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Abstract The critical task of predicting clicks on search advertisements is typically

addressed by learning from historical click data. When enough history is observed for a

given query-ad pair, future clicks can be accurately modeled. However, based on the

empirical distribution of queries, sufficient historical information is unavailable for many

query-ad pairs. The sparsity of data for new and rare queries makes it difficult to accurately

estimate clicks for a significant portion of typical search engine traffic. In this paper we

provide analysis to motivate modeling approaches that can reduce the sparsity of the large

space of user search queries. We then propose methods to improve click and relevance

models for sponsored search by mining click behavior for partial user queries. We

aggregate click history for individual query words, as well as for phrases extracted with a

CRF model. The new models show significant improvement in clicks and revenue com-

pared to state-of-the-art baselines trained on several months of query logs. Results are

reported on live traffic of a commercial search engine, in addition to results from offline

evaluation.
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1 Introduction

In recent years search engines have increasingly provided an easy and accurate way for

people to find sites and information on the web. A significant amount of the success of

search engines can be attributed to their use of implicit data provided by users, such as

links that form the web map, and more explicitly the clicks on search results in response to

a user query. Leveraging this type of data has allowed search engines to provide nearly

perfect results for many common searches, such as navigational searches that intend to find

a specific website, or frequent informational searches as in looking for a popular movie or

musician. The profitability of commercial search engines has also stemmed from the

effective ranking of advertisements, which is heavily based on advertisements’ historical

click rates. A commercial search engine can easily rank advertisements for optimal rev-

enue when sufficient historical data is available; the probability of a user clicking on an

advertisement can be very accurately predicted when an ad has been presented for a

particular query to millions, or even just hundreds, of search engine users.

The task of surfacing useful and accurate information becomes more challenging when

there is less user feedback available. Ranking two similar websites is more difficult if

neither is very connected to other known sites on the web. Similarly, choosing between two

advertisements is more difficult if we have not seen how users respond to these ads in the

past for a particular query. A small number of shorter search queries are very popular and

common enough to collect robust statistics for, but the complete space of user queries is

massive, as can be expected from the combinatorial explosion when queries contain long

strings of words. In this work we quantify the quick decay in available historical data as

queries become longer and more rare. This lack of sufficient history then motivates new

approaches to modeling queries where little to no previous history exists. We propose a

new approach that utilizes history for partial user queries, so that new or rare queries can

benefit from history that has been observed for portions of the complete query. Our

improved models show significant gains in prediction performance for rare queries, while

also slightly improving common queries. In addition, we show that automatic segmentation

of queries is much better than using just simple individual words. Our models focus on

search advertising, where the information provided by clicks is particularly important.

We first present an overview of the sponsored search task in Sect. 2. Section 3 then

describes our baseline models for predicting clicks and relevance. We motivate our new

approach with analysis of historical click statistics in Sects. 4 and 5 then describes our new

approach for collecting history on partial search queries. We evaluate our new models

offline in Sect. 6 and then in live user tests in Sect. 7. Previous work is discussed in Sect. 8.

Finally, we summarize our results and conclude in Sect. 9.

2 Overview of sponsored search

The primary source of revenue for major search engines is from advertisements displayed

during user searches. The online ad spend of advertisers has been growing significantly

over the past few years (http://www.emarketer.com/Article.aspx?id=1006319). A search

engine typically displays sponsored listings on the top and the right hand side of the web-

search results, in response to a user query. The revenue model for these listings is ‘‘pay-

per-click’’ where the advertiser pays the search engine only if the advertisement is clicked.

The advertiser ‘‘targets’’ specific keyword markets by bidding on search queries. For

example, an advertiser selling ‘‘shoes’’ may bid on user queries such as ‘‘cheap shoes’’,
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‘‘running shoes’’ and so on. Sponsored search offers a more targeted and less expensive

way of marketing for most advertisers as compared to mass media like TV and newspapers,

and has therefore gained momentum in recent years.

We now describe the search engine monetization (SEM) terminology used in this paper.

The terminology is similar across most of the major search engines. An advertising

campaign consists of many ad groups; each ad group in turn consists of a set of related

keywords for a campaign. For each adgroup, there is a set of bidterms or keywords that the

advertiser bids on, e.g., sports shoes, stilettos, canvas shoes etc. A creative is associated

with an ad group and is composed of a title, a description and a display URL. The title is

typically 2–3 words in length and the description has about 10–15 words. Clicking on an ad

leads the user to the landing page of the advertiser.

An advertiser can choose to use standard or advanced match for the keywords in an ad

group. For example, enabling only standard match for the keyword ‘‘sports shoes’’, will

result in the corresponding creative being shown only for that exact query. Whereas, if the

keyword is enabled for advanced match, the search engine can show the same ad for the

related queries ‘‘running shoes’’ or ‘‘track shoes’’. A bid is associated with each keyword

and a second price auction model determines how much the advertiser pays the search

engine for the click (Edelman et al. 2007).

Most search engines typically take a multi-stage approach to selecting and serving

advertisements. The typical stages in a search advertisement system are as follows: (1)

retrieval: finding a candidate set of ads for a query, (2) relevance filtering: a more

complex second pass model that filters non-relevant ads for the query, and (3) click
through rate prediction: estimating click through rate for the retrieved ads and ranking

ads on the search page. A high level overview of our advertisement retrieval and relevance/

click prediction system is shown in Fig. 1.

2.1 Advertisement retrieval

Past work on finding relevant ads for a query has typically used one of two different

approaches: (a) a query rewriting approach (Jones et al. 2006, Radlinski et al. 2008) or a

Fig. 1 A high level overview of a sponsored search system. Candidate ads are retrieved using various
information retrieval techniques and then more complex models may be used for relevance filtering. Finally
the click prediction system outputs the probability that an ad is likely to be clicked for a query. The output of
the click model along with the advertiser bid is then used to determine the ranking and placement of ads on a
search results page. The click and relevance prediction models make use of several features derived from
user click feedback. The tables containing click through rate statistics are regularly updated
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(b) direct query-ad approach (Broder et al. 2008, Raghavan and Iyer 2008). In query

rewriting, the goal is to generate a relevant rewrite qj for a given query qi. Then ads

associated with the bidterm qj are retrieved in response to input query qi. In direct query-ad

matching the ads are treated as documents with multiple sections that correspond to the

creative and perhaps the landing page. Following standard information retrieval and web-

search methods, an input query is used to retrieve and rank candidate ads. We describe

these different approaches briefly in this section to give the reader a picture of our overall

system, but the remainder of our work will focus on relevance and click rate prediction.

Typical query re-writing approaches learn from user query transformations extracted

from web-search logs (Jones et al. 2006, Zhang and Nasraoui 2006). These transformations

include similar queries and sub-phrases in query reformulations that are obtained from user

sessions in the logs. These methods have been shown to work well in practice. One query

re-writing approach used in our system that accounts for significant recall is a LBQS (log
based query substitution) approach (Jones et al. 2006). Taking an example from the

original paper, given a query ‘‘catholic baby names’’, the method considers rewrites of the

original query such as ‘‘baby names’’ and ‘‘catholic names’’. In addition rewrites are also

generated by segmenting the original query as (catholic) (baby names) and considering

insertions, deletions and substitutions of the individual segments in the query log giving

alternative rewrites like ‘‘(christian) (baby names)’’, ‘‘(baby names)’’ etc. A log-likelihood

ratio threshold is used to filter out query pairs that co-occur frequently by chance (due to

the high query frequency of the individual queries). A second query rewriting approach

used in our system is the collaborative filtering approach that learns rewrites from the

click-graph. This system is described in detail in (Anastasakos et al. 2009). The different

query rewriting approaches are combined by a machine learning model which for a given

query ranks the list of rewrites. The model computes the similarity of the new query to the

original query taking into account lexical constraints and the frequency of the proposed

transform in the logs. Rewrites above a certain score threshold are used to retrieve new ads.

In addition to query rewriting approaches described above, we also use a traditional

information retrieval system, where ad creatives are indexed like documents. The retrieval

model uses a query likelihood language model (LM) akin to the work of Ponte and Croft

(1998). The system ranks documents by the probability that a document is relevant given a

query. In our LM formulation the probability that an ad (ai) i.e., a creative is relevant to a

query (q) is given as (Raghavan and Iyer 2010):

pðaijqÞ ¼
pðqjaiÞpðaiÞ

pðqÞ ð1Þ

In a multinomial approach, the words (wi) in q are assumed to be i.i.d. Therefore,

pðqjaiÞ ¼
Qjqj

j pðwjjaiÞ, where pðwjjaiÞ is a smoothed probability of a word wj being

generated by the document a. All ads are stored in an inverted index and the entire corpus

is scored in an effective and efficient manner at run-time. This language modeling

framework is used in parallel with the query rewriting approaches to generate candidates to

be sent to the relevance and click model.

While some of the query-rewriting techniques that are based on click-logs work well for

queries commonly observed in the logs, the language modeling approach is effective even

in the tail. On the other hand the language model based retrieval technique is restricted to

word overlap between the query and the document whereas methods like the LBQS can

retrieve a sneakers ad for a running shoes query. The different retrieval techniques are

therefore complementary and in our experience we have found that pooling candidates
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from such diverse approaches works best for ad-retrieval. Ads obtained from the different

retrieval techniques are de-duplicated and then sent to a relevance filtering and click-

through rate prediction system which are described in the following sections.

2.2 Relevance filtering

Our relevance filtering approach estimates a candidate ad’s relevance in the context of a

user query. The task is very similar to estimating relevance in web-search, but one major

difference is that in sponsored search users have a lower tolerance for bad ads than they do

for bad web-search results. We refer the reader to the study of Jansen and Resnick (2005)

for further details on user perceptions of sponsored search. Many queries do not have

commercial intent. For example, displaying ads on a query like ‘‘formula for mutual

information’’ may hurt user experience and occupy real-estate on the search results page in

a spot where a more relevant web-search result might exist. Therefore, in sponsored search,

we prefer not to show any ads when the estimated relevance of the ad is low. For this

reason, in this paper we specifically focus on perceived relevance, meaning the relevance

of the ad as seen by the user, and not the final relevance of the ad’s landing page. Beyond

creating a bad user experience, irrelevant ads also create a poor advertiser experience by

increasing costs to other advertisers. An irrelevant advertisement with a high bid can affect

the cost paid by an advertiser whose ad is shown above this irrelevant ad in the second

price auction. In this second stage we can apply a more complex relevance model that need

not be constrained by the more limited set of features which we are restricted to in the

optimized inverted index based ad retrieval during the first stage.

2.3 Click through rate prediction

The final ad ranking displayed on the search engine is a product of the cost and the

predicted Click Through Rate (CTR) of the ad. Given a set of ads fa1. . .ang shown at ranks

1, …n for a query q on a search results page, the expected revenue is given as:

R ¼
Xn

i

Pðclickjq; aiÞ � costðq0; ai; iÞ ð2Þ

where cost(q0, ai, i) is the cost of a click for the ad ai at position i for the bidterm q0. In the case

of standard match q ¼ q0, where for advanced match q0 was selected in the retrieval phase.

Most search engines rank the ads by the product of the estimated CTR (P(click|q, ai)) and cost

in an attempt to maximize revenue for the search engine. Therefore, accurately estimating the

CTR for a query-ad pair is a very important problem. As discussed earlier, the primary data for

predicting the probability of click are historical CTR statistics for query ad pairs that have

been previously shown to users. However, there often may not be sufficient history because

the ad inventory is continuously changing with advertisers adding, replacing and editing ads.

Likewise, many queries and ads have few or zero past occurrences in the logs. These factors

make the CTR estimation of rare and new queries a challenging problem.

3 Baseline relevance and click models

The following sections describe the details of our state-of-the-art baseline models for ads in

the context of a user query. We first describe our basic features and then two
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complimentary models, one that estimates relevance as judged by trained human editors,

and one that estimates the probability of a user clicking on a given ad.

While relevance and clicks are highly related there are important differences. Editorial

assessment of relevance typically captures how related an advertisement is to a search

query, while click-through-rate (CTR) provides a signal about the attractiveness of an ad.

The two measures can diverge: an ad to ‘‘Buy Coke Online’’ is highly related to the search

‘‘cocacola’’ although the CTR would likely be low because very few people are interested

in buying Coke over the Internet; conversely an ad for ‘‘Coca Cola Company Job’’ is less

related to the query, but could obtain a much higher CTR in our logs because the ad is

highly attractive to users in a down economy. A more drastic example is an ad to ‘‘Lose

weight now’’ that often receives a large number of clicks independent of what search term

the ad is shown for (in most cases the ad would be judged to have low relevance to any

particular search term). We focus on modeling click probabilities in order to estimate

expected revenue and optimally rank candidate ads, but we also predict ad relevance in

order to filter low quality ads.

3.1 Baseline features

The two related modeling tasks share a common set of basic features, which can be

categorized into two main groups: text features, and historical click rate features. Text

features are designed to capture the impact of the perceived relevance of an ad compared to

the user’s search query. This group of features plays an important role for the query-ad

pairs that occur rarely in our training data, but less so when sufficient historical features are

available.

The basic text features incorporate 19 types: query length plus six features that each

compare the query to the three zones of an ad (the title, description and display URL).

These six features included word overlap (unigram and bigram), character overlap (uni-

gram and bigram), unigram cosine similarity, and a feature that counted the number of

bigrams in the query that had the order of the words preserved in the ad zone (ordered

bigram overlap).

The second set of features, historical CTR features, are the most critical features used in

our click models, and also provide a strong signal in relevance prediction. The past per-

formance of a query-ad pair, when available, is a very accurate estimate of its future

performance. The naive way of measuring historical CTR would be: CTRðq; aÞ ¼
clicks(q,a)/imp(q,a) where imp(q, a) is the number of times where query and ad were

shown together, and clicks(q, a) is the number of times those impressions were clicked.

However this definition would ignore the position-bias (Craswell et al. 2008, Joachims

et al. 2005, Richardson et al. 2007) completely. To account for the fact that users tend to

examine certain parts of the page more than others, we use a position normalized CTR

metric known as clicks over expected clicks (COEC) (Zhang and Jones 2007):

COECðq; aÞ ¼
P

p clickpðq; aÞ
P

p imppðq; aÞ � CTRp
ð3Þ

where the numerator is the total number of clicks received by a query-ad pair; and the

denominator can be interpreted as the expected clicks (ECs) that an average ad would

receive after being impressed ip times at position p. CTRp is the average CTR for position

p computed over all queries and ads. Note that the EC in this formulation does not only

depend on rank, but it also depends on the section of the page the ad was shown in. While it
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has been shown that the COEC model is not perfect (Chapelle and Zhang 2009), it provides

a significant improvement at almost no computational cost.

We collect COEC and EC statistics for every unique query and ad pair we observe.

However, due to the dynamic nature of the domain (where advertisers are constantly

changing their ads and campaigns to optimize their returns, and users are always searching

for something new), we cannot have enough history to get reliable measures for most of the

items we see in live traffic. To mitigate this problem, we measure clicks and expected

clicks at different levels of specificity in query and ad space. As described in Sect. 2,

advertisers organize their ads in hierarchies. An obvious way to increase the coverage of

historical features would be to calculate clicks and expected clicks at various stages of this

hierarchy, such as bidterm, ad group, campaign, domain, and advertiser. We also collect

COEC and EC of an ad and the matching method used in retrieving it (standard or

advanced), across all queries. Similarly we can collect only query dependent statistics.

Such features can tell us something about the commercialness of the query. Finally, we

also collect statistics for combined query and ad pairs, such as query-domain, query-

adgroup, query-bidterm, and query-bidterm-creative.

We collect these COEC and EC statistics in the backend and update the online lookup

tables every few hours. The backend process uses up to 3 months of history. We retire data

that is older than 3 months due to privacy concerns. We also limit the number of obser-

vations used in the COEC and EC computation because we want to adapt to the changes in

users’ click behaviors quickly. For a frequent query ad pair, we might reach this limit in

1 day, and hence compute the statistics only for the last day, whereas we might need all

3 months of data for a rare item. This maximum observations threshold was tuned to

optimize the offline model performance.

Text features and historical click rate features are used in both relevance and click

modeling. However, there are features that make sense only in the context of click pre-

diction. As discussed throughout this paper and in (Craswell et al. 2008; Joachims et al.

2005; Richardson et al. 2007; Srikant et al. 2010), the same ad shown in different positions

will receive different click rates, whereas its relevance will obviously not be changed.

Presentation features are included to capture such biases in click modeling. We use the

section the ad was shown in (i.e., above, below, or next to the organic results) and its rank

within that section. We also added the index of the first occurrence of a query term in the

ad title and description as a feature, to capture the impact of changes in text presentation

(such as bolding of query terms when such a match occurs).

Time of day and day of week are another set features that are used only in the click

model. While the relevance of an ad to a query might also change over time, it usually is

stable within such short periods, and the changes are not as periodic as the user’s click

rates.

3.2 Relevance prediction model

Based on the features described in the previous section, we learn a model of ad relevance.

We can then use predicted relevance to improve our sponsored search system by filtering

low quality ads (and also by providing a predicted relevance feature to the click model).

Our relevance model is a binary classifier trained to detect relevant and irrelevant

advertisements, given a particular search term. We have experimented with multiple

learning approaches, but found Gradient Boosting Decision Trees (GBDT, Zheng et al.

2008) to consistently perform the best.
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The target for our models was generated from editorial data on a five point editorial

scale (Perfect, Excellent, Good, Fair, Bad), where we consider all judgments better than

‘‘Bad’’ as relevant and the remaining ‘‘Bad’’ judgments as irrelevant ads. Judgments are

performed by professional editors that achieve reasonable consistency. Our training set

contains about 100 k editorially judged query ad pairs. Our precision and recall results for

detecting relevant ads are reported on an editorial test set of 50 k query ad pairs. Training

and test data were retrieved from our advertiser database with an ad retrieval system as

described in Sect. 2.1 (an average of 10 ads is retrieved per query). The data contains 15 k

unique queries, which were selected based on a stratified sample of search engine traffic

that represents all ten search frequency deciles.

Incorporating User clicks in relevance modeling Our relevance model can predict

relevance with reasonable accuracy based on just the simple text overlap features, but it

will fail to detect relevant ads if no syntactic overlap is present. An ad with the title ‘‘Find

the best jogging shoes’’ could be very relevant to a user search ‘‘running gear,’’ but our

baseline model has no knowledge that running and jogging are highly related concepts. We

can introduce historical click rates for leveraging user click data to learn more semantic

relationships between queries and ads.

Historical click observations for a query-ad pair can provide a strong indication of

relevance and can be used as features in our relevance model. User click rates often

correspond well with editorial ratings when a sufficient number of clicks and impressions

have been observed. The relationship is however not deterministic (as discussed earlier), so

we allow the model to learn how to incorporate observed click rates. Our baseline model

incorporates the text and historical features as described in Sect. 3.1 above. Additional

details and applications of the baseline relevance model can be found in (Hillard et al.

2010).

3.3 Click through rate prediction model

We treat the click through rate prediction task as a supervised learning problem. Major

search engines typically see tens of millions of queries a day, and a correspondingly large

number of user clicks on ads as a response to these queries. We record the user response to

each query-ad pair (1 if the user has clicked, 0 otherwise) that was presented to the user,

and use this data to learn a model for predicting the CTR.

Various methods have been proposed in the recent years for the CTR prediction task.

We can classify these methods into two broad categories: (1) session modeling approaches

(Agichtein et al. 2006; Chapelle and Zhang 2009; Dupret and Piwowarski 2008; Guo et al.

2009; Joachims et al. 2005; Srikant et al. 2010; Xu et al. 2010) where the focus has been

on identifying the factors that affect users’ behavior and using generative graphical models

to explain those; (2) regression or binary classification methods where each query-docu-

ment pair is an individual sample and all the factors that have an impact on the users’ click

behavior are captured in the features (Ciaramita et al. 2008; Richardson et al. 2007;

Shaparenko et al. 2009). We chose the second approach because modifying the session

models to handle previously unseen documents or queries by using features representations

instead of the id’s of the documents and queries would increase their complexity signifi-

cantly. We chose a Maximum Entropy (maxent) model to estimate the CTR’s because the

learning approach can be efficiently parallelized, allowing us to easily scale the training to

billions of examples.
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The maxent model, also known as logistic regression, has the following form:

pðcjq; aiÞ ¼
1

1þ exp
Pd

j¼1

wjfjðq; aiÞ
 ! ð4Þ

where fjðq; aiÞ is the j-th feature derived for query-ad pair shown in position i (q, ai) and

wj [ w is the associated weight.

Given the training set D, we learn the weight vector w by maximizing the regularized

likelihood:

w ¼ max
Xn

j¼1

logðpðcjjq; aiÞÞ þ logðpðwÞÞ
 !

ð5Þ

where the first part represents the likelihood function and the second part uses a Gaussian

prior on the weight vector w to smooth the maxent model (Chen and Rosenfeld 1999).

Maximum likelihood estimation for maxent is a well studied problem (Minka 2003). In this

work, given the large collection of samples and high dimensional feature space, we use a

nonlinear conjugate gradient algorithm (Mordecai 2003).

The maxent framework has many advantages, however learning the non-monotonic

relationships between the features and the target or the non-linear relationships among

features requires more engineering on the features side. In order to enable the model to

learn non-monotonic feature-target relationships we quantize the continuous features. We

use a simple K-means clustering algorithm with the following objective function:

arg min
Xk

j¼1

X

vi2Cj

jjvi � ujjj2 ð6Þ

where vi is the feature value, uj is the centroid of the cluster Cj and k is the number of

clusters. We introduce binary indicator features for each cluster, and use a 1-in-k

encoding as input in the maxent model. We also introduce a binary indicator feature to

indicate that a certain value is missing, which is common for historical COEC and EC

features. We used a grid search algorithm to identify the optimal number of clusters

and found that the performance of the model was fairly stable for 10 � k � 20. We

compared the performance of the K-means based quantization to a decision tree based

approach and did not see any significant difference in the final click prediction

performance.

To model the relationships between different features, we create conjunction features

by taking the Cartesian product of the binary indicators for pairs of features. Some of

the conjoined features are selected using domain knowledge. We use conjunctions

between COECs and expected clicks, for instance, because we expect that the COECs

will be more reliable when ECs are high. Additionally we use an automated method to

select from the list of all possible cross products. This iterative method looks at the

improvement in log likelihood of the model on a held out data set for each candidate

cross product feature, selects those candidates that provide the biggest gains, and starts

the process again with the new features included to the baseline model. We also use a

frequency cut off to eliminate the rare features. The threshold value is tuned to keep

the minimum number of features without any significant degradation in the offline

model performance.
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Our baseline model contained approximately 20 K features after quantization, con-

junctions and selection. The model was trained on approximately 900 M samples (sampled

from 2 months of real traffic, which contains repeated query-ad pairs).

4 Sparsity in click logs

Our models for predicting relevance and clicks provide robust estimates when sufficient

click history is available because most query-ad pairs do not change in relevance or click

attractiveness very quickly. The challenging modeling task is to approximate these measures

when we have not observed the event with sufficient frequency to make the simple prediction

based on observed history. The frequency distribution for query-ad pairs has a long and

heavy tail for low frequency occurrences, given the extremely large number of possible

queries as compared to the number of queries that we actually observe in our click logs. In

addition, we have a large number of potential advertisements (in the hundreds of millions)

that can be paired with this large query space. The combination of these environments results

in observed click logs that only contain few to no examples for most unique query-ad pairs.

This sparseness in observed events can be reduced by sharing information across

entities to simplify the feature space. In the case of advertisers we can accomplish this by

sharing click history for advertiser-created ad groups and campaigns, or for entire

advertisers. In practice this provides some form of historical observation for most adver-

tisements that we observe in our live system. We determine how often sufficient historical

observations are available by analyzing a large sample of candidate ads for a query set that

spans the range of query frequencies. For the purposes of this analysis, we use a threshold

of three expected clicks to mean we have sufficient observations for a reliable estimate,

although the trends are similar for any particular threshold. When we have seen three

expected clicks in the logs we can assume some amount of useful information has been

conveyed, and this also means we have typically observed 10s to 100s of impressions of an

ad, depending on the rank it was displayed at. At the advertiser account level we observe

98% historical coverage, 97% at the display URL level, 69% at the ad group level, 63% at

the creative level, and 29% at the individual bidterm-creative ad level. We do not directly

address the issue of sparseness in the advertiser space for the remainder of this paper

because we have reasonable coverage, although there is room for better approaches to

sharing history across advertisements.

The spareness of historical observations in the query space is a much larger issue, pri-

marily due to the large set of possible queries. When history is aggregated across queries we

find that 61% of our representative set has greater than three expected clicks, which is

significantly less when compared to the broad advertiser history levels. Figure 2 illustrates

the impact of query history on the performance of the baseline click model. We see that the

accuracy of the model drops drastically when less historical query observations are available.

The most specific and accurate historical observations are for individual query-ad pairs,

but coverage is minimal with sufficient observations for only 3%. As discussed in Sect. 3.1,

we can aggregate the query with the various levels of the advertiser hierarchy to obtain

additional coverage. We find 6% coverage at the query-ad group level, 8% at the query-

display URL level, and 11% coverage at the query-bidterm level. This low coverage of

historical observations for most query-ad level aggregates motivates approaches to better

share observed history across queries. The next section proposes a new method for

aggregating historical features based on partial queries, which can allow for much broader

coverage of the user query space.
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5 Click history for partial queries

To address the specific problem of overcoming the sparsity of click data for rare queries,

we break a query into individual segments or phrases (s1. . . sn) and estimate COEC using

the weighted average of historical segment level COEC information for the query segments

si and ad, a, pairs as follows:

dCOECðq; aÞ ¼
X

i

COECðsi; aÞPðsijqueryÞ ð7Þ

COEC(si, a) is similar to Eq. (3), except that we aggregate clicks and impressions per

segment si and ad a pair, rather than per query and ad pair. When expected clicks

(EC ¼
P

p imppðsi; aÞ � CTRp) for a particular segment si and ad a is 0, we can then back

off to the average value for that segment, i.e. EC(si).

Fig. 2 Change in precision-recall for varying levels of query history

Table 1 The below example illustrates the top 3 segmentation hypotheses (segHypj) for an example query

Segmentation hypothesis p(segHypj|query)

| New York times square | 0.552

| New York | times square | 0.394

| New York | times | square | 0.135
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5.1 Query segmentation

In order to detect segments si and estimate the probability of the segments being generated

from the query (P(si|query)), we first use a probabilistic segmenter to estimate a distri-

bution P(segHypj|query) over all possible segmentation hypotheses segHyp1. . .segHypm of

a query (see Table 1 for an example).

Given a probability distribution over possible segmentation hypotheses of a query, we

get:

PðsijqueryÞ ¼
X

j

PðsijsegHypjÞPðsegHypjjqueryÞ ð8Þ

We now describe the procedure for estimating P(segHypj|query) and PðsijsegHypjÞ
respectively.

EstimatingP(segHypj|query): Several models for probabilistic segmentation of

sequences of text exist in the literature (e.g., Li et al. 2009; Rabiner 1989). These

sequential models typically aim to label the tokens q1; q2. . .qn (of a piece of text such as a

query/document) with a sequence of labels y1; y2. . .yn. For our task yi is a binary indicator

variable where a value of 1 denotes the beginning of a segment (B-SEG) and 0 denotes that

the token is the continuation of a segment (I-SEG). Let segHypj ¼ yj1. . .yjn denote a

possible segmentation hypothesis of the query (see Table 1 for an example).

Among the many probabilistic segmentation models that exist in the literature, Con-

ditional Random Fields (CRFs) have typically been quite successful (Li et al. 2009). The

conditional probability P(segHypj|query) is given as:

pðsegHypjjquery; KÞ ¼ 1

Zðquery; KÞ exp
X

k

kk

Xn

i

fkðyi�1; yi; query; iÞ
( )

ð9Þ

where fkðyi�1; yi; query; iÞ is a feature function and K ¼ fkig are the learned feature

weights. We have several features based on dictionaries of people names, celebrity names,

stopword lists and the top phrases in the query logs. CRFs are particularly attractive

because we can use arbitrary feature functions on the observations.

We use the CRF?? toolkit1 to train the model. The model is trained in a supervised

fashion on 6,000 queries annotated by humans. The human annotators were given queries

that were pre-segmented by an unsupervised Hidden Markov Model (HMM) similar to

(Tan and Peng 2008). The annotators were then asked to correct the segmentations for

errors. We have found that agreement rates among annotators are typically around 80% for

this task. We evaluated our segmentation models with Word Error Rate (WER), which is

the error rate of classifying an individual word into B-SEG or I-SEG classes. The HMM

and the CRF both had 14% WER on a separate held out set of 3,000 queries. The WER of a

naive unigram classifier that always predicted B-SEG was 28%.

While WER is reasonably indicative of performance, it does not accurately represent the

performance of the segmenter for phrases that are important for advertising. Therefore, we

also obtained a different data set of about 1,000 queries where annotators were asked to

mark key words and phrases that are important for preserving the original meaning of the

query and that must be matched in a relevant advertisement. For example, a query like

‘‘how do i find parking around san jose’’ may be annotated as ‘‘how do i find (parking)

around (san jose)’’. This second evaluation data set allows us to measure the the accuracy

1 http://crfpp.sourceforge.net/.
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of the different segmentation approaches in detecting the key phrases that are central to the

meaning and intent of the query using a metric we call phrase-WER. To compute phrase-

WER we go over each of the key phrases in the query and for each phrase measure the

error rate of classifying its individual words as B-SEG or I-SEG. The WER of the phrases

in a query are averaged to give an average WER per query. The final phrase-WER metric

for the test set is the overall mean computed over each query’s phrase-WER. Using this

new metric, the HMM and CRF have error rates of 24 and 19%, respectively (with 28% for

the unigram model). If we compute this metric strictly on multiword phrases, the two

methods have error rates of 19 and 18%, respectively (with 45% for the unigram model).

Given the better performance of the CRF model across multiple metrics and test sets we

use it throughout the rest of our downstream experiments.

Alternatively, we also found that dictionary based segmentation can achieve accuracy

similar to that of the CRF, but is highly dependent on the quality of the dictionary. The

CRF on the other hand requires much less manual tuning and can generalize better to

unseen phrases. In addition, machine learned models provide n-best segmentation

hypotheses with probability values that can then be directly used by our downstream

model.

Estimating PðsijsegHypjÞ: We assume a maximum likelihood model to estimate the

probability of a segment si being observed given a particular segmentation hypothesis

(segHypj) of a query as:

PðsijsegHypjÞ ¼ 1=jsegHypjj; 8si 2 segHypj

¼ 0 otherwise

where |segHypj| is the number of segments in a segmentation hypothesis (segHypj). This

assigns uniform probability to each segment within a segmentation hypothesis.

5.2 Aggregating segment level historical CTR

We can now collect new click-rate statistics at the query segment level, as opposed to the

baseline model that only collects statistics for whole queries. We weight query segments by

their predicted segmentation confidence and proceed to collect click and expected click

counts for various aggregations. In this work we collect statistics for all query segments, all

query segment and ad pairs, as well as query segment and ad domain pairs. The online

lookup tables contain on average 15 million unique query segments, 40 million unique

query segment and domain pairs, and 70 million unique query segment and ad pairs. The

n-best segmentations from the CRF model are used in Eq. (7) to estimate P(click|query),

P(click|query, adid) and P(click|query, domain).

We investigate the use of several other features derived from COEC(si, a): maximum

COEC(si, a) per query, minimum COEC(si, a) per query, the number of segments for

which the ad id had historical CTR data, and the number of segments for which the domain

had historical CTR data. One can view Eq. (7) as a weighted average of COEC(si, a)’s

since
P

i PðsijqueryÞ adds up to 1. Given this perspective we also computed the weighted

geometric mean of COEC(si, a)’s using expð
P

i PðsijqueryÞlogðPðclickjsi; aÞÞ.
In order to assess the utility of the segmentation algorithm we also collected click-rate

statistics with a naive segmentation where each segment is a single word. Here we again

used Eq. (7) to estimate the COEC based on unigram clicks and expected clicks. We also

generated the same set of additional features described above using these unigram COEC

aggregates.
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6 Offline evaluation

6.1 Relevance prediction

We report performance for human labeled query-ad pairs judged on a standard five point

relevance scale (Perfect, Excellent, Good, Fair, Bad). For training and evaluating our

filtering classifiers we mark all instances with a rating of ‘‘Fair’’ or better as relevant and

we measure precision and recall of relevant ads.

Figure 3 presents the precision and recall curves for three models: the baseline model

with standard text and historical features (baseline), the baseline model with additional

features based on segment overlap (textCRF), and the baseline model with both segment

text overlap and segment click feedback features (textCRF?clickCRF). The textCRF
features compute the same set of basic text features described in Sect. 3.1, but treat the

predicted segments as atomic units, whereas the baseline features use simple words as

atomic units. The textCRF model slightly outperforms the baseline model at the maximum

Fig. 3 Precision recall with text-based and click-based CRF features

Table 2 Filtering rates (numbers in parentheses indicate the approximate number of query-ad pairs)

Grade (# instances) Baseline TextCRF ClickCRF All

1) Perfect (200) 0.016 0.016 0.026 0.032

2) Excellent (250) 0.197 0.185 0.168 0.168

3) Good (5k) 0.154 0.150 0.139 0.128

4) Fair (18k) 0.308 0.304 0.289 0.292

5) Bad (18k) 0.680 0.680 0.680 0.680

Lower values for perfect, excellent, good and fair are better and a higher filtration rate for bad is better

Bolded values indicate best performance
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F-Score point (p \ 0.02). The combined textCRF?clickCRF significantly outperforms the

baseline model (p � 0.01).

Table 2 provides the distribution and filtration rates for the five relevance grades for

each model. For each model we pick the operating point that keeps the bad filtration rate

constant and measure whether the new model retains more Perfects, Excellents, Goods and

Fairs. The segment overlap features in textCRF show some improvement in recall, but the

clickCRF features provide the largest improvement by decreasing the Excellent, Good and

Fair filtration rates as compared to the baseline. Adding the two together (all) provides

some recall for ‘‘Good,’’ but segment click features provide the primary gains.

6.2 Click prediction

We trained a new click model with the segment based click-rate features described in Sect.

5.2 and compared it to the baseline model that was introduced in Sect. 3.3 We used the

same training data set, same K-means parameters, and the same frequency threshold for

both models. We tested the models on a data set which was sampled from 2 weeks of real

user traffic (100 M query-ad pairs). The sampling process was designed such that the users

who appeared in the training data were excluded from the test data, and the 2 weeks that

were used in testing proceeded the training period. We used log likelihood to measure how

well the models fit the data, and area under the precision recall (P-R) curve to determine

how effectively we can predict the clicks.

Table 3 presents the results of three models for various levels of query history. To slice

the data by query history we use the Query EC (expected clicks) as a surrogate for

frequency. The concept of EC was introduced as part of Eq. (3) and denotes how often the

query has been observed with ads in the logs. A value of -1 indicates that the query was

not present in the online lookup tables at the time of the request. In Table 3 we show

results for the unigram model that uses the unigram based click-rate features, the segment

model that uses the segment based click-rate features and the combined model that was

trained using both sets of features. In this table we show the performance of these models

compared to the baseline model described in Sect. 3.3 We see that all three models show

nice gains for the cases where Query was unknown (see Fig. 4 for a closer view). The

unigram model shows about 4.7% improvement in P-R (measured by area under the curve,

Table 3 Improvement in log likelihood (LL) and AUC of the precision recall curve (PR) for varying query
history slices

Slices Unigram model Segment model Combined model

LL (%) PR (%) LL (%) PR (%) LL (%) PR (%)

Q EC = -1 0.8 4.7 1.4 8.5 1.5 8.8

Q EC = 1.5 0.7 3.1 1.2 6.3 1.2 6.4

Q EC = 3.5 0.5 2.6 0.9 4.4 0.9 4.6

Q EC = 12 0.4 2 0.6 3.4 0.7 3.6

Q EC = 45 0.1 0.2 0.2 0.6 0.2 0.6

Q EC = 540 -0.04 -0.1 0.04 0.0 0.05 0.0

Q EC = 2328 -0.1 -0.2 0.02 0.0 0.02 0.0

Q EC = 5,000 0.0 0.0 0.1 0.7 0.1 0.8

Most of the gains in the combined model are obtained from the segmentation model

Bolded values indicate best performance
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AUC) and the segment features almost double the gain (8.5%). Although combining the

two sets of features show some additional gains, the difference compared to the segment

model is fairly small. We see that the unigram model starts showing some degradation for

queries with higher expected clicks (Q EC=540 and 2,328), however the segment model

does not share this pattern. In fact, if anything, we see gains with the segment model in

these higher EC slices.

In Table 4 we show the performance of the models for standard and advanced match.

The segment model, again, shows much larger gains compared to the unigram model, and

the combined model performs very much like the segment model. Gains are much larger in

the advanced match slice. This behavior is expected because advanced match is a more

relaxed matching method and therefore covers less frequent query-ad pairs. The unigram

model is neutral for the standard match, but we see some small yet statistically significant

gains (p \ 0.01) with the segment model.

7 Online evaluation

We further tested the segment based relevance and click models on live traffic. Given the

large user base of the commercial search engine that we had access to, it was possible to

expose our algorithm to several million users and reliably collect statistics over a

Fig. 4 Precision/recall curve for no query history slice

Table 4 Improvement in log likelihood (LL) and AUC of the precision recall curve (PR) by matching
method

Slices Unigram model Segment model Combined model

LL (%) PR (%) LL (%) PR (%) LL (%) PR (%)

Standard match 0.1 0.1 0.2 0.4 0.2 0.5

Advanced match 0.5 2.5 1 4.7 1 4.9
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sufficiently long period of time. Using a large number of page-views containing candidates

ranked and filtered by our proposed system and the baselines, we can reliably estimate

measures that indicate the quality of the individual systems. In particular, this large-scale

live testing provides the opportunity to evaluate on many new queries which have never

been seen before in our historical logs. Additionally, because in ‘‘pay-per-click’’ adver-

tising the desired goal of the search engine is user-clicks on ads, metrics from such

‘‘bucket-testing’’ can help evaluate the monetization capability of the new algorithm.

Our online experimentation environment is very similar to the single-layered design

described in Tang et al. (2010). In a nutshell, in bucket tests the user population is divided

into random subsets (or ‘‘buckets’’). The users who are assigned to the control bucket are

shown the ads from the baseline system, whereas the users in the experimental buckets are

exposed to new retrieval, filtering or ranking algorithms. This allows us to compare the

effectiveness of the new methods to the baseline (or production) system by directly

measuring user metrics, such as clicks per search, as well as business metrics like revenue

per search. The randomization algorithm used in assigning the users to buckets ensures that

for two identical buckets the metrics will be indistinguishable.

Below we report the results of our online experiments. We ran the baseline, the new

relevance model, and the segment click model with the new relevance model for several

weeks on a sufficient portion of the live search traffic.

7.1 Relevance prediction

Based on our offline analysis of the relevance model described in Sect. 6.1 we expect to see an

improvement in recall with the clickCRF relevance model. To test this hypothesis we plot the

precision recall curves of the baseline model and the clickCRF model using logged click data

for each experiment. In Table 5 we present the change in the area under the precision-recall

curve for various query history levels. We stopped at query EC = 10, because there was no

significant change for queries with higher ECs. We see gains in all slices, except for the case

where query EC is between 3 and 5. This set is the smallest group in our evaluation set and

shows large variations in the lower recall range. The rest of the query EC slices show a

common trend: large improvements in precision for the lower recall regions. Figure 5 shows

this behavior for the query EC\3 slice. If we wanted to get 50% precision with the baseline

model we would have to lower the recall to 2.5%, however when filtering with the clickCRF
relevance model we can get the same precision in click prediction at 7.5% recall.

7.2 Click prediction

In Fig. 6 we present the precision-recall performance of the baseline and the segment click

model on the missing query history (Q EC = -1) slice. Comparing this to Fig. 4, the

Table 5 Click precision-recall
performance of the clickCRF
relevance filter

Query EC slice % Change in
P-R AUC (%)

Q EC = -1 ?2.6

Q EC � 1 ?2.2

Q EC � 3 ?15

Q EC � 5 -2

Q EC � 10 ?2%
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offline analysis of the same slice, we can say with confidence that the online performance

of the model matches what we observed in our offline setup.

As mentioned in Sect. 2, the predicted CTR is also used in revenue estimation and

pricing. Therefore the accuracy of the CTR predictions must also be measured. In Fig. 7

we compare the predicted CTR (y axis) to the observed CTR (x axis) for the queries with

no history. Each point in this correlation graph corresponds to a bin of query-ad pairs. The

query-ad pairs were grouped into bins by using an equal size binning algorithm after being

sorted by their predicted CTRs. The size of the bins was calculated using the normal

Fig. 5 Click precision/recall curve with clickCRF relevance filter for query EC \ 3

Fig. 6 Precision/recall curve of the segment click model and baseline for missing query history slice. The
graph represents performance of the new approach on live traffic
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Fig. 7 Correlation graph of the segment click model for missing query history slice. The correlation of the
new segment click model is improved (from 0.986 to 0.992, 0.6%)

Fig. 8 Correlation graph of the segment click model for 10 \ query EC B 100
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approximation interval (with 95% confidence). We see that even though the new model

still over predicts the CTR, the correlation of the new segment click model is improved

(from 0.986 to 0.992, 0.6%). We see a 20% reduction in the mean squared error of the

predicted CTR.

The gains of the segment click model are not limited to queries with no or little history.

Figure 8 shows the correlation graph for queries with EC’s between 10 and 100. We see

0.45% increase in the correlation and 40% decrease in the mean squared error rate,

comparable to the gains we saw for queries with no history.

Overall, we found that the combined impact of the models provided an increase in clicks

per search of 1.5% relative, and an overall revenue per search gain of 2% relative (from an

additional slight increase of 0.5% in price-per-click). The increased recall of relevant and

clickable ads, combined with the significant improvements in click model predictions,

provides increased clicks and revenue from the sponsored search system. For large com-

mercial search engines a 2% relative increase in revenue per search represents a substantial

increase in revenue, and this improvement is built on top of a state-of-the-art baseline that

is highly optimized.

8 Related work

While much work has been done on click modeling for search and advertising in the recent

past (Ciaramita et al. 2008; Joachims et al. 2005; Richardson et al. 2007; Srikant et al.

2010), few have focused on estimating the click rates of rare events. In Agarwal et al.

(2007), the authors use an existing hierarchy to estimate CTRs for ads in the content match

problem (the task of showing a relevant ad on a publisher page). Their work assumes a pre-

existing classifier that can categorize a page and an ad into a taxonomy. In our domain the

equivalent of a page is a query and given that a typical web-query is 2–3 words in length, it

is difficult to accurately classify queries into a taxonomy. Recent work by Agarwal (2010)

has developed scalable log-linear models that couple parameters based on feature hierar-

chies, which helps improve learning for rare events. This recent work is complementary to

the new features we develop in our approach, and it would be interesting to combine the

approaches in future work.

Zhou et al. (2007) addressed the issue of sparseness in the document retrieval domain.

They utilized the CTRs of query substrings to estimate the probability of click at the query-

document level. They used a greedy algorithm to combine the words in a query to form

hierarchical ngrams and then estimated the parameters to combine ngram CTRs at every

level of the hierarchy. The authors’ estimation techniques did not take into consideration

the position bias issue in the click logs. We would have liked to evaluate their method to

combine segment level COECs but unfortunately a straightforward implementation of their

method requires significantly more space and effort online than the method described in

this paper, making it impractical for us to test it on live traffic.

Other studies have used attributes of a query to improve CTR estimation. For example,

Ashkan et al. (2009) use query intent analysis to improve CTR estimation for sponsored

search. The click prediction models of (Richardson et al. 2007; Sculley et al. 2009) also

report gains from features that characterize the query by categories or clusters, but they

have not specifically described their approach or assessed the impact in the context of

sparse historical click logs.

Regelson and Fain (2007) predict the click-through rate for rare or novel terms by

clustering bid terms in a hierarchy, but they were not looking at the same click and
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relevance prediction tasks as modern sponsored search systems. In their work the CTR of a

term is predicted based on the CTRs of terms in the same cluster and the parent clusters.

Work by Baeza-Yates (1793) clustered queries based on clicked documents, and found

improvements for query recommendation and result ranking. Their experiments use a

relatively small data set of clicked queries (of about 30 k queries), so the approach does not

provide coverage of rare queries. We have experimented with various clustering approa-

ches internally (such as Beeferman and Berger 2000), but have not found any that provided

significant improvements. In addition, assigning new and rare queries to clusters at run

time is not straightforward and can be computationally expensive.

Rare queries were also addressed in the context of improving retrieval models for

advertising (Broder et al. 2009). However these works do not address the CTR estimation

problem for such queries.

9 Conclusions

We presented an approach for improving sponsored search relevance and click prediction

with features derived from CRF segmentation of user queries. We conducted offline and

online experiments on large amounts of real user traffic and showed that the new features

significantly improve the recall of the relevance filter and the prediction accuracy of the

click model compared to state-of-the-art baselines. We also compared the CRF segmen-

tation to a simplistic unigram model to verify our intuition that the gains coming from

using these features exceed the gains possible from using simple word based click features.

The online experiments demonstrate that our proposed models provide significant gains

in clicks and revenue, which results in considerable impact for commercial search engines.

Our approach successfully reduces the sparsity of the complex space of user search queries,

providing broad improvements to models of relevance and clicks.
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