

normalization (Slonim and Tishby 2000; Steinbach et al. 2000; Zhao and Karypis 2002;

Xu et al. 2003; Zhao and Karypis 2004; Hu et al. 2009; Aljaber et al. 2010 to name a few

such works).

There is some research from fields related to clustering, such as classification, that

indicate that idf is an important part of feature weighting for those fields, while tf is

(surprisingly) not as useful (Wilbur and Kim 2009). Such results suggest that the same

might be true of clustering. Despite this, we show in this paper that the inclusion of an idf
component to tf is not necessarily beneficial in clustering. While idf is shown to generally

have a small positive effect on clustering results, for some datasets idf is shown to be

harmful for a wide range of algorithms. In addition, we show that certain algorithms are

biased towards certain evaluation measures, and that the evaluation measures are not

entirely consistent with each other.

We also investigate the use of term frequency in feature weighting. Specifically, we

compare using tf versus binary feature weights:

xij ¼
1; if tfij [ 0;
0; otherwise.

�
ð5Þ

Equation 5 assigns a value of 1 if a term occurs in a document, and 0 otherwise. We show

that tf outperforms binary weighting, indicating that simple term presence/absence indi-

cators are inferior to using term count information when document clustering.

A novel contribution of this paper is our investigation of Okapi BM25 (BM25) feature

weighting. Only recently has BM25 been seriously considered in document clustering (de
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Vries and Geva 2008; Bashier and Rauber 2009; Whissell et al. 2009; D’hondt et al. 2010;

Kutty et al. 2010); with works that do use BM25 still being a small minority. Bashier and

Rauber (2009) investigate relevance feedback using clustering. de Vries and Geva (2008)

use BM25 weighting when clustering XML documents, but offer no comparison to tf-idf
weighting using their clustering method. Kutty et al. (2010) also cluster XML documents

using BM25 weighting, with the authors showing an improvement over tf-idf. D’hondt

et al. (2010) use BM25 and tf-idf, but there is no direct comparison between their BM25

and tf-idf results.

An examination of the literature discussed above suggests that clustering using BM25

feature weighting is promising, but it also reveals a number of areas where research is

lacking; we consider a few of these areas specifically in this paper. First; no broad

investigation of the suitability of BM25 feature weighting for document clustering has

been done, the rational for its use, up to this date, has simply been that it has worked well

in other applications. Second, suitable parameter values for BM25 when document clus-

tering have not been investigated, researchers have simply adopted default values for them.

Finally, no work has assessed the merits of using just the BM25 term saturation component

as a feature weight. Our previous work (Whissell et al. 2009) is the closest to such a task,

but it does not offer comparisons, nor focus on the merit of, various weighting functions in

a standard clustering experiment.

We show that replacing the tf in tf-idf weighting (Eq. 3) with the BM25 term saturation

component, and changing nothing else about how the clustering is performed, produces

results superior to tf-idf weighting in an extensive test. We also investigate the use of just

the BM25 term saturation component as a feature weight, which we show outperforms tf.
Parameter estimation for k1 in BM25 is also investigated, with our research leading to the

conclusion that typical values for k1 from other tasks such as ad-hoc retrieval are

unsuitable, k1 should be higher to achieve better clustering results.

The rest of the paper proceeds as follows. Section 2 describes our tf, tf-idf, and binary

weighting experiments and the datasets, clustering algorithms, and evaluation measures

used in them. Section 3 discusses the results of these experiments, highlighting some key

discoveries and analyzing why they occurred. Section 4 demonstrates that BM25-weighted

document representations produce superior clusterings when compared to their non-BM25

counterparts. Section 5 gives our conclusion and discussion of future avenues of research.

2 Experimental setup

In this section we describe our tf, tf-idf, and binary weighting experiments and the datasets,

clustering algorithms, and evaluation measures used in them.

Our goal was to test the effect tf, tf-idf, and binary weighting has on document clustering

results. To that end, we selected 17 clustering algorithms and eight document datasets,

these are described in Sects. 2.1 and 2.2, respectively. For each dataset we generated three

representations: one using tf, another using tf-idf, and a final one using binary weighting.

The definitions used for the weighting functions, while creating the representations, were

exactly as detailed in Sect. 1 All three weightings were length normalized. Each clustering

algorithm was run on each representation with two to 30 clusters. This gave a total of

11,832 (8*3*17*29) clusterings. These clusterings were evaluated using the four evalua-

tion measures described in Sect. 2.3 The results of the evaluation measures on the clus-

terings are used in Sect. 3 to analyze the effect of the weightings. The following
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subsections detail the specific datasets, clustering algorithms, and evaluation measures we

used.

2.1 Datasets

We used a total of eight datasets in our experiment, all of which are available at the

Karypis Lab1 in the form of preprocessed term frequency count vectors. The vectors for

each dataset could be created from base documents using a simple script called doc2mat.2

Conceptually, doc2mat performs the following operations to generate the vectors for the

datasets: (1) all non-alphanumeric characters are converted to whitespace; (2) documents

are tokenized using whitespace as a separator; (3) a simple stopword list (built in to the

program) filters out all stopwords; (4) a Porter stemmer is applied to the tokens; (5) tokens

containing any non-alphabetic characters are discarded and all other tokens are case-

normalized (lower case); (6) the remaining tokens are used to generate the terms for the

dataset; and (7) the final term count vectors are created using the results of steps (5) and

(6). We did not apply doc2mat ourselves, instead we simply used the preprocessed vectors

provided by the site owners (it should be further noted that the default parameter settings of

doc2mat do not match those discussed here, although doc2mat is easily configured to

match them).

The eight datasets have been used in numerous publications (Zhao and Karypis 2002;

Xu et al. 2003; Fung et al. 2003; Steinbach et al. 2000; Beil et al. 2002) and may thus be

considered as standard test sets for document clustering. Table 1 summarizes their

characteristics.

The document collections new3, tr51, tr41, and tr31 are derived from collections used at

TREC (Text REtrieval Conference3). The fbis collection is from the Foreign Broadcast

Information Service dataset in TREC-5. The first 2000 of the fbis documents were used in

our tests. This allowed us to use a standard Java matrix package (JAMA4) which required

that the number of dimensions be greater than or equal to the number of objects when

applying singular value decomposition (fbis has 2000 dimensions). Re0 and re1 are from

the Reuters-21578 text categorization test collection distribution 1.0.5 The wap collection

Table 1 The datasets used
in our experiments

Dataset # of Doc # of Terms # of Classes

fbis 2,463 2,000 17

new3 9,556 36,306 44

tr31 927 10,128 7

tr41 878 7,454 10

tr45 690 8,261 10

re0 1,504 2,886 13

re1 1,657 3,758 25

wap 1,560 8,460 20

1 http://glaros.dtc.umn.edu/gkhome/views/cluto/download
2 http://glaros.dtc.umn.edu/gkhome/files/fs/sw/cluto/doc2mat.html
3 http://trec.nist.gov
4 http://math.nist.gov/javanumerics/jama/
5 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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is the from the WebACE project (Boley et al. 1999). Each document of the wap dataset

was a single web page in the Yahoo! directory.

2.2 Clustering algorithms

Of the 17 clustering algorithms used in our experiments, all but the six based on Zhao and

Karypis (2001, 2002, 2004) were independently implemented by one of the authors. Where

possible, the implementations were validated through comparisons to previously published

results. The algorithms using the objective functions from Zhao and Karypis (2001, 2002,

2004) were performed using the authors’ own clustering toolkit.6

Selection of the clustering algorithms was based on the following criterion: (1) Were

they well-established algorithms? (2) Did they take a pre-specified number of clusters as a

parameter and produce hard clusters? (3) Together, did the set of algorithms cover a

breadth of the well-established techniques for document clustering? (4) Together, did the

set of algorithms include those algorithms reported to produce good results in previous

research? This last requirement was especially important for a meaningful analysis of the

effects of tf-idf and other term weightings. Table 2 lists the 17 clustering algorithms we

used. Below we give a brief description of each method.

Our Kmeans algorithm uses Lloyd’s method (Lloyd 1982) with the initial centroids

being selected randomly from the vectors of the dataset. We ran the algorithm 20 times for

each value of k and kept only best result according to the Kmeans internal objective

function. PAM (Kaufman and Rousseeuw 1990) was included in our study as a different

Table 2 The clustering algorithms used in our experiments

Algorithm Short Reference

K-means Kmeans Lloyd (1982)

Partition around medoids PAM Kaufman and Rousseeuw (1990)

Repeated bisecting k-means RB-Kmeans Steinbach et al. (2000)

Unnormalized spectral Spect-Un von Luxberg (2007)

Random walk spectral Spect-RW Shi and Malik (2000)

Symmetric spectral Spect-Sy Ng et al. (2001)

Principle component analysis?Kmeans PCA-Kmeans Pearson (1901)

Non-negative matrix factorization NC-NMF Xu et al. (2003)

Unweighted pair group method UPGMA Kaufman and Rousseeuw (1990)

Single linkage Slink Jain et al. (1999)

Complete linkage Clink Jain et al. (1999)

Repeated bisecting I2 RB-I2 Zhao and Karypis (2002)

Repeated bisecting H1 RB-H1 Zhao and Karypis (2002)

Direct I2 Direct-I2 Zhao and Karypis (2002)

Direct H1 Direct-H1 Zhao and Karypis (2002)

Agglomerative I2 Agglo-I2 Zhao and Karypis (2002)

Agglomerative H1 Agglo-H1 Zhao and Karypis (2002)

6 http://glaros.dtc.umn.edu/gkhome/views/cluto/download
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approach to optimizing the same objective function as our Kmeans algorithm. It uses

medoid swapping. RB-Kmeans repeatedly splits the dataset using Kmeans. Binary

splitting is used, with the largest remaining cluster split at each iteration (Steinbach et al.

2000).

We selected three varieties of spectral clustering. For each of these three methods the

weighted adjacency matrix W was generated through an r-nearest neighbor scheme with

cosine similarity using r = 20. Spect-Un clusters on the k eigenvectors of the Laplacian

L = D - W, where D is the degree matrix of W. For details on the Laplacian for Spect-RW
see Shi and Malik (2000), and for Spect-Sy see Ng et al. (2001). The clustering of the

eigenvectors for all three methods was done using our Kmeans algorithm.

PCA (Pearson 1901) is a common dimensionality reduction technique based on singular

value decomposition. For our PCA algorithm, we first applied PCA to produce an n 9 20

reduced document feature space. Dimensionality reduction was followed by the application

of our Kmeans algorithm.

Non-negative matrix factorization is a relatively recent document clustering technique

that has been shown to be highly effective, the variety we implemented is discussed by Xu

et al. (2003). Note that we used NC-NMF as the authors showed it to be more effective

than simple NMF.

UPGMA (Kaufman and Rousseeuw 1990), Slink (Jain et al. 1999), and Clink (Jain

et al. 1999) are from the same family of agglomerative clustering algorithms. In each of

these methods every document begins as a singleton cluster and clusters are progressively

merged with the best similarity. In Slink similarity between clusters is equal to the simi-

larity of their closest documents. In Clink the farthest documents are used. In UPGMA the

average similarity between all documents is used. Cosine similarity was used for all three

of these methods.

Finally, we selected two of the objective functions from Zhao and Karypis (2001); Zhao

and Karypis (2002): I2 and H1. For each of these, we used three distinct optimization

methods: repeated bisection, direct (partitional), and agglomerative. This gave us a total of

six algorithms. For details on their exact implementations, readers can consult Zhao and

Karypis (2001); Zhao and Karypis (2002); Zhao and Karypis (2004) as we used the

authors’ own clustering toolkit to perform these algorithms. The I2 function is essentially

the Kmeans objective function except any similarity metric may be used in the calculation.

The H1 function is I1/E1, where E1 is an objective function based around minimizing the

weighted similarity of cluster centroids from the centroid of the whole dataset.

The above algorithms are by no means a full list of document clustering algorithms.

Beyond just the variants of what we used there are some entirely different methods such as

those based on frequent itemsets (Fung et al. 2003; Beil et al. 2002), the information

bottleneck (Slonim and Tishby 2000), numerous model based approaches (PLSA Hofmann

1999, etc.), and so on. Still, we believe we implemented a sufficient set of algorithms to

perform our weighting experiments.

2.3 Evaluation measures

We used four evaluation measures in our experiments: normalized mutual information
(NMI); F-measure (FQ); a purity measure (PQ); and an entropy measure (EQ). Let A be a

clustering of a X, and let B be the true labeling of X. Let a be a cluster of A, and let b be a

class of B. We define pðaÞ ¼ jajn , pðbÞ ¼ jbjn , and pða; bÞ ¼ ja\bj
n .
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The variant of NMI we use was presented by Strehl and Ghosh (2002):

NMIðA; BÞ ¼ IðA; BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðAÞHðBÞ

p ; ð6Þ

where I(A; B) is the mutual information between A and B, defined as:

IðA; BÞ ¼
X
b2B

X
a2A

pða; bÞ log
pða; bÞ

pðaÞpðbÞ

� �
; ð7Þ

and where H(A) is the entropy of A, defined as:

HðAÞ ¼
X
a2A

pðaÞ logðpðaÞÞ: ð8Þ

NMI is symmetric, with a value between zero and one. In a sense, it measures how much

A tells us about B and vice versa, with higher NMIs indicating A is a better clustering.

The form of F-measure we used is based on F1 (van Rijsbergen 1979):

F1ða; bÞ ¼ 2 � Precisionða; bÞ � Recallða; bÞ
Precisionða; bÞ þ Recallða; bÞ ð9Þ

where

Precisionða; bÞ ¼ pða; bÞ
pðaÞ ð10Þ

Recallða; bÞ ¼ pða; bÞ
pðbÞ : ð11Þ

F1 is defined on an individual cluster and class. Our full F-measure quality is

FQðA;BÞ ¼
X
b2B

pðbÞmax
a2A

F1ða; bÞ: ð12Þ

FQ was applied, exactly as explained here (although using different notion), to hierarchical

clusterings in Zhao and Karypis (2002). FQ looks for the best cluster to represent each

class in B. The individual F1 scores are weighted by their true label class sizes in the final

scoring. As with NMI, FQ is between zero and one with higher scores indicating a better

clustering. One potential issue with this formula is that, as many classes may map to a

single cluster, but each individual class only maps to one cluster, there may be ‘classless’

clusters. A classless cluster does not effect the score of this measure, leading us to question

how good of an evaluation of a clustering’s overall quality this measure really is. Nev-

ertheless, measures of this form have been used in previous comparisons of document

clustering algorithms (Steinbach et al. 2000; Beil et al. 2002; Zhao and Karypis 2002), so

we believe it is appropriate to apply it here.

The final two evaluation measures we used were a purity measure (Zhao and Karypis

2001), defined as:

PQðA;BÞ ¼
X
a2A

pðaÞmax
b2B

pða; bÞ
pðaÞ ; ð13Þ

and an entropy measure (Zhao and Karypis 2004), defined as:
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EQðA;BÞ ¼ 1�
X
a2A

pðaÞ 1

�logðqÞEða; bÞ; ð14Þ

where

Eða; bÞ ¼
X
b2B

pða; bÞ
pðaÞ log

pða; bÞ
pðaÞ

� �
: ð15Þ

In the equation for the entropy measure, q is the number of classes in B.

PQ treats each cluster as representing a single class; the class of which it contains the

most documents. This mapping is done irrespective of how other clusters are mapped to

classes, so many clusters may be assigned to the same class. PQ has a maximum of one

(perfect).

EQ assesses the quality of each cluster by examining the distribution of class labels it

contains. The notion behind this measure is that good clusters are ones that contain mostly

one class, while a cluster containing classes in equal proportions is the worst possible. The

exact quality value of each a [ A is simply the entropy of the distribution of its class labels

(Eq. 15, for clarity we note that p(a, b)/p(a) is just the fraction of cluster a that is class b),

weighted by the size of the cluster (p(a)). The log(q) component is included to normalize

Eq. 8 between zero and one. As a final step, the weighted total entropy measure is sub-

tracted from one. This makes EQ consistent with the other three measures: higher is better.

3 Effects of document feature weightings

Rather than compare tf, tf-idf, and binary weightings together at once we chose to examine

two questions we believe are key with respect to document feature weighting; (1) Is the idf

component of tf-idf weighting needed for document clustering?; and (2) Is term frequency

more useful than simple term presence/absence for document clustering? Question (1) is

evaluated in Sect. 3.1 by comparing our tf and tf-idf results. We show the benefit of idf is

heavily dependent both on the dataset and clustering algorithm. We examine question (2)

in Sect. 3.2 by comparing our tf and binary results. We show that tf is substantially superior

to binary weighting.

3.1 Effect of tf-idf on document clustering

To determine if tf-idf was having a positive effect when compared to tf, we first took the

evaluation measures on the 7888 tuples of (weighting, dataset, algorithm, #clusters) for the

tf and tf-idf weightings and collapsed them by averaging each evaluation measure over

the number of clusters. This gave 272 tuples of (weighting, dataset, algorithm) with

averaged evaluation measures. From these tuples we derived three tables comparing tf and

tf-idf weighting; (1) By dataset and average over all clustering algorithm for that dataset

(Table 3); (2). By dataset and the best clustering algorithm for that dataset (Table 4); and

(3). By algorithm (Table 5).

The overall row in Table 3 indicates that, on average, tf-idf offers improved results over

tf. However, tf-idf is actually substantially worse than tf for re0 and somewhat worse for

fbis and new3. Table 4 shows the best clustering algorithm for each dataset and weighting,

by each of the four evaluation measures. One can see that Table 4 is mostly consistent with
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Table 3 in terms of the when tf-idf or tf is better, with the best tf and tf-idf results being

closer, in general, than average tf and tf-idf results.

A possible reason for idf’s harmful effect on some datasets is apparent from a nearest

neighbor analysis. For each dataset and weighting we calculated the percentage of r-nearest

neighbors, per document, that share the same label as that document. Figure 1 presents the

results of this analysis for r = 1–30. Considering just the tf and tf-idf lines for the moment,

we see definite trends. For re0, where idf is harmful, we see tf-idf yielding a consistently

worse nearest neighborhood than tf. For the datasets where idf is beneficial (re1, tr31, tr41,
tr45, and wap), we see tf yielding better small neighborhoods, but as r increases tf-idf
reduces less than tf, yielding substantially better neighborhoods than tf at higher rs. For

new3 and fbis, where idf is only somewhat harmful, we see that tf again begins with better

neighborhoods, but as r increases tf and tf-idf approach the same quality of neighborhood

(as opposed to tf-idf becoming better). As all clustering algorithms are more or less

dependent on the quality of nearest neighborhoods, this provides a reasonable explanation

for our different by-dataset results.

The average improvement by algorithms presented in Table 5 are split in to hierarchical

and partitional groups (note that RB-Kmeans and other repeated bisection methods are

placed in the hierarchical section as they generate hierarchies of clusters, even though the

splitting decision at each level is based around partitioning). It is immediately notable from

Table 5 the benefit of idf is not divisible along partitional versus hierarchical lines. For

example, UPGMA and NC-NMF gain the largest benefit from using tf-idf, the former being

hierarchical and the latter partitional. Another notable aspect is that the better clustering

algorithms (from Table 4, 6 and 7) benefit less from tf-idf than most of the other algorithms

(except Slink and Clink).

A noteworthy side point uncovered from our investigation of tf versus tf-idf weighting is

that certain algorithms appear to favor certain evaluation methods. To show this, we used

the dataset collapsed by number of clusters again. For each weighting, dataset, and eval-

uation measure, the clustering algorithms were ranked by their evaluation measure, from

one (best) to 17 (worst). We then computed each algorithm’s average rank by weighting

and evaluation measure. Table 6 shows our algorithms, ordered by this average ranking

(from best to worst) when tf is used, for each evaluation measure. Table 7 shows similar

results for tf-idf weighting.

The most striking inconsistency in Tables 6 and 7 is the behavior of FQ. We notice that

RB-H1 and RB-I2, which are overall the best algorithms, rank much lower by FQ for both

tf and tf-idf weighting. Also, for both tf and tf-idf, UPGMA fairs much better with FQ than

Table 3 The percentage change
in evaluation measures when
using tf-idf document representa-
tions over tf, by dataset and
overall

Dataset NMI (%) FQ (%) PQ (%) EQ (%)

fbis -1.6 -0.4 -1.0 -1.3

new3 0.1 -2.3 -2.0 0.3

re0 -11.0 -4.1 -5.3 -5.4

re1 14.8 4.9 4.9 8.6

tr31 15.9 8.2 7.5 10.4

tr41 12.5 7.8 8.3 8.8

tr45 20.0 17.5 12.5 15.6

wap 6.6 7.6 6.4 7.2

Overall 7.2 4.9 3.9 5.5
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with other measures, as do Direct-H1 and Direct-I2. A Kendall’s s test for correlation

between pairs of the eight rankings in Tables 6 and 7 is presented in Table 8. One may

note a relatively strong measure of agreement between tf NMI, tf PQ, tf EQ, tf-idf NMI,

tf-idf PQ, and tf-idf EQ rankings, with the minimum s between any pair of those being

Table 4 The best clustering algorithm for tf and tf-idf weighting on each dataset by each evaluation
measure

tf tf-idf Diff (%)

NMI

fbis RB-H1 0.566 RB-H1 0.558 -1.9

new3 RB-H1 0.577 RB-I2 0.590 2.3

re0 RB-I2 0.420 RB-H1 0.417 -0.7

re1 RB-I2 0.492 RB-I2 0.556 12.9

tr31 RB-H1 0.533 Agglo-I2 0.591 10.8

tr41 Agglo-I2 0.630 Agglo-I2 0.657 4.4

tr45 RB-I2 0.622 Agglo-I2 0.667 7.2

wap RB-I2 0.571 Agglo-H1 0.573 0.3

FQ

fbis Agglo-H1 0.560 Agglo-H1 0.549 -2.0

new3 RB-H1 0.324 RB-I2 0.323 -0.3

re0 Direct-H1 0.478 Direct-I2 0.431 -9.8

re1 Agglo-I2 0.470 Agglo-I2 0.479 1.8

tr31 Clink 0.585 UPGMA 0.688 17.6

tr41 Agglo-I2 0.611 Direct-I2 0.655 7.2

tr45 Agglo-I2 0.590 Agglo-H1 0.672 14.0

wap Agglo-I2 0.507 Agglo-H1 0.539 6.4

EQ

fbis RB-H1 0.704 RB-H1 0.692 -1.8

new3 RB-H1 0.601 RB-H1 0.594 -1.1

re0 RB-H1 0.703 RB-H1 0.689 -2.1

re1 RB-I2 0.632 RB-I2 0.663 5.0

tr31 RB-H1 0.859 RB-I2 0.895 4.3

tr41 RB-I2 0.860 RB-I2 0.884 2.8

tr45 RB-I2 0.831 RB-H1 0.854 2.8

wap RB-I2 0.686 RB-H1 0.689 0.5

PQ

fbis RB-H1 0.687 RB-H1 0.676 -1.6

new3 RB-H1 0.666 RB-I2 0.679 1.9

re0 RB-H1 0.681 RB-H1 0.679 -0.2

re1 RB-I2 0.626 RB-I2 0.685 9.4

tr31 RB-H1 0.810 RB-I2 0.850 4.9

tr41 RB-I2 0.829 RB-I2 0.859 3.7

tr45 RB-I2 0.783 RB-H1 0.816 4.3

wap RB-H1 0.670 RB-H1 0.677 1.1

Diff is the improvement in using the best tf-idf over the best tf algorithm
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0.618. Perhaps unsurprisingly, the tf FQ and tf-idf FQ rankings have a s of 0.5, with much

lower (even negative in one case) ss with the other six rankings.

A potential source for FQ’s large disagreement is visible from its formula. NMI, FQ,

PQ, and EQ may be decomposed to contain ‘by cluster’ contributions to their overall

values. For example, in PQ the contribution of a single cluster to the overall PQ score is,

using the notation from the evaluation measure section, pðaÞmaxb2B
pða;bÞ
pðaÞ . The by-cluster

contributions of NMI, PQ, and EQ reference two things; (1) the cluster itself; and (2) the

true labeling. None of their by cluster contributions directly reference the other clusters in

the clustering. However, this is not the case of FQ. If a cluster has any by cluster con-

tribution in FQ can only be determined by examining if its F1 score for some b exceeds all

other clusters’ F1s for that b. This reference to other clusters within the clustering makes

FQ distinct from the other measures. While it is difficult to say whether this distinctness

makes FQ a poor evaluation measure in general, it at least makes FQ problematic from the

standpoint of it being inconsistent with the other quality notions we examined.

With respect to which algorithms are better, several algorithms have generally high

ranks in Tables 6 and 7, including RB-H1, RB-h2, Agglo-H1, Agglo-I2, and Spect-Sy.

RB-Kmeans and NC-NMF perform well with tf-idf evaluation measures only. Interest-

ingly, Kmeans performs reasonably well by all measures. On the other hand, we note that

Slink and Clink provide uniformly poor performance.

3.2 Effect of tf and binary weighting on document clustering

To determine if term frequency was more beneficial than binary term weights we compared

our tf results to our binary results. The procedure for performing this experiment was the

same as in the previous subsection, except our tf-idf results were replaced with our binary

results. Table 9 shows the difference in the best algorithm results of binary and tf
weightings.

Table 5 Improvements
by clustering algorithms when
using tf-idf over tf weighting

Main type Algorithm NMI (%) FQ (%) PQ (%) EQ (%)

Hierarchical UPGMA 22.1 16.4 15.8 22.9

RB-Kmeans 14.0 10.5 7.7 9.7

Agglo-H1 5.6 4.3 2.9 4.4

Agglo-I2 5.4 3.1 2.8 4.5

RB-H1 3.1 2.1 1.1 2.6

RB-I2 2.8 1.2 1.1 2.6

Slink 6.6 0.0 0.2 0.8

Clink -5.4 -1.2 -0.1 0.0

Partitional NMF-NC 19.4 13.5 12.0 13.2

Direct-I2 14.7 7.4 7.7 10.5

PAM 10.4 8.3 7.0 8.0

Direct-H1 11.9 6.0 6.1 8.0

Spect-Un 6.5 5.4 4.3 5.8

Spect-RW 5.3 5.7 3.3 5.0

KMeans 7.6 4.4 2.5 4.1

Spect-Sy 4.1 3.7 2.4 3.8

PCA-Kmeans 2.1 1.2 -1.2 -1.2
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It is clear from Table 9 that binary weighting is notably worse than standard tf
weighting. In a few cases the best binary results are better than the tf results, but they are

often dramatically worse. When examining the average behavior of binary weighting, both

by dataset and by clustering algorithm, we likewise found it to be notably worse than tf. A

simple explanation for binary weighting’s poor performance can be found by examining

Fig. 1 Percentages of r-nearest neighbors (using cosine) that share the same label for each dataset
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Fig. 1. One can see that in every case except re0, the nearest neighborhoods of binary

weightings are greatly inferior to those of tf. For re0, binary weighting produces only

slightly worse nearest neighborhoods (with its clustering results being correspondingly

Table 6 Algorithmic rankings
by our evaluation measures
when using tf

NMI FQ PQ EQ

tf

RB-I2 Agglo-I2 RB-I2 RB-H1

RB-H1 Agglo-H1 RB-H1 RB-I2

Agglo-I2 Kmeans Agglo-H1 Agglo-I2

Agglo-H1 Direct-H1 Agglo-I2 Agglo-H1

Spect-Sy Direct-I2 Spect-Sy Spect-Sy

Kmeans Spect-Sy Kmeans Kmeans

PCA-Kmeans Spect-Un PCA-Kmeans RB-Kmeans

Spect-Un RB-I2 RB-Kmeans PCA-Kmeans

Spect-RW RB-H1 Spect-RW Spect-Un

RB-Kmeans UPGMA Spect-Un Spect-RW

Direct-I2 NC-NMF PAM NC-NMF

Direct-H1 Clink NC-NMF PAM

NC-NMF PCA-Kmeans Clink Clink

Clink Spect-RW Direct-H1 Direct-H1

PAM RB-Kmeans Direct-I2 Direct-I2

UPGMA PAM UPGMA UPGMA

Slink Slink Slink Slink

Table 7 Algorithmic rankings
by our evaluation measures when
using tf-idf

NMI FQ PQ EQ

tf-idf

Agglo-H1 Agglo-I2 RB-H1 RB-I2

RB-I2 NC-NMF RB-I2 RB-H1

Agglo-I2 Agglo-H1 Agglo-H1 Agglo-I2

RB-H1 UPGMA Agglo-I2 Agglo-H1

NC-NMF Direct-I2 RB-Kmeans RB-Kmeans

Spect-Sy Direct-H1 NC-NMF Spect-Sy

RB-Kmeans Kmeans Spect-Sy NC-NMF

Spect-Un Spect-Un Kmeans Kmeans

Kmeans RB-Kmeans Spect-Un Spect-Un

Spect-RW Spect-RW Spect-RW Spect-RW

Direct-I2 Spect-Sy PAM PCA-Kmeans

UPGMA RB-H1 PCA-Kmeans PAM

Direct-H1 Clink UPGMA Clink

PCA-Kmeans RB-I2 Clink UPGMA

PAM PAM Direct-I2 Direct-I2

Clink PCA-Kmeans Direct-H1 Direct-H1

Slink Slink Slink Slink
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closer to tf in quality). From this we conclude that term frequency counts are important in

clustering, it is not sufficient to cluster on simple binary term presence/absences.

4 BM25 based feature weighting

The superiority of tf over binary weighting, which we demonstrated in the previous section,

indicates that term counts are an important aspect of document clustering. A natural next

question is if we can perform some other modification to tf which will yield superior

clustering results. To that end, we apply BM25 (Robertson et al. 1994), which contains a

term frequency dampening component, as a basis for feature weighting. If Q is a query

consisting of a set of terms, then Xi’s BM25 score with respect to that query (using our idf
formulation) is

ScoreðQ;XiÞ ¼
X
j2Q

tfijðk1þ 1Þ
tfij þ k1 ð1� bÞ þ b dli

avgdl

� � log
n

nj

� �
; ð16Þ

where dli is a count of the tokens in document Xi:

dli ¼
Xm

j¼1

tfij ð17Þ

avgdl is the average document length for documents in the collection, and b and k1 are

parameters that are tuned, with k1 C 0 and 0 B b B 1. Accounting for document length is

handled by the b parameter. The term component in Eq. 16 saturates at a maximum of

k1 ? 1 as tfij ? ?, with the gain from increasing tf diminishing as the tf value increases.

As discussed in the introduction, the previous rationale for the use of BM25 in docu-

ment clustering was its performance at other tasks. Since its introduction in the early

1990s, the BM25 formula has been widely adopted, and it has repeatedly proved its value

across a variety of search domains. The saturation characteristics of the BM25 term

weighting function have been identified as a key element in the success of the formula.

Unlike other proposed modifications to tf, growth of the BM25 term weighting function is

relatively rapid when tf is small. However, the function quickly approaches an asymptote,

limiting the impact of a single term.

Table 8 Kendall’s s correlation between all the rankings in Tables 6 and 7

tf tf-idf

NMI FQ PQ EQ NMI FQ PQ EQ

tf NMI 1.000 0.426 0.809 0.824 0.618 0.044 0.632 0.706

FQ 0.426 1.000 0.265 0.279 0.397 0.500 0.176 0.221

PQ 0.809 0.265 1.000 0.926 0.603 -0.059 0.735 0.779

EQ 0.824 0.279 0.926 1.000 0.618 0.015 0.779 0.824

tf-idf NMI 0.618 0.397 0.603 0.618 1.000 0.279 0.750 0.735

FQ 0.044 0.500 -0.059 0.015 0.279 1.000 0.176 0.132

PQ 0.632 0.176 0.735 0.779 0.750 0.176 1.000 0.926

EQ 0.706 0.221 0.779 0.824 0.735 0.132 0.926 1.000
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Although document retrieval and clustering are not identical tasks, there is now enough

clustering research to suggest BM25 might aid in document clustering (Bashier and Rauber

2009; de Vries and Geva 2008; Whissell et al. 2009; D’hondt et al. 2010; Kutty et al.,

2010). This, coupled with the fact that no thorough analysis on the specific benefits of

Table 9 The best clustering algorithm for tf and binary weighting on each dataset by each evaluation
measure

tf Binary Diff (%)

NMI

fbis RB-H1 0.569 RB-H1 0.498 -12.4

new3 RB-H1 0.577 RB-H1 0.527 -8.6

re0 RB-I2 0.420 RB-I2 0.437 4.1

re1 RB-I2 0.493 RB-H1 0.431 -12.4

tr31 RB-H1 0.533 RB-I2 0.505 -5.3

tr41 Agglo-I2 0.630 RB-H1 0.603 -4.2

tr45 RB-I2 0.622 RB-H1 0.567 -8.8

wap RB-I2 0.571 Agglo-I2 0.598 4.6

FQ

fbis Agglo-H1 0.560 Clink 0.476 -15.0

new3 RB-H1 0.324 RB-H1 0.271 -16.4

re0 Direct-H1 0.478 Direct-H1 0.455 -4.7

re1 Agglo-I2 0.470 Direct-H1 0.379 -19.5

tr31 Clink 0.585 UPGMA 0.558 -4.6

tr41 Agglo-I2 0.611 Agglo-H1 0.550 -10.0

tr45 Agglo-I2 0.590 PCA-Kmeans 0.537 -9.0

wap Agglo-I2 0.507 Agglo-I2 0.589 16.1

EQ

fbis RB-H1 0.704 RB-H1 0.641 -9.0

new3 RB-H1 0.601 RB-H1 0.554 -7.9

re0 RB-H1 0.703 RB-I2 0.716 1.7

re1 RB-I2 0.632 RB-H1 0.560 -11.4

tr31 RB-H1 0.859 RB-I2 0.833 -3.0

tr41 RB-I2 0.860 RB-H1 0.843 -2.0

tr45 RB-I2 0.831 RB-H1 0.765 -7.9

wap RB-I2 0.686 RB-I2 0.710 3.4

PQ

fbis RB-H1 0.687 RB-H1 0.618 -10.0

new3 RB-H1 0.666 RB-H1 0.622 -6.6

re0 RB-H1 0.681 RB-I2 0.697 2.3

re1 RB-I2 0.626 RB-H1 0.570 -8.9

tr31 RB-H1 0.810 RB-I2 0.781 -3.7

tr41 RB-I2 0.829 RB-H1 0.807 -2.6

tr45 RB-I2 0.783 RB-H1 0.722 -7.7

wap RB-H1 0.670 RB-I2 0.691 3.2

Diff is the improvement in using the best binary algorithm over the best tf algorithm
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BM25 in document clustering exists, led us to use BM25 in a clustering experiment similar

to our initial experiment discussed Sect. 2.

We altered the document representations of Eqs. 2 and 3 to use the term saturation

component of BM25. Specifically, Eq. 2 became

xij ¼
tfijðk1þ 1Þ

tfij þ k1 ð1� bÞ þ b dli
avgdl

� � ; ð18Þ

and Eq. 3 became

xij ¼
tfijðk1þ 1Þ

tfij þ k1 ð1� bÞ þ b dli

avgdl

� � log
n

nj

� �
: ð19Þ

We refer to Eq. 18 as BM25-tf and Eq. 19 as BM25-tf-idf. The selection of values for the

parameters b and k1 is discussed in the next subsection. After creating the BM25 document

representations for the various datasets, our experiment followed the procedure described

in Sect. 2 exactly, including the length normalization process. Section 4.2 discusses the

results of the experiment, comparing our BM25 weightings with their non-BM25 coun-

terparts and with each other.

4.1 Parameter estimation

Typical values for the BM25 parameters in document retrieval are b = 0.75 and k1 = 1.2

(or 2.0), previous BM25 clustering papers have all used these default values. For our

experiments, we felt it did not make sense to experiment with different b values while still

doing Euclidean length normalization on top of BM25. We further did not feel it was

appropriate to simply drop the Euclidean length normalization, even with BM providing

some length normalization (on a term by term basis), as just BM might have yielded

document vectors of significantly different length. We therefore selected a fixed b = 1.0

rather than experimenting, and applied Euclidean length normalization on top of BM25,

focusing instead on selecting the k1 parameter.

We set aside two of our datasets, fbis and tr31, to use in selecting k1, while the other six

were kept for testing. On each of these two datasets, we ran several of our algorithms using

document representations based on both Eqs. 18 and 19 with b = 1.0 and k1 = 0… 100 in

increments of one, various numbers of clusters were used as well. We applied our four

evaluation measures to the resulting clusterings, Fig. 2 presents the trend in our evaluation

measures when varying k1 with UPGMA clustering and BM25-tf-idf document represen-

tations (results for other clustering algorithms and the other weighting are mostly con-

sistent with these results).

While the plots in Fig. 2 fluctuate, it is clear that a low value of k1 such as the typical

document retrieval value of 1.2 or 2.0 is not appropriate. Further, setting k1 too high

diminishes performance, although this is much less pronounced. While a more complex

analysis of which k1 is best would be appropriate, we selected a value of k1 = 20 for use in

our experiments based on these plots.

4.2 Results

From our previous experiments, we saw that tf and tf-idf behaved differently based on the

dataset and algorithm, thus is made sense to compare BM25-tf versus tf, and BM25-tf-idf
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Fig. 2 The effect on our evaluation measures when using UPGMA clustering on the BM25-tf-idf document
representation while varying k1 from 0 to 100
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versus tf-idf. Table 10 shows the by dataset improvement of BM25-tf over tf, and Table 11

shows the by dataset improvement of BM25-tf-idf over tf-idf. Tables 12 and 13 show the

by-algorithm improvement for BM25-tf over tf and BM25-tf-idf over tf-idf, respectively.

One can see from Tables 10 and 11 that using BM25 weightings improves the average

clustering quality results for all evaluation measures. Both weightings offer approximately

the same improvement over their non-BM25 counterparts. The by-algorithm results in

Tables 12 and 13 reveal that the large majority of algorithms benefit from BM25

weighting. It is worth noting that the four best performing algorithms for either tf and tf-idf
from our previous experiment (specifically Agglo-H1, Agglo-I2, RB-I2, and RB-i1) all

improve when BM25 term saturation is used. The benefit of BM25 term saturation is likely

due to its effect on nearest neighborhoods, this is visible in Fig. 1. From Fig. 1, we can see

that BM25-tf always has an equal or better neighborhood than tf, likewise, BM25-tf-idf has

better neighborhoods than tf-idf.
With respect to comparing BM25-tf and BM-tf-idf, they follow a pattern similar to that

of tf and tf-idf. For example, Table 14 shows the by algorithm improvement from using

BM25-tf-idf over BM25-tf. The algorithms that benefit most from tf-idf can be seen to

benefit most from BM25-tf-idf. When we analyzed the by dataset behavior of BM25-tf-idf
versus BM-tf we found it to be similar to the behavior of tf-idf versus tf as well. Addi-

tionally, the relative nearest neighborhood behaviors of BM25-tf-idf versus BM25-tf in

Fig. 1 follow the same pattern as tf-idf versus tf.
On average (by algorithm, dataset, best algorithm, and nearest neighborhoods), BM25-

tf-idf is somewhat better than BM25-tf, and notably better than any of the other three

weightings. From our BM25 weighting experiments in this section we conclude that BM25

term saturation is superior to raw term count information when used as a component of

Table 10 Improvement
by BM25-tf over tf

Dataset NMI (%) FQ (%) PQ (%) EQ (%)

New -0.8 -4.5 -1.5 -0.7

re0 4.2 2.5 2.6 2.3

re1 2.2 -0.5 1.2 1.4

tr41 2.5 0.5 1.9 2.5

tr45 3.7 3.2 2.8 3.6

wap 4.2 3.3 2.5 3.7

Overall 2.7 0.8 1.6 2.1

Table 11 Improvement
by BM25-tf-idf over tf-idf

Dataset NMI (%) FQ (%) PQ (%) EQ (%)

New3 2.3 3.4 2.9 1.2

re0 13.1 4.6 6.0 6.4

re1 -1.0 0.5 0.7 -0.7

tr41 1.6 -0.8 1.0 2.1

tr45 -3.1 -3.9 -1.9 -1.8

wap 4.4 4.1 3.5 3.5

Overall 2.9 1.3 2.0 1.8
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feature weighting in document clustering. Further, the behavior of our BM25 weightings

are very similar to their non-BM25 counterparts with respect to which clustering algo-

rithms and datasets benefit the most from their application.

Table 12 Improvements by
clustering algorithms when using
BM25-tf over tf weighting

Main type Algorithm NMI (%) FQ (%) PQ (%) EQ (%)

Hierarchical Clink 6.6 3.5 5.7 8.0

RB-Kmeans 4.5 2.0 2.3 3.3

Agglo-H1 2.4 0.5 1.3 1.7

RB-H1 1.6 0.0 0.4 1.1

UPGMA 2.6 -0.5 1.1 2.2

RB-I2 1.7 0.4 0.8 1.2

Agglo-I2 1.6 0.2 0.8 1.0

Slink -1.8 0.0 0.0 -0.2

Partitional PCA-Kmeans 7.3 5.5 4.5 5.0

NMF-NC 3.7 2.4 3.2 3.4

PAM 3.9 2.9 2.4 2.5

Spect-Un 3.8 1.3 2.9 3.1

Spect-RW 3.2 1.8 1.9 2.7

Direct-H1 2.9 1.2 2.1 2.3

KMeans 2.9 1.6 1.4 2.2

Spect-Sy 3.0 0.5 1.5 2.4

Direct-I2 1.9 1.1 1.6 1.5

Table 13 Improvements by
clustering algorithms when using
BM25-tf-idf over tf-idf weighting

Main type Algorithm NMI (%) FQ (%) PQ (%) EQ (%)

Hierarchical Clink 18.0 11.8 8.2 7.5

RB-I2 3.2 2.6 2.5 1.9

UPGMA 3.3 0.3 1.8 2.4

RB-H1 2.4 1.2 1.8 1.6

Agglo-H1 2.1 0.9 1.3 1.3

Agglo-I2 1.5 0.5 1.7 0.7

Slink -3.0 0.2 -0.2 -0.3

RB-Kmeans -3.3 -4.3 -2.3 -2.3

Partitional PCA-Kmeans 10.0 6.1 7.8 9.0

Spect-Un 5.1 3.1 3.7 3.3

PAM 5.4 1.9 2.6 3.0

Spect-RW 5.0 1.6 2.4 3.0

KMeans 2.6 2.0 3.3 3.0

Spect-Sy 4.4 0.9 2.1 2.4

Direct-H1 0.5 -0.7 0.0 0.0

NMF-NC -0.6 -0.2 0.0 0.0

Direct-I2 -1.2 -1.1 -0.3 -1.6
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5 Concluding discussion

We examined the merits of applying tf-idf term weighting to document clustering through

an experiment involving a variety of clustering algorithms, datasets, and evaluation

measures. We found that the idf component of tf-idf weighting does influence clustering

results, but this result can be either positive or negative when compared against tf
weighting alone. On average, tf-idf produces better results than tf, but the benefit of using

tf-idf depends very heavily on the exact dataset and the clustering algorithm used. Binary

weighting was also examined, and it was determined that it is noticeably inferior to both tf
weighting and tf-idf weighting.

An interesting point to come out of these experiments was that certain algorithms favor

certain evaluation measures. While some small bias might be expected, the large amount

observed was surprising. For example, UPGMA is very heavily biased towards F-measure.

We found that the evaluation measures we used, all of which are well established in the

literature, are far from perfectly correlated. However, NMI, our purity measure, and our

entropy measure are well correlated. F-measure is poorly correlated with the other three

measures. It is worth noting that the algorithmic preferences of our evaluation measures are

relatively consistent across different weighting functions, but there are some notable

exceptions such as NC-NMF, RB-Kmeans, and UPGMA ranking notably better when tf-idf
weighting is used. Our findings suggest that caution be used when reporting the relative

performance of clustering algorithms using a single evaluation measure. Using a range of

accepted evaluation measures might be an appropriate approach to address the inconsis-

tencies between individual measures.

We proposed and evaluated the use of the BM25 term weighting function in clustering.

This function is noted for its term saturation characteristics. We showed that using it in

place of the standard tf component in both tf and tf-idf leads to a noticeable improvement in

clustering results.

Table 14 Improvements by
clustering algorithms when using
BM25-tf-idf over BM25-tf
weighting

Main type Algorithm NMI (%) FQ (%) PQ (%) EQ (%)

Hierarchical UPGMA 20.0 18.3 17.3 22.8

Agglo-H1 4.7 4.5 3.0 3.8

Agglo-I2 4.4 3.4 3.3 3.9

RB-Kmeans 5.0 3.5 2.6 3.7

RB-I2 3.7 2.3 2.3 3.1

RB-H1 2.4 1.2 1.8 1.6

Clink -0.6 4.9 0.5 -2.4

Slink 0.7 -0.2 -0.2 0.0

Partitional NMF-NC 14.6 8.5 9.4 10.2

PAM 13.2 9.1 9.3 10.2

Spect-Un 8.3 7.6 6.4 7.3

Spect-RW 7.4 6.3 4.8 6.4

Direct-I2 8.4 5.1 5.0 6.1

Direct-H1 8.6 4.6 4.0 5.8

KMeans 7.8 4.6 4.7 5.7

Spect-Sy 4.9 4.2 3.5 4.1

PCA-Kmeans 6.0 2.7 1.9 3.0
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With respect to future research, automatic estimation of the k1 parameter is of particular

interest to us, this could greatly enhance the quality of clusterings when using BM25 term

saturation. Another aspect we wish to examine is the apparent inconsistencies in evaluation

measures used in clustering.
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