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Abstract Understanding query reformulation patterns is a key task towards next gen-

eration web search engines. If we can do that, then we can build systems able to understand

and possibly predict user intent, providing the needed assistance at the right time, and thus

helping users locate information more effectively and improving their web-search expe-

rience. As a step in this direction, we build a very accurate model for classifying user query

reformulations into broad classes (generalization, specialization, error correction or par-

allel move), achieving 92% accuracy. We then apply the model to automatically label two

very large query logs sampled from different geographic areas, and containing a total of

approximately 17 million query reformulations. We study the resulting reformulation

patterns, matching some results from previous studies performed on smaller manually

annotated datasets, and discovering new interesting reformulation patterns, including

connections between reformulation types and topical categories. We annotate two large

query-flow graphs with reformulation type information, and run several graph-character-

ization experiments on these graphs, extracting new insights about the relationships

between the different query reformulation types. Finally we study query recommendations

based on short random walks on the query-flow graphs. Our experiments show that these

methods can match in precision, and often improve, recommendations based on query-

click graphs, without the need of users’ clicks. Our experiments also show that it is

important to consider transition-type labels on edges for having recommendations of good

quality.
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1 Introduction

Information retrieval is an interactive and iterative process: only in approximately half of

the cases an information need is satisfied with just a single query (Rieh and Xie 2006; Spink

et al. 2002). In the other half of the cases, the user has to reformulate her initial query

because it was over- or under-specified, or did not use terminology matching relevant

documents, or simply contained errors or typos. The picture is made even more complex by

the fact that, although queries are typically short (Belkin 2000), they usually form together

chains of topically-related activities (Radlinski and Joachims 2005). Users are increasingly

relying on search to accomplish complex objectives, such as planning a holiday (from travel

to lodging, to sightseeing, dining and nightlife) entirely online. Additional complexity is

brought on by those search tasks that are so difficult and important for the user (e.g.,

deciding which car to buy, finding a new job, moving to another city), that she can go back

to the same search mission again and again during a long period (Donato et al. 2010).

In order to assist the users in locating information more effectively, most large-scale

Web search engines have started offering various supporting tools. As an example, query
recommendations are a mechanism to help user reformulating their queries: these rec-

ommendations are typically queries similar to the original one, and they are obtained by

analyzing the query logs, for instance, finding recommendations by clustering of queries

(Wen et al. 2001), or by identifying frequent re-phrasings (Baeza-yates et al. 2004).

Query logs are in fact the main source of information for building search assisting

systems. Web query logs contain a wealth of information about how users interact with the

search engine. Extracting behavioral patterns from this abundance of information is a key

step towards improving the service provided by search engines and towards developing

innovative web-search paradigms. In particular, and this is the focus of this paper, by
mining query logs we can understand the dynamics underlying the query reformulation
process, and use this knowledge in applications aimed at improving the users’ web-search

experience. In this context we identify two main tasks:

1. Identifying search mission borders, by distinguishing query transitions that are

reformulations, i.e., queries with a similar information need (Jones and Klinkner 2008;

Radlinski and Joachims 2005), from query transitions that represent a mission change.

Search missions are also known as chains (Radlinski and Joachims 2005) and in the

rest of the paper we use the two terms as synonymous.

2. After identifying the search missions, the query reformulations inside each chain must

be classified into query reformulation types (abbreviated QRT). In this paper we focus

on four query reformulation types: generalization, specialization, error correction,

parallel move.

We tackled the first problem in our previous work (Boldi et al. 2008), where we built a

machine learning model for predicting the probability that two subsequent queries are part

of the same search mission. Such model was then used to annotate the arcs of the query-
flow graph—an aggregated representation of latent querying behavior which is contained

in a query log. We then used the query-flow graph in applications such as query recom-

mendation and segmentation of user sessions.
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In this article instead, we focus on the tasks of modeling query reformulation types and

characterizing query reformulation patterns, approaching these as data mining problems.

Our main contributions are:

Model. We show that accurate automatic classification of QRTs is possible. Learning

automatically from a human-labeled query log sample, we build a model for automatic

classification of QRTs (Sect. 4). Our model exhibits a very high accuracy, &92%

discriminating among four different reformulation types. The classifier is able to predict

correctly even very difficult cases. We describe in detail the process followed to build the

model, and then we inspect the model behavior. To the best of our knowledge this is the

first work learning a model for the automatic classification of QRTs by mining a query log.

Patterns of reformulation strategies. Thanks to our automatic classifier, we are able to

label very large query logs and to analyze them (Sect. 5). We divide users sessions into

search missions, then we label each mission with our model and transform into a string

of QRTs. Thus the query log is transformed into a bag of strings from which we can

compute frequent sequential patterns which represent high-level search strategies. We

analyze approximately 17 millions QRTs, and we compare our findings with the ones in

the literature obtained mostly over small, manually-assessed collections. Moreover, we

investigate the connections between the reformulation type and the topical categories of

the queries in the reformulation.

Reformulation graphs. Using our model we can annotate the arcs of a Query–Flow
Graph (Boldi et al. 2008) with QRTs, obtaining what we call a query transition graph
(Sect. 6). We present a study regarding the properties of this annotated graph, including

the relationships between the various query reformulation types.

Recommendations. We propose a family of methods for query recommendation based

on short random walks performed on different slices of the query-flow graph (Sect. 7).

Our experiments show that these methods can match in precision, and often improve,

query-click based recommendations without using clicks. Moreover our methods

provide more diversity in the result sets. Our experiments also show that transition

probabilities from one query to the next are not enough, and for obtaining good

recommendations it is important to filter out queries that are not part of the same search

mission, and to add QRT labels to edges.

Section 2 describes related work, whereas in Sect. 3 we discuss the taxonomy of QRTs

that we adopt in this paper. Based on this taxonomy, in Sect. 4 we build a classifier which

we deeply characterize. Then in Sect. 5 we apply the classifier to label the query transitions

in two query logs. From the labelled query logs we extract query reformulation patterns

that we analyze from different perspective. Using the same classifier, in Sect. 6 we label a

query-flow graph with QRTs, and we deeply characterize such graph, which is then used

for query recommendation based on short random walks in Sect. 7. The last section

presents our conclusions and outlines future work.

A preliminary version of this paper was presented in Boldi et al. (2009).

2 Related work

2.1 Determining reformulation types

In one of the oldest papers on the subject, Lau and Horvitz (1999) study a hand-tagged log

from the Excite search engine, and propose a classification of QRTs. Their aim is to build a
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Bayesian model of the user behavior exploiting also temporal information. Rie and Xie

(2006) consider in more detail reformulation patterns: also in their case, there is no

automatic classification model; instead, they manually label and analyze 313 search mis-

sions. While defining the classes of query reformulation types (Sect. 3) we basically follow

their taxonomy. The difference is that we adopt a coarser granularity for those reformu-

lations that, while being part of the same search mission, are not simple direct reformu-

lations of the previous query. Recently, Jansen et al. (2007a, b) analyzed a larger query log

(1.5 millions query reformulations) using an automatic classifier. Their classifier is man-

ually built following the concepts presented in the paper by He et al. (2002). By ‘‘manually

built’’ we mean that the rule that identify a class of QRT and the definition of the class

itself coincide perfectly, i.e., there’s no automatic learning involved. The classification is

built on 6 features all based on term differences between the two queries.

Beside the size of the dataset we use, the fundamental difference of our work with the

studies mentioned previously is that we learn a model by mining a large query log, using

27 features. As an example, the classifier adopted by Jansen et al. (2007a, b) defines
specialization as a query with additional terms; instead, by learning the model we obtain

that specialization (as judged by humans) can be characterized by a combination of factors

including query length and cosine similarity of n-grams. Similarly, a generalization was

just a query composed of a subset of the original terms. Our classifier, instead, besides

finding these expected rules is also able to discover unexpected things, e.g., that the

reformulation from ‘‘dango’’ to ‘‘japanese cakes’’ is actually a generalization, even

if the two queries have no terms in common and the second one is longer than the first one.

In the context of image search (Goodrum et al. 2003), analyzed manually assessed

reformulations of a group of users. In that case, of course, a number of reformulations

involves interactions between text and images.

2.2 Query log analysis and applications

The importance of mining query logs to extract useful information about user behavior is

clear since the seminal works (Jansen et al. 1998; Silverstein et al. 1998); such analysis has

found fruitful application in many different contexts such as query recommendation

(Baeza-yates et al. 2004; Zhang and Nasraoui 2006) and document ranking (Craswell et al.

2008).

Most of the work on query recommendation has focused on measures of query simi-

larity (Fonseca et al. 2003; Zhang and Nasraoui 2006) that can be used for query expansion

(Baeza-yates et al. 2004) or query clustering (Baeza-yates et al. 2004; Wen et al. 2001). A

first attempt to model the user sequential search behavior is presented by Zhang and

Nasraoui (2006): the arcs between consecutive queries in the same session are weighted by

a damping factor d, whereas the similarity values for non consecutive queries are calcu-

lated by multiplying the values of arcs that join them. Instead, Fonseca et al. (2003)

discover related queries with a method based on association rules. Each session in the

query log is seen as a transaction in which a single user submits a sequence of related

queries in a time interval.

Baeza-yates et al. (2004) study the problem of suggesting related queries issued by

other users and query expansion methods to construct artificial queries. The clustering

developed is based on a term-weight vector representation of queries, obtained from the

aggregation of the term-weight vectors of the URLs clicked after the query: the objective is

to recommend queries that are related to the input query but may search for different

aspects of it. Wen et al. (2001) also present a clustering method for query recommendation
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that is centered around four notions of query distance: keywords of the query; string

matching of keywords; common clicked URLs; and distance of the clicked documents in

some pre-defined hierarchy. Jones et al. (2006) introduced the notion of query substitution.

Similar queries can be obtained by replacing the query as a whole, or by substituting

constituent phrases. Both similar queries and phrases are derived from user query sessions,

and they proposed models for query re-ranking based on the similarity between the new

query and the original one.

Particularly relevant for this paper is the application of query log analysis to the seg-

mentation of sessions into user missions, a.k.a. chains (Radlinski and Joachims 2005):

successful examples of such an application were presented in Boldi et al. (2008), and Jones

and Klinkner (2008). Even if most research on query logs focused on single sessions,

recent works (Richardson 2008) suggest their usefulness also to determine long-term

interests of users.

Donato et al. (2010) present a machine learning module, based on query log analysis,

which is at the basis of Search Pad, a novel Yahoo! application that was launched in June

2009. Search Pad helps users keeping trace of the queries they have done, and results they

have consulted. These automatically collected notes can be edited by the user that can add

comments, additional information, move or delete notes, and save the note pad for later

reuse. The novelty of Search Pad is that unlike previous notes-taking products, it is

automatically triggered only when the system decides, with a fair level of confidence, that

the user is undertaking a ‘‘complex research mission’’ and thus is in the right context for

gathering notes. A complex research mission is a search task that requires the user to go

back to the search engine again and again over a period of time with related questions.

Example of such tasks could be: organizing a holiday, deciding which digital camera to

buy, finding a job or gathering information on a health issue. Once Search Pad receives the

triggering signal and is aware that the user is engaged in a research session, it prompts the

user with a message asking if she wants to take notes related to this search.

The information extracted from query logs can be summarized and suitably represented

through query graphs (Baeza-Yates and Tiberi 2007), whose specific definition is geared

on the application at hand. Some examples can be found in Boldi et al. (2008), Craswell

and Szummer (2007), and Glance (2001). A recent application of query graphs to query-

recommendation clustering is presented in Sadikov et al. (2010), where a graph extracted

from query logs is clustered to enhance the diversity in the set of query-refinement sug-

gestions. The authors of Sadikov et al. (2010) also model ‘‘off-topic drift’’ which corre-

sponds to mission change in the nomenclature we adopt and to the terminal state in our

query-flow graph.

2.3 Recommendations based on random walks

Craswell and Szummer (2007) describe a method based on random walks on the query-

click graph (Beeferman and Berger 2000), that can be used to provide query recommen-

dations as follows: given the input query, it computes the personalized PageRank (Jeh and

Widom 2003) (with restart to the original query) of all the other queries, and then picks the

top ones as recommendations. There are more details about this method in Sect. 7.2.

Fuxman et al. (2008) experiment with a similar approach in the context of finding related

keywords for advertising.

Mei et al. (2008) instead use a computation of hitting time: assume that Q0 is the input

query: they start setting h(Qi, 0) = 0 for all queries Qi except for the original query Q0
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which has hðQ0; tÞ ¼ 18t� 0, and then iterate the following for a fixed number m of

iterations:

hðQi; tÞ ¼
X

j 6¼i

pjihðQj; t � 1Þ;

where pji is the probability of transition from Qj to Qi. For a query Qi, what their process

computes in h(Qi, t) is the probability that a random walk arrives to node Qi within t steps

or less.

Query recommendation systems can also be personalized by taking into account the

user’s history. Zhang and Nasraoui (2006) bias recommendations exploiting user’s history

and introducing a ‘‘forgetting factor’’ which discounts older queries to favor more recent

ones. A similar approach is used in Boldi et al. (2008) where a random walk with restart to

the queries in the history of the user is done, preferring recent queries over older ones. As a

general observation, recent works have shown that not only the previous query, but the

long-term interests of users, are important for understanding his/her information need

(Luxenburger et al. 2008; Richardson 2008).

3 Query transition types

In this article we adopt a taxonomy of query transitions which is largely inspired by the

similar classification in Rieh and Xie (2006), with some differences that we summarize

below. As depicted in Fig. 1, there are basically two axes: a generalization-specialization

axis, and a dissimilarity axis.

Along the dissimilarity axis (horizontal in Fig. 1) we find a continuous variety of

different types of query transition: as we move along the axis (from left to right, in the

picture) the syntactic and semantic gap between the two queries, in terms of user’s intent,

gets larger and larger. We start with zero dissimilarity (Same query), followed very closely

by Error correction: the user is supposedly correcting an error (e.g., a typo) from her

previous query, or trying a different spelling/capitalization of a query. Further along the

dissimilarity axis we find Equivalent rephrasing: the user is re-phrasing, changing the

wording of the query, but she has exactly the same goal (in the sense of Jones and Klinkner

2008) as before: she just decided that the new formulation was more likely to return the

results desired for. Then we find Parallel move: according to Rieh and Xie (2006), this

occurs when the ‘‘user modifies the queries from one aspect of an entity to another or from

Fig. 1 Graphical depiction of
transition types for pairs of
consecutive queries. Transitions
on the left of ‘‘Mission Change’’
are reformulations
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one thing to another, both of which share common characteristics’’; the user is moving her

focus to something related, but not equivalent—something that might have happened

probably as a result of visiting some of the pages in the result set. Finally, we have mission
change: the user is completely changing topic and she is looking for something else (Jones

and Klinkner 2008; Radlinski and Joachims 2005).

Along the vertical axis instead we have Generalization and Specialization. General-

ization occurs when the new query q0 is more general than q (i.e., it should be satisfied by a

superset of the results that are relevant for q0); in many cases (but not always) a gener-

alization can be automatically identified because q0 is a conjunction with a proper subset of

the terms of q. There are other more difficult cases: for example, a user querying for the

name of a specific soccer team and then querying to find a sports web site. In a special-

ization, instead, the new query q0 is more specific than q (i.e., it should be satisfied by a

subset of the results that are relevant for q); probably, the previous query returned too

many results, few of them being of interest for the user. In a sense, generalization reflects

the user’s desire to increase recall, whereas specialization is the need to improve precision.

In our previous work (Boldi et al. 2008), we developed a model for breaking sessions

into chains or, in other terms, a model to detect mission changes. This model is represented

in Fig. 1 by the hyperplane separating Mission change from the rest. In this work we keep

using that model for detecting mission changes, while we develop a new model for dis-

tinguishing QRTs. In particular on the dissimilarity axis we decided to cut in between what

is a simple syntactical dissimilarity (we call this class C for Correction), and more sub-

stantial query reformulations which however remain in the same search mission (we call

this class P from Parallel move). On the other axis we simply distinguish between class G
(generalizations) and S (specializations). Some real examples for each kind of reformu-

lation are shown in Table 1.

Our classification of reformulations departs from the one proposed in Rieh and Xie

(2006) in the granularity used along the dissimilarity axis. Essentially they have the same

three classes G, S and C, but instead of P they use a more fine-grained taxonomy—they

distinguish among parallel move, replacement with synonym, term variation, operator

usage, type of resource and domain suffix.

Also the work in Jansen et al. (2007a, b) presents a similar taxonomy, but they also

consider Content change (when the current query is identical to the previous but executed

on another content collection: e.g., web to images) and Assistance (the current query was

Table 1 Examples of reformulations

q q0 QRT

Cheapest phillips wacs7000 Cheap stereos G

sp tyres social club sp tyres G

Cheapest phillips wacs7000 ebay G

royal mail fdc albums royal mail fdc albums spare S

remortgage calculator bbc remortgage calculator S

foyles war screen caps foyle’s war screen caps C

seaview riding school ponies for sale P

david murray actor zonad film P

videos koi carp fish farms.. videos koi carp ponds P
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generated by the user’s selection of a query reformulation suggested by the search engine).

Both scenarios are out of the scope of the present paper.

4 Automatic classification

In this section we describe the process we followed in order to build a model for query-

reformulation type classification.

4.1 The dataset construction

We started from a set of query pairs q; q0ð Þ, extracted from a query log of the Yahoo! UK

search engine in early 2008. These query pairs were part of the training set that we used to

build a model (Boldi et al. 2008) for segmenting users sessions into chains, that is, topi-

cally coherent sequences of queries by one user. Every query pair q; q0ð Þ has the following

two properties: (i) q and q0 appeared in this order and consecutively at least once in the

query log; (ii) q and q0 belong to the same chain according to the labeling we did manually

for the work in Boldi et al. (2008).

In order to create a training set for our QRT classification problem, a group of editors
manually labelled the set of query pairs q; q0ð Þ with their QRT. It is worth noting that the

same query reformulation q; q0ð Þ may be labelled by more than one editor: in cases of

disagreement on the type of query reformulation by two or more editors, the query pair was

removed by the training set. This left us with a set of 1 375 examples from which we used

2/3 for training and 1/3 for testing.

4.2 The features used

We used 27 features to build our model for QRT classification. The set of features is a

superset of those used in our previous work (Boldi et al. 2008), and some of them were

shown to be effective for query segmentation also in other investigations (He and Göker

2000; He et al. 2002; Jones and Klinkner 2008). The features are presented in Table 2, and

can be divided into three groups:

– Textual features. We compute the textual similarity of queries q and q0 using various

similarity measures, including cosine similarity, Jaccard coefficient, and size of

intersection. Those measures are computed on sets of stemmed terms and on character-

level 3-grams. We also compute Levenshtein (edit) distance.

– Session features. We compute the number of sessions in which the pair q; q0ð Þ appears.

We also compute other statistics of those sessions, such as, average session length,

average position of the queries in the sessions, etc.

– Time-related features. We compute average time difference between q and q0 in the

sessions in which q; q0ð Þ appears, and the sum of reciprocals of time difference over all

appearances of the pair q; q0ð Þ.

Intuitively, the purpose of the session features and the time-related features, is to

capture the relatedness of pairs of queries that appear frequently as reformulations in the

query log. For instance, query pairs that appear with high frequency and with short time

intervals between them, are expected to be more related. On the other hand, textual features

are absolutely necessary for query pairs that appear once, which are the majority, and
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Table 2 Description of the features extracted for each query reformulation q; q0ð Þ

Session-related features

f1 COUNT Number of sessions in which reformulation
q; q0ð Þ occurs;

f2 PROBABILITY_FORWARD f1 divided by number of sessions in which
(q, x) occurs (Vx);

f3 PROBABILITY_REVERSE f1 divided by number of sessions in which
x; q0ð Þ occurs (Vx).

Among all sessions containing q; q0ð Þ:
f4 CLICKS SINCE SESSION BEGIN average number of clicks since session begin,

f5 CLICKS SINCE LAST QUERY and since the query preceding this pair.

f6 TOTAL EVENTS AVG Average session size;

f7 QUERIES SINCE SESSION
BEGIN AVG

average position in session (i.e, number of
queries before q),

f8 FRACTION QUERIES SINCE
SESSION BEGIN AVG

QUERIES SINCE SESSION BEGIN AVG=
TOTAL EVENTS AVG

f9 IS FIRST QUERY PAIR FRACTION Fraction of occurrences in which q; q0ð Þ is the first
pair in the session.

f10 IS LAST QUERY PAIR FRACTION Fraction of occurrences in which q; q0ð Þ is the last
pair in the session.

Temporal features

f11 TIME INTEREVENT AVG Average time elapsed between q and q0 in each
session in which both occur.

f12 SUM RECIPROCAL TIME Sum of 1/ti where ti is the elapsed time between
a query i and the previous event in the session.

Textual features

f13 EDITDISTANCE Levenshtein distance (a.k.a. edit distance).

f14 and
f15

LENGTH 1;LENGTH 2 Length in characters of q and q0.

f16 LENGTH_DIFF LENGTH 2� LENGTH 1,

f17 LENGTH DIFF RATIO ðLENGTH 2� LENGTH 1Þ=ðLENGTH 1Þ.
Each query is turned into a bag

of character tri-grams:

f18 TRIGRAMS_COSINE cosine similarity,

f19 TRIGRAMS_JACCARD Jaccard coefficient,

f20 TRIGRAMS_INTERSECTION size of the intersection between the two bags.

Each query is turned into a bag
of stemmed terms:

f21 TERMS_COSINE cosine similarity,

f22 TERMS_JACCARD Jaccard coefficient,

f23 TERMS_INTERSECTION size of the intersection between the two bags.

f24 and
f25

TERMS LENGTH 1;
TERMS LENGTH 2

Number of terms in q and q0.

f26 TERMS LENGTH DIFF TERMS LENGTH DIFF ¼ TERMS LENGTH 2�
TERMS LENGTH 1.

f27 TERMS LENGTH DIFF RATIO TERMS LENGTH DIFF RATIO ¼
ðTERMS LENGTH 2�
TERMS LENGTH 1Þ=TERMS LENGTH 1.
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useful in general for query pairs that appear more than once, for instance to capture

syntactic generalizations and specializations (which tend to respectively shorten and

lengthen the query strings).

All features passed a features selection phase in which we evaluated each feature

relevance w.r.t. our target variable (i.e., query reformulation type).

4.2.1 Discussion

There are at least two classes of features we are aware of that could have been useful to

improve classification accuracy.

First, we refrained from using features that require access to extra information such as

the resulting URLs or page snippets. For instance, we could have taken into account

keywords in the documents returned by the search engine for each of these queries, or

compute set intersection between the URLs returned for each query. Such features could in

principle be helpful, as for instance generalization/specialization relationships should be

reflected there as partial set inclusions. Although the latter data might be very powerful,

and even decisive, to determine the query reformulation type, for efficiency reasons we

wanted to limit ourselves to features that could be computed quickly without access to any

extra information. In the particular case of an application such as query recommendations,

search engines employ several techniques to reduce page loading time, including paral-

lelizing some operations. Thus, for practical reasons we did not want to build a classifier

that needed to wait for search results to be retrieved before being able of classifying an

item.

Second, we used only features about the current query pair, and we did not consider

features computed, for instance, from the previous query pair. More in general, we used a

learning framework that classifies one pair of queries at a time, while for future work this

could be modeled as a structured learning problem, in which the inputs and outputs are

sequences of transitions. Learning schemes involving Hidden Markov Models or Condi-

tional Random Fields could be promising for this task.

4.3 Building the model

We tried many different classifiers induction methods for our classification problem.

Standard methods such as a boosted decision tree showed an accuracy of approximately

85% in predicting query reformulation types. The model that we finally selected exhibits

an accuracy of 92% on a test set of unseen cases. In the following we describe how we

obtained such a model.

Instead of directly tackling the 4-classes problem, we built four distinct binary classi-

fication problems, where in each problem the target variable is being or not a certain QRT

(e.g., is G?; is S?, etc.). Then we attacked all the four problems concurrently and we built

four different classifiers, one for each problem. Among the four classifiers built we choose

the best performing one to be our first classifier. In particular, the selection was based not

on accuracy, but on precision (i.e., the number of true positives divided by the total

number of elements labeled as belonging to the class). The rationale for this is that at this

stage we do not care much about false negatives: we just want to make some decisions with

very high confidence and put those cases aside. False negatives do not represent a problem:

they are not definitively errors, as they still have the chance to be classified correctly later.

In fact the process continues greedily this way:
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1. Select the classifier (and the associated classification problem) that exhibits the highest

precision;

2. Remove from the training set the examples classified as positive form the selected

classifier;

3. On the remaining examples train new models for the remaining classification problems

and go to point 1;

4. When we have a model for each QRT, train the final 4-classes model on the remaining

of the data.

Therefore false negative errors made by the first four classifiers can be saved by the last

classifier. The whole process is depicted in Fig. 2a. In our case the first classifier is the one

for the target variable is_G?, then is_S?, then is_C? and finally is_P? This order somehow

represents also the easiness in distinguishing a class of QRT from the others: that is, class

P is the hardest to be detected.

Another important thing to highlight is that as examples pass trough a classifier, not

only the training set is reduced in number of examples, but it is also enriched in features. In

fact with each example that is predicted as negative, the confidence is attached with which

the classifier has done such a prediction. So the fifth classifier will actually receive in input

31 features: the 27 described in Table 2, plus the confidence with which all the four

previous classifiers have predicted the example to be negative.

Each of the five models is a rule-based classifier built with C5.0, the successor of the

well-known C4.5 decision tree induction algorithm (Quinlan 1993). While building the first

four classifiers, in order to boost precision (i.e., achieving very low number of false

(a)

(b)

Fig. 2 a High-level depiction of our QRT classification model. b The first rule (most representative) from
each of the binary classifiers
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positives, while paying in terms of recall) we used the possibility of defining different

misclassification costs for different kind of errors: e.g., telling to the classifier induction

algorithm to weight a false positive the double of a false negative. Finally, for the fifth

model (the 4-classes one) we used boosting with 15 decision trees.

Reducing the multi-class scenario to binary classification is most usually solved with the

so-called one-against-all technique, where many binary classifiers are used in parallel and

the positive answer with highest accuracy is selected. This technique, however, is well-

behaved when the underlying binary classification problems have all the same level of

difficulty, which is far from being our case; our solution has the advantage of exploiting the

lack of symmetry inherent in our problem to get rid of the easiest cases as soon as possible

so to obtain better accuracy on the more difficult query reformulations.

4.4 Further insight in the model

In Fig. 2b we report the most representative rule (i.e., the one with highest precision) for

each of the first four classifiers.

We can observe that the rule for generalization (G) asks for a high similarity of terms,

and as expected it also requires the second query to be shorter than the first one, as forced

by the negative value of LENGTH DIFF RATIO. The most representative rule for spe-

cialization (S) instead requires high similarity of n-grams and that the second query has at

least one term more than the first query: thus the second query must be longer then the first

one as intuitively expected, and the opposite of what happens with G.

The rule of the third model, for error correction (C) requires a small edit distance and

that the query reformulation is generally close to the session begin. Finally, the most

representative rule for parallel move (P) requires to appear late in the session and to have

small similarity.

The fifth model is more complex to be inspected as it contains 15 classifiers each one

made by several rules. It is worth highlighting that this model makes large use of the four

additional features which are the confidence with which all the four previous classifiers

have predicted an example to be negative.

For instance, the following is a rule that we can find in one of the 15 classifiers of the

boosting model:

if confidenceðis C? ¼ NÞ[ 0:99

and confidenceðis G? ¼ NÞ� 0:94

and PROBABILITY FORWARD [ 0:5

and PROBABILITY REVERSE� 0:5

then is G? ¼ Y

The rule says that for a given example q; q0ð Þ, if the confidence with which the third

model decided that it is not a generalization is not that high, while the confidence of not

being an error correction is very high, and if more than half of the times q appears in the

query log is followed by q0, while less than half of the times q0 appears in the query log, it

is preceded by q, than q; q0ð Þ is a generalization. This example also shows how false

negative errors of the first four classifiers may be ‘‘corrected’’ by the fifth classifier.

Our model is able to achieve a high accuracy also thanks to some very difficult pre-

diction that it is able to do correctly. In Table 3 we report some of these difficult

predictions.
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Consider the example on the first row: our classifier is able to correctly determine that

the reformulation from query dango to query japanese cakes is a generalization.

Another nice example can be found in the last row where the query sport is specialized

into PSV Eindhoven v Tottenham: also in this case the guess was not straightforward

due to the lack of textual similarity.

5 Query reformulation patterns

Using our model we can automatically label query transitions in very large query logs to

analyze typical patterns. In this section we report some results of this analysis.

5.1 Datasets

We used two datasets from Yahoo!’s in-house query logs. The first one corresponds to the

UK dataset from which the training data were extracted in the previous part. The second

one corresponds to a completely different dataset from searches in the Yahoo! US search

engine in early 2008. Single-session queries are not considered in these data.

We first segmented all user activity into chains through the model we developed in

Boldi et al. (2008). Then, we extracted from each query log the features listed in Table 2

and labeled each query reformulation in each chain with the model we described in the

previous section.

The classification of query reformulations transforms each chain into a string of QRTs,

and the query log is transformed into a bag of strings. Each string is started and ended by a

special character X, representing the border of a search mission. Thus our query log looks

like: {XPSX, XPSPX, XCCCPPX, XSSPX, XPPSPPPPPX, XPSGPSSSX, XPPPPSX,
XSGSX, XSX, XSPPCX, . . .} (given that single-queries are not present, the string XX does

not occur in the data).

The UK dataset contains 3 376 775 chains for a total of 6 578 275 QRTs without

considering mission changes. The US dataset contains 4 087 898 chains for a total of 10

496 317 QRTs. We remark that the size of the dataset we analyze is much larger than those

reported in the literature for this problem: for instance in Rieh and Xie (2006) analyze 313

chains, all containing at least 6 queries (i.e., 5 query reformulations), for a total of 2 109

QRTs, while Jansen et al. (2007a, b) analyze approximately 1.5 millions of query refor-

mulations. Even if we focused only on chains of length at least 5, we would still have 222

727 chains for a total of 1 529 539 QRTs in the UK dataset, and 527 420 chains containing

Table 3 Some example of difficult cases predicted correctly by our classifier

q q0 QRT

dango japanese cakes G

cars for sale south hams auto trader G

Find samebody in Germany Find my friend in berlin S

Nutrition Vegetarian Society S

ikea corner vanity units S

sport PSV Eindhoven v Tottenham S

Inf Retrieval (2011) 14:257–289 269

123



4 316 676 QRTs in the US dataset. In the following we denote ‘‘UK� 5’’ and ‘‘US� 5’’

the two datasets when we only consider long chains.

5.2 Query reformulation distribution

In Fig. 3a we report the distribution of chain length on the two datasets (without counting

the special symbol X), while in Fig. 3b we report the distribution of reformulation types. In

Fig. 3c we show the distribution of reformulation types from the work of Rie and Xie

(2006) (merging in the class P the different categories that they consider: parallel move,

replacement with synonym, term variation etc.), and we compare it with the US dataset

limited to chains of length 5 or more (to mimic what Rie and Xie do on their own data).

The reader can appreciate a substantial agreement between the findings obtained here and

in Rieh and Xie (2006).

As reported by Rie and Xie (2006), the class P is largely the most populated (47–58%).

It is worth noting that this is slightly overestimated, as it is partially due to some false
negative errors of the model used to segment sessions into chains (Boldi et al. 2008). In

fact, we have observed that mission changes that are not detected as such by that first

model are typically recognized as P by the model for QRT classification. This is quite

natural if we think that parallel move is the class that is semantically closer to mission

change, as depicted in Fig. 1.

The widespread presence of P would call for a more fine-grained categorization of this

kind of reformulations, like the one adopted by Rieh and Xie (2006); to distinguish

between ‘‘real’’ parallel moves (in the sense of Rie and Xie) and other kinds of refor-

mulations, it would be probably helpful to know if the user clicked on at least one result

before reformulating the query or not. This would be a departure from our decision of

considering only information that can be directly deduced from the queries themselves

(either from their textual content, or from their temporal position in the user’s query flow):

therefore we decided not to pursue this path any further, leaving this kind of fine-grained

analysis as an object for future work.

On the generalization-specialization axis, as expected, specializations (30–38%) are

much more frequent than generalizations (4–10%). This difference is however largely

reduced when focusing on chains of length 5 or more, as reported in Fig. 3c.

Length
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Fig. 3 a Distribution of chain length in the two datasets, without counting the special symbol X. b and
c QRT distributions
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5.3 Conditional reformulation probability

For deeper inspection in Table 4 we report conditional probabilities depending on the

previous QRT, that is,

PðCurrent ¼ ajPrev ¼ bÞ:

From this table we can make some important observations: (i) generalizations probability

is boosted after a specialization; (ii) specializations are very likely to occur at the begin-

ning of a chain, or after a generalization; (iii) error corrections are common at the

beginning or end of a chain, or after another error correction. What is interesting is that all

the above observations are confirmed on both datasets.

5.4 Interesting frequent reformulation pattern

We also counted the frequency of patterns (i.e., substrings of any length) in the datasets.

Frequency of a pattern is defined not as the total number of occurrences, but as the number

of strings in the database that contain the given pattern. We selected some patterns by

means of an interestingness measure defined as the ratio between the real frequency, and

the expected frequency which is computed assuming independence of QRTs. Table 5 lists

a few of the interesting patterns we found; they confirm and complement the findings in

Table 4: error corrections are more frequent at the beginning of a chain (XC), they also

tend to appear contiguously (CC, CCC, . . .), and sequences of alternating specialization-

generalization are more frequent than expected (SG, GS, . . .).

5.5 Topic patterns

In this section we report a preliminary experiment that we conducted in order to check how

query reformulations and mission changes relate to query topics. In principle, belonging to

the same mission is not the same as belonging to the same topic. For instance, a person

looking for information about a country may start by looking at governmental sites, then

look for information about art and culture, then check economic indicators, etc. Queries in

the same mission may belong to different topics. Also queries in the same broad topic may

be part of different missions.

Table 4 Ratio of the conditional probability P(Current = a|Prev = b) with respect to the prior probability
P(Current = a)

Current UK dataset US dataset

Previous Previous

G S C P X G S C P X

G 0.8 1.7 0.3 0.4 1.2 0.6 2.0 0.6 0.6 0.9

S 1.3 0.7 0.5 0.7 1.6 1.4 0.6 0.6 0.7 1.6

C 0.3 0.4 1.2 0.6 1.8 0.5 0.5 4.0 0.7 1.6

P 0.5 0.9 0.6 0.8 1.4 0.6 0.8 0.7 1.0 1.3

X 1.4 1.4 1.7 1.5 0.0 1.3 1.4 1.5 1.4 0.0

Deviations of more than 50% (i.e., a ratio B 0.5 or C 1.5) are shown in boldface
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5.5.1 Query topical classification

There are many approaches to topical query classification, e.g. (Li et al. 2005). In this

experiment we issued1 each query to the Yahoo! search engine, obtained the top 20

documents, and used an in-house automatic document classifier to obtain the most likely

Yahoo! directory (dir.yahoo.com) topic for each document returned. Next we did a

majority voting among the topics of the documents associated to the query to determine the

query topic. To increase precision at the expense of coverage, if the main topic was not at

least twice as prevalent as the second topic we considered the query topic as ‘‘unknown’’.

This is a slow yet very simple query classification method that is nevertheless quite precise.

We used it to classify by topic 100K queries from the UK data and 100K queries from the

US data.

5.5.2 Results

For each query transition, we compared the top-level topic of the two queries involved in

the transition: this is usually something very broad such as ‘‘science ? health’’, etc. If the

two topics coincide, we count this as a top-level topic match in Table 6. As before we

denote mission changes with the transition type X.

From a user’s perspective, we can see that whenever our classifier detects a mission

change, the user is more likely to change the broad topic than to stay in the same broad

topic. The opposite occurs in the case of generalization, specializations, and error cor-

rections, in which the user is more likely to stay in the same broad topic. As expected,

parallel moves are more ambiguous from the perspective of broad topics.

Next, we verified if some broad topics are more likely to motivate certain transition

types than others. Table 6 shows some top-level topic pairs with the highest ratio of their

probability conditioned to each transition type with respect to their prior probability.

Table 5 Interesting patterns

Pattern Frequency

UK (%) US (%) UK C 5 (%) US C 5 (%)

XC 12.7 5.6 7.8 4.5

SG 2.8 7.6 16.4 30.6

GS 2.5 6.1 17.7 30.3

CX 11.3 4.6 6.1 3.1

XS 38.2 35.5 44.5 34.5

CC 1.4 1.3 5.1 4.8

SGS 0.9 2.5 8.6 14.6

CCC 0.3 0.2 1.5 1.4

GSG 0.2 1.0 2.5 7.1

SSG 0.7 1.8 7.6 10.9

XSG 1.7 4.0 4.1 6.9

SGX 1.3 3.1 2.2 4.8

1 We used programmatic access to the search engine that bypasses automatic error correction of
misspellings.
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For generalization (G) and specialization (S), it is frequent to observe pairs of queries

that are both reference search (dictionary/encyclopedia) or searching for some govern-

ment-related topics. In the case of parallel moves (P), switches to and from reference

search are common. As for mission change (X), we observe an interesting fact: there are

frequent changes from and to recreation/entertainment topics which may signal alternating

between work/study related activities and leisure.

6 Transition graph

The query-flow graph, that we introduced in Boldi et al. (2008), is an aggregated repre-

sentation of the interesting knowledge about latent querying behavior which is contained in

a query log. It is a directed graph, where nodes are queries, and there exists an edge

between queries q; q0ð Þ if the two queries appear consecutively in some session in the query

log. Moreover edges may hold application-dependent information of various types.

In this section we report the results of an investigation on the query-flow graph, where

the edges have been annotated with transition types (obtained with our classification model

presented in Sect. 4) and counts (number of times the query pair was observed in the log).

Figure 4 shows a small sub-graph of the query-flow graph with edges labeled with QRT

from the UK dataset. In the following we refer to the query-flow graph with edges labeled

with QRT simply as transition graph.

Table 6 Fraction of transitions where the top-level topic remains the same, and example salient topic pairs,
on both datasets

QRT Topic match Salient top-level topic pairs

G UK 64% reference ? reference

government ? government

US 64% reference ? government

reference ? reference

S UK 59% reference ? reference

government ? government

US 71% reference ? reference

government ? government

C UK 54% reference ? computers and internet

news and media ? news and media

US 53% reference ? health

science ? social science

P UK 46% arts ? reference

reference ? government

US 48% reference ? education

social science ? government

X UK 22% computers and internet ? recreation

entertainment ? education

US 23% recreation ? health

soc. and culture ? computers and internet
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The investigation that we report in this section has a twofold aim: on one hand, we

would like to have at least some indirect proof that our classification does not contain

major inconsistencies, and while doing this we will also be able to understand which parts

of the process are probably more error-prone. On the other hand, through this inspection

we will gain some deeper insight in the QRT classification task itself.

We used entire sessions to build the graph, not only missions, so mission changes are

also included as transitions. For the UK dataset, we used all transitions to construct the

graph, whereas for the US dataset, we discarded all hapax transitions (those that only

appear once). The resulting transition graphs have the following sizes:

– UK dataset: 21 247 414 nodes, 21 216 958 arcs (0.99 arcs/node);

– US dataset: 58 312 610 nodes, 53 960 925 arcs (0.93 arcs/node).

Most properties were studied by filtering the transition graph according to the transition

type; this way, each transition graph gave rise to five ‘‘slices’’ of the graph, one for each

transition type.

6.1 Overall properties

Table 7 presents some data about the overall structure of the transition graphs; notice that

the majority transitions are either parallel moves (P), or correspond to mission change (X):

this is a consequence of the fact that the majority of chains are very short.2

Most of the remaining transitions are specializations (a concrete evidence that users of

search engines reformulate their queries mostly seeking to improve precision, whereas

recall is usually not an issue), immediately followed by parallel moves. Generalizations are

rare, and so are error-corrections; the latter datum, though, largely depends on the fact that

the engine itself performs some error correction, so the user rarely needs to actually correct

the query.

Table 7 also presents an analysis of strongly connected components,3 showing that all

graphs are extremely sparse and essentially acyclic. If we delete from the graph all isolated

nodes and isolated arcs (an arc q; q0ð Þ is isolated iff q has outdegree 1 and q0 has outdegree

0), the number of remaining nodes (called ‘‘nontrivial’’ in Table 7) is extremely small.

barcelona
barcelona

hotels

S
0.02

barcelona
fc

S
0.08

barcelona
weather

S
0.04 P

0.004

luxury
barcelona

hotels

S
0.03

cheap
barcelona

hotels

S
0.07

P
0.02

Fig. 4 Example of some
reformulations around the query
‘‘barcelona hotels’’
extracted from the
UK dataset. The feature
PROBABILITY_FORWARD
is also included in the figure

2 An even larger fraction of mission changes would be observed if we considered also single-query physical
sessions.
3 A strongly connected component in this graph is a maximal subset of queries such that any two queries are
connected by directed reformulation paths (in both directions).
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6.2 Anti-symmetry and correlations

Some of the transition types should exhibit some natural properties; for example, both G
and S are conceptually partial orders, so they should be transitive and anti-symmetric. Of

course, we cannot expect these properties to hold deterministically, both because of the

presence of noise and because we should take into account the frequency of each observed

transition.

We measure symmetry using a weighted reciprocity. This metric takes a value close to

0 if an arc in one direction has a much smaller or larger weight than the arc in the opposite

direction, and a value close to 1 if both arcs have similar weights. We define the weighted

reciprocity as follows: let c q; q0; tð Þ be the count associated to arc q; q0ð Þ in a given graph

t (in our setting this corresponds to a graph containing only transitions of type t), or zero if

q; q0ð Þ is not an arc in t, and define

q q; q0; tð Þ ¼ min c q; q0; tð Þ; c q0; q; tð Þð Þ=max c q; q0; tð Þ; c q0; q; tð Þð Þ:

In the ideal case, if t defines a perfectly anti-symmetric relation this quantity should be 0

for all arcs in t, whereas it should be 1 for perfectly symmetric relations.

The average q q; q0;�ð Þ for all arcs q; q0ð Þ is shown in Table 7: notice that the values are

all very small, due to the sparsity of all graphs, but they are significantly closer to zero (or

even exactly zero) for G and S, whereas they are significantly larger for the other transition

types.

Another measure of symmetry can be obtained disregarding the counts, and simply

measuring the Jaccard coefficient between the set of arcs of each transition graph and its

transpose (i.e., the graph obtained transposing every arc): again, in the absence of noise this

measure should ideally be 0 for asymmetric relations, and 1 for symmetric relations. This

measure, although less fine-grained than the previous because it does not take frequency

into account, can be used also to compare different graphs. Table 8 reports the results for

every transition graph and every transpose (for the sake of readability, we highlighted the

largest entry in every row/column): as before, all values are small, but the reader can verify

that the largest values are found on the diagonal for C, P, and X (witnessing that they are

somehow symmetric), whereas for G and S we have the largest values when each is

compared with the transpose of the other.

Indeed, in the absence of classification errors, S and G should converge to be mutually

transpose as the number of observations grows. Every specialization reformulation of one

Table 7 Basic properties of the transition graphs

Gen. Spec. Corr. Par. X

Density (arcs per node) UK 0.04 0.31 0.07 0.41 0.17

US 0.06 0.26 0.05 0.25 0.39

Size of largest strongly connected
component

UK 0.00% 0.26% 0.14% 2.51% 1.10%

US 0.00% 0.07% 0.20% 2.41% 1.45%

Number of nontrivial nodes UK 0.37% 4.31% 1.80% 12.26% 3.20%

US 1.49% 1.20% 1.52% 3.38% 1.34%

Average weighted reciprocity%
q q; q0;�ð Þ

UK 0.0% 0.2% 1.7% 1.6% 3.1%

US 0.0% 0.8% 12.1% 14.8% 26.3%
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user can be done, in the opposite direction, as a generalization reformulation, and

viceversa.

6.3 Entropy of query reformulations

The purpose of this experiment is to measure to which extent the reformulation type is

determined by the query. We defined the reformulation-type entropy of a query as the

entropy of the distribution with probabilities

pqðtÞ ¼
X

q0
c q; q0; tð Þ=

X

q0;t

c q; q0; tð Þ;

where as before c q; q0; tð Þ is the count of reformulations from q to q0 having reformulation

type t. Here we ignore the transition type X. To consider only queries for which we have

enough information, we averaged the entropy over all queries q having
P

c q; q0; tð Þ� 100.

An average value close to 0 would mean that the query determines almost completely

the reformulation type (for instance, that certain queries almost always are followed by a

correction, while other queries almost always are followed by a parallel move, and so on).

An average value close to 2 (there are four categories here: G, S, C, P) would mean that

any reformulation type is possible. Indeed this value is close to 1, as shown in Table 9,

meaning that when writing a reformulation for a query, the user will decide mostly

between two reformulation types on average.

Next we measured to which extent a certain reformulation type is more predictable than

another reformulation type. For instance, if a given query is followed by an error cor-

rection, we would expect that the particular error correction chosen is more determined by

the query than if the user were doing a reformulation of type ‘‘parallel move’’ where there

is a broader range of choices.

To measure this we examined the next-query entropy for a query q and a reformulation

type t, this is the entropy of the distribution with probabilities

pt;q q0ð Þ ¼ c q; q0; tð Þ=
X

i

cðq; i; tÞ:

Table 8 Jaccard coefficients
(per mille) between the set of
arcs of each graph and the trans-
pose of each graph

GT ST CT PT XT

UK dataset

G 0.0 6.3 0.0 0.1 0.0

S 6.3 2.0 0.4 3.2 1.7

C 0.0 0.4 13.1 1.2 0.9

P 0.1 3.2 1.2 10.1 6.7

X 0.0 1.7 0.9 6.7 21.6

US dataset

G 0.0 124.7 0.7 2.1 0.4

S 124.7 9.7 2.2 23.6 1.7

C 0.7 2.2 117.9 3.1 1.0

P 2.1 23.6 3.1 128.5 26.4

X 0.4 1.7 1.0 26.4 236.6
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We averaged this over the same queries as with the reformulation-type entropy. The results

are shown in Table 9. The next-query entropy is small for generalizations and error cor-

rections, but closer to 1 than to 0, meaning that there is still some variability when the user

decides to use this type of reformulation. The next-query entropy for specialization and

parallel moves is substantially higher, from 3 to 6 bits, meaning that the users pick between

several choices on average (the entropy may be lower in our US graph probably due to the

removal of pairs with count equal to one).

7 Query recommendation

In this section we demonstrate that the automatic QRT classifier can be applied to a key

task for search engines: the generation of query suggestions. This section extends results

presented in Boldi et al. (2009).

7.1 Experimental framework

Our experiments for query recommendation are based on the ‘‘Spring 2006 Data Asset’’

distributed by Microsoft Research.4 The data consists of a query log excerpt with

15 million queries, most of them in English, sampled over one month and including a

query and query-id, an anonymous session-id, a timestamp, and the results (for each result,

the position on the result page and a timestamp is also provided). Part of the adult queries

was extracted and provided separately: we did not use them in our experiments, though.

We encoded the data using the WebGraph framework (Boldi and Vigna 2004) (the

framework has been originally built to represent web graphs, but it turns out to be useful to

represent succinctly large graphs in general) and also the high-performance hashing classes

from the Sux4J project (Belazzougui et al. 2009).

For creating the Query Flow Graph, we used the model that we trained on a different

dataset—a set of query pairs q; q0ð Þ, extracted from a query log of the Yahoo! UK search

engine in early 2008. These query pairs were first used to build a model (Boldi et al. 2008)

for segmenting users sessions into chains, that is, topically coherent sequences of queries

by one user.

The query recommendation methods are based on the probability of being at a certain

node after performing a random walk over a query graph. This random walk starts in the

node corresponding to the input query. At each step, the random walker either remains in

Table 9 Entropy measures
UK data US data

Reformulation-type entropy 1.1 1.0

Next-query entropy

Generalization (G) 1.0 1.3

Specialization (S) 5.4 2.6

Correction (C) 1.1 1.3

Parallel move (P) 6.5 4.0

4 http://research.microsoft.com/users/nickcr/wscd09/.
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the same node with probability 0.9, or follows one of the out-links with probability equal to

0.1; in the latter case, the links are followed proportionally to w(i, j). The weights

w(i, j) can be arbitrary and are used to bias the random walk towards highly-relevant items,

we describe several concrete weighting schemes below. For the random walk, we either do

a single step, or repeat this for 5 or 10 iterations.5

We compare two different scoring methods. In the first case the queries to present to the

user are chosen based on the personalized PageRank values obtained by the random walk

described above: this is the ‘‘absolute’’ scoring method in Tables 13 and 14. An alternative

scoring method ranks the results based on the ratio between the values obtained in the

previous case and the PageRank values obtained by using no personalization (i.e.,

restarting at a random node), setting the random jump value to 0.15 and letting the

algorithm run until convergence: this is referred to as the ‘‘relative’’ scoring method in the

same tables.

7.2 Baseline for query recommendation

For comparison, we also implemented a query-recommendation system based on the

method by Crasswell and Szummer (2007), which uses a bipartite query-document graph.

This query-document graph is defined as G0 ¼ Q [ D;E0ð Þ; E0 � Q� D with Q the set of

documents and D the set of pages. The edges are symmetric, ði; jÞ 2 E0 ) ðj; iÞ 2 E0. Let

c0 : E0 ! N be the number of clicks with c0ði; jÞ ¼ c0ðj; iÞ describing the number of clicks

obtained by document j when shown as a result of query i.
Although there are several alternatives for the transition probabilities, we used the two

different weighting schemes described in Craswell and Szummer (2007). The ‘‘forward’

weighting scheme corresponds to following edges proportionally to the number of clicks

associated to them, using weights

wf ði; jÞ ¼
c0ði; jÞP

k:ði;kÞ2E0 c
0ði; kÞ :

The ‘‘backwards’’ weighting scheme uses different weights

wbði; jÞ ¼
wf ðj; iÞP

k:ðj;kÞ2E0 wf ðj; kÞ
:

In the paper introducing these weights, they observe that the ‘‘backwards’’ weighting

scheme provides better results than the ‘‘forward’’ weighting scheme for their task of

finding relevant images for an input query. In our experimental results we observe the

same, with an even greater advantage for the ‘‘backwards’’ weighting scheme as will be

presented below.

For generating the recommendation we proceed as above, except that we used 6 or 12

iterations to do an even number of steps and end the random walk in a query and not in a

document.6

5 We observed that performing 10 iterations or more does not improve the results and we omit those results.
We also tested a ‘‘random jump’’ probability of 0.1 or 0.2 which actually worsened the results so we did not
include it in the analysis of results.
6 We also did experiments with 24 iterations that did not yield improvements over 12 iterations and are
omitted in the experimental section.
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7.3 Assessment method

The evaluation of the recommendations produced by the different systems was done in

the following way. A set of 114 input queries having frequencies between 700 and 15 000

was selected at random; we used these frequencies limit to avoid very frequent queries

(which are often navigational and for which query recommendations are not useful) or

very infrequent queries (for which in this dataset there will be no recommendations).

Queries were very varied in nature, e.g., ‘‘grey’s anatomy’’, ‘‘juno’’, ‘‘Maggie
Gyllenhaal’, ‘‘cnn news’’, and ‘‘guitar tabs’’. We discarded all the queries

containing a domain name.

Next, we generated the top 5 recommendations for each query using each system, and

pooled the results together; this yielded on average 53.4 different recommendations per

system. Then, a group of 5 assessors entered a simple assessment interface where each

assessor was presented a random query and then in sequence all the different recom-

mendations for that query in random order, without knowing which system(s) produced the

recommendation.

The assessor was also able to see the search engine results for the original query and the

recommended query that was being evaluated. The assessor was asked if the recommen-

dation was useful, somewhat useful or not useful, considering the original query. A very

broad instruction was given: a useful recommendation is a query such that, if the user

submits it to the search engine, it provides new results that were not available using the

original query, and that agree with the inferred user intent of the original query. Of course

there is a great deal of subjectivity in this assessment as the original intent is not known for

sure by the assessor.

Table 10 shows a sample assessment for the input query ‘‘cnn news’’. In practice,

recommendations that are considered useful are typically either specializations of parallel

moves in the sense of Rieh and Xie (2006), while recommendations that are considered not

useful tend to be either trivial variants of the original query, or completely unrelated

queries.

In total, we received 6 093 assessments distributed as per Table 11.

The assessment task was described as difficult by the assessors. We measured inter-

assessor agreement on 560 overlapping query-recommendation pairs that were judged by

two different assessors. We considered three scenarios: (A) each label is a different cat-

egory; (B) labels ‘‘somewhat useful’’ and ‘‘not useful’’ are together in a category; (C)

labels ‘‘useful’’ and ‘‘somewhat useful’’ are together in a category. Next we measured the

observed agreement Pa and Cohen’s Kappa statistic which compares the agreement

expected by chance Pc with the observed agreement using the formula j ¼ Pa�Pc

1�Pc
.

As shown in Table 12, the scenario C. is the best of the three and shows a moderate

amount of agreement between the assessors (j = 0.59). The relatively small level of

agreement can be compared with other similarly subjective web evaluation tasks such as

Table 10 Example assessments for query ‘‘cnn news’’

Useful Somewhat useful Not useful

cnn world news abc7chicagonews CNN

msnbc news nba scores cnn.com

fox news cnnfyi verizon netmail
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j = 0.85 for web page type classification (Haas and Grams 1998), j = 0.72 for query type

classification (White et al. 2007), j = 0.61 for link type classification (Haas and Grams

1998), j = 0.63 for web spam classification (Castillo et al. 2006), etc.

7.4 Results

7.4.1 Usefulness score

The Uscore column in Table 13 is the probability that a recommendation issued by a

system is labeled as ‘‘useful’’ or ‘‘somewhat useful’’, in accordance to the scenario that

maximizes the inter-assessor agreement as explained above. The column concerning sig-

nificance (p-value, omitted when over 0.1) contains the probability of observing a score of

Uscore or less by chance, assuming that all the systems have the same accuracy as the top

one.

Small differences in p-value for systems having the same Uscore depend on the fact that

the significance is computed considering the number of valid assessments for each system

among the 114 queries evaluated, excluding the ‘‘Can not assess’’ label in Table 11. Lines

are drawn in the table at p = 0.1, 0.05, 0.01. Notice that we are here testing our systems

against a very strong null hypothesis, because only the top 5 recommendations are being

considered, and many of them are correct; so the probability of guessing among them is

very high, even at random.

In the recommendations generated using the query-flow graph, the score decreases as

we introduce more transition types: specialization transitions seem to produce the most

useful recommendations (Queryflow-S), whereas adding parallel moves (Queryflow-SP),

corrections (Queryflow-SPC), and eventually generalization (Queryflow-GSPC, different

at p = 0.06) results in less useful recommendations.

The ‘‘absolute’’ scoring method works better than the ‘‘relative’’ scoring method for the

queryflow-based recommendations at a significance of p = 0.04, and doing multiple

iterations instead of only one (which corresponds to taking the maximum) is better at

p = 0.06.

We also added a system named just ‘‘Queryflow’’ in Table 13, without including any

slice name: in this system the weights are computed over all transitions, independently of

Table 11 Distribution of
assessments, n = 6,093

Assessment Probability (%)

Useful 25.1

Somewhat useful 11.6

Not useful 62.1

Can not assess 1.2

Table 12 Inter-assessor agree-
ment as a probability Pa and in
terms of Cohen’s Kappa
j; n ¼ 560

Scenario Pa (%) j

A. Useful vs Sw.useful vs Not useful 68 0.43

B. Useful vs (Sw.useful or Not useful) 86 0.46

C. (Useful or Sw.useful) vs Not useful 77 0.59
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Table 13 Usefulness score for each system: probability that a recommendation issued by the system is
useful or somewhat useful

U score p-value System Iter. Scoring

0.58 Queryflow-S 10 Abs.

0.58 Queryflow-S 5 Abs.

0.57 Queryflow-SP 1 Abs.

0.56 Queryflow-SP 10 Abs.

0.56 Queryflow-SP 5 Abs.

0.55 0.10 Queryflow-SPC 1 Abs.

0.55 0.06 Queryflow-GSPC 1 Abs.

0.55 0.06 Queryflow-S 1 Abs.

0.55 0.07 Queryflow-SPC 5 Abs.

0.55 0.06 Queryflow-SPC 10 Abs.

0.55 0.07 QueryDocument-Bwd 6 Rel.

0.55 0.10 QueryDocument-Bwd 24 Rel.

0.55 0.06 QueryDocument-Bwd 12 Rel.

0.54 0.03 Queryflow-S 10 Rel.

0.54 0.02 Queryflow-SC 5 Abs.

0.54 0.02 Queryflow-S 5 Rel.

0.54 0.02 QueryDocument-Bwd 2 Rel.

0.54 0.04 QueryDocument-Bwd 12 Abs.

0.54 0.02 QueryDocument-Bwd 6 Abs.

0.54 0.03 QueryDocument-Bwd 24 Abs.

0.53 0.01 Queryflow 1 Abs.

0.53 0.01 Queryflow-GSPC 5 Abs.

0.53 0.01 Queryflow-GSPC 10 Abs.

0.53 0.01 Queryflow-SC 10 Abs.

0.52 \.01 Queryflow 5 Abs.

0.52 \.01 QueryDocument-Bwd 2 Abs.

0.52 \.01 Queryflow-SC 1 Abs.

0.52 \.01 Queryflow-SC 1 Rel.

0.51 \.01 Queryflow 10 Abs.

0.51 \.01 Queryflow-SC 10 Rel.

0.51 \.01 Queryflow-SC 5 Rel.

0.47 \.01 Queryflow-SP 1 Rel.

0.47 \.01 Queryflow-SP 10 Rel.

0.47 \.01 Queryflow-SP 5 Rel.

0.45 \.01 Queryflow-SPC 10 Rel.

0.45 \.01 Queryflow-SPC 1 Rel.

0.45 \.01 Queryflow-SPC 5 Rel.

0.44 \.01 Queryflow 10 Rel.

0.44 \.01 Queryflow 1 Rel.

0.44 \.01 Queryflow 5 Rel.

0.44 \.01 Queryflow-GSPC 10 Rel.

0.43 \.01 Queryflow-GSPC 1 Rel.
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whether they were part of the same mission or not. This is worse than the systems that

selects only specializations and counts only over transitions in the same mission at

p = 0.01.

The recommendations based on the baseline (query-document graph) have either the

same performance as recommendations using Queryflow-S, or a lower performance at a

significance of p = 0.07. In this case, the ‘‘backwards’’ weighting scheme performs much

better than the ‘‘forwards’’ weighting scheme at p \ 0.01. This was already noticed in

Craswell and Szummer (2007): the gap, in our case, is even larger. Finally, Fig. 5 is a chart

of the best performing variant of each system.

Fig. 5 Usefulness scores, best variant per system

Table 13 conitnued

U score p-value System Iter. Scoring

0.43 \.01 Queryflow-GSPC 5 Rel.

0.39 \.01 Queryflow- S2
� �

1 Rel.

0.39 \.01 Queryflow- S2
� �

10 Rel.

0.39 \.01 Queryflow- S2
� �

1 Abs.

0.38 \.01 Queryflow- S2
� �

10 Abs.

0.32 \.01 QueryDocument-Fwd 24 Abs.

0.32 \.01 QueryDocument-Fwd 12 Abs.

0.32 \.01 QueryDocument-Fwd 6 Abs.

0.30 \.01 QueryDocument-Fwd 2 Abs.

0.29 \.01 QueryDocument-Fwd 24 Rel.

0.28 \.01 Queryflow-(SG) 10 Rel.

0.28 \.01 QueryDocument-Fwd 6 Rel.

0.28 \.01 QueryDocument-Fwd 12 Rel.

0.28 \.01 Queryflow-(SG) 10 Abs.

0.27 \.01 QueryDocument-Fwd 2 Rel.

0.23 \.01 Queryflow- SST
� �

10 Abs.

0.23 \.01 Queryflow- SST
� �

10 Rel.
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7.4.2 Diversity score

Next we computed a measure of diversity in the resulting set. This is done by taking each

sampled query, and each recommendation labeled as useful or somewhat useful, and

issuing that recommended query to a search engine. Given that we are taking the top-5

recommendations per system, this generates a maximum of 25 URLs. The average Dscore
in Table 14 is the average number of distinct URLs in this multiset across the 114 queries

evaluated which were not present in the result set for the original query.

Significance is computed using the individual score (0–25) obtained by each system for

each of the 114 assessed queries; we assume scores have a normal distribution and compute

the probability of observing the scores we get or less, assuming that all systems have the

same performance as the top system (using a one-sided t-test). Lines are drawn in the table at

p = 0.1, 0.05, 0.01. We observe a change in the relative position of different systems in the

top half of the table with respect to Table 13, indicating that this measure is different from

the measure based purely on the labels associated to the recommended queries.

8 Conclusion

This section synthesizes our main findings and research directions for future work.

8.1 Main findings

During the course of this research, we have found that it is possible to automatically

determine the type of a query reformulation, if the appropriate features are used. We have

achieved 92% accuracy in distinguishing among four broad classes of query reformulations,

noticing that the learning scheme is important as it can exploit the fact that some class

boundaries are more fuzzy than others.

We applied the classifier to a large query log and studied reformulation paths that are

the sequence of reformulations that a user does in the course of a search mission. This

allowed us to study query reformulation patterns, matching some results of previous

studies done over much smaller data set using manual assessments, and extracting new

patterns which are discoverable giving that our automatic classifier enables the processing

of a much larger set of data than when using manual annotations. From some of the

patterns we extracted, we can see for instance that generalization and specializations

appear frequently together in alternating order, and that error corrections are more frequent

either at the beginning of a search mission or after another error correction. When mapping

query transitions to topical categories we see that reference search is a typical context for

generalizations and specializations, and that many mission changes are associated to

switches from or to entertainment/recreation sites.

We annotated a large query-flow graph with transition types, and noticed the anti-

symmetry of generalization and specialization there. We also observed that given a query,

the distribution of possible generalizations and error corrections tend to be more con-

centrated than the distributions of specializations or parallel moves.

8.2 Follow-up work

Since our initial formulation in Boldi et al. (2008) and follow-up papers (Boldi et al.

2009a, b), other aspects of query-flow graphs have been studied.

Inf Retrieval (2011) 14:257–289 283

123



Table 14 Diversity score of recommended queries: distinct documents among the top-5 results for the top-
5 useful or somewhat useful recommendations

D score p-value System Iter. Scoring

13.49 Queryflow-S 10 Abs.

13.44 Queryflow-S 5 Abs.

13.20 Queryflow-SP 1 Abs.

13.04 Queryflow-SP 10 Abs.

12.99 Queryflow-SP 5 Abs.

12.84 Queryflow-SCP 1 Abs.

12.73 Queryflow-SCP 5 Abs.

12.70 Queryflow-GSPC 1 Abs.

12.70 Queryflow-SCP 10 Abs.

12.52 Queryflow-S 1 Rel.

12.42 Queryflow-S 1 Abs.

12.40 Queryflow-S 10 Rel.

12.38 Queryflow 1 Abs.

12.38 Queryflow-GSPC 5 Abs.

12.37 Queryflow-S 5 Rel.

12.33 Queryflow-SC 5 Abs.

12.33 Queryflow-GSPC 10 Abs.

12.28 0.10 QueryDocument-Bwd 6 Rel.

12.25 0.10 Queryflow-SC 10 Abs.

12.21 0.08 QueryDocument-Bwd 12 Rel.

12.21 0.08 QueryDocument-Bwd 12 Abs.

12.16 0.08 QueryDocument-Bwd 2 Rel.

12.11 0.06 QueryDocument-Bwd 6 Abs.

12.01 0.08 Queryflow 5 Abs.

11.97 0.05 QueryDocument-Bwd 2 Abs.

11.92 0.05 Queryflow-SC 1 Rel.

11.89 0.07 Queryflow 10 Abs.

11.77 0.04 Queryflow-SC 1 Abs.

11.64 0.03 Queryflow-SC 10 Rel.

11.60 0.03 Queryflow-SC 5 Rel.

11.13 0.01 Queryflow-SP 1 Rel.

11.04 0.01 Queryflow-SP 5 Rel.

10.94 0.01 Queryflow-SP 10 Rel.

10.62 \.01 Queryflow-SPC 1 Rel.

10.61 \.01 Queryflow-SPC 5 Rel.

10.56 \.01 Queryflow-SPC 10 Rel.

10.43 \.01 Queryflow 10 Rel.

10.39 \.01 Queryflow 1 Rel.

10.36 \.01 Queryflow 5 Rel.

10.28 \.01 Queryflow-GSPC 10 Rel.

10.25 \.01 Queryflow-GSPC 1 Rel.

10.08 \.01 Queryflow-GSPC 5 Rel.
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Baraglia et al. (2009, 2010) show that the transition probabilities in the query-flow

graph change over time. The changes in the graph may reduce the quality of the recom-

mendations if an old query-flow graph is used.

Anagnostopoulos et al. (2010) propose a method for generating query recommendations

based on optimizing the expected path a user will take on the query-flow graph. This can

lead to a better user experience in terms of issuing several interesting queries in sequence,

while keeping the relevance of query recommendations high.

Bordino et al. (2010) embed the query-flow graph (or sub-graphs of it) into a low-

dimensional space. The authors show that this projection preserves semantic distances

between queries while allowing a fast computation of query similarity.

8.3 Future work

In this paper we focus mainly on characterization and pattern mining, but the next natural

step is to use these results as building blocks for several applications. In particular, the

query transition graph can be used to build new query recommendation systems, or to

improve existing ones.

One important feature in recommendations is diversity: we may achieve diverse rec-

ommendations by exploring the transition graph to find an appropriate combination of

specializations, generalizations, and parallel moves. Another issue is to be able to take user

context and history of previous queries into consideration (i.e., recommendation with
history (Boldi et al. 2008)): we may provide recommendations that do not depend only on

the last query, but on the last 3–4 queries, and are in the QRT class that is the most likely to

occur next. Using the the frequency of query reformulation patterns mined from large

query logs, as reported in Sect. 5, we can define a stochastic process that tell us which is the

next most probable QRT: then we can use this information to decide which paths to follow

from the current node in the query graph (i.e, the last user query). Another possible

Table 14 conitnued

D score p-value System Iter. Scoring

9.25 \.01 Queryflow- S2
� �

1 Rel.

9.21 \.01 Queryflow- S2
� �

10 Rel.

9.17 \.01 Queryflow- S2
� �

1 Abs.

9.00 \.01 Queryflow- S2
� �

10 Abs.

6.68 \.01 Queryflow-(SG) 10 Abs.

6.63 \.01 Queryflow-(SG) 10 Rel.

5.75 \.01 QueryDocument-Fwd 12 Abs.

5.71 \.01 QueryDocument-Fwd 6 Abs.

5.69 \.01 Queryflow- SST
� �

10 Abs.

5.61 \.01 Queryflow- SST
� �

10 Rel.

5.49 \.01 QueryDocument-Fwd 2 Abs.

5.05 \.01 QueryDocument-Fwd 6 Rel.

5.04 \.01 QueryDocument-Fwd 12 Rel.

4.83 \.01 QueryDocument-Fwd 2 Rel.
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application, is lookahead recommendation: based on the observation that query recom-

mendations are mostly useful when are specializations, we can visit the specialization

transition graph and recommend queries that are specializations of specializations of the

current query. This may provide some unexpected, yet interesting recommendations, and in

some cases anticipate the user in her own research mission.

Also, composed query reformulation graphs could be a fruitful source of query rec-

ommendations. To show what is the evidence we have found for this, we composed the G
and S graphs to obtain a graph in which each edge indicates a two-step reformulation

(specializing and then generalizing the original query, or viceversa). We weighted the

edges in these graphs by multiplying the probabilities of following each link (these

probabilities are the feature count_norm1 in Table 2). The result of the top SG and GS
paths from a set of example queries in the UK dataset is shown in Table 15, along with the

top parallel moves (P) by count from each example query. In the examples we reviewed,

the SG and GS paths yield interesting recommendations. Comparing them with other types

of path (including, e.g., SST and STS) is one of our projects for extending the current work.

Finally, simultaneously learning both the query reformulation types and how to segment

a session into chains (the two tasks that we identified and separated in the Introduction)

might be a way of achieving a non-trivial improvement in accuracy. This would mean

formulating our task in similar terms as, for instance, the task of part-of-speech and

bracketing in Natural Language Processing. Also the insights obtained from the analysis of

the graph can be used, by imposing an asymmetry constraint between specialization and

generalization during the learning process.

Table 15 Example showing the possibilities of composing query reformulation graphs

P-path SG-path GS-path

bike trader

ebay mopeds mopeds

auto trader used motorbikes bike insurance

mcn two wheels mini motos

disney channel

youtube disney playhouse disney

cbbc disney games disney store

you tube games disney

movie downloads

free music downloads free movies free music downloads

music downloads movies movie trailers

bebo free downloads free mp3 downloads

prestwick airport

ryanair glasgow airport glasgow airport

glasgow airport glasgow restaurants in prestwick

edinburgh airport watson car parks prestwick tourist information

sony ericsson

nokia sony ericssons sony center

o2 k800i software sony psp

carphone warehouse w880 pc suite sony vaio
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