
FOCU SED RETRIEVA L A ND RESULT AGGR .

FIDJI: using syntax for validating answers in multiple
documents

Véronique Moriceau • Xavier Tannier

Received: 30 April 2009 / Accepted: 30 March 2010 / Published online: 20 April 2010
� Springer Science+Business Media, LLC 2010

Abstract This article presents FIDJI, a question-answering (QA) system for French.

FIDJI combines syntactic information with traditional QA techniques such as named entity

recognition and term weighting; it does not require any pre-processing other than classical

search engine indexing. Among other uses of syntax, we experiment in this system the

validation of answers through different documents, as well as specific techniques for

answering different types of questions (e.g., yes/no or list questions). We present several

experiments which show the benefits of syntactic analysis, as well as multi-document

validation. Different types of questions and corpora are tested, and specificities are com-

mented. Links with result aggregation are also discussed.

Keywords Focused retrieval � Question answering � Syntactic analysis �
Multi-document validation � Result aggregation

1 Introduction

Document retrieval systems such as search engines provide the user with a set of docu-

ments containing relevant information with respect to a query. To obtain a precise answer,

the user then needs to locate relevant information within the documents and possibly to

combine different pieces of information coming from one or several documents.

To avoid these problems, focused retrieval aims at identifying relevant documents and

locating the precise answer to a user question within a document. Question-answering

(QA) is a type of focused retrieval: its goal is to provide the user with a precise answer to a

natural language question. While information retrieval (IR) methods are mostly numerical

and use only little linguistic knowledge, QA often implies deep linguistic processing, large

resources and expert rule-based modules. The classical architecture of a QA system is

V. Moriceau (&) � X. Tannier
Université Paris Sud 11, LIMSI-CNRS, 91403 Orsay, France
e-mail: moriceau@limsi.fr

X. Tannier
e-mail: xtannier@limsi.fr

123

Inf Retrieval (2010) 13:507–533
DOI 10.1007/s10791-010-9131-y

threefold. First, the question is analyzed in order to determine the user information need

(question focus, keywords, answer type, etc.). Second, a search engine is used to return

‘‘candidate documents’’, which are expected to contain the answer to the question. Finally,

these documents are parsed, and ranked candidate answers are extracted. Whereas the

second step is a classical IR process, the first and last steps require using natural language

processing techniques, among which the most frequent are POS tagging, syntactic or

semantic analysis and named entity recognition.

Since 1999, many evaluation campaigns have been dedicated to question-answering,

among them TREC, CLEF, NTCIR or more recently INEX and Quaero. In these cam-

paigns, QA systems have to provide, for each open-domain factoid question, up to five

answers ordered by a confidence score. Each answer must be associated with the passage

from which it has been extracted (supporting passage). State-of-the-art best QA systems

obtain close to 70% correct answers for English (Harabagiu and Bejan 2005), between 55

and 68% for French (Laurent et al. 2005, 2008). The main difficulty is to evaluate what a

correct answer is and whether this answer is supported (or validated) by its supporting

passage. So far, only the first point is evaluated in classical evaluations. Recently, cam-

paigns such as RTE (Recognising Textual Entailment) or AVE (Answer Validation

Exercise) have addressed the second task. Indeed, a correct answer can be considered as

relevant by a user only if its supporting passage is relevant and fully validates the extracted

answer.

This paper presents FIDJI1 (Finding In Documents Justifications and Inferences), an

open-domain question-answering system for French. Its main goal is to validate answers by

checking that all the information given in the question is retrieved in the supporting texts.

Our answer validation approach assumes that the different entities of the question can be

retrieved, properly connected, either in a sentence, in a passage or in multiple documents.

We designed the system so that no particular linguistic-oriented pre-processing is needed.

When a piece of information is being searched, it can be formulated in different ways

and some knowledge bases or inferences may be useful to identify it. But, even if lexical

databases containing term variations exist (e.g., synonyms), conceptual databases for

French are not available and, consequently, a semantic approach is not possible. Therefore,

our approach consists in extracting and validating answers by using syntactic information,

in particular syntactic dependency relations.

In this paper, we present our approach, from question analysis to answer extraction, as

well as validation through multiple documents.

We aim at:

• Showing that syntax, used in combination with more ‘‘traditional’’ QA techniques, can

lead to interesting results.

• Presenting and evaluating a technique for validating an answer through several

passages/documents.

• Testing our approach on two different kinds of corpora, as well as on different kinds of

questions.

• Investigating what kinds of questions can benefit from the help of syntax.

• Discussing the links between advanced QA systems and result aggregation.

The remainder of this article presents the general strategy set up in the FIDJI system

(Sect. 2), the syntactic processing (Sect. 3) and the extraction of the answer (Sect. 4).

1 This work has been partially financed by OSEO under the Quaero program.

508 Inf Retrieval (2010) 13:507–533

123

Section 5 presents techniques for merging information from several documents to validate

answers, and Sect. 6 describes an evaluation and discusses the results. Finally, Sect. 7

presents how our approach for answer validation through multiple documents can be a first

step towards result aggregation.

2 FIDJI, a syntax-based strategy

Most question-answering systems can extract the answer to a factoid question when it is

explicitly present in texts, but are not able to combine different pieces of information to

produce an answer. FIDJI (Finding In Documents Justifications and Inferences), an open-

domain QA system for French, aims at going beyond this insufficiency and focuses on

introducing text understanding mechanisms.

The objective is to produce answers which are fully validated by a supporting text (or

passage) with respect to a given question. The main difficulty is that an answer (or some

pieces of information composing an answer) may be validated by several documents. For

example:

Q Which French Prime Minister committed suicide?
A Pierre Bérégovoy
P1 The French Prime Minister Pierre Bérégovoy warned Mr. Clinton against…
P2 Two years later, Pierre Bérégovoy committed suicide after he was indirectly

implicated…

In this example, the information French Prime Minister and committed suicide are

validated by two different complementary passages. Indeed, this question may be

decomposed into two sub-questions, e.g., ‘‘Who committed suicide?’’ and ‘‘Are they
French Prime Minister?’’.

Syntactic analysis can provide these kinds of accurate decompositions. Many QA

systems use syntactic information, especially dependency relations, mainly for answer

extraction. Two approaches emerge: the first one looks for an exact match between the

dependency relations of the question and those of the passage (Katz and Lin 2003), while

the second one computes a tree editing distance between the question and the passage

(Ligozat 2007; Sun et al. 2005), after syntactic and semantic parsing, use the dependency

parse tree and the semantic structure of the question for answer extraction.

Some research is also dedicated to question decomposition for QA. Katz et al. (2005)

propose a strategy for decomposing questions at a syntactic and semantic level: this allows

their QA system START to look for particular pieces of information in multiple resources.

When the system cannot find answers to a question, it tries to answer each sub-question.

The system uses a number of parameterized annotations and semantic templates applied to

the whole collection of documents in order to relate questions to information in one or

several documents. This system is mainly designed to answer object-property questions

(e.g., date of birth, a city’s population, etc.). FERRET (Hickl et al. 2006), an interactive

QA system, performs a syntactic and semantic decomposition of questions which aims at

splitting a complex question into a set of semantically simpler questions that the system

can answer easily. Saquete et al. (2004) propose an approach for decomposition of com-

plex temporal questions. Lin et al. (2008) propose a typology for multi-focus questions

which can be decomposed into sub-questions and manually perform their question

decomposition strategy to evaluate their approach. Finally, (Hartrumpf 2008) presents six

decomposition classes (temporal, meronymy, etc.), which are employed for annotating

Inf Retrieval (2010) 13:507–533 509

123

German questions and trigger different decomposition methods. Most methods work at the

level of semantic representations.

Almost all recent works are based on a syntactic and semantic analysis and often imply

a pre-processing of the whole document collection. Our aim is to extract and validate

answers by going beyond the exact syntactic match between questions and answers,

without using any semantic resources and with as little pre-processing as possible: this is a

necessary condition if the system works on large collections such as the Web. In this

context of answer validation, the strategy to apply (validation through one or several

documents) can be guided by the question, and especially by the expected answer type.

Indeed, a lot of factoid questions expect an answer of a specified type. This type can be:

• A named entity type as in ‘‘Who is the president of France?’’ which expects an answer

of type PERSON;

• A more specific type as in ‘‘Which Russian president attended the G7 meeting in
2007?’’ which also expects an answer of type PERSON, but the type is here explicitly

specified in the question (Russian president).

From now on, we shall call named entity type (or NE type) and specific answer type (or

simply answer type) these two different notions.

We assume that the answer type can be validated using documents which are different

from the document from which the exact answer is extracted.

FIDJI uses syntactic information, especially dependency relations which allow question

decomposition. The goal is to match the dependency relations derived from the question

and those of a passage and to validate the type of the potential answer in this passage or in

another document. Figure 1 presents the architecture of FIDJI.

The document collection is indexed by the search engine Lucene.2 First, the system

submits the keywords of the question to Lucene: the top 100 documents are then processed

(syntactic analysis and named entity tagging). Among these documents, FIDJI looks for all

Fig. 1 Architecture of FIDJI

2 http://lucene.apache.org/java/docs/

510 Inf Retrieval (2010) 13:507–533

123

http://lucene.apache.org/java/docs/

sentences containing the highest number of syntactic relations of the question (without

limit in the number of sentences). This is the role of module � in Fig. 1. Finally, answers

are extracted from these sentences and the answer type, when specified in the question, is

validated.

3 Syntactic processing

Our approach consists in checking whether all the characteristics of a question (namely the

dependency relations) may be retrieved in one or several documents. In this context, FIDJI

has to detect syntactic implications between questions and passages containing the

answers. Our system relies on syntactic analysis provided by XIP, which is used to parse

both the questions and the documents from which answers are extracted.

3.1 Syntactic dependencies and XIP

XIP (Aı̈t-Mokhtar et al. 2002) is a robust parser for French and English which provides

dependency relations and named entity recognition. A dependency relation (Mel’čuk 1984)

is an asymmetric binary relation representing a syntactic relationship between two words

of a sentence. The first word is the head of the dependency, the second is the modifier. The

syntactic structure of a sentence can be represented by dependency relations. Figure 2

shows an example of dependencies produced by XIP’s French grammar on a simple

sentence.

Figure 3 shows the general architecture of XIP’s named entity recognition and syntactic

parsing. The dependency relations provided by XIP that are used by FIDJI are mainly:

SUBJ (subject), OBJ (object), PREPOBJ (prepositional group), NMOD (noun modifier),

VMOD (verb modifier), COORDITEMS (coordinated elements), CONNECT (connector

introducing clause).

Named entities (NEs) are tagged using the following classes: person, organization,

location, date. XIP’s LIEU (location) can be made more specific (country, region,

continent…).

Le chat de Pierre mange une souris (literally: The cat of Peter eats a mouse)

PERSONNE(Pierre)

DETERM(chat, le)

NMOD(chat, Pierre)

PREPOBJ(Pierre, de)

SUBJ(manger, chat)

OBJ(manger, souris)

DETERM(souris, un)

PERSON(Peter) (NE tagging)

DETERM(cat, the)

NMOD(cat, Peter)

PREPOBJ(Peter, of)

SUBJ(eat, cat)

OBJ(eat, mouse)

DETERM(mouse, a)

Fig. 2 Example of XIP parsing output. The translation in English is given on the right column

Inf Retrieval (2010) 13:507–533 511

123

3.2 XIP output enrichment: grammar and named entities

XIP is a product from XRCE (Xerox Research Centre Europe), distributed with encrypted

grammars and named entity tagging that cannot be changed by the users. However, it is

possible to add resources and grammar rules to the existing ones in order to enrich the

representation. This made possible the definition of additional relations/functions to rep-

resent some syntactic constructions which are representative of some question types:

• attributADJ: for adjectival modifiers as in le premier homme (the first man) parsed as

attributADJ(homme, premier);
• attributNN: for nominal modifiers introduced by a copula verb (‘‘the first man was

Armstrong’’ is parsed as attributNN[copule](man, Armstrong)).
• attribut_de: for genitive complement as in président de la France (president of France)

parsed as attribut_de(président, France);
• definition: definition relation, mostly expressed by appositions as in ‘‘le president

Obama’’ parsed as definition(Obama, président) or ‘‘l’organisation des Nations Unies
(ONU)’’ parsed as definition(organisation, ONU). More details will be given later about

this relation;

Fig. 3 XIP architecture for named entity recognition and syntactic parsing (Brun and Hagège 2004)

512 Inf Retrieval (2010) 13:507–533

123

• attribute: to represent other properties of nouns as in the president was elected parsed as

attribute(president, elect);
• answer_type: to represent the specified answer type (a noun), if explicitly given in the

question; we call simple answer type this noun, and extended answer type the

corresponding noun phrase. In our example ‘‘Which Russian president…’’, president is

the simple answer type, while Russian president is the extended answer type.

We also enriched NE tagging with new types: nationality, number, duration, age; and

we added features to allow for more precise types. For example, for NUMBER, we added the

following features: length, speed, weight, money, physics, so that ‘‘0.55 euro’’ in ‘‘a
French stamp costs 0.55 euro’’ can be tagged as a NE and extracted as an answer to ‘‘What
is the price of a French stamp?’’. Other elements are also tagged, such as nouns intro-

ducing persons (DECL_PERS): functions (leader…), professions (minister…), family

indications (father…).

In this way, NE tagging, combined with question analysis, can help to match the named

entity type expected by the question and the extracted answer type.

3.3 Question analysis

Question analysis aims to identify:

• The syntactic dependencies given by XIP and the expected syntactic role of the answer

in a declarative sentence corresponding to the question;

• The keywords to be submitted to Lucene: we select all words tagged as noun, verb

adjective or adverb by XIP;

• The question type:

• Factoid (concerning a fact, typically who, when, where questions),

• Definition (What is…),

• Boolean (expecting a yes/no answer),

• Complex questions (why and how questions),

• List (expecting an answer composed of a list of items).

• The expected type(s): NE type and/or (specific) answer type (see Sect. 2).

All the items above are determined by using the syntactic structure of the question. The

last two items are detailed below.

The question type will guide the strategy that the system will run to extract the answer.

NE type and answer type, if existing, are determined once the question type is found.

• Factoid questions will be usually answered by a short noun phrase. They are introduced

by a specific Wh word or by a specific trigger:

• Questions in ‘qui’ (‘who’) expect a PERSON or ORGANIZATION NE (e.g., ‘‘Who
has been bailed out in 2008?).3 Also, ‘Quel ministre’ (‘What minister’) expects a

PERSON. In the latter case, ministre is the answer type.

• Questions in ‘quand’ (‘when’) expect a DATE, as well as ‘À quelle date’ (‘At which
date’), etc. Temporal NEs can be made more specific (a year, a day, etc.).

3 Note that all ‘‘who’’ questions are not ambiguous: ‘‘Who is the director of National Intelligence?’’ expects
only a person, because XIP knows that director implies a person name.

Inf Retrieval (2010) 13:507–533 513

123

• Questions in ‘combien’ (‘how much/many’) expect a NUMBER, as well as ‘Quelle
vitesse/température’ (‘what speed/temperature’), etc., with more specific number

NE.

• Questions in ‘où’ (‘where’) expect a LOCATION, as well as ‘À quel endroit’ (‘in
which place’), etc. Location NEs can be made more specific (a region, a country, a

continent, a city…), according to XIP’s classification.

• Questions in ‘quel’ (‘what/which’) expect a specific answer type which may not

have a corresponding NE type, as ‘quelle déclaration’ (‘which declaration’).

• Definition questions (‘Qu’est-ce que…’ (‘What is’), ‘Que signifie’ (‘What is the
meaning of’), ‘Qui est’ (‘Who is’),…) will be answered by looking for a ‘definition’

dependency in texts, with the focus of the question as an argument (see also Sect. 3.4).

A definition question can still have a NE type, as PERSON in ‘Who is…’ questions.

• Boolean questions (‘Est-ce que…’, ‘… est-il’,…) are processed as described in Sect.

4.1.3.

• Complex questions are called ‘comment’ (‘how’) and ‘pourquoi’ (‘why’), but can be

introduced by other means, such as ‘pour quelle raison’ (‘for what reason’), ‘dans quel
but’ (‘for what purpose’), ‘de quelle manière’ (‘in which manner’)… Treatment for

complex questions is detailed in Sect. 4.1.4.

• Questions labelled ‘‘list question’’ are those containing explicitly a plural answer type

(e.g., ‘‘Which planets…’’, ‘‘Who are the…’’, etc.). In some cases, the number of items

is explicitly specified in the question (e.g., ‘‘What are the 7 Wonders of the World?’’).

Another difficulty is the identification of implicit list questions: questions such as

‘‘Citez le nom de tous les aéroports de Londres’’ (‘‘Name all the airports of London’’)
are easily identified as list questions by the system whereas questions such as ‘‘Qui a
découvert la comète Shoemaker-Levy?’’ (‘‘Who discovered the Shoemaker-Levy
comet?’’) are identified as factoid questions.

This step is the only one in the entire process that uses some semantic lexical resources

(apart from XIP’s NE tagging, which is part of the encrypted grammars): a few lists of

nouns (about 200) representing persons (as teacher, minister or astronaut), organizations,

locations, nationalities and numerical value units (currencies, physic units…). These lists

are very easy to collect and to manage.

The answer to be extracted is represented by a variable (‘ANSWER’) introduced by

our additional grammar rules into dependency relations and named entity tagging. For

example, PERSON(ANSWER) means that the answer must have the NE type PER-

SON; this is determined as explained above. New dependency relations are also created

in order to simulate the syntactic role that would have the answer lemma in a

declarative sentence having the same form as the question. For example, the relation

SUBJ(manger (‘eat’), qui (‘who’)) in a question is replaced by SUBJ(manger,

ANSWER) which means that the answer must be subject of the verb ‘manger’. The

slot noted ‘ANSWER’ is expected to be instantiated by a word, argument of some

dependencies of the parsed sentences. This word represents the answer to the question

(see Sect. 4.1).

There are about 250 rules for question analysis. Some examples of rules and

analyses are given below. Bold relations are those added by our own grammar rules.

On the other hand, some relations are removed from XIP’s regular analysis (strike-

through relations) because they would not be retrieved into a corresponding declarative

sentence.

514 Inf Retrieval (2010) 13:507–533

123

Inf Retrieval (2010) 13:507–533 515

123

As shown by this last example, a single question can be labelled by several expected

named entity types, with several weights. This is the case when:

• The question structure is ambiguous: for example, many questions beginning by ‘‘qui’’
(who) may expect a person or an organisation (e.g., ‘‘Who has been bailed out in 2008?’’).

• Different NEs are acceptable. This is the case when expecting a person and when a

name of function or a title can answer the question (‘‘the Queen of England’’ is a good

answer to ‘‘Who does not like to be hugged?’’), or when a nationality is as good as a

country name.

For that purpose, NE types can be weighted from 1 to 10; this indicates that some types are

preferred to others. In practice, NEs are weighted 10, excepted the following three cases:

• Questions expecting a PERSON (weight 10) can also expect a person trigger

(DECL_PERS), i.e., a NP describing a person (as ‘the Queen of England’). This trigger

is weighted 5. Definition questions like ‘Who is the Queen of England’ do not get a

DECL_PERS type, because ‘queen’ is a person trigger, so only a real person name will

make a proper answer.

• Questions expecting a country name (weight 10) also get a NATIONALITY type

(weight 5).

• Questions expecting a typed numerical value (as a length, a speed, a temperature,

weighted 10), also get a non-typed numerical value (number only, weight 5).

1 to 10 granularity is not fully used, but has been designed so that more subtle dis-

tinctions can be made if necessary. The scoring function (Sect. 4.3) will take these weights

into account in order to rank answers.

3.4 Document processing

To determine if the characteristics of a question can be retrieved in documents, FIDJI

detects syntactic implications between a question and documents. For this purpose, the first

516 Inf Retrieval (2010) 13:507–533

123

100 documents selected by Lucene are syntactically parsed by XIP. Lucene is used with

default parameters without stop word removal.

Since information in documents is not always expressed in the same way as in ques-

tions, notably because of syntactic variations, reasoning over syntactic dependency rela-

tions is essential. As in (Bouma et al. 2007), we have implemented about 40 rewriting rules

to account for appositions, coordinations, definitions, etc. Those rewriting rules are

appended to the primary grammar. In this way, regardless of the syntactic form of the

question, the system is likely to find an equivalent syntactic formulation in the given

supporting text: either an exact match between syntactic dependencies of the question and

documents or a match between syntactic dependencies of the question and the rewritten

dependencies of documents. The following example illustrates the use of a rewriting rule:

Thanks to the rewriting rules, all the relations of the question match the relations of the text.

The relation ‘definition’ is also an important extension of the grammar. It has two main

interests:

• Answering definition questions: a question like ‘‘What is X ?’’ will be answered if the

relation ‘definition(X, Y)’ is found in texts.

• Completing syntactic dependencies when possible. For example, in the sentence ‘‘Le
Fonds Monétaire International (FMI) aide la Biélorussie’’ (‘‘International Monetary
Fund (IMF) helps Belarus.’’), XIP produces the dependency ‘SUBJ(aider, FMI)’. Our

rules add ‘definition(Fonds Monétaire International, FMI)’ and the system infers

‘SUBJ(aider, Fonds Monétaire International)’.

Inf Retrieval (2010) 13:507–533 517

123

Definition relation is produced by the detection of the following structures:

• attributNN relation, created by nominal modifiers introduced by a copula verb: ‘‘Le
premier homme sur la Lune fut N. Armstrong’’ (‘‘The first man on Moon was N.
Armstrong’’) leads to ‘definition(man, Armstrong)’.

• Appositions like ‘‘l’organisation des Nations Unies (ONU)’’ parsed as ‘definition(orga-

nisation, ONU)’. Appositions between commas or introduced by a colon as well as

‘‘comme’’, ‘‘tel’’ (‘‘as’’) or more complex expressions as ‘‘du nom de’’ or ‘‘nommé’’
(‘‘named’’) are also considered.

• Direct NMOD relation between a singular noun and a proper noun, as ‘‘l’écrivain
américain Charles Bukowsky’’ (‘‘the American writer Charles Bukowsky’’), that

produces ‘definition(écrivain, Bukowsky)’.

4 Finding the answer

Once candidate documents are selected by the search engine and analyzed by the parser,

the system compares the document sentences with the result of question analysis, in order

to:

• Extract candidate answers;

• Build a supporting passage for each answer;

• Give a score to each answer, so that final answers can be ranked.

4.1 Extracting the answer

The strategy for extracting the answer depends on the type of the question. Syntactic

information, at the sentence-level, is used when useful in combination with other types of

information.

4.1.1 Factoid questions

Within selected documents, candidate sentences are those containing the highest number of

dependencies from the question. Once these sentences are selected, two cases can occur:

1. Question dependencies with an ‘ANSWER’ slot are found in the sentence. In this case,

the lemma instantiating this slot is the head of the answer. The full answer is composed

of the head and its basic modifiers (for a noun phrase: noun complements, adjectives,

determiners and coordinated elements; for a verbal phrase: verb complements, subject

and object). The eventual NE type and answer type of this answer are checked.

2. The answer type can be validated by different syntactic relations in the text: definition

(‘‘The French Prime minister, Pierre Bérégovoy’’), attributNN (‘‘Pierre Bérégovoy is
the French Prime minister’’), and sometimes attribut_de (‘‘la maladie de Parkinson’’,
Parkinson’s disease, literally ‘‘the disease of Parkinson’’). This instantiation of the

‘ANSWER’ slot is the role of module noted ` in Fig. 1.

3. The ‘ANSWER’ slot does not unify with any word of the passage. In this case, the

elements having an appropriate NE type and/or answer type are selected in the

sentence. This is done to counterbalance the many parsing errors (or paraphrases).

518 Inf Retrieval (2010) 13:507–533

123

Often, the sentence contains the answer but syntactic dependencies alone do not lead

to it.

4. When not found in the current sentence, NEs are also selected in the two preceding

sentences, but are given a lower score. This technique compensates (very imperfectly)

for the absence of a coreference resolution system; it obviously produces some noise,

which is generally masked by frequency weighting (the occurrence of a same answer

in multiple documents increases its score, see Sect. 4.3).

4.1.2 List questions

As stated by most evaluation campaigns (TREC, CLEF), we consider presently that items

answering list questions should all be found in a single sentence. This is a major limitation

and next campaigns of both Quaero and INEX QA tracks should address this issue.

The detection of questions potentially expecting list answers is described in Sect. 3.3.

List items can be built in two different ways:

• If several candidate answers are found in the same sentence, by any method described

in the previous section, then a list is built from these elements.

• If coordination relations concerning some answers are produced by the parser (either

through the general grammar or rewriting rules), a list answer is built from all collected

elements.

List answers are given a higher weight, but atomic answers are still returned. Indeed, a

list question is not necessarily answered only by a list. For example, the question ‘‘Who are
the Daltons?’’ may be answered by their names, but also by ‘‘4 bandits’’.

4.1.3 Yes/no questions

Answering boolean questions is quite close to the task of answer validation [cf. the Answer

Validation Exercise AVE (Rodrigo et al. 2008)]. In this task, participants get a triple

{question, candidate answer, supporting text} and have to decide whether the answer to the

question is both correct and fully validated by the text.

In 2008, we participated in AVE for French, and ranked first out of 3 for French and

second through all languages out of 9 (Moriceau et al. 2008).

We use the same technique when answering yes/no questions: if the rate of question

dependencies found in a sentence exceeds a given threshold, the answer is validated, i.e.,

the returned answer is ‘yes’. In our system, the threshold was empirically set to 70%.

4.1.4 Complex questions

Complex questions (‘‘how’’, ‘‘why’’, etc.) do not exist in traditional campaigns. The first

Quaero evaluation (Quintard 2008) introduced a few ones in order to open a new track. We

did not set up any specific behavior for these questions. However, it is obvious that answers

are not short phrases (as for factual questions). For this reason, we chose to provide a full

passage as an answer. The three best-scored passages are then returned. On these kinds of

questions, the system behaves as a classical passage retrieval system, except that candidate

passages are retrieved through syntactic relations instead of keywords only. In a real

question-answering situation, these questions would benefit a lot from multi-document

aggregation techniques.

Inf Retrieval (2010) 13:507–533 519

123

4.2 Supporting the answer

Each answer must be supported by a text proving to the user the correctness of this answer.

A single supporting passage is provided as follows:

• For each answer, the sentence where this answer got the best score is selected.

• The preceding sentences are also included into the passage (in order to show possible

anaphora antecedents) within a limit of 256 characters (classical limit in evaluation

campaigns). For complex questions, this limit is extended to 8,000 characters, as

specified in the Quaero guidelines (Quintard 2009).

Section 5.4 details the possibility of returning several supporting texts.

4.3 Scoring and ranking answers

FIDJI’s scores are not composed of a single value, but of a list of different values and

flags. The scoring function has been determined empirically in order to find the best

trade-off between different information provided by the different techniques described

above.

The figures are listed below, and are presented in decreasing order of importance. This

means that for two answers A1 and A2, we first examine score s1. If s1(A1) [s1(A2), A1 is

ranked better. If s1(A2) [s1(A1), A2 is ranked better. If s1(A1) = s1(A2), then s2 is con-

sidered. In the same way, s3 is considered only if s2(A1) = s2(A2), and so on. This is a total

order. Note that only scores s3, s4 and s8 are valid for complex questions.

s1. LIST VALUE (only for list questions)

s1 [{0,1,2}. As explained in Sect. 4.1.2, if a question is identified as expecting a list,

it is better (but not mandatory) to return a list of answers. Sometimes, the number of

expected items is specified in the question (‘‘What are the 7 Wonders of the World?’’).
If the final answer has the right number of items, then s1 = 2. If it has not or if this

number is unknown, then s1 = 1. If the answer is not a list, s1 = 0.

s2. NAMED ENTITY VALUE

s2 [{0..10}. The question analysis may suggest one or more NE types (see Sect. 3.3).

These types are weighted from 1 to 10, and s2 gets this value if the answer has the

corresponding NE type. For example, for the question ‘‘Who said that…’’, possible

NE types are PERSON (weight 10), ORGANIZATION (weight 10) and DECL_PERS

(person trigger, weight 5). If the answer is Barack Obama (PERSON), then s2 = 10;

if it is the president of the USA (DECL_PERS), then s2 = 5. If the answer is not an

appropriate NE, then s2 = 0.

s3. MAJOR KEYWORD RATE

s3 [[0, 1]. Presence of question keywords in the candidate passage is very important.

‘‘Major’’ keywords are proper names and numbers (identified by XIP), as well as the

answer type (identified by the question analysis). s3 is the fraction of major keywords

from the question that are present in the passage.

s4. QUESTION DEPENDENCY RATE

s4 [[0, 1]. s4 is the fraction of dependencies from the question that are present in the

candidate sentence.

s5. ANSWER TYPE VALUE

s5 [{0,1,2}. Simple answer type and extended answer type are defined in Sects. 3.2

and 5.1 explains how these types can be validated in a sentence. If the answer has the

520 Inf Retrieval (2010) 13:507–533

123

appropriate answer type, then s5 = 1 (s5 = 2 for the extended answer type).

Otherwise, s5 = 0.

s6. ANSWER UNIFICATION VALUE

s6 [{0, 1}. If the answer has been found by instantiating the slot ‘ANSWER’ in

question analysis with a specific lemma, then s6 = 1. Otherwise, s6 = 0.

s7. FREQUENCY WEIGHTING

s7 [[1, ?]. s7 is the number of times this answer has been found in different passages.

See Sects. 5.3 and 6.3 for a discussion concerning the use of redundancy in QA.

s8. DOCUMENT RANKING

s8 [{1..100}. Before any linguistic analysis, the search engine (here, Lucene) returns

a number of ranked documents in response to a query containing question keywords

(see Sect. 3.4). s8 is the rank given by the search engine to the document containing

the answer. In this case, the lower the better (the best document is ranked 1).

s9. DISTANCE VALUE

s9 [R. If several candidate answers are found in the same sentence and if none of

them has instantiated the slot ‘ANSWER’ (s6 = 0), it is very difficult to choose

between them. As an expedient, we calculate the distance (in words) between the

answer and the keywords of the question present in the sentence. Each word of the

sentence is numbered from 1 to n (p is the position of the answer); the barycenter (or

centroid) b of all question keywords is computed, and s9 is the absolute value of

(p - b). Here again, the lower the better.

5 Validating an answer from multiple passages

Many times a candidate sentence does not contain all question dependencies. In some

cases, it is possible to check these missing dependencies in other documents or other

passages of the same document. In the current state of FIDJI, two validation techniques are

used: answer type and answer slot unification.

5.1 Answer type

When existing, answer type is provided by the question analysis (see Sect. 3.2). If the

supporting passage does not specify explicitly that the extracted answer has the correct

answer type, this information can be validated in another document. In our example

‘‘Which French minister committed suicide in 1993?’’, the answer type is minister (while

the NE type is PERSON). The extended answer type is French minister.

Inf Retrieval (2010) 13:507–533 521

123

If a text contains the sentence ‘‘Pierre Bérégovoy committed suicide in 1993’’, the slot

‘ANSWER’ is instantiated by Pierre Bérégovoy, which becomes a candidate answer: The

first two question dependencies are validated, but the last two-ones, concerning the answer

type, are missing (was Pierre Bérégovoy a French minister?).

Validation is achieved in two steps. First, the system checks that the candidate answer is

a minister, through several relations (definition relation and noun modifiers, see Sect. 3.2).

If this is confirmed, the extended answer type is also checked.4

5.2 Answer slot unification

The other characteristic of the question that can be validated in another passage is the

instantiation of the answer slot. In the same way as previously, if a candidate answer is

extracted without unifying answer slots in question dependencies, another passage can be

found, providing possibly less dependencies, but enabling the instantiation.

5.3 Redundancy

The use of answer redundancy is a very common technique in QA. It simply consists in

giving a higher weight to answers that are extracted in several different passages. The idea

behind this method is that different ambiguities in the text or the question, combined with

imperfections of the extraction algorithm, can lead to bad answers in a specific context.

Hopefully, this specific context occurs rarely for a same answer, while good answers

should be derived from different ways.

Even if it proved powerful in traditional QA campaigns based on newswire article

collections, this technique suffers from several drawbacks:

• Elements (typically, named entities) appearing frequently together with words of the

question or with the real answer may benefit from undeserved redundancy bonuses. For

example, the question ‘‘What is the real name of Marilyn Monroe?’’ can be answered

‘‘J.F. Kennedy’’ because this person name appears frequently next to ‘‘Marilyn
Monroe’’.

• In less controlled collections (typically, the Web), many documents can contain the

exact same text, leading to artificial redundancy.

• In less well-written collections (still the Web) containing spam, tables, lists of

keywords or bad language, the gain is not clear.

For all these reasons, redundancy must not be the first criterion for selecting an answer,

but it remains an important test for ranking equivalent answers.

5.4 Supporting texts

We described in Sect. 4.2 how a single justification snippet is built. FIDJI is also able to

provide multiple supporting texts when necessary. This is the case when answer type or

answer slot unification (see above) are validated by different passages. In these particular

cases, we know that the first passage is not enough to validate the answer entirely. A new

passage is then built from the sentences enabling the validation. Up to three segments of

4 And the two relations ANSWER_TYPE(Bérégovoy, ministre) and attributADJ(ministre, français) are
expected to be found in the same sentence.

522 Inf Retrieval (2010) 13:507–533

123

texts can thus support an answer, and we assume that reading all the supports provides all

expected information.

For example, CLEF 2006’s question 106, ‘‘Quel ancien Premier ministre iranien fut
assassiné en 1991 ?’’ (‘‘Which former Iranian Prime minister was killed in 1991’’), leads to

the following passage:

‘‘… murderers of Chapour Bakhtiar, former Prime Minister, assassinated in 1991 in
France, …’’5

This passage is not a full validation of the (correct) answer Chapour Bakhtiar, since it

does not specify that Chapour Bakhtiar is Iranian. A second text, that does not contain the

information concerning the date (1991), but confirms the nationality, is necessary:

‘‘… presumed murderers of the former Iranian Prime minister Chapour Bakhtiar …’’6

Answer type validation and answer slot instantiation through multiple passages lead to

the presentation of several supporting texts to the user, because all texts carry different

information. This is not the case of frequency weighting, where different texts do not

introduce different information, but only new ways to write it. This is not useful to the

reader and the resulting merging of texts would be redundant.

6 Evaluation

We evaluated our system on corpora and questions from CLEF 2005 (Vallin et al. 2005),

CLEF 2006 (Di Nunzio et al. 2006) and Quaero 2008 (Quintard 2008) test sets:

• The ‘‘clean’’ collections, CLEF05 and CLEF06: composed of about 177,000 well-

formed news articles in French from Le Monde and ATS 1994–1995 (about 2 Gb).

These documents are supposed to be syntactically correct. CLEF 2005 questions are

factoid and definition questions only, CLEF 2006 introduced a few list questions.

• The ‘‘messy’’ collection, Quaero Q&A Web corpus: a corpus of 2 million Web pages

has been collected without quality filtering. This means that any kinds of Web pages

(blogs, forums, spam, news, institutions, etc.) can be found, as well as some non-French

pages. We obviously expect these documents to be generally much less respectful of

French syntactic standards.

• Questions were designed and evaluated by an independent partner. Besides traditional

factual and definition questions, lists, yes/no questions and a very few complex

questions (‘how’) have been tested. This is a good opportunity to show that linguistic-

oriented techniques can be applied successfully to large, uncontrolled collections.

In all cases, answers are judged by human assessors and a reference is built. The

following aspects have to be evaluated:

• The performance of a syntactic strategy combined with classical QA techniques;

• The performance of the system on different types of corpora;

• The performance of the system on different types of questions;

• The strategy of validating an answer through several passages;

• The actual benefit brought by the different syntactic analysis modules.

5 ‘‘… les meurtriers présumés de Chapour Bachtiar, ancien premier ministre assassiné en 1991 en France,
…’’.
6 ‘‘… des assassins présumés de l’ancien premier ministre Chapour Bakhtiar …’’.

Inf Retrieval (2010) 13:507–533 523

123

6.1 Overall results and different types of questions

Table 1 gives the results that our system obtained on CLEF 2005 (7 participants), CLEF

2006 (7 participants) and Quaero 2008 (3 participants) question sets and document col-

lections. Table 2 provides results by question types and compares them to those obtained

by QRISTAL at CLEF 2005 and CLEF 2006 (Laurent et al. 2005, 2006), the best QA

system for French for these campaigns. Quaero results are given in Table 3, as well as a

comparison with overall results obtained by the best system during the official campaign

(Quintard 2008).7

We obtained a lower score on CLEF 2006 data than on CLEF 2005. This can be explained

by the introduction of new types of questions for CLEF 2006 (Di Nunzio et al. 2006):

definition and list questions. Indeed, for definition questions, new categories (for example,

object definitions: ‘‘What is a t-shirt?’’) were added to reduce the number of definition

questions which may be answered easily (for example, acronyms (‘‘What is RKA?’’) and

people description (‘‘Who is Bill Clinton?’’) which are usually found as appositions of proper

names). Our scores are lower than those of QRISTAL which also uses a syntactic-based

strategy but which benefits from resources such as ontologies and dictionaries.

However, our system would be the second best one as the systems which reached the

second position returned 35% of correct answers for CLEF 2005 and 46% for CLEF 2006.

Quaero results are even much lower. This is the case for all participants and can be

explained by several reasons, among which:

• No spam filter has been applied to the corpus, and many questions, especially those

concerning known people or events, are polluted by these spam documents.

• Web pages contain structured information (as tables, titles) that can contain very useful

information and are not handled by participating QA systems.

• About 10% of the documents (according to an estimation completed by Exalead,

personal communication) are not in the appropriate language (i.e., French for French

evaluation, English for English evaluation).

• Many HTML pages converted from PDF or RTF documents had conversion format

problems with special characters, leading to split words.

• Guidelines specified that list answers were to be answered in a single sentence. As all

systems, FIDJI considers that sentences are interrupted by string punctuation or new

lines. Yet, most list answers from the test set were spread on different list items,

separated by carriage returns (e.g., cook recipes).

For Quaero, our system would be the second best one as the system which reached the

second position returned 18% of correct answers.

6.2 Evaluation of syntactic modules

Two different syntactic modules can be evaluated separately:

• The selection of candidate sentences through syntactic dependencies present in the

question,

• The extraction of candidate answers.

7 Results of the official campaign are still anonymous (Quintard 2008). FIDJI’s results presented in this
paper were obtained on the exact same corpus and questions. Our factoid/non factoid trade-off differs from
(Quintard 2008), since we added a ‘‘definition’’ class; some definitions are non-factoid and others are so (for
example, definition expecting person names, as ‘‘Who is the president of… ?’’).

524 Inf Retrieval (2010) 13:507–533

123

Figure 4 repeats FIDJI’s architecture presented in Fig. 1 and adds two new modules

used for the evaluation.

6.2.1 Benefits from using syntactic information for selecting candidate sentences

Most QA systems select candidate passages by checking keywords of the question in texts.

FIDJI uses syntactic relations, by selecting sentences containing the most dependencies of

the question. In order to evaluate this technique, we compared it with a classical selection

of sentences containing a maximum of question keywords (turning off module � in Fig. 4).

This means that we still select single sentences, but instead of choosing them according to

the number of question dependencies they contain, the system keeps all those that contain

the most question keywords (only significant keywords as described in Sect. 3.3) The

evaluation is achieved on the three collections and results are shown in Table 4. In this

Table 2 FIDJI results on CLEF 2005 and CLEF 2006 data, rank 1, by question types

Question type FIDJI (%) QRISTAL (%)

CLEF 2005 Factoid (147) 55.1 59

Definition (53) 98.1 86

Total (200) 66.5 64

CLEF 2006 Factoid (152) 46.0 64

Definition (43) 65.1 83

List (5) 60.0 50

Total (200) 50.5 68

Comparison with QRISTAL results on the same collections

Table 3 FIDJI results on Quaero 2008 data, rank 1, by question types

Question type FIDJI (%) Best system

Quaero 2008 Factoid (147) 34.7 NC

Definition (56) 26.8 NC

Yes/no (19) 31.6 NC

List (31) 3.2 NC

Complex (3) 33.3 NC

Total (256) 28.9 30.07%

Comparison with best system’s results on the same collection

Table 1 FIDJI results on CLEF 2005, CLEF 2006 and Quaero 2008 data

FIDJI (ranked 1st) FIDJI (ranked 1–3)

CLEF 2005 66.5% 72.5%

CLEF 2006 50.5% 58.0%

Quaero 2008 28.9% 39.8%

Rate of good answers ranked 1st and 1st to 3rd by the system

This measure is common between CLEF and Quaero campaign

Inf Retrieval (2010) 13:507–533 525

123

case, an important distinction should be made between short answers and supporting texts.

A supporting text can contain the correct answer, but the finally extracted answer may not

be the right one. That is why Table 4 compares both results on correct short answers and

passage containing a correct answer.

The improvement is substantial (up to 26%). The increase is generally more important

for short answer extraction than for passage, and more important for rank 1 answers than

for others (with an exception for Quaero collection). It seems to mean that good passages

are more numerous, but also that they are more relevant for an effective answer extraction.

Selecting candidate passages with the help of syntactic dependencies improves relevant

passage ranking.

6.2.2 Benefits from using syntactic information for extracting candidate answers

Evaluating the benefit from using syntax when extracting the answer is done by not

applying the technique of ‘ANSWER’ slot instantiation described at Sect. 4.1.1 (turning off

module ` in Fig. 4). Results are presented in Table 5. They show an increase of 47, 20 and

16% of correct answers at rank 1 when syntactic extraction is present, respectively for

collection CLEF 2005, CLEF 2006 and Quaero 2008. This increase is quite important, but

it must be noted that syntactic module is the only way to find the answer to some types of

questions (especially, definitions). For this reason, it is necessary to distinguish between

different types of questions when comparing results.

First, we set apart the questions for which one or more specific named entity types have

been identified by the system. Indeed, when module ` is skipped, default behavior is to

select a named entity having the appropriate type in the candidate sentence. For the other

Fig. 4 Architecture of FIDJI for evaluation

526 Inf Retrieval (2010) 13:507–533

123

questions, unplugging this module leads to no answer at all. The global rise depends then

strongly on the NE classification and the corresponding question analysis. Among all

questions, 151/200 (CLEF 2005), 153/200 (CLEF 2006) and 142/256 (Quaero 2008) have

been respectively identified as expecting a specific NE as an answer.8 It is interesting to

remark that even for these questions that benefit from this important clue (the expected

NE), syntactic analysis still results in a significant improvement.

Another distinction should be made between question types. Among definition ques-

tions, some concern a person (‘‘Who is Bill Clinton’’ or ‘‘Who is the general secretary of
NATO?’’, labeled def/pers in Table 4) while others are general definitions (‘‘What is a
quasar?’’). This last kind falls to 0 correct answer, since no clue other than syntactic

relations (or patterns, depending on the system) will make the extraction possible.

Finally, Table 6 produces results obtained by the system without applying any tech-

nique of syntactic analysis (turning off both modules � and ` in Fig. 4).

6.3 Multi-passage validation

In order to evaluate the effect of redundancy weighting on the three collections, we used

three different scoring functions:

• f1: the usual scoring function described in Sect. 4.3;

• f2: the same scoring function, by removing s7 (frequency weighting);

• f3: a scoring function using s7 in first position (i.e., as the most important criterion).

The results are presented in Table 7. They show that redundancy is useful, and that it

allows quite the same increase in CLEF collections as in Quaero corpus. This seems to be

in contradiction with other participants’ observations, according to which Quaero corpus

contained less redundancy than newspapers.

Table 4 Comparison of FIDJI results with or without selection of candidate sentences with syntactic
dependencies

Sentence selection with keywords Sentence selection with dependencies

Rank 1 (%) Rank 1–3 (%) Rank 1 Rank 1–3

CLEF 2005 Short answer 57.0 65.5 66.5% (?17%) 72.5% (?11%)

Passage 63.5 71.0 73.0% (?15%) 79.0% (?11%)

CLEF 2006 Short answer 45.5 57.5 50.5% (?11%) 58.0% (?1%)

Passage 50.5 60.5 53.0% (?5%) 62.5% (?3%)

Quaero 2008 Short answer 24.2 31.6 28.9% (?19%) 39.9% (?26%)

Passagea 29.1 34.6 33.3% (?15%) 42.3% (?22%)

Rate of correct short answers and passages containing correct answers, ranked 1st and 1st to 3rd by the
system
a For Quaero passage results, yes/no and complex questions have been removed from the pool

8 This figure may vary a lot according to systems where NE classification and recognition, as well as
question analysis, can be radically different. For example, FIDJI expects a phrase corresponding to a
‘‘profession’’ for the question ‘‘Who is Javier Solana?’’, because it is able to detect these entities.

Inf Retrieval (2010) 13:507–533 527

123

Table 5 Comparison of FIDJI results at rank 1 with or without using syntactic relations to extract answers,
by question types

Question type Answer extraction
without relations (%)

Answer extraction with
syntactic relations

CLEF 2005 NE (151) 57.6 64.2% (?11.5%)

Factoid (147) 49.0 55.1% (?12%)

Definition (28) 0.0 96.4% (-)

Def/pers (25) 72.0 100.0% (?39%)

Total (200) 45.0 66.5% (?47%)

CLEF 2006 NE (153) 49.0 53.6% (?9%)

Factoid (152) 46.7 46.0% (-1%)

Definition (26) 11.5 50.0% (?4%)

Def/pers (17) 47.1 88.2% (?87%)

List (5) 40.0 60.0% (?50%)

Total (200) 42.0 50.5% (?20%)

Quaero 2008 NE (142) 35.9 39.4 (?10%)

Factoid (147) 34.0 34.7% (?2%)

Definition (38) 0.0 13.2% (-)

Def/pers (18) 33.3 55.6% (?67%)

Yes/no (19) 31.6 31.6% (?0%)

List (31) 3.2 3.2% (?0%)

Complex (3) 33.3 33.3% (?0%)

Total (256) 25.0 28.9% (?16%)

Table 6 Comparison of FIDJI results with all syntactic modules or without using syntax at all

FIDJI without syntax FIDJI with syntactic modules

Rank 1 (%) Rank 1–3 (%) Rank 1 Rank 1–3

CLEF 2005 40.5 49.0 66.5% (?64%) 72.5% (?48%)

CLEF 2006 40.5 50.5 50.5% (?25%) 58.0% (?15%)

Quaero 2008 21.0 27.3 28.9% (?38%) 39.8% (?46%)

Rate of correct answers ranked 1st and 1st to 3rd by the system

Table 7 Comparison of FIDJI results with redundancy normally used in the scoring function, without
redundancy and with redundancy as first criterion

Answer ranking with
redundancy (f1)

Answer ranking without
redundancy (f2)

Answer ranking with
redundancy first (f3)

Rank 1 (%) Rank 1–3 (%) Rank 1 (%) Rank 1–3 (%) Rank 1 (%) Rank 1–3 (%)

CLEF 2005 66.5 72.5 62.0 71.5 62.0 70.5

CLEF 2006 50.5 58.0 43.0 55.5 47.5 57.0

Quaero 2008 28.9 39.8 25.0 35.1 23.8 33.4

Rate of correct answers ranked 1st and 1st to 3rd by the system

528 Inf Retrieval (2010) 13:507–533

123

Another conclusion is that redundancy should only be used when other criteria are not

discriminant. Using frequency weighting as first criterion leads to a loss of good answers at

rank 1.

Using several passages (from several documents) to support a single answer is not

possible in any currently running evaluation. Multi-passage validation’s main purpose is

not to provide better short answers, but to give the user a complete proof of the correctness

of answers. For these two reasons, it cannot yet be evaluated in an automatic way.

The way these passages are extracted from the collection does not ensure that sup-

porting texts do not carry redundant information, but only that each text brings information

that is not present in the other texts. This is not a problem in a QA system, where a text is

only used to prove the correctness of an answer to the user, and where a reliable proof is

necessary a part of existing, human-made document. But building an aggregated abstract of

different supports would be an interesting application for a more polyvalent system

(combining for example, IR, QA, aggregated search, automatic abstract, etc.).

6.4 Execution time aspects

The execution strongly depends on the number of documents returned by the search

engine, because almost all execution time is spent to parse these documents with XIP. If

the maximum number of documents is set to 100 (we used this limit for all results shown in

this paper), the parsing lasts 30 s per question in average, on a Dual Core 2.66 GHz.

XIP can be used with an API, which allows running several analyses with only one

grammar loading, as well as manipulating results with in-built functions. Unfortunately this

API is not included in our license, and a lot of time is spent loading grammars and

recomposing the results from XIP output file. Using the API would cut execution time in

half.

This long execution time is a counterpart of the fact that no pre-processing is necessary

to use FIDJI, except the usual search engine indexing. Since the final goal, and especially

in Quaero program, is the use of such a system on the entire Web, we think that removing

any pre-processing part is mandatory.

6.5 Synthesis

FIDJI has been designed in order to build a high level, realistic question-answering system

on the Web. For that purpose, it avoids heavy linguistic pre-processing, that makes cur-

rently impossible any scaling to a very large collection of texts. Only a traditional bag-of-

word indexing is necessary, and all fine linguistic analysis is performed online on a small

subset of documents. Also, no large knowledge base has been used, so that the system is

easier to maintain and adaptable to various languages.

We showed that such choices can still lead to good results, since results are quite close

to systems appealing to large knowledge and pre-processing (see Sect. 2). The counterpart

is a long execution time, which could be strongly reduced in the future.

The syntactic parser XIP allows to obtain both named entity tagging and syntactic

dependencies in a single pass; it is also extensible, making possible a specific analysis for

questions as well as rewriting rules for texts.

We also set up in FIDJI a multi-passage validation of answers, through the validation of

answer type, the use of redundancy and the gathering of multiple supporting texts. This

opens the ways to aggregating results from multiple documents in order to build elaborated

answers and justifications.

Inf Retrieval (2010) 13:507–533 529

123

7 Perspectives: towards result aggregation

Result aggregation consists in combining information from multiple sources and presenting

it efficiently to the user. We propose here some ideas about how result aggregation might

enrich FIDJI and QA systems.

7.1 Multi-document answer validation and aggregation

Questions can often be split up into several sub-questions. That is the case for answer type

(‘‘What minister did commit suicide’’ is split into ‘‘Who did commit suicide?’’ and ‘‘is he/
she a minister?’’), but also for some other types of structures, as temporal or spatial

location, or even verb arguments. The question ‘‘What declaration was adopted by the
UNO in 1948?’’ can be answered by searching declarations adopted in 1948, and then

checking that candidates were really adopted by UNO. The linguistic structure of questions

and answers must then be studied very carefully, in order to ensure that no information is

lost during the action. The system START (Katz 1997; Katz et al. 2005) performs these

kinds of operations, but with the help of much more resources, especially semantic

resources.

FIDJI is currently able to validate answers through several parts of documents, by using

answer redundancy or by looking for some missing relations in other passages. Even if

FIDJI is not able to produce/generate aggregated results yet, providing the user with a

concatenation of several complementary passages which fully validate an answer is a first

step towards result aggregation.

7.2 Result aggregation for specific question types

7.2.1 List questions, multiple answer questions

As we already stated, questions expecting an answer composed of several items are of great

interest for advanced QA systems, and can benefit a lot from multiple document searching

and result aggregation. Current evaluation campaigns artificially restrict list questions to

items present in the same sentence. The reason is that traditional QA systems are not

designed to merge answers from different sources, and that human assessment would be

made quite harder without this restriction.

However, this would correspond to an important user need in several manners:

• Compiling different elements scattered in the collection into a single list of items9;

• Finding several valid answers to a single question (‘‘Who is Nicolas Sarkozy?’’ leads to

‘‘French president’’, ‘‘former minister’’, ‘‘Carla Bruni’s husband’’, etc.);

• Gathering different answers with different restrictions: temporal (‘‘Who is the French
president?’’: ‘‘Jacques Chirac’’ from 1995 to 2007, ‘‘Nicolas Sarkozy’’ from 2007),

spatial or others.

In all these cases, multiple document searching, natural language generation and result

aggregation should become essential to question-answering systems.

As a start, Quaero 2009 campaign will introduce list questions that can be answered by

elements found in different elements of the same document.

9 Note that list questions can be specified in an explicit (‘‘What are the different words to express the snow
in Inuit?’’) or implicit way (‘‘Who got a golden parachute in 2008?’’).

530 Inf Retrieval (2010) 13:507–533

123

7.2.2 Complex and opinion questions

List questions are not the only type of questions for which result aggregation and question-

answering techniques would be complementary. This is also the case of more complex

questions, not very studied so far [(Lee et al. 2008; Verberne et al. 2007, 2009) for why
questions, (Yu and Hatzivassiloglou 2003) for opinion questions]. Questions concerning

procedures (in short, ‘‘how’’ questions), reason explanation (‘‘why’’) or opinions can hardly

find a complete answer in a single part of document. The usual ‘‘short answer’’ QA model

is no longer valid for answering these questions, but it obviously stays part of the QA

domain, particularly in the question analysis part.

For example, concerning opinion questions, the system should be able to locate opinions

in documents, their polarity, their holder, their strength, etc., and to produce or generate a

synthetic ‘‘answer’’ in a suitable way, possibly in a table as what (Lin and Liu 2008)

propose for multi-focus factoid questions.

8 Conclusion

In this article, we showed how the use of syntactic analysis can help a question-answering

system to produce good results. FIDJI’s performances, on CLEF collections as well as on

Quaero QA campaign, are close to best state-of-the-art systems, without having recourse to

large external resources used by these systems. Also, FIDJI does not require any pre-

processing other than a classical search engine indexing. This means that it can be plugged

to any search engine and be used on a real Web application. On the contrary, scalability is a

big problem for systems using heavy resources. The counterpart of this advantage is a poor

execution time, but we hope to reduce this issue.

We presented experiments measuring the benefit brought by the use of syntactic

modules; we also studied the behavior of our system and its syntactic modules according to

the different types of questions, as well as different corpora (i.e., newspaper articles versus

Web collection). In particular, we showed that using syntactic analysis on Web pages,

obviously less ‘‘clean’’ (bad spelling, bad syntax, spam), could lead to interesting results.

FIDJI’s performances decreased on such a corpus but not more than other participants’.

In a candidate sentence, missing relations are often due to the fact that the meaning

behind these relations is expressed by a paraphrase. In this case, a linguistic validation is

necessary.10 Some techniques for finding lists of paraphrases out of context exist (Lin and

Pantel 2001; Barzilay and Lee 2003; Harabagiu and Hickl 2006; Fujita and Sato 2008); but

in our case, one of our perspectives is to use the lexical and syntactic contexts, as well as

the fact that other similar documents have been retrieved by the search engine, to prove

that two sets of dependencies are paraphrases of each other.

We also presented some approaches used to validate an answer through several docu-

ments, in order to show a complete proof of the correctness of the answer to the user. This

opens the way to many perspectives in multi-document search as well as in result

aggregation.

New evaluation campaigns, as INEX or Quaero, initiate new types of questions, new

corpora, new evaluation techniques and new bridges with other fields, in order to use QA

for answering more user needs. We aim at adapting FIDJI on English language and

10 For example, a question ‘‘Who plans to acquire Yahoo?’’ can be answered by ‘‘Microsoft said it wants to
buy Yahoo’’. We need to validate that ‘‘want to buy’’ is equivalent to ‘‘plan to acquire’’.

Inf Retrieval (2010) 13:507–533 531

123

working on the issues raised by these new challenges, like list answer building and

complex question answering.

References

Aı̈t-Mokhtar, S., Chanod, J.-P., & Roux, C. (2002). Robustness beyond shallowness: Incremental deep
parsing. Natural Language Engineering, 8(2/3), 121–144. Cambridge University Press.

Barzilay, R., & Lee, L. (2003). Learning to paraphrase: An unsupervised approach using multiple-sequence
alignment. In Proceedings of HLT-NAACL 2003 (pp. 16–23). Edmonton, AB, Canada.

Bouma, G., Fahmi, I., Mur, J., van Noord, G., van der Plas, L., & Tiedemann, J. (2007). Linguistic
knowledge and question answering. Traitement Automatique des Langues, 46(3), 15–39.

Brun, C., & Hagège, C. (2004). Intertwining deep syntactic processing and named entity detection. In
Proceedings of España for natural language processing (EsTAL 2004). Alicante, Spain.

Di Nunzio, G. M., Ferro, N., Mandl, T., & Peters, C. (2006). CLEF 2006: Ad hoc track overview. Working
notes for the CLEF 2006 workshop. Alicante, Spain.

Fujita, A., & Sato, S. (2008). Computing paraphrasability of syntactic variants using web snippets. In
Proceedings of the third international joint conference on natural language processing (IJCNLP) (pp.
537–544). Hyderabad, India.

Harabagiu, S., & Bejan, C. A. (2005). Question answering based on temporal inference. In Proceedings of
the workshop on inference for textual question answering. Pittsburg, Pennsylvania, USA.

Harabagiu, S., & Hickl, A. (2006). Methods for using textual entailment in open-domain question
answering. In 44th Annual meeting of the association for computational linguistics. Sidney, Australia.

Hartrumpf, S. (2008). Semantic decomposition for question answering. In Proceedings of the 18th European
conference on artificial intelligence (ECAI) (pp. 313–317). Patras, Greece.

Hickl, A., Wang, P., Lehmann, J., & Harabagiu, S. (2006). FERRET: Interactive question-answering for
real-world environments. In COLING/ACL interactive presentation sessions. Sydney, Australia.

Katz, B. (1997). Annotating the world wide web using natural language. In Proceedings of the 5th RIAO
conference on computer assisted information searching on the Internet (RIAO ‘97).

Katz, B., Borchardt, G., & Felshin, S. (2005). Syntactic and semantic decomposition strategies for question
answering from multiple resources. In Proceedings of the AAAI 2005 workshop on inference for textual
question answering. Pittsburgh, Pennsylvania, USA.

Katz, B., & Lin, J. (2003). Selectively using relations to improve precision in question answering. In
Proceedings of the EACL-2003 workshop on natural language processing for question answering.

Laurent, D., Séguéla, P., & Nègre, S. (2005). Cross lingual question answering using QRISTAL for CLEF
2005. Working notes for the CLEF 2005 workshop. Vienna, Austria.

Laurent, D., Séguéla, P., & Nègre, S. (2006). Cross lingual question answering using QRISTAL for CLEF
2006. Working notes for the CLEF 2006 workshop. Alicante, Spain.

Laurent, D., Séguéla, P., & Nègre, S. (2008). Cross lingual question answering using QRISTAL for CLEF
2008. Working notes for the CLEF 2006 workshop. Alicante, Spain.

Lee, Y.-H., Lee, C.-W., Sung, C.-L., Tzou, M.-T., Wang, C.-C., Liu, S.-H., et al. (2008). Complex question
answering with ASQA at NTCIR 7 ACLIA. In Proceeding of the 7th NTCIR workshop meeting (pp.
70–76). Tokyo, Japan.

Ligozat, A.-L. (2007). Apport de l’analyse syntaxique des phrases dans un système de questions-réponses.
Traitement automatique des langues, 46, 103–125.

Lin, C.-J., & Liu, R.-R. (2008). An analysis of multi-focus questions. SIGIR workshop on focused retrieval.
Singapore.

Lin, D., & Pantel, P. (2001). Discovery of inference rules for question-answering. Journal of Natural
Language Engineering, 7(4), 343–360.

Mel’čuk, I. (1984). Dependency syntax: Theory and practice. Albany: State University of New York Press.
Moriceau, V., Tannier, X., Grappy, A., & Grau, B. (2008). Justification of answers by verification of

dependency relations—the French AVE task. Working Notes for the CLEF 2008 Workshop. Aarhus,
Denmark.

Quintard, L. (2008). Overview of the Quaero 2008 monolingual question answering track. Retrieved from
Laboratoire National de Métrologie et d’Essais: http://www.lne.eu/publications_en/research/quaero-
QA-2008-overview.pdf.

Quintard, L. (2009). P2 Evaluation Report: Evaluation Design for Task 3.5 on Question Answering Systems.
Quaero program, CTC project.

532 Inf Retrieval (2010) 13:507–533

123

http://www.lne.eu/publications_en/research/quaero-QA-2008-overview.pdf
http://www.lne.eu/publications_en/research/quaero-QA-2008-overview.pdf

Rodrigo, A., Peñas, A., & Verdejo, F. (2008). Overview of the answer validation exercise 2008. Working
notes for the CLEF 2008 workshop. Aarhus, Denmark.

Saquete, E., Martinez-Barco, P. R. M., & Vicedo, J. L. (2004). Splitting complex temporal questions for
question answering systems. In 42nd Annual meeting of the association for computational linguistics
(pp. 566–573). Barcelone, Spain: Association for Computational Linguistics, Morristown, NJ, USA.

Sun, R., Jiang, J., Tan, Y. F., Cui, H., Chua, T.-S., & Kan, M.-Y. (2005). Using syntactic and semantic
relation analysis in question answering. In The fourteenth text retrieval conference (TREC). Gai-
thersburg, MD, USA: Department of Commerce, National Institute of Standards and Technology.

Vallin, A., Giampiccolo, D., Aunimo, L., Ayache, C., Osenova, P., Peñas, A., et al. (2005). Overview of the
CLEF 2005 Multilingual Question Answering Track. Working notes for the CLEF 2005 workshop.
Vienna, Austria.

Verberne, S., Boves, L., Oostdijk, N., & Coppen, P.-A. (2007). Discourse-based answering of why-questions.
Traitement Automatique des Langues, Discours et document: traitements automatiques, 47, 21–41.

Verberne, S., Raaijmakers, S., Theijssen, D., & Boves, L. (2009). Learning to rank answers to why-questions.
In Proceedings of 9th Dutch-Belgian information retrieval workshop (DIR 2009) (pp. 34–41).

Yu, H., & Hatzivassiloglou, V. (2003). Towards answering opinion questions: Separating facts from
opinions and identifying the polarity of opinion sentences. In Proceedings of 2003 conference on
empirical methods in natural language processing (EMNLP) (pp. 129–136).

http://trec.nist.gov/
http://www.clef-campaign.org/
http://research.nii.ac.jp/ntcir/
http://www.inex.otago.ac.nz/
http://www.quaero.org/
http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
http://nlp.uned.es/clef-qa/ave/

Inf Retrieval (2010) 13:507–533 533

123

http://trec.nist.gov/
http://www.clef-campaign.org/
http://research.nii.ac.jp/ntcir/
http://www.inex.otago.ac.nz/
http://www.quaero.org/
http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
http://nlp.uned.es/clef-qa/ave/

	FIDJI: using syntax for validating answers in multiple documents
	Abstract
	Introduction
	FIDJI, a syntax-based strategy
	Syntactic processing
	Syntactic dependencies and XIP
	XIP output enrichment: grammar and named entities
	Question analysis
	Document processing

	Finding the answer
	Extracting the answer
	Factoid questions
	List questions
	Yes/no questions
	Complex questions

	Supporting the answer
	Scoring and ranking answers

	Validating an answer from multiple passages
	Answer type
	Answer slot unification
	Redundancy
	Supporting texts

	Evaluation
	Overall results and different types of questions
	Evaluation of syntactic modules
	Benefits from using syntactic information for selecting candidate sentences
	Benefits from using syntactic information for extracting candidate answers

	Multi-passage validation
	Execution time aspects
	Synthesis

	Perspectives: towards result aggregation
	Multi-document answer validation and aggregation
	Result aggregation for specific question types
	List questions, multiple answer questions
	Complex and opinion questions

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

