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Abstract A useful ability for search engines is to be able to rank objects with novelty and

diversity: the top k documents retrieved should cover possible intents of a query with some

distribution, or should contain a diverse set of subtopics related to the user’s information

need, or contain nuggets of information with little redundancy. Evaluation measures have

been introduced to measure the effectiveness of systems at this task, but these measures

have worst-case NP-hard computation time. The primary consequence of this is that there

is no ranking principle akin to the Probability Ranking Principle for document relevance

that provides uniform instruction on how to rank documents for novelty and diversity. We

use simulation to investigate the practical implications of this for optimization and eval-

uation of retrieval systems.
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1 Introduction

There has recently been interest in designing retrieval systems to rank documents with

novelty and diversity: the retrieved documents should cover some set of subtopics or cover

different possible intents of a query (Agrawal et al. 2009; Vee et al. 2008; Clarke et al.

2008; Radlinski et al. 2008; Chen and Karger 2006; Zhai et al. 2008; Carbonell and

Goldstein 1998; Carterette and Chandar 2009; Clarke et al. 2009a). Various evaluation

measures have been proposed for this task: Zhai et al. (2008) introduced variations of

recall and precision that count the number of unique subtopics retrieved, Clarke et al.

(2008) introduced a ‘‘nugget’’-based version of DCG that penalizes systems for retrieving

redundant subtopics, and Agrawal et al. proposed ‘‘intent-aware’’ versions of classical

measures that average those measures calculated with respect to particular intents. In

theory these measures can be used for optimization as well. They are based on a Cranfield-

like setting in which assessors have annotated documents not only on their relevance but
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also with respect to subtopics, intents, or nuggets. The system is rewarded for finding

documents that contain subtopics or nuggets that have not previously been seen in higher-

ranked documents.

These measures have something in common: the computation needed to understand

them is NP-hard (Agrawal et al. 2009; Clarke et al. 2008; Zhai et al.2008). Let S be a set of

subtopics, intents, nuggets, or facets related to a given query Q, and let C be a corpus of

documents in which each document D contains zero or more elements of S. Those that

contain zero elements are nonrelevant. Apart from the intent-aware measures, those listed

above are based on comparing a value calculated over subtopics retrieved up to some rank

j to the maximum value that could have been retrieved at the same rank. Finding this

maximumis generally an NP-hard problem. As a result, specific decisions made in the

design of a novelty/diversity retrieval system may appear to lead to worse results by these

measures even when those same decisions would actually improve the experience of the

user the measures intend to model.

This paper is presented in two parts. The first considers the worst-case implications of

optimizing to and evaluating with NP-hard effectiveness measures. The second uses

simulations to draw conclusions about the implications in the average case.

2 Worst-case analysis

Let us first define our evaluation measures using the notation above, then show how each is

NP-hard. For simplicity we will refer to elements of S as subtopics, though they need not

literally be subtopics.

2.1 Evaluation measures

We consider four measures from the literature: S-recall and S-precision, a-nDCG, and

intent-aware precision (prec-IA). Before defining them, let us follow Zhai et al. (2008) in

defining minRankðS; kÞ as the size of the smallest subset of documents in C that could

contain (‘‘cover’’) at least k subtopics in S.1 We will use unadorned MINRANK for the case

where k ¼ jSj. We prove that computing MINRANK is NP-complete in the ‘‘Appendix’’

(Theorem 1).

2.1.1 S-recall

S-recall at rank m is defined as the number of subtopics retrieved up to a given rank

m divided by the total number of subtopics (size of S ) (Zhai et al. 2008):

S-recall@m ¼ j [
m
i¼1 Dij
jSj :

Computing S-recall at an arbitrary m is polynomial time; we only need count the unique

subtopics retrieved. But because jSj could vary greatly from topic to topic, it is useful to

look at S-recall at rank m ¼ minRankðS; jSjÞ. Analogously to R-precision, S-recall at

MINRANK has a minimum value of 0 and a maximum of 1 for every topic. It is, however,

NP-complete as a consequence of MINRANK being so.

1 Note that while Zhai et al. defined this quantity in terms of a recall value, we define it in terms of the
number of subtopics. The definitions are functionally equivalent.
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2.1.2 S-precision

Zhai et al. (2008) defined S-precision at rank m as the ratio of the minimum rank at which a

given recall value could optimally be achieved to the first rank at which the same recall

value actually has been achieved. Let k ¼ j [m
i¼1 Dij. S-precision is then equivalent to

minRankðS; kÞ divided by the first rank by which at least k unique subtopics have appeared.

S-precision@m ¼ minRankðS; kÞ
m�

; where m� ¼ arg min
j
j [j

i¼1 Dij � k:

2.1.3 a-nDCG

Standard DCG calculates a gain for each document based on its relevance and a logarithmic

discount for the rank it appears at (Jarvelin and Kekalainen 2002). The nugget version for

diversity evaluation defines the gain of a document in terms of the subtopics (or nuggets) it

contains and the frequency with which those subtopics appear in documents ranked above it

(Clarke et al. 2008). The gain is incremented by 1 for each new subtopic, and ak (0� a� 1)

for a subtopic that has been seen k times in previously-ranked documents.

Since DCG is unbounded, it is standard to normalize it by the maximum possible value

it could have given a perfect ranking of documents; this is called nDCG. In the case of

a-DCG, determining that maximum appears to be NP-hard. Though the argument is not

straightforward, we present a sketch in the ‘‘Appendix’’ (Conjecture 1).

Clarke et al. have also introduced a variant of a-nDCG called novelty- and rank-biased
precision (NRBP) that is based on Moffat and Zobel’s rank-biased precision (Moffat and

Zobel 2008; Clarke et al. 2009b). Rather than use an exact normalization factor, it nor-

malizes using an upper bound on the maximum possible NRBP calculated by assuming

there is an ‘‘ideal’’ ranking in which every document contains every subtopic. Because of

this, NRBP does not have well-defined range. Note that this is not necessarily detrimental

(DCG does not have a well-defined range either); the practical question is whether it affects

conclusions drawn from evaluation or whether it has any effect on the way we optimize

system performance.

2.1.4 Intent-aware precision

Intent-aware precision (prec-IA) is calculated by first calculating precision for each distinct

subtopic separately, then averaging these precisions according to some distribution indi-

cating the proportion of users that are interested in that subtopic. Using the notation we

defined above, this may be expressed as:

prec-IA@m ¼
X

S2S
PðSjQÞprecS@m

¼
X

S2S
PðSjQÞ 1

m

Xm

i¼1

IðS 2 DiÞ

where IðS 2 DiÞ is 1 if and only if subtopic S appears in document Di, and P(S|Q) is the

probability that a user issuing query Q would be interested in subtopic S. Intent-aware

measures do not penalize redundancy, but using a weighted average ensures that more

desirable subtopics will influence the final value to a greater degree than less desirable

subtopics.
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Prec-IA is efficiently computable. Like a-DCG and NRBP, the maximum achievable

value for a query is not necessarily 1.0, nor is it necessarily even clear what the maximum

value is—it depends on the distribution of subtopics in documents (see Theorem 2 in the

‘‘Appendix’’). However, a normalizing constant for prec-IA can be computed using a

simple greedy algorithm (see Theorem 3 in the ‘‘Appendix’’). Thus prec-IA is efficiently

computable whether it is normalized or not.

We note that it is possible to define intent-aware versions of S-recall, S-precision, and a-

nDCG. This might be valuable in cases where the query is ambiguous, so there are multiple

possible intents, and each intent has its own set of subtopics or nuggets, creating a sort of

hierarchy of subtopics. Clarke et al. (2009b) consider this case in their definition of intent-

aware NRBP. For simplicity, we will focus on a single level of that hierarchy.

All of these measures have strengths; each contributes something unique to an overall

understanding of performance. Our concern is not with the measures themselves, but with

the cases at their boundaries: those topics for which we cannot properly evaluate or

optimize systems because of the computational requirements. These cases cannot be

averaged out; they will be a source of systemic error in our evaluations. Our goal is to

begin to estimate how frequent such cases may be and what the implications of their

existence are.

2.2 Approximability

An approximation algorithm is an efficiently-computable algorithm that gives an

approximate solution to a hard problem. Approximation algorithms are typically evaluated

by an approximation ratio expressed as the rate of growth of the ratio of the approximate

solution to the optimal solution.

2.2.1 Evaluation

There is a simple greedy algorithm for calculating minRankðS; kÞ and the normalizing

factor in a-nDCG: first take the document that contains the most subtopics, then the

document that contains the most subtopics that have not already been taken, and so on until

k subtopics have been covered. This greedy approach is in fact roughly the best approx-

imation that can be achieved. As we show in the ‘‘Appendix’’, MINRANK is equivalent to SET

COVER, and Feige showed that set cover is inapproximable within ð1� �Þ ln jSj for �[ 0

unless NP has quasi-polynomial algorithms (Feige 1998). The greedy algorithm has

approximation ratio Hs, where s ¼ maxS2S jSj and Hn ¼
Pn

i¼1 1=i; the fact that Hs� 1þ
ln s gives the result.

While the approximated MINRANK or normalizing factor can therefore be quite bad, the

situation is somewhat better for the measures themselves. The measures exhibit submodu-
larity, which means they can be approximated within a constant factor of 1 - 1/e (Agrawal

et al. 2009). Intuitively, even if we are overestimating the denominator by a large factor, the

fact that there is a limited number of subtopics means that the marginal error in the

approximate value of S-recall or S-precision decreases as that factor increases.

2.2.2 Optimization

The optimization problem is to rank documents such that S-recall, S-precision, a-nDCG, or

prec-IA are maximized. The standard principle for optimization in IR is the Probability
Ranking Principle, which says that ranking documents in decreasing order of probability of
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relevance gives the optimal expected precision and recall (and therefore R-precision and

average precision and other such measures) (Robertson 1977). It can be extended to graded

relevance to provide a ranking principle for DCG (Li et al. 2008). Either way, the PRP

assumes that documents are relevant independently of one another, so it is not suitable for

optimization of novelty or diversity rankings (Goffman 1964). Robertson illustrates this

with an example of a query with two possible intents, showing that there is no PRP-based

ranking that can uniformly satisfy both intents (Robertson 1977).

An optimization analog to the greedy algorithm for approximating evaluation measures

is a greedy algorithm for ranking documents: given k ranked documents, the (k ? 1)st

should be the one that is most likely to satisfy the greatest number of previously-unsatisfied

subtopics (Agrawal et al. 2009; Clarke et al. 2008; Zhai et al.2008). However, unlike the

PRP, which maximizes precision and recall at every rank, a greedy document-by-document

ranking principle cannot necessarily provide maximum S-recall, S-precision, or a-nDCG at

every rank. This follows from the NP-completeness of the evaluation problem; if it were
possible to optimize at every rank, evaluation measures would be computable with the

greedy algorithm. The worst case for optimization, then, is that the system is optimized at

rank 1þ log jSj but not at any higher rank.

Intent-aware precision is an important exception. An expanded PRP that estimates the

probability of relevance of a document to each subtopic would optimize prec-IA at every

rank. This is because prec-IA, in contrast to the other measures, does not explicitly

penalize redundancy. We explore the consequences of this below.

2.3 Example

Suppose there are 14 subtopics and 5 relevant documents (that is, five documents that

contain at least one subtopic).2 Documents contain subtopics as follows:

D1 ¼fS1; S2g
D2 ¼fS3; S4; S5; S6g
D3 ¼fS7; S8; S9; S10; S11; S12; S13; S14g
D4 ¼fS1; S3; S4; S7; S8; S9; S10g
D5 ¼fS2; S5; S6; S11; S12; S13; S14g

Let us consider each of our evaluation measures:

1. To calculate MINRANK, the greedy algorithm will take D3 followed by D2 followed by

D1, resulting in S-recall being evaluated at rank 3. The optimal is at rank 2; D4 and D5

cover all 14 subtopics. The approximation ratio of MINRANK is therefore 3/2.

2. S-precision at any rank depends on being able to calculate minRankðS; kÞ, where k is

the number of unique subtopics observed to that rank. For k ¼ 7 and k ¼ 8, the

greedy and optimal algorithms agree that minRankðS; 7Þ ¼ minRankðS; 8Þ ¼ 1. They

also agree for k ¼ 12 (the first two documents selected by the greedy algorithm):

minRankðS; 12Þ ¼ 2. But for k = 14 (in the two documents selected by the optimal

algorithm) there is disagreement. The greedy approach says minRankðS; 14Þ ¼ 3,

while the optimal says minRankðS; 14Þ ¼ 2. This means that calculating

minRankðS; 14Þ greedily for a system that place D4;D5 at ranks 1 and 2 will result

in an S-precision of 3/2, which is greater than 1.

2 This example is derived from Wikipedia’s page on SET COVER (http://en.wikipedia.org/wiki/Set_cover_
problem).
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3. The normalizing factor for a-nDCG presents a problem in that the optimal set of

documents over which it is computed can depend on the rank. At rank 1, the best

possible a-DCG is achieved with D3 (a-DCG = 8/log2(2)). But at rank 2, the best

possible a-DCG is achieved with D4;D5 (a-DCG = 7= log2ð2Þ þ 7= log2ð3Þ). The

optimal set at rank 1 is not a subset of the optimal set at rank 2, and therefore optimal

a-nDCG at every rank is unachievable by any ranking algorithm.

4. Assuming P(S|Q) is uniform, prec-IA is maximized by taking D3 first, then D4 and D5.

Note that no matter what rank we look at, despite the fact that we can find the

maximum value, prec-IA is rather far from 1: prec-IA@1 = 0.57, prec-IA@2 = 0.54,

prec-IA@3 = 0.52.

Now let us consider how the two types of evaluation interact with greedy optimization

versus optimizing for S-recall at MINRANK. We will assume the system has perfect

knowledge of subtopics, and consider two cases:

1. a system optimizing S-recall/S-precision, greedily taking D3;D2;D1 followed by

D4;D5 in any order to maximize the number of unique subtopics retrieved;

2. a system optimizing a-nDCG/prec-IA, greedily taking D3;D4;D5;D2;D1 to provide

some redundancy along with new subtopics.

The first of these greedy approaches is illustrated in Fig. 1, along with the optimal ranking

for S-recall at MINRANK and the minRanks calculated by greedy and optimal approaches.

Table 1 shows the complete set of evaluations for three systems: greedy systems with

greedy evaluation; greedy systems with optimal evaluation; optimal system with greedy

evaluation; and optimal system with optimal evaluation. Note that some of the values are

greater than one for the optimal system evaluated greedily; this is because it is simply able

to outperform any greedy algorithm.3 Also note that the optimal system is uniformly

outperformed at rank 1 by the greedy systems regardless of evaluation measure compu-

tation; this is because, as mentioned above, the document that is optimal at rank one (D3) is

not a subset of the documents that are optimal at rank two (D4;D5). Since the system is

restricted to choosing a document at rank 1 that is a subset of the documents at ranks 1 and

2, it cannot optimize at both ranks and therefore must suffer at one of them.

3 2 1 4 5greedy ranking

4 5 3 2 1optimal ranking

greedy min rank = 3

optimal min rank = 2

Fig. 1 A system that ranks documents greedily to optimize S-recall would place D3 above D2 above D1. A
system that ranks documents greedily to optimize a-nDCG would place D3 above D4 and D5 (not shown). A
system that optimizes S-recall at minRankðSÞ would place D4;D5 at the first two positions. Using a greedy
algorithm to determine minRankðSÞ places it at rank 3; the true value is at rank 2

3 A simple ‘‘hack’’ for this case might be to redefine S-precision and a-nDCG to have maximum values of 1,
but this seems unfair to a system that uses alternatives to the greedy ranking.
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The a-nDCG case is particularly interesting. We calculated a-nDCG with a = 1/2,

i.e. the second time a subtopic appears it contributes 1/2 to the document’s gain, the third

time it contributes 1/4, and so on. The system that optimizes S-recall therefore has

incentive to go on to find the second-best set of documents and rank them second, thereby

achieving an a-nDCG greater than 1 at rank 2 with the greedy evaluation. The greedy

system evaluated optimally, on the other hand, sees a decrease in nDCG despite continuing

to find novel subtopics; this is because it could have retrieved all 14 unique subtopics at

rank 2, and 14 unique subtopics plus 8 redundant subtopics at rank 3.

Normalized prec-IA exhibits the most extreme behavior. For the system that greedily

optimizes prec-IA, it is 1 throughout. For the system that greedily optimizes S-recall, prec-

IA decreases with rank. For the system that optimizes true S-recall, prec-IA increases with

rank. There is no other measure that produces such wide differences in behavior, and for

that reason we question the applicability of prec-IA to this task.

NRBP is not shown in the table, since it is not calculated at individual ranks but rather

calculated for an entire ranking. It also has no NP-complete component, because it uses an

efficiently-computable upper bound to normalize. It provides an additional interesting case,

however: the system that optimizes for S-recall at MINRANK has an NRBP of 0.711, while the

greedy S-rec/S-prec system has an NRBP of 0.673 and the greedy a-nDCG/prec-IA system

has an NRBP of 0.713. All three values are fairly far from 1.0, though there is no ranking that

provides a higher NRBP. Like a-nDCG, NRBP will prefer a greedy system, though it comes

closer to recognizing that a greedy ranking is not the only possible approach.

The table shows that for optimization there is a firmly imposed tradeoff. When opti-

mizing for S-recall at MINRANK, it is impossible to achieve perfect S-recall, S-precision,

a-nDCG, and prec-IA at rank 1. When optimizing greedily for S-recall/S-precision or

a-nDCG/prec-IA at each rank, it is impossible to achieve perfect S-recall at MINRANK. In

standard retrieval problems founded on the PRP, there is an empirical tradeoff between

precision and recall, but it is theoretically possible to optimize for both. For these measures

there may be topics for which that is theoretically impossible; the developer is forced to

choose.

Table 1 Greedy and optimal evaluations for two systems that rank documents greedily and a system that
optimizes for S-recall at the minimum rank

Greedy eval Optimal eval

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

Greedy S-rec/S-prec
(D3;D2;D1;D4;D5)

S-prec 1.000 1.000 1.000 1.000 1.000 0.667

S-rec 0.571 0.857 1.000 0.571 0.857 1.000

a-nDCG 1.000 0.943 0.844 1.000 0.922 0.844

norm prec-IA 1.000 0.800 0.636 1.000 0.800 0.636

Greedy a-nDCG/prec-IA
(D3;D4;D5;D2;D1)

S-prec 1.000 1.000 1.000 1.000 1.000 0.667

S-rec 0.571 0.786 1.000 0.571 0.786 1.000

a-nDCG 1.000 1.000 1.000 1.000 0.977 1.000

Norm prec-IA 1.000 1.000 1.000 1.000 1.000 1.000

Optimal S-rec/S-prec
(D4;D5;D3;D2;D1)

S-prec 1.000 1.333 1.333 1.000 1.000 1.000

S-rec 0.500 1.000 1.000 0.500 1.000 1.000

a-nDCG 0.875 1.023 0.983 0.875 1.000 0.983

Norm prec-IA 0.875 0.933 1.000 0.875 0.933 1.000

Prec-IA is normalized by its maximum achievable value
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This example can be generalized. If jSj ¼ 2kþ1 � 2 and there are k relevant documents

that are pairwise disjoint and Di contains 2i subtopics, and there are two additional relevant

documents that are disjoint and that each contain one half of each Di, the approximation

ratio for MINRANK is O(k/2). As k increases, the greedily-computed S-recall for a greedy

system is 1, but the true S-recall is ð2k þ 2k�1Þ=ð2kþ1 � 2Þ, which goes to 3/4. Note that

this is a constant approximation ratio for S-recall despite the logarithmic approximation

ratio for MINRANK. This is due to the submodularity of S-recall (Agrawal et al. 2009).

3 Simulation and analysis

While worst-case analysis shows that it is possible to construct cases in which the eval-

uation and optimization fail, the practical question is whether such cases occur in real data,

and if so, how often and to what extent they affect evaluation and optimization. Having

only a small sample of subtopic queries to analyze and no theory regarding the distribution

of subtopics in documents, we cannot make definitive statements. But we can run simu-

lations of the type done in average-case complexity studies (Bogdanov and Trevisan 2006).

We report results exclusively for S-recall at MINRANK. S-recall is slightly simpler than

S-precision and a-nDCG because it involves no parameters and is always between 0 and 1.

The general conclusions hold regardless of measure.

3.1 Real data

There is little annotated data available for studying these problems. Currently two large

sets exist. The first was constructed by Allan et al. (2005) for a report-writing task with a

newswire corpus.4 It comprises a set of 60 topics with about 13,000 document-level

relevance judgments as well as labeled ‘‘aspects’’ for each relevant document. ‘‘Aspects’’

are defined as individually distinct pieces of relevant information. For instance, the first

query is ‘‘oil producing nations’’ and its relevant aspects are Algeria, Angola, Azerbaijan,
Bahrain, Brazil, Cameroon, Chad, China, .... Each document is labeled as to whether it is

relevant to each of the topic’s aspects. The aspects were defined by the assessors them-

selves during the course of judging. If while judging their 10th document they discovered it

contained an aspect that had not been in any of the first nine, they added it to the list of

aspects for that topic. There was no limit on the number of aspects they could define; the

average for a topic is 22, but two topics have over 100.

The second was assembled by NIST for the diversity task for the TREC 2009 Web

track. It comprises 50 topics with about 28,000 document-level relevance judgments to

web pages, with each page judged for relevance with respect to predefined subtopics (of

which there were at most eight) (Clarke et al. 2009a). Subtopics largely reflect different

information needs or intents of the query. For example, the query ‘‘kcs’’ has two subtopics

relating to the Kansas City Southern railroad, two relating to two separate school districts,

and one relating to an energy company.

We obtained these datasets to use as starting points. For the Allan et al. data, we treat

aspects as subtopics. We consider each subtopic to be equally valuable to the user, so this

problem is somewhat different from the diversity problems of Agrawal et al. and others

that model a users’ interest in particular subtopics. The Web track data is closer to that

4 The link to the data provided in this reference no longer works, but the data can be obtained by contacting
the author of this work.
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diversity problem in that the subtopics are much more clearly delineated between docu-

ments. This emerges clearly when looking at the average number of subtopics documents

are relevant to: for the former set, each document contains 2.7 subtopics on average; for the

latter, each document contains an average of only 1.2.

Tables 2 and 3 show some example topics from the two sets along with their subtopics.

Table 2 illustrates a task in which there is a clearly-defined information need, and to

answer that need a system must retrieve as many unique aspects as possible. Table 3

illustrates a task in which there are multiple possible needs, and the system must be useful

to users who have any of them (proportionately).

Among these 110 topics, there are seven that are trivial (two from Allan et al.; five from

Web): they have only one relevant document, only one subtopic, or one relevant document

that covers all the subtopics. We have excluded these. Additionally, there are 34 that are

quasi-trivial (27 (46.5%) from Allan et al.; 7 (15%) from Web); in these, some subtopics

only appear in one relevant document each, and taking those documents (and in some cases

one additional document) covers the set trivially. There are seven topics for which the

greedy algorithm overestimates the true MINRANK, with four from Allan et al. and three

from Web. Therefore, 7 out of 103 non-trivial topics (6.8%) and 10% of non-quasi-trivial

topics can have performance overestimated by the greedy algorithm.

Table 2 Examples of topics from the Allan et al. data

Topic no. Query # Subtopics # Relevant docs

5 Ohio highway shootings 33 52

Near I-270, near Columbus, a house, a freeway interchange, ...

7 Greenspan testimony congress 8 75

Wed. Feb 11 2004, Thu. Feb 12 2004, Tue. Feb 24 2004, Apr 2004, ...

18 Haiti protest 7 48

Port-au-Prince, Montreal, St. Marc, Raboteau, Gonaives, ...

48 Reduce dependence oil 17 12

Nuclear energy, shift to biodiesel, invest in hydrogen, ...

Though we have not shown the topic descriptions, the reader can probably infer it from the query and the
listed subtopics

Table 3 Examples of topics from the TREC 2009 Web track data

Topic no. Query # Subtopics # Relevant docs

1 Obama family tree 3 93

TIME photo essay; heritage of Obama’s forebears; bio of Obama’s mother

10 Cheap internet 8 124

Low-cost providers; dial-up providers; Vonage homepage; ...

24 Diversity 4 117

Workplace diversity; diversity training programs; cultural diversity; ...

33 Elliptical trainer 4 142

Reviews; sources of used trainers; relative benefits; ...

Subtopics are paraphrased from the full TREC subtopic questions
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3.2 Simulated topics

Starting from real topics, we simulate new topics by sampling from a space defined by the

marginal distributions of subtopics within documents. Specifically, each topic can be

written as a matrix T with documents on the rows, subtopics on the columns, and Tij = 1 if

document i is relevant to subtopic j or Tij = 0 otherwise. An example is shown in Table 4.

We will simulate topics by sampling uniformly at random from the space of 0–1 matrices

that have the same row sums and column sums as the initial topic matrix. This ensures that

even if we cannot precisely model the distribution of subtopics in documents, we can at

least model the numbers of subtopics contained in each document and the number of

documents each subtopic appears in.

The sampling algorithm is based on a random walk procedure described by Zaman and

Simberloff (2002). It is used in ecological studies for statistical testing of hypotheses about

distributions of species in regions. It is based on the observation that within a larger matrix

T, a 2 � 2 diagonal matrix
1 0

0 1

� �
can be changed to an anti-diagonal matrix

0 1

1 0

� �
(and vice versa) without altering the row or column sums. The algorithm works

by sampling two rows and two columns uniformly at random, and if the 2 � 2 matrix

formed from the cells at their intersections is diagonal or anti-diagonal, changing it to an

anti-diagonal or diagonal matrix (respectively). Over many iterations this randomizes the

distribution of subtopics in documents while keeping the marginal sums constant.

The algorithm requires a ‘‘burn-in’’ period to sufficiently randomize the original matrix.

After that, a large enough number of sampling iterations ensures a uniform distribution

over all possible matrices with the same row and column sums as the original. We used a

burn-in period of 10,000 iterations, with 1,000 additional samples from the burned-in

matrix to generate random topics. Thus for any given topic, we could generate a new

random topic by iterating 1,000 times starting from the burned-in matrix for that topic.

We have limited our simulations to start from the Allan et al. data. Because there are

substantially more subtopics, and the variance in the number of subtopics is higher, this

data provides somewhat more interesting results.

3.2.1 Results

Results on simulated topics are based on evaluating a greedy system with perfect

knowledge of subtopic containment. This is because the worst case for a system without

Table 4 Part of the document-subtopic matrix for topic 18 ‘‘haiti protest’’

Port-au-Prince Montreal St. Marc Cap-Haı̈tien Gonaives Raboteau Petionville Sum

D1 1 0 0 0 0 0 0 1

D2 1 0 0 0 0 0 0 1

D3 0 1 0 0 0 0 0 1

D4 0 0 0 1 0 0 0 1

D5 0 0 1 0 1 1 0 3

D6 1 0 1 0 1 0 0 3

… … …
Sum 34 1 5 1 16 3 1 61
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perfect knowledge is arbitrarily bad: if such a system did not retrieve any relevant docu-

ments in the top j ¼ optimal-minRank, but it retrieved relevant documents at the following

ranks up to j ¼ greedy-minRank, its S-recall approximation ratio goes to infinity. We

consider simulated imperfect systems in the next section.

First we investigated the probability that the greedy algorithm for MINRANK would

overestimate the minimum rank. Figure 2 shows the proportion of sampled matrices

starting from each actual topic for which the true minimum rank (found by exhaustive

search5) was less than the greedy minimum rank. Note for some topics the probability is

very high: for topic 60, over half the randomly sampled matrices were suboptimal.

There were 19 topics (roughly one third) for which the greedy and true minimum rank

matched in every sample. Overall, the greedy algorithm overestimated MINRANK for about

15% of sampled topics, which is a little higher than would be likely if the rate of 4 every 60

that was observed in the data is true.

Next we investigated the average MINRANK approximation ratio for the cases for which

the greedy algorithm was suboptimal. Figure 3 shows the results for the 39 topics that were

not always greedy-optimal. Topic 7 is the worst, with an average approximation ratio

nearly 1.5 (minimum 1; maximum 1.667; median 1.333). Over all sampled topics, the

mean approximation ratio is 1.16. The greedy is never more than 4 greater than the

optimal, suggesting cases like our example above (worst case log jSj) are not occurring.

Finally we looked at the factor by which S-recall was overestimated when the rank was

overestimated. Again, S-recall can only be overestimated by a constant 1 - 1/e. Figure 4

shows that the average worst case is about 1.16 times the true value. The maximum factor

by which any S-recall is overestimated is 1.33, which happens to be the reciprocal of the

3/4 approximation ratio derived in our example above.

3.3 Simulated systems

As discussed above, the worst case for a system with perfect knowledge of subtopics is that

S-recall is overestimated by a constant factor. The worst case for a system with no

knowledge of subtopics (i.e. one that makes use of heuristics such as similarities between

documents) is arbitrarily bad. Between these two extremes, we are interested in the cases of

systems that use heuristics but that ‘‘look like’’ real systems might.
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Fig. 2 Proportion of matrices sampled from the space defined by each of the baseline topics with MINRANK

approximation ratio greater than 1

5 Though this is a relatively small data set, exhaustive search still took a very long time in the most extreme
cases, even when parallelized across 64 cores.
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We simulated a ‘‘real’’ system that uses a greedy optimization approach as follows:

starting with a document-subtopic matrix, we degraded it by changing each 1 indicating the

presence of a subtopic i in a document j to a probability pij drawn from a Beta prior with

parameters ap; bp. We changed each 0 indicating the absence of subtopic i in document j to

a probability qij drawn from a Beta prior with parameters aq; bq. We then applied a greedy

algorithm similar to Agrawal et al.’s (2009) IA-SELECT, which attempts to rank the doc-

uments that are most likely to satisfy previously-unsatisfied subtopics. The resulting ranked

list is evaluated using S-recall.

The Beta distribution parameters ap; bp; aq; bq offer some control over the expected

quality of the simulated system:

– As ap=ðap þ bpÞ ! 1 and aq=ðaq þ bqÞ ! 0, the system approaches the best possible

performance.

– As ap=ðap þ bpÞ ! 0 and aq=ðaq þ bqÞ ! 1, the system approaches the worst possible

performance.

– When ap=ðap þ bpÞ ¼ aq=ðaq þ bqÞ, the system is ranking documents randomly.

To keep the parameter space manageable, we used ap ¼ bq and aq ¼ bp, increasing ap and

aq exponentially from 20 to 27. For large ap and small aq, the system is better; for small ap

and large aq, the system is worse. At ap ¼ aq the performance is random.
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Fig. 3 Average MINRANK approximation ratio when greedy algorithm is suboptimal. Queries for which the
greedy algorithm is always optimal not shown
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Fig. 4 Average factor by which S-recall is overestimated when greedy algorithm is suboptimal. Queries for
which the greedy algorithm is always optimal not shown
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3.3.1 Results

We selected topics for which the greedy algorithms were suboptimal on either the burned-

in matrix or the original matrix. We then degraded the matrix randomly and greedily

re-ranked the documents according to the procedure above.6 We then calculated S-recall

both greedily and optimally.

Figure 5 compares the mean performance measured by the greedy evaluation to the

S-recall approximation ratio for topics 5 and 7, starting from their burned-in matrices. Each

point is the result of averaging over 100 trials with a particular ap; aq. Note that as simulated

system performance degrades, we actually overestimate its performance more! This is quite

disturbing, as it means that when the greedy evaluation is suboptimal, it will overestimate a

bad system’s performance more than a good system’s performance. Bad systems will always

appear better than they really are by a greater factor than good systems will.

The degree of overestimation is worse for topic 7 than for topic 5. This is because the

optimal minimum rank for topic 7 is 3 (greedy is 4), while the optimal minimum rank for

topic 5 is 16 (greedy is 18). With a deeper rank required for evaluation, the system has less

opportunity to ‘‘catch up’’ after passing the optimal rank. However, topic 5 has five

outlying points with very high approximation ratios. These are all points where aq is

substantially higher than ap, meaning the system is a priori poor.

Figure 6 shows similar results starting from the original matrices for topics 18 and 30.

Like topic 7, topic 18 has low optimal ranks (optimal 4 vs. greedy 5). Like topic 5, topic 30

has high optimal ranks (optimal 53 vs. greedy 52).

4 Discussion and conclusion

We have argued that NP-complete evaluation and optimization can be a serious problem

for retrieval systems. Even if the approximation ratio is constant, we can significantly

overestimate the performance of a system. In particular, the worse a system is, the more

likely its performance is to be overestimated. These errors are not random errors that can

be averaged out by sampling more topics; they are systemic problems with evaluation and

optimization in this setting.

Furthermore, there will always some topics for which it is theoretically impossible to

optimize measures for every rank. As Fig. 1 and Table 1 illustrate, and as the NP-com-

pleteness of the computation implies, for some topics the optimal set of documents of size

k is not a proper subset of the optimal set of size k ? 1. This poses a problem for a system

that is expected to rank things; it must choose just one of those ranks at which to try to

optimize, because there is no consistent way to optimize for both. It is also impossible

to optimize all measures simultaneously; there are firm theoretical tradeoffs in choosing to

optimize for S-recall versus a-nDCG. The implication is that novelty and diversity systems

must have a very clear idea of the user’s task in order to provide the best possible

experience.

There are other concerns about these measures as well. For one, it is possible to ‘‘game’’

them in a way that is not possible with traditional document-level relevance-based mea-

sures: a dishonest researcher or developer can simply introduce a new document that is a

concatenation of the entire corpus. This new document will contain every subtopic and

6 We did not do an optimal ranking, since there are too many documents to be able to do exhaustive search
over all subsets.
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therefore will provide the maximum value for any of these measures, though it is clearly

not useful to a user. For another, the cognitive load on assessors is much higher, as they

must judge each document with respect to each subtopic. This introduces much more

variance in the judgments than is present in standard relevance judgments.

Assuming the measure is well-chosen for the task, for most topics there is no problem.

The greedy algorithm is optimal in 93% of the cases in ‘‘real’’ data, and in about 85% of

cases in simulated data. The problem cases are those for which the greedy algorithm is not

optimal, in particular those for which a bad system is significantly overrated by the greedy

algorithm. Future work may investigate characterizing the problematic topics so that

results may be adjusted appropriately, though when considering additional problems

described above, more fruitful work may lie in investigation of alternative representations

of interdependent document relevance.
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Fig. 5 Comparison of greedy S-recall to S-recall approximation ratio for topic 5 (left) and topic 7 (right)
starting from burned-in matrices. Each point represents a different pair of prior parameters ðap; aqÞ and is

averaged over 100 random trials
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Appendix

Here we present proofs or sketches of proofs for some of our claims regarding worst-case

complexity. We use S to represent a set of subtopics for a query Q; C to represent a set of

documents in which each document D 2 C is a subset of S, and R to represent a subset of

documents in a ranking.

Our first result establishes the hardness of S-recall at MINRANK.

Lemma 1 S-recall at rank k ¼ minRankðS; jSjÞ is NP-hard.

We prove this by reducing minRankðS; jSjÞ from Set Cover.

Proof Let I ¼ ðU;VÞ be an instance of SET COVER in which U is a universe of items and V
is a family of subsets of U. The optimization problem is to find a subfamily W � V such

that the union of subsets in W is equal to U and jWj has minimum size among all such

subfamilies.
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Fig. 6 Comparison of greedy S-recall to S-recall approximation ratio for topic 18 (left) and topic 30 (right)
starting from original matrices. Each point represents a different pair of prior parameters ðap; aqÞ and is

averaged over 100 random trials
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To transform this into an instance of MINRANK, define the set of subtopics S to be U
and the set of documents C to be V. A solution to MINRANK is the size of a subset of

documents R � C such that all subtopics in S are contained in the union of documents in

R. Note that this is exactly equivalent to the size of the minimum covering subfamily W
in the definition of SET COVER. Since SET COVER is NP-complete, it follows that MINRANK

is NP-hard. h

Two assumptions are useful in establishing a lower bound on computational

complexity:

1. C is a cover of S, i.e. each subtopic appears in at least one document in the corpus;

2. the size of C is in OðjSjcÞ for some constant c, i.e. the number of documents in a corpus

grows at worst polynomially with the number of subtopics.

We claim the first assumption is reasonable for practical reasons: if there were some

subtopic that did not appear in any document, it would not be useful for evaluating systems

since there is no possibility for any system to retrieve it. Therefore it would be removed

from consideration. For the second, we believe that support is lent by well-attested con-

jectures that the relationship between vocabulary size and corpus size is sublinear (such as

Zipf’s Law (1949).

Theorem 1 S-recall at rank k ¼ minRankðS; jSjÞ is NP-complete under assumptions 1
and 2.

Proof We know MINRANK is NP-hard from Lemma 1. It remains to be shown that it is in NP.

Let us define an algorithm for finding MINRANK iterate from k ¼ 1 to jCj, and for each

k determine whether there is a set cover of U ¼ S in V ¼ C of size k. The first assumption

ensures that the algorithm will halt: no matter how large C is, eventually a cover will be found.

The second ensures that it iterates a polynomial number of times and therefore is not outside

of NP.

Thus if the two assumptions above hold, this algorithm is in NP, and therefore MINRANK is

NP-complete. h

Next we argue that computing the normalization constant for a-nDCG@k is NP-hard.

The normalization constant is the maximum possible value of a-DCG@k.

Conjecture 1 Maximizing a-DCG@k with respect to orderings of documents is NP-hard.

Proving this is actually quite difficult; since the order of the documents affects the

calculation, it cannot be easily reduced from graph-based problems like SET COVER. We

make an informal argument by showing that the problem can be viewed as an instance of a

resource-constrained scheduling problem with no precedence constraints. In such prob-

lems, there are sets of m resources, n jobs, and k discrete time periods. Jobs request

resources for consumption. Resources are limited (when a jobs is using a resource, it

cannot be used by other jobs), and in some cases they are non-renewable (that is, there is a

fixed quantity that decreases each time a job uses it). The problem is to schedule jobs to

maximize some utility function.

We transform that problem to the problem of maximizing a-DCG by mapping resources to

subtopics, jobs to documents, and time periods to ranks. Documents ‘‘consume’’ the subtopics

they contain to create utility; the amount of utility created is a function of the reciprocal of the

log rank and the ‘‘amount’’ of the subtopic remaining after having been consumed by other

documents. Specifically, the document scheduled at rank j consumes 100(1 - a) percent of

whatever remains of the subtopic after the documents at ranks 1 through j - 1 have consumed
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it. The problem is to ‘‘schedule’’ documents to ranks such that utility is maximized. This

scheduling problem is NP-hard for general utility functions (Lenstra et al. 1977), and

therefore unless there is a clever algorithm that takes advantage of the particular form of

a-DCG’s utility function, we claim it is NP-hard to maximize a-DCG. Note, however, that if

a ¼ 1, the greedy algorithm is optimal—the measure would be equivalent to DCG with

relevance grade defined as the number of unique subtopics in the document. It is the non-

renewable/redundancy-penalizing property of the measure that makes the problem hard.

The next result establishes that the upper bound of prec-IA@k is associated with the

distribution of subtopics in documents.

Theorem 2 prec-IA@k has a maximum value of one if and only if there are at least
k documents that contain every subtopic.

Proof If there are k documents that contain every subtopic, the maximum value of prec-
IA@k is achieved by ranking those k documents. The precision of each subtopic precS@k is

one, and therefore the weighted average of precisions is one.

To show the converse, we will use contradiction. Suppose there are at most k - 1

documents that contain every subtopic. Then there must be at least one document in the top

k that does not contain at least one subtopic. Let us denote that subtopic Sm. Since it is not

contained in every document in the top k; precSm
@k� k�1

k \1. Assuming P(Sm|Q) [ 0, it

follows that the weighted average prec-IA@k \ 1. Therefore there must be at least

k documents that contain every subtopic if prec-IA@k is to have a maximum value of 1. h

This is of course analogous to a similar result for binary-relevance precision, which says

that precision at rank k has a maximum value of one if and only if k� jRj (the number of

relevant documents). But this is a more important result for two reasons: first, it is unusual

that there would be many documents that contain every subtopic. Second, if such docu-

ments exist, precision-IA rewards a system for finding more of them. This is contrary to

what every other measure of novelty or diversity does.

Finally we show that the greedy algorithm is optimal for calculating the maximum value

of prec-IA@k.

Theorem 3 Ranking documents in decreasing order of di ¼
P

S2Di
PðSjQÞ is optimal for

calculating the maximum value of prec-IA@k.

Proof Let pk ¼ 1
k

Pk
i¼1 di ¼ 1

k

Pk
i¼1

P
S2Di

PðSjQÞ, where D1;D2; . . .;Dk have been

numbered according to the greedy algorithm. Suppose prec-IA@k [ pk. Then there is

some alternative ordering p(n) such that:

X

S2S
PðSjQÞprecS@k [

1

k

Xk

i¼1

X

S2Di

PðSjQÞ

1

k

X

S2S
PðSjQÞ

Xk

i¼1

IðS 2 DpðiÞÞ[
1

k

Xk

i¼1

X

S2Di

PðSjQÞ

Xk

i¼1

X

S2DpðiÞ

PðSjQÞ[
Xk

i¼1

X

S2Di

PðSjQÞ

Xk

i¼1

dpðiÞ[
Xk

i¼1

di
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This shows that prec-IA@k can be formulated as a sum of values dp(i). Thus if

prec-IA@k [ pk, then there must be at least one document Dn such that dpðnÞ[ dn. But if

such a document exists, it would have been selected by the greedy algorithm. Therefore,

prec-IA@k cannot be greater than pk, and therefore the greedy algorithm is optimal. h
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